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Abstract  

In classical theories of cerebellar cortex, high dimensional sensorimotor representations are 

used to separate neuronal activity patterns, improving associative learning and motor 

performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population 

activity is low dimensional. To examine sensorimotor representations from the point-of-view 

of downstream Purkinje cell ‘decoders’, we used 3D acousto-optic lens two photon microscopy 

to record from hundreds of GrC axons. Here we show that GrC axon population activity is high 

dimensional and distributed with little fine-scale spatial structure during spontaneous 

behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in 

neuronal activity space. These results suggest that the cerebellar cortex supports high 

dimensional representations and segregates behavioral state dependent computations into 

orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of 

cerebellar pattern separation theories and suggest that the cerebellum and neocortex utilize 

population codes with common features, despite their vastly different circuit structures. 

 

Main text 

A core function of the cerebellum is to predict the sensory consequences of motor actions1,2 by 

learning sensorimotor associations3. This is achieved by combining sensory and motor 

information from multiple sources. These include the neocortex, which is extensively 

interconnected with the cerebellar cortex, forming multi-synaptic loops via the basal pontine 

nucleus and thalamus4. Sensorimotor information enters the cerebellar cortex via mossy 

fibers5–8, which are sampled by a much larger population of granule cells (GrCs), located in 

the input layer. This ‘expansion recoding’ involves mixing of mossy fiber inputs with diverse 

functional properties9 and nonlinear thresholding in GrCs combined with anatomical 

expansion, which is thought to increase the dimensionality of GrC representations10–12. Such 

nonlinear mixing and expansion is proposed to separate neuronal activity patterns by projecting 

them into a high-dimensional space10–15. High dimensional codes have recently been observed 

in forebrain structures, including the neocortex when viewing natural scenes16, performing 

complex cognitive tasks17 and during spontaneous behaviors18. By contrast, the dimensionality 

of neural activity in the cerebellar cortex has been found to be much lower, encoding movement 

parameters in a small number of variables19,20. But it is unclear whether this arises from an 

inability of feedforward cerebellar circuits to support high dimensional population codes, or 
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the nature of the behavioral tasks, which could limit the dimensionality of their neural 

representations21. Determining whether the cerebellar cortex can support high dimensional 

sensorimotor representations is therefore a key test of theoretical predictions that it performs 

expansion recoding10,11 and pattern separation12–14 and whether the neocortex and cerebellar 

cortex utilize distinct population-level sensorimotor representations.  

 

Results 

Axonal population activity  

To investigate sensorimotor representations in the cerebellar cortex we selectively expressed 

GCaMP6f in cerebellar GrCs in mouse Crus I (Extended Data Fig. 1), an area that encodes 

information from the whiskers7,22,23. Rather than imaging GrC somata19,20,24, where synaptic 

and action potential linked Ca2+ influx could be mixed due to their close proximity25, we 

monitored GrC axons in the molecular layer (parallel fibers), since their varicosities exhibit 

large action potential induced Ca2+ transients26. We utilized the unique orthogonal arrangement 

of parallel fibers and Purkinje cell dendritic trees to read out GrC activity from the point of 

view of the ‘downstream decoder’ (i.e. Purkinje cells; Fig. 1a). To do this we used acousto-

optic lens (AOL) 3D two-photon microscopy27 (Methods) to simultaneously image multiple 

XY ‘patches’ (X: 48 - 110 μm, Y: 13 - 20 μm) positioned with a staircase arrangement through 

the molecular layer (Fig. 1a). Moreover, real-time and post hoc correction for brain movement 

enabled reliable recordings from parallel fiber varicosities during behavior (Methods; Video 

S1). Head-fixed mice were free to stand or run on a wheel and to whisk. Such spontaneous 

behaviors encompass many more individual movements than simple constrained behaviors and 

are therefore likely to have a higher intrinsic dimensionality21. Parallel fiber varicosities within 

each of the imaged patches were identified and grouped into putative axons on the basis of their 

spatial alignment along the averaged parallel fiber direction and the level of correlation in their 

activity (Fig. 1b, c and Extended Data Fig. 2; Methods). To validate our grouping procedure, 

we measured the distance between varicosities on the same putative GrC axon, as this was not 

one of the structural criteria used for grouping. The observed intervaricosity distance varied 

between 2 - 17 μm, with a mean of 5.50 ± 0.08 μm (1080 putative axons with multiple 

varicosities), a range and mean that was similar to high resolution measurements from sparsely 

labeled parallel fibers in fixed tissue28 (Fig. 1d). Following this analysis we identified 135 to 

700 GrC axons per recording (Fig. 1e). Parallel fiber population activity had a rich and diverse 
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structure that was correlated to the whisker set point (low frequency changes in whisker angle) 

and to the locomotion speed of the animal (Fig. 1e and Extended Data Fig. 3). 

 

Spontaneous behavior typically consisted of periods of quiet wakefulness (QW) when the mice 

rested on the wheel and exhibited little movement or whisking, and periods of pronounced 

whisking and locomotion, which we called the active state (AS), and which likely encompassed 

additional unobserved behaviors (Fig. 2a). Indeed, whisking and locomotion speed were highly 

correlated with one another (p = 2.4 x 10-4, Wilcoxon signed rank test, n = 13 experiments, N 

= 5 animals; Supp. Table 1; Extended Data Fig. 3). Parallel fiber activity showed a continuum 

of responses (Fig. 1e; Extended Data Fig. 4a, b), including both positively and negatively 

modulated responses during the AS (Fig. 1e and 2b). Comparison of the ΔF/F in axons during 

AS and QW revealed a majority of AS-preferring parallel fibers (positively modulated, 66%, 

n = 13, N = 5), with a smaller population of QW-preferring parallel fibers (negatively 

modulated, 19%; Fig. 2b). Correlation of parallel fiber activity with whisking and locomotor 

sensorimotor variables revealed a similar fraction of positively and negatively modulated axons 

associated with each of these behavioral parameters (Extended Data Fig. 3). Since it is possible 

that negatively modulated parallel fiber signals could arise from axial brain movement, we 

compared the intensity of beads embedded within the tissue with the activity of negatively 

modulated axons. No correlation between negatively modulated parallel fiber activity and bead 

fluorescence was observed, ruling out this possibility (Supp. Fig. 1). Moreover, both positively 

and negatively modulated responses were also observed when imaging larger GrC somata 

during whisking and locomotion (Supp. Fig. 2). This finding also argues against the possibility 

that negatively modulated axon responses arose from undetected off-target expression in 

molecular layer interneurons or Purkinje cells. A smaller proportion of parallel fibers were not 

significantly modulated by behavioral state (15%). For these parallel fibers, Ca2+ events were 

evident and the distribution of signal-to-noise ratios was similar to those of positively or 

negatively modulated parallel fibers, indicating that their lack of modulation was not simply 

due to noise (Extended Data Fig. 5). Overall, the proportions of negatively, positively and non-

modulated parallel fibers were consistent across experimental sessions and animals (Extended 

Data Fig. 6). Due to the relatively low sensitivity of GCaMP6f for single spikes, these ΔF/F 

responses are likely to correspond to bursts or sustained spiking in parallel fibers. Nevertheless, 

these results show that spontaneous behaviors are represented in a bidirectional parallel fiber 
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population code in Crus I. This reveals a greater diversity in GrC responses than previously 

reported in awake behaving mice20,24,25. 

 

Previous findings in anesthetized mice showed that parallel fibers are activated in sparse 

clusters during discrete sensory stimulation of the perioral region29. To investigate whether 

clusters of parallel fiber activity are present during spontaneous behavior, we computed the 

average pairwise cross correlation for each pair of axons and estimated the pairwise distance 

between axons in the recorded 3D volume (Extended Data Fig. 7a). No significant spatial 

dependence in the correlation coefficients was observed in the XY plane, except for a weak 

increase between parallel fibers within 2 μm (p < 10-4, Wilcoxon rank sum test, n = 13, N = 5; 

Fig. 2c), likely due to our conservative grouping procedure. A similar result was obtained for 

ungrouped varicosities (Extended Data Fig. 7b), and when we included the Z dimension across 

imaging planes, albeit at lower spatial resolution (Extended Data Fig. 7c). Moreover, when 

positively and negatively modulated parallel fiber responses were examined separately, they 

showed no preferential clustering, as the distribution of within-group nearest neighbor (NN) 

distances remained similar after shuffling the group labels (positively modulated: 3403 putative 

axons, p = 0.32; negatively modulated: 896 putative axons, p = 0.21, Kolmogorov-Smirnoff 

test, n = 13, N = 5; Fig. 2d). Next, we investigated whether spatial clustering occurred during 

more defined behaviors. However, when our analysis was restricted to locomotion onsets, no 

significant spatial dependence in the correlation structure was observed (Extended Data Fig. 

4c, d). These results show that parallel fiber activity in Crus I lacks spatial clustering during 

spontaneous behaviors. 

 

Geometry of neural representations 

We next explored how behavior is encoded across the parallel fiber population in Crus I by 

examining neural activity space, in which each dimension represents a different neuron, and 

each point in space corresponds to a unique pattern of activity across the population of axons. 

Because of the discrete behavioral state transitions in our data (Fig. 2a), we expected to observe 

two clusters of points corresponding to AS and QW. In principle, these clusters could overlap 

significantly, or alternatively, they could be encoded in distinct, well-separated representations 

(or ‘manifolds’; Fig. 3a). To visualize the structure of the representations of AS and QW, we 

reduced the dimensionality of the neural activity space by plotting the first three principal 
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components of the parallel fiber population activity (Fig. 3b). This revealed that parallel fiber 

activity represented AS and QW in well-separated manifolds, which were connected by distinct 

trajectories representing transitions in either direction (AS → QW or QW → AS; Video S2). 

Clearly separated manifolds for AS and QW were present in all five animals with > 100 parallel 

fibers recorded (Fig. 3b and Extended Data Fig. 8). The quantification of the average intra-

manifold Euclidean distances to the inter-manifold distances revealed that the average distance 

between the AS and QW manifolds was 30 - 40% larger than either manifold (p = 2.4 x 10-4 

(AS), p = 2.4 x 10-4 (QW), Wilcoxon signed rank test, n = 13, N = 5; Fig. 3c), indicating that 

these behavioral manifolds were well separated. In two animals, we observed isolated whisker 

movements in the absence of locomotion. Since these were excluded from the AS and QW 

state criteria, we wondered whether the neural representations of these isolated whisks would 

be embedded in the AS representation, or occupy a separate region of neural activity space. 

Analysis of these isolated whisking periods revealed that they indeed occupied a region of 

activity space that was distinct from the AS and QW manifolds (Supp. Fig. 3).   

 

The geometry of neural representations can provide insight about the computations performed 

by neural populations30. For example, in the motor and premotor cortices, orthogonal manifolds 

are thought to limit interference between different behaviors31,32. Visualization and rotation of 

the AS and QW manifolds revealed an apparently orthogonal arrangement in activity space 

(Video S3). To quantify how the manifolds were orientated, we calculated the angle between 

the AS and QW subspaces within the neural activity space (Fig. 3d; Methods). Noisy estimates 

of the principal axes of the behavioral subspaces could make the subspaces appear artificially 

orthogonal, since random vectors are likely to be orthogonal in a neural activity space with 

high extrinsic dimensionality (i.e., large number of neurons). To control for measurement 

noise, we calculated the angle between random halves of the population activity after shuffling 

across time. Repeating this procedure gave a null distribution of angles for each experiment, 

which could then be compared with the angle observed in the data (Fig. 3e). The mean angle 

between the subspaces for the AS and QW was 1.4 ± 0.02 radians, suggesting they were nearly 

orthogonal, with significantly smaller values in the control (0.5 ± 0.09 radians, p = 4.9 x 10-4, 

Wilcoxon signed rank test, 12/13 experiments reached significance, n = 13, N = 5; Fig. 3f). 

These findings establish that population activity in the cerebellar cortex is organized into 

orthogonal subspaces representing different behavioral states. 
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We next asked whether subspace orthogonality simply arose from distinct populations of 

parallel fibers being active during the different behavioral states. To test this, we removed 

increasing fractions of the strongest positively and negatively modulated axons and 

recalculated the angle between AS and QW subspaces. As more positively and negatively 

modulated parallel fibers were excluded, the angle between these subspaces gradually 

decreased but remained significantly larger than in the shuffle control (p < 4.5 x 10-3 for 0th 

through 70th percentile of positively and negatively modulated parallel fibers excluded, 

Wilcoxon signed rank test with Bonferroni correction; Fig. 3g). The decrease in angle between 

AS and QW subspaces was not significantly different from a control in which we excluded the 

same number of neurons, randomly sampled from the entire distribution (0th through 100th 

percentile, Wilcoxon signed rank test with Bonferroni correction; Fig. 3g), suggesting that this 

decrement could be due to a fall in the number of neurons. The robustness to removing strongly 

negatively and positively modulated parallel fiber responses shows that they were not the sole 

determinant of the orthogonality of the AS and QW manifolds. This suggests that subspace 

orthogonality is not simply inherited from the bidirectionality of the parallel fiber responses. 

 

Distributed sensorimotor representations  

Since transitions between QW and AS were associated with protraction and retraction of the 

whiskers, we next asked whether widespread activity mediated by the positively and negatively 

modulated parallel fibers could be explained by changes in whisker set point. To investigate 

this, we examined how the first principle component (PC1), which captures widespread 

changes in parallel fiber activity, was related to whisker set point. While PC1 captured the 

transitions between AS and QW, it did not reflect different resting positions of the whisker set 

point during QW, even when it varied over the majority of its range (Fig. 4a, b). Across animals, 

PC1 was significantly correlated with whisker set point over all time (0.69 ± 0.05, n = 13, N = 

5; Fig. 4c), but there was little correlation during QW (0.04 ± 0.06, n = 13, N = 5). Instead, 

PC1 was highly correlated with a binary variable reflecting the behavioral state (0.89 ± 0.02, n 

= 13, N = 5). Moreover, PC1 was significantly correlated with whisker set point during the AS 

(0.49 ± 0.06, n = 13, N = 5), indicating that it contains information about whisker position 

during active whisking. These results suggest that widespread modulation of parallel fiber 

activity in Crus I (i.e., PC1) is correlated with active behaviors rather than encoding detailed 

information on whisker set point. 
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We next asked whether more detailed information on the whisker set point was present in the 

GrC population activity as a whole. To investigate this, we used cross-validated linear 

regression to predict whisker set point from increasing numbers of principal components (PCs), 

and calculated the unexplained variance in held-out data that was not used for training (Fig. 5a, 

b; Methods). Across animals, decoding from the optimal number of PCs led to substantially 

better decoding performance than the first PC (p = 2.4 x 10-4, Wilcoxon signed rank test, n = 

13, N = 5; Fig. 5c) or the first 10 PCs (p = 2.4 x 10-4, Wilcoxon signed rank test, n = 13, N = 

5). This improvement was not due to an increased number of parameters since decoding 

performance was cross-validated. This suggests that more detailed information on whisker set 

point is available in the higher PCs of parallel fiber activity. Given the low correlation between 

whisker set point and PC1 during QW (Fig. 4c), we next investigated whether any information 

on whisker set point resting positions was present across GrCs during QW. To this end, we 

trained a decoder on activity exclusively during QW. The QW-only decoder was significantly 

better at predicting whisker set point during QW than a decoder trained on randomly sampled 

times during the experiment (p = 2.4 x 10-4, Wilcoxon signed rank test, n = 13, N = 5; Fig. 5d). 

These results suggest that detailed information about whisker set point is available in the 

population activity and more than one linear decoder (e.g. Purkinje cell) may be required to 

decode across different states.  

 

The finding that many principal components are required to decode detailed whisker set point 

information raises the question of how such information is distributed across parallel fibers. 

Classic cerebellar theories have argued that sensorimotor information should be distributed 

across GrC populations rather than encoded in single GrCs10–14. To test this, we used lasso 

regression (L1 regularization; Methods) to quantify the minimal number of parallel fibers 

necessary for optimal decoding. This gave a minimum unexplained variance with 225 ± 22 

parallel fibers, which was substantially lower than for the best performing parallel fiber (Fig. 

5e, f; p = 2.4 x 10-4, Wilcoxon signed rank test, n = 13, N = 5). To investigate whether such 

distributed representations are present for other behavioral variables, we also investigated 

locomotion speed. Hundreds of parallel fibers (184 ± 22 parallel fibers, n = 11, N = 5) were 

required to minimize the cross-validated unexplained variance for locomotion speed (Extended 

Data Fig. 9a-c). Although there was a weak correlation between the decoders of whisker set 

point and locomotion (correlation between decoder coefficients: r = 0.17 ± 0.04, n = 11, N = 
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5), there was an inverse relationship between decoding error and the similarity of the regression 

coefficients (Extended Data Fig. 9d), indicating that more complete representations of these 

variables tended to be partially aligned. These findings suggest that sensorimotor 

representations are distributed across the parallel fiber population. 

 

Dimensionality of population activity 

Theoretical work on cerebellar pattern separation predicts that sensorimotor representations in 

GrC populations are high-dimensional10–14. To test this, we quantified the dimensionality of 

parallel fiber population activity during spontaneous behaviors using a cross-validated variant 

of PCA (Methods). This revealed that the state dependent changes reflected in PC1 captured 

only 10.3 ± 1.2% of the variance (Fig. 6a inset, data subsampled to 300 axons, n = 10, N = 3). 

We then estimated the number of PCs required to attain the maximum variance explained, 

beyond which it decreased due to noise or other non-shared variability (Fig. 6a). This provided 

a lower bound on the dimensionality that could be inferred given the noise level within each 

experiment (21.6 ± 2.5 dimensions in 300 parallel fibers explaining 34.2 ± 3.7% of the variance, 

n = 10, N = 3; Methods). To obtain a more accurate estimate of the dimensionality, we noted 

that experiments with higher values of maximum variance explained tended to have a higher 

dimensionality (Fig. 6a). A simple model confirmed that a linear relationship is expected across 

a wide range of signal-to-noise levels (Extended Data Fig. 10). Linear extrapolation of the data 

suggested that 62 dimensions are required to explain the full variance of a population of 300 

parallel fibers during spontaneous behaviors (Fig. 6b). This corresponds to a highly non-

redundant population code with an average of only 5 parallel fibers for each encoded 

dimension. This ratio remained low for populations of up to 650 parallel fibers (4 - 5 neurons 

per dimension; Fig. 6c), indicating that population activity in GrC axons is high dimensional 

during spontaneous behaviors. 

 

Discussion 

Our recordings from hundreds of GrC axons in the molecular layer establish that the cerebellar 

cortex can support distributed, high dimensional representations during spontaneous behaviors. 

The presence of high dimensional population activity is consistent with the cerebellar input 

layer performing pattern separation12, as proposed by Marr-Albus theory10,11, and potentially 

explains why GrCs are so numerous33. This contrasts with previous findings of low 
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dimensional GrC population activity during a mouse forelimb lever task20 and tail movements 

in zebrafish larvae19. However, it was unclear whether these results were due to an inability of 

the cerebellar cortex to support high dimensional representations, or the low dimensionality of 

these defined behavioral tasks21. Our finding that only 5 GrC axons are required, on average, 

to encode each dimension is comparable to the low number of neurons per dimension found in 

the visual cortex, which has been shown to be as high dimensional as possible while also 

maintaining a smooth population code, which aids generalization to novel stimuli18. Thus, the 

dimensionality of parallel fiber activity that we observed could be near the optimum set by the 

trade-offs between pattern separability, robustness to noise, and generalizability. 

 

Our results also show that GrC axonal populations employ a bidirectional coding strategy and 

that differentially modulated parallel fibers are spatially dispersed within the molecular layer. 

The fact that a subpopulation of GrCs are active in the absence of movement is consistent with 

previously reported cell-attached recordings from individual GrCs in Crus I which showed that 

although most GrCs fire during periods of active whisking, some exhibit substantial firing rates 

at rest22. Bidirectional coding is likely to be widespread across other lobules in the cerebellum 

where individual GrCs and mossy fibers exhibit tuning for a range of sustained variables 

including joint angle5 and angular head velocity6. It is possible that the positively and 

negatively modulated GrC responses we report here could contribute to the increased and 

decreased responses observed in downstream inhibitory interneurons in the molecular layer22 

and Purkinje cells34–36.  

 

Our choice to study spontaneous behaviors was motivated by recent work demonstrating that 

the dimensionality of neural representations is limited by the richness of the behavior21. 

However, this variability brings with it certain challenges that warrant consideration37. Our 

definition of what constitutes an active state likely combines many behavioral parameters, and 

as a result the manifold structures that we have identified may aggregate multiple 

representations. Thus, while the representations we observe during spontaneous behaviors 

demonstrates the cerebellar cortex can support high dimensional activity, simpler behaviors 

and the individual behavioral parameters that contribute to spontaneous behaviors are both 

likely to be represented by lower dimensional manifold structures. These could be embedded 

within the coding subspace12, consistent with the low dimensional representations reported for 
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well-defined behaviors19,20. Future work will be required to explore the properties of the full 

manifold structure of these neural representations38.  

 

The high dimensionality and distributed nature of the parallel fiber population activity that we 

observe support the idea that the cerebellar input layer generates mixed sensorimotor 

representations13. This population coding strategy provides the capacity to encode vast 

numbers of different sensorimotor combinations that arise during complex behaviors15,17. 

Moreover, the spatially uniform activity structure, when viewed in the plane of the Purkinje 

cell dendritic tree, suggests that parallel fiber synaptic inputs could be spatially distributed 

across the Purkinje cell dendritic tree during spontaneous behaviors. Such a configuration 

favours linear synaptic integration39, potentially enabling Purkinje cells to act as linear 

decoders34,40 as originally proposed in classical theories of cerebellar function10,11. However, 

parallel fiber activity only reflects potential synaptic inputs onto Purkinje cells (or molecular 

layer interneurons). Synaptic plasticity rules3 are likely to further select subsets of GrCs that 

form functional synapses, since the majority of synapses on an individual Purkinje cell are 

silent41. Thus, the pattern of synaptic input onto an individual Purkinje cell could still exhibit 

structure since it is likely to be a spatially42 and temporally43 selected subset of the parallel 

fiber population activity. While further work is required to elucidate how individual Purkinje 

cells decode the parallel fiber activity that passes through their dendritic trees, our findings 

suggest that the functional and anatomical properties of parallel fibers are well suited for 

generating the wide array of sensorimotor associations required for predicting the sensory 

consequences of self-generated movements1,2, and could be employed in coordinating other 

dynamical processes including those underlying cognitive processes44. 

 

Dimensionality reduction of the parallel fiber population activity in Crus I revealed that it forms 

distinct, well-separated manifolds representing AS and QW, that are orthogonally arranged. 

Orthogonal manifolds have been reported in the neocortex18,31,32,45, but such properties have 

not previously been reported in the simpler, largely feedforward architecture of the cerebellar 

cortex. In premotor cortex, orthogonal ‘output-potent’ and ‘output-null’ subspaces have been 

proposed to separate neural activity that has a direct behavioral output from activity that reflects 

internal computations such as motor preparation31,45. The finding that the cerebellum 

contributes to preparatory activity in the motor cortex46,47 raises the possibility that the 

orthogonal manifolds in the cerebellum perform a similar function. 



 

12 
 

 

Our finding that the cerebellar GrC population code shares several properties in common with 

the neocortex, including positively and negatively modulated responses48, representation of 

behavioral state18,31, orthogonal manifolds18,31,32,45 and, mixed17, high dimensional, distributed 

representations of spontaneous behaviors18, extend recent observations of a high level of 

coordination in the activity of individual cells in the cerebellum and neocortex20. Indeed, both 

the cortico-pontine pathway, which conveys efferent copy information to the cerebellum49, and 

the return loop of the cortico-thalamo-cerebellar pathway4 could be involved in generating and 

sharing common population level representations. 

 

Our results establish that the cerebellar GrC population code can utilize a high dimensional 

neural activity space, as predicted for a general purpose pattern separation device12. Moreover, 

we show that GrC population representations share several features in common with those in 

the neocortex, raising the possibility that sensorimotor information is shared through an 

effective communication subspace50 in the cortico-cerebellar system. 
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Figure legends 

 

Fig. 1. Granule cell axon population activity during spontaneous behaviors. (a) Schematic 

of the experimental configuration for the acousto-optic lens (AOL) 3D imaging showing head-

fixed mouse on a wheel, along with high-speed camera to track whisker movement (left). 

Spatial arrangement of multiple simultaneously acquired imaging planes (‘patches’) within the 

imaging volume in relation to granule cell (GrC) axons (in green) and Purkinje cell dendritic 

tree (in grey) in the molecular layer with example of imaged patch showing varicosities 

expressing GCaMP6f (average fluorescence image; right). (b) Example of varicosity 

grouping (n=1, N=1 of n=13, N=5). Top: Correlation image of a patch (13.7 μm x 68.4 μm) 

with identified varicosities outlined in white dots. Greyscale indicates correlation with the 

fluorescence of neighbouring pixels. The colored outlines show examples of grouped 

varicosities per axon, with each color corresponding to one axon. Bottom: ΔF/F traces for each 

varicosity highlighted in color. (c) Matrix showing correlation between ΔF/F traces of 

varicosities in b. Colored bars on the side show the grouping into putative axons. The strongest 
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correlations were between varicosities on the same putative axon. (d) Distribution of distances 

between varicosities grouped onto the same putative parallel fiber (n = 13, N = 5). The red 

arrow shows the mean intervaricosity distance. Black line and arrow indicate the range and 

mean intervaricosity distances as determined previously in fixed tissue with anatomical 

methods28. The close match suggests our detection of varicosities and method of grouping into 

axons identifies the majority of boutons per active axon in the imaged patch. (e) Example of 

activity (ΔF/F) of 700 putative GrC axons (parallel fibers) in a single experiment, grouped into 

positively modulated (PM, red), negatively modulated (NM, blue), and non-modulated parallel 

fibers (non-M, grey). Bottom: Whisker set point (WSP; slow-frequency component of whisker 

angle) and locomotion speed.  

 

Fig. 2. Bidirectional spatially mixed parallel fiber responses during active behavioral 

state. (a) Example of behavioral state segmentation and parallel fiber responses. Top: time 

series of whisker set point (WSP) and locomotion speed labelled as periods of active state (AS, 

magenta), quiet wakefulness (QW state, cyan) or unclassified timepoints (black). Bottom: ΔF/F 

traces of parallel fibers that exhibited a significant increase or decrease during the AS, 

compared to QW (p < 0.05, two-sided shuffle test). (b) Histogram of changes in ΔF/F response 

during the AS relative to QW across all parallel fibers (n = 13, N = 5). Positively modulated 

(PM; red) and negatively modulated (NM; blue) parallel fibers, as well as axons which were 

not significantly modulated by behavioral state (grey). (c) Average pairwise correlation 

between parallel fiber activity as a function of the distance between axons (n = 13, N = 5), 

shown for positively modulated (red), negatively modulated (blue), and all parallel fibers 

(grey). Shading indicates s.e.m. and solid lines indicate double-exponential fits. (d) Within-
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group nearest-neighbor (NN) distances for positively modulated (red) and negatively 

modulated (blue) parallel fibers, and shuffle controls (black) (n = 13, N = 5). 

 

Fig. 3. Structure of population activity reveals separated orthogonal coding spaces during 

different behavioral states. (a) Schematic diagram illustrating possible overlapping (left) and 

separate (right) representations in neural activity space of the active state (AS, magenta) and 

quiet wakefulness (QW, cyan). (b) First three principle components (PCs) of parallel fiber 

population activity for a single experiment. Manifolds representing AS and QW and the 

transitions between them. Magenta to cyan color change indicates a continuous AS-QW scale 

for the state dimension (Methods). (c) Plot showing the average Euclidean distance between 

all pairs of neural activity patterns (ΔF/F) within the QW manifold (cyan; 4.8 ± 0.5; mean ± 

s.e.m.) within the AS manifold (magenta; 5.4 ± 0.5), or between the two manifolds (black; 6.9 

± 0.7). Each circle represents a different experiment (n = 13, N = 5; two tailed Wilcoxon signed 

rank test). (d) Schematic depicting quantification of the angle between the AS and QW 

subspaces (i.e., hyperplanes in which the AS and QW manifolds are embedded). (e) Example 

of null distribution obtained by calculating the angle between two halves of the data, after 

shuffling time for an individual experiment. Dashed line indicates the observed angle between 

AS and QW manifolds in the same experiment. (f) Plot showing angle between AS and QW 

manifolds, compared to the mean angle between random halves of the data after shuffling 

timepoints. Each circle indicates a different experiment (n = 13, N = 5; two-sided Wilcoxon 

signed rank test). (g) Angle between AS and QW manifolds (black) as increasing fractions of 

the most strongly positively and negatively modulated fibers are excluded. Schematic (right) 

depicts a distribution of the change of ΔF/F with positively modulated (PM, red), negatively 
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modulated (NM, blue), and non-modulated (grey) parallel fibers listed (cf. Fig. 1b). Brown box 

indicates the parallel fibers analysed when the 70th percentile is excluded (two-sided Wilcoxon 

signed rank test with Bonferroni correction). The gray curve indicates the shuffle control, and 

dotted black curve indicates the random control, in which the same number of neurons are 

analysed, but randomly sampled across the distribution. Grey boxes at bottom show the number 

of experiments (n) and animals (N) analysed. Shading indicates s.e.m. 

 

 

Fig. 4. Widespread parallel fiber population activity is correlated with changes in 

behavioral state. (a) Whisker set point (WSP; black) and first principal component (PC1; 

green) of parallel fiber population activity from a single experiment, together with binary 

representation of state. (b) WSP plotted against the first principal component (PC1) for the 

same experiment as (a). Color indicates a continuous active state (AS) to quiet wakefulness 

(QW) scale for the state dimension (Methods). (c) Correlation values between PC1 and 

different behavioral variables: binary state, or WSP over all time, during QW or AS. Each 

circle indicates a different experiment (n = 13, N = 5; two-sided Wilcoxon signed rank test). 

Error bars denote s.e.m. 
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Fig. 5. Distributed representation of sensorimotor dynamics (a) Whisker set point (WSP) 

during the same experiment shown in figure 4a and 4b over a different period. Measured WSP 

(black), and its reconstruction using linear regression over the best performing parallel fiber 

(grey), first 10 principal components (PCs) (orange), and first 100 PCs (brown). Reconstruction 

error for each case is indicated as root mean square error (RMSE). (b) Example of unexplained 

variance (cross-validated) for WSP (an assay of the error in decoding performance) as a 

function of the number of PCs used for linear regression (same experiment as in Figure 4a, 4b 

and 5a). Shading indicates s.e.m. over random draws of held-out data. (c) Plot of the average 

cross-validated unexplained variance for WSP based on the first PC, the first 10 PCs, and the 

optimal number of PCs. Each circle indicates a different experiment (n = 13, N = 5; two-sided 

Wilcoxon signed rank test). (d) Plot of the average cross-validated unexplained variance for 

WSP during QW for a decoder trained only on QW times, compared to a decoder trained on 

random times across the experiment (n = 13, N = 5; two-sided Wilcoxon signed rank test). Both 

decoders were based on their optimal number of PCs, and were tested on the same held-out 

data during QW. (e) Plot of the average cross-validated unexplained variance for WSP based 

on the best parallel fiber (PF) for each recording and for lasso regression on parallel fiber 

population activity (n = 13, N = 5; two-sided Wilcoxon signed rank test). (f) Range of optimal 

number of parallel fibers to minimize the cross-validated unexplained variance in f. Each 

marker represents a different experiment. Error bars in c, d and e denote s.e.m.  
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Fig. 6. Dimensionality of population activity during spontaneous behaviors. (a) 

Relationship between the variance of the population activity explained and number of principal 

components (PCs) based on cross-validated principal component analysis (PCA). Each black 

line represents the mean variance explained for a single experiment (all data randomly 

subsampled to 300 axons). Shading represents s.e.m. across different randomly subsampled 

populations and colors indicate different animals (n = 10, N = 3). The arrowheads represent the 

lower bound of the dimensionality for each experiment. Inset: Expanded region from main 

panel. Black bars indicate average over experiments. (b) Relationship between the lower bound 

of the dimensionality and the maximum variance explained. Grey and colored arrowheads 

indicate individual subsamples of held-out data and means for each experiment, respectively. 

Linear extrapolation predicts that 62 dimensions are necessary to explain all the variance for 

populations of 300 parallel fibers. (c) The ratio of number of neurons to the extrapolated 

dimensionality for all subsampled population sizes, ranging from 100 (n = 13, N = 5) to 650 

parallel fibers (n = 2, N = 1). 
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Extended Data Figure 1. Expression of GCaMP6f in granule cells in Slc17-a7 Cre mice. 

(a) Schematic representing a dorsal view of the cerebellum. The black circle represents the 5 

mm cranial window above Crus I. Colored blobs show the approximate location of the virus 

injection and GCaMP6f expression for the animals in this study. (b) Top view of a cranial 

window above Crus I. The green channel (left) shows expression of GCaMP6f in lobule Crus 

I. Green fluorescence is widespread due to the spatial extent of parallel fiber projections. The 

red channel (right), shows a clump of retrobeads at the injection site (arrow). (c) Confocal tile 

scanning of a coronal section of Crus I where granule cells (GrCs) were transfected with 

GCaMP6f. Note the absence of labelled cell bodies in the molecular and Purkinje cell layers. 

(d) Confocal image with a smaller field of view to show GCaMP6f expression in GrC somata 

and axons. Labels: Cr. 1: Crus1 lobule; Cr. 2: Crus2; lob. VI: cerebellar lobule VI in the vermis, 

Simp.: simplex lobule, PM: paramedian lobule, ML: molecular layer, PC: Purkinje cell, GrCL: 

GrC layer.  
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Extended Data Figure 2. Method of grouping varicosities into putative axons. (a) Strings 

of bright varicosities from active axons were traced by hand to obtain orientations of parallel 

fiber segments. Inset shows the histogram of the angle of individual parallel fiber segments 

from the average parallel fiber orientation (n = 13, N = 5). White arrow indicates average 

parallel fiber orientation for this experiment, and purple the acceptance angle for parallel fiber 

identification (two standard deviations of the distribution in the inset). (b) Examples of 

candidate varicosity groupings that pass (left, green box, each side 13.7 μm) and fail (right, red 

box) the first grouping criterion. Varicosities indicated by yellow contours. Title indicates 

angle between candidate parallel fiber given by linear fit (dotted white line) and the average 

parallel fiber direction for that experiment (white arrow). (c) Example histogram of correlation 

coefficient for pairs of varicosities in different patches, used for the second grouping criterion. 

Dotted line indicates the threshold correlation (95th percentile) for this experiment. (d-f) 

Example of correlated varicosities that pass the third grouping criterion. (d) Example activity 

of the two varicosities (r = 0.74). (e) Activity of varicosity 1 plotted against activity of 

varicosity 2 (grey). Blue line indicates fit from linear regression. Black circle indicates baseline 

activity distribution (95% confidence interval). Red line indicates vector v onto which activity 

is projected to calculate the linear deviation ratio for the third criterion. (f) Histogram of activity 

from (e) projected onto v (grey histogram), and analytically calculated distribution of the 

baseline distribution projected onto v (orange curve). The ratio of the variances of these 

distributions is used for the third criterion (linear deviation ratio = 1.03). (g-i) Same as d-f for 

a pair of varicosities that fail the third grouping criterion (r = 0.69, linear deviation ratio = 
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3.12). Red arrows in (g) indicate transients that are missed in one varicosity. Red arrow in (i) 

shows the large tail of the distribution.  

 

Extended Data Figure 3. Correlated locomotion speed and whisking during spontaneous 

behavior. (a) Left: Example traces of different behavioral variables: whisker set point (WSP), 

whisking amplitude (WA), wheel motion index (WMI), and locomotion speed (LS). Right: 

Histograms of correlations of parallel fiber Ca2+ activity (ΔF/F) with WSP, WA, WMI and LS 

(n = 13, N = 5). Red and blue indicate parallel fibers that are positively or negatively correlated 

with each behavioral variable respectively (p < 0.05, two-sided shuffle test). Grey indicates 

parallel fibers that are not significantly correlated with that behavior. Pie charts reveal a similar 

fraction of positively modulated (PM, 58 – 67%), negatively modulated (NM, 16 – 22%) and 

non-modulated GrCs (13 – 20%) regardless of behavioral variable. (b) Correlation between all 

pairs of behavioral variables for each experiment (grey circles). Black bars indicate mean 
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across experiments (p = 2.4 x 10-4 for all pairs of behavioral variables, two-sided Wilcoxon 

signed rank test, n = 13, N = 5). Error bars indicate s.e.m. 

 

Extended Data Figure 4. Pairwise correlation and spatial dependence of parallel fiber 

correlations at the onset of locomotion. (a) ΔF/F traces of positively modulated (PM) and 

negatively modulated (NM) parallel fibers in grey (top) together with locomotion speed and 

bead fluorescence, from a single experiment aligned at locomotion onset. Bottom: Grey 

indicates individual traces and the black indicates the mean. (b) Example experiment showing 

temporal dispersion of parallel fiber activation during locomotion onsets. Top and middle 

panels show average ΔF/F (zscored) of PM and NM parallel fibers calculated over locomotion 

onsets. Locomotion onsets were randomly split into training (50%) and test (50%) data, and 

parallel fibers were sorted according to the time lag of their peak correlation (PM) or 

anticorrelation (NM) with locomotion speed during the training data. Bottom panels show 

average locomotion speed during training and test onsets. (c) Distribution of pairwise 

correlations for pairs of positively (black, top) and negatively (black, bottom) modulated 

parallel fibers during 1s interval surrounding locomotion onsets (n = 12, N = 5). Red and blue 
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curves indicate distributions of correlations during random periods in the active state (for 

positively modulated and negatively modulated parallel fiber pairs, respectively). Arrowheads 

represent the means. (d) Relationship between correlations between putative axons at 

locomotion onsets as a function of inter-fiber distance, for positively modulated pairs (red), 

negatively modulated pairs (blue), and all pairs (grey; n = 12, N = 5). Shaded regions indicate 

s.e.m. Thick lines indicate double exponential fit to the data.  

 

Extended Data Figure 5. Non-modulated parallel fibers are not noisier than modulated 

parallel fibers. (a) Example of three non-modulated parallel fibers (top) compared to 

positively modulated and negatively modulated parallel fibers (same example shown in Fig. 1e 

for full experiment). Magenta/cyan indicates AS/QW. (b) Distribution of signal-to-noise ratios 

(SNRs; Methods) for all non-modulated parallel fibers (top), as well as positively modulated 

(centre) and negatively modulated parallel fibers (bottom) (n = 13, N = 5). 
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Extended Data Figure 6. Fraction of positively, negatively and non-modulated parallel 

fibers across experiments. Histograms of changes in ΔF/F response during the AS relative to 

QW across all parallel fibers for all 13 experiments across 5 mice. Positively modulated (red) 
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and negatively modulated (blue) parallel fibers, as well as parallel fibers which were not 

significantly modulated by behavioral state (grey). Pie charts indicate the proportion of each 

class across experiments. 

 

Extended Data Figure 7. Spatial profile of parallel fiber correlations. (a) Schematic 

illustrating how distances between parallel fibers were calculated. Left: example of two patches 

with three parallel fibers, each with different numbers of varicosities. Black unidirectional 

arrow indicates average parallel fiber direction. To calculate the distance between parallel 

fibers, the position of the centre of its varicosities is projected onto the dimension orthogonal 

to the average fiber vector (red line). The XY distance (dXY) is the distance in the projected 

dimension. Right: Same schematic, rotated to show Z-dimension. The XYZ distance (dXYZ) is 

the distance in the projection plane (red). (b and c) Correlations between varicosities or putative 

axons as a function of inter-fiber distance, for positively modulated pairs (red), negatively 

modulated pairs (blue), and all pairs (grey; n = 13, N = 5). Shaded regions indicate s.e.m. Thick 

lines indicate double exponential fit to the data. (b) Correlations and XY distances (dXY) for 

ungrouped varicosities (within the same patch). Note similar trend to grouped data, except for 

stronger peak at small distances (< 2 μm) (c.f. Fig. 1c). (c) Correlations and XYZ distances 

(dXYZ) for putative axons across all patches.  
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Extended Data Figure 8. Manifold structure across different mice. Parallel fiber population 

activity visualized by plotting first three principal components. Each panel indicates a different 

mouse (N = 5 in combination with Fig. 3b). Color indicates projection along the quiet 

wakefulness (QW; cyan) to active state (AS; magenta) state dimension.  

 

Extended Data Figure 9. Distributed representation of locomotion speed. (a) Average 

cross-validated unexplained variance for locomotion speed based on the first principal 

component (PC), the first 10 PCs, and the optimal number of PCs. Each circle indicates a 

different experiment (n = 11, N = 5; two-sided Wilcoxon signed rank test). (b) Average cross-

validated unexplained variance for locomotion speed based on the best parallel fiber (PF) for 
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each recording and for lasso regression on the population activity (n = 11, N = 5; two-sided 

Wilcoxon signed rank test). (c) Range of optimal number of parallel fibers to minimize the 

cross-validated unexplained variance. Each marker represents a different experiment. (d) 

Correlation between the lasso regression coefficients of the optimal decoders for locomotion 

speed and for whisker set point, plotted against average decoder error (unexplained variance 

averaged for speed and whisker set point; two-sided Spearman correlation: r = - 0.73, p = 0.02; 

n =11, N = 5). For each decoder, regression coefficients were averaged over 10 random samples 

of training/test data. Error bars in a and b denote s.e.m. 

 

Extended Data Figure 10. Lower bound of dimensionality increases linearly with 

maximum variance explained in simulated data. We tested our procedure for estimating 

dimensionality in a simple model of random 60-dimensional representations in populations of 

300 neurons corrupted with increasing levels of noise. Each black line represents the mean 

variance explained for a fixed standard deviation of the noise distribution. Shading represents 

s.e.m. across different random representations. Inset: linear relationship between lower bound 

of the dimensionality and the maximum variance explained. 
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Methods 
Animal preparation for in vivo imaging 

All experimental procedures were approved by the UCL Animal Welfare Ethical Review Body 

and the UK Home Office under the Animal (Scientific Procedures) Act 1986.  To specifically 

express the Ca2+ indicator GCaMP6f51 in GrCs, we used the Slc17a7-IRES-Cre transgenic 

line52,53, which is known to express Cre recombinase in VGlut1-expressing excitatory neurons. 

In the cerebellar input layer, GrCs are the only neurons expressing VGlut152–54, which restricted 

the expression of GCaMP6f to this neuronal population. Stereotaxic injections were performed 

under sterile conditions on 6 - 12 weeks heterozygous Slc17a7-IRES-Cre mice (male and 

female). Following analgesic injection with buprenorphine (0.1 mg/kg), mice were deeply 

anesthetized with a ketamine/xylazine mix (100:10 mg/kg) and mounted in a stereotaxic frame 

(Kopf Instruments). 5 μl pipettes (Blaubrand 7087-07) were pulled on a Sutter P97 micropipette 

puller, cut to 10 - 20 μm internal diameter and suction filled with 

AAV9.CAG.Flex.GCaMP6f.WPRE.SV40 (AV-9-PV2816 - Upenn Vector Core). In 3 animals 

red retrobeads IX (0.02 - 0.2 μm, Lumafluor) were mixed with the AAV to be used as tracking 

objects for real-time movement correction (diluted 1:1000). A small craniotomy was performed 

above the injection site and the pipette slowly lowered to minimize tissue damage at 

coordinates of the cerebellar hemisphere in the Crus I region (6.5 mm anterior to Bregma, 2.5 

mm lateral to the midline and 0.2 mm from the pia). A single injection of ~100 nl of virus was 

performed via a Toohey Spritzer pressure system (Toohey Company). Analgesia (bupivacaine 

0.05 %) was then administered to the surgical wound site. Post-surgery, atipamezole (1 mg/kg) 

was administered for xylazine reversal. 

 

Headplate and cranial window surgery 

After 3 to 8 weeks of AAV expression, mice were implanted with a head plate for imaging. 

Mice received pre-surgery injections of dexamethasone (1 mg/kg), atropine (0.04 mg/kg) and 

carprofen (5 mg/kg) prior to induction of anaesthesia with a mixture of Fentanyl (0.075 mg/kg), 

Medetomidine (0.75 mg/kg) and Midazolam (7.5 mg/kg). Viscotears liquid eye gel application 

was used to prevent dehydration and body temperature was maintained throughout the surgery 

with a heat pad and temperature controller system (FHC, Inc.) After removal of overlying skin, 

a custom head plate was centred above Crus I and attached to the skull using dental acrylic 

cement (Paladur, Kulzer). A 5 mm craniotomy was performed over the Crus I region and the 

exposed cerebellar cortex cleared with sterile cortex buffer (125 mM NaCl, 5 mM KCl, 10 mM 

glucose, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2 [pH 7.4]) to wash blood and remaining 
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debris from the craniotomy. The craniotomy was then sealed with a 5 mm glass coverslip (630-

2112 VWR) and fixed with Cyanoacrylate glue. In 2 mice, red fluorescent beads (4 μm 

fluospheres, ThermoFisher) suspended in sterile cortex buffer (diluted 1:100) were placed 

between the coverslip and the brain surface to perform real-time movement correction. Post-

surgery analgesia (buprenorphine 0.1 mg/kg) was administered prior to anaesthesia reversal 

via atipamezole (3.75 mg/kg), flumazenil (0.75 mg/kg) and naloxone (1.8 mg/kg). Mice were 

group housed and kept on a 12:12 h light dark cycle with food and water ad libitum. 

 

In vivo two-photon imaging of head-fixed mice 

Two-photon imaging was performed with an acousto-optic lens (AOL) 3D two-photon 

microscope which enables high-speed 3D random-access pointing and scanning27,55,56 and real-

time movement corrected imaging57. The excitation source was a Ti-sapphire laser (Chameleon 

Vision, Coherent) tuned to 920 nm and the optical configuration was set up to underfill a 20 X 

(1.0 NA, Olympus) objective. This gave an illumination NA of 0.6 - 0.7 and a two-photon point 

spread function of 0.69 ± 0.04 μm in X–Y and 6.54 ± 0.27 μm in Z (full width half maxima, 

mean ± s.d.) as previously reported57. The illumination power was controlled with a Pockels 

cell (Model 302CE, Conoptics) and was typically 60-70 mW at the back aperture of the 

objective. A two-channel data acquisition (DAQ) system was deployed using GaAsP 

photomultiplier tubes (PMTs) (H7422, Hamamatsu, Japan) in both the red and green channels. 

PMT outputs were digitized using high-speed 800 MSPS ADCs (NI-5772, National 

Instruments) via 200 MHz Pre-Amplifiers (Series DHPCA 100/200 MHz, FEMTO). A digital 

acquisition FPGA board (NI FlexRIO – 7966R, National Instruments) was used to down-

sample the signals by integrating each pixel before sending frames to the host PC via the 

National Instruments PXIe interface. The 3D imaging was controlled with the custom 

SilverLab 3D imaging software (LabView, National Instruments). The microscope user 

interface acted as a master for the video acquisition system. 

 

Two weeks after surgery, animals were habituated to the recording apparatus by head 

restraining them on a cylindrical Styrofoam wheel for thirty minutes per day during three 

consecutive days before imaging neural activity. A reference bead (0.2 or 4 μm) was identified 

within the imaging volume (175 x 175 x 116 ± 6 μm, n = 13) and imaged with voxel dwell-

time of 50 ns. Real-time tracking of brain movement and real-time movement corrected 

imaging was performed in 2D with a 500 Hz update rate57. To control for axial brain movement 

during behavior, we recorded the bead fluorescence during AS and QW. There was no 
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significant correlation between ΔF/F of the bead fluorescence and locomotion (correlation 

coefficient 0.06 ± 0.06, n = 13, N = 5). Next, a high-resolution movement corrected Z-stack 

image was performed by AOL raster scan imaging through the molecular layer. Elongated XY-

patch regions-of-interest (ROIs) were then defined in a staircase arrangement at different 

depths from the pia, with their long axis orthogonal to the direction of the parallel fibers (Fig. 

1a). Imaging patches were typically spaced 10 - 12 μm apart in Z. This minimized the chance 

of recording from the same parallel fiber in different patches. The line scans making up each 

patch had a voxel dwell-time of 200 – 400 ns. Imaging was performed for sets of 20 s trials 

lasting 5 min, where mice were free to run on the wheel. 

 

Image processing 

Imaging data for each patch were extracted and exported to tiff files by using in-house software 

written in LabView (National Instruments). The analysis was then performed using scripts and 

toolboxes in MATLAB. Before extracting calcium data from patches, post hoc movement 

correction was used to correct for any residual movement in the images58. In one experiment, 

where there was more movement, 10 pixels were trimmed from each edge of each patch to 

improve post hoc movement correction. In Extended Data Figure 6d, we quantified residual 

movement in image patches by quantifying the mean square displacement of an imaged bead 

following post hoc movement correction in a 500 ms time window centered around the onset 

of locomotion speed (as determined in Extended Data Fig. 4a).  

 

Measurement of whisker position and locomotion 

Two video cameras with far IR LED illumination were used to monitor the face and whiskers. 

Facial areas were recorded at 1280 x 960 resolution at 30 Hz (The Imaging Source), while 

whisking was recorded at 644 x 484 resolution at 300 Hz (Mako). All behavioral data was 

acquired with the SilverLab custom software running under LabView (National Instruments). 

Whisker position was extracted from videos using DeepLabCut59 by tracking 3 markers on a 

single whisker. Whisker angle was measured as the angle between the linear fit between the 3 

markers and a line parallel to the whisker pad of the mouse. The angle was denoised using a 

30 Hz 4th order forward-backward Butterworth filter. Whisker set point was determined by 

Gaussian smoothing the whisker angle using a 500 ms window. Whisker amplitude was 

calculated as the magnitude of the Hilbert transform of the whisker angle after being bandpass 

filtered using a 4th order Butterworth filter from 8-30 Hz60,61. Besides the locomotion speed of 

the mice recorded every 2 ms with a rotary encoder, a wheel motion index was calculated using 
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a small ROI selected on the wheel, as the average difference in pixel values between successive 

frames62, smoothed over 200 ms. This provides an estimate of wheel motion without 

distinguishing between forward movement (e.g., running) or backward movement (e.g., startle 

responses). Datasets with no locomotion or whisking were not analysed as no comparison could 

be made with the representation of the active state in the same population of parallel fibers.  

 

Calcium imaging processing 

Parallel fiber varicosities were identified in imaged patches by adapting signal detection tools 

from a publicly available toolbox63. In brief, following Zhou et al. (2018)64, we identified 

varicosities by first identifying seed pixels, defined as the pixels having a peak correlation with 

their neighboring pixels. To remove spurious seed pixels due to background noise, we required 

that this correlation be above a threshold which was determined from the bimodal distribution 

of pixel correlations over all data. Corresponding spatial filters were then detected by using 

linear regression to fit the fluorescence of all pixels within a local region (1.7 x 1.7 μm) to the 

fluorescence trace of the seed pixel for the varicosity. Masks were then defined by thresholding 

the resulting spatial filter weights at 80% of their total value and trimming overlapping pixels. 

However, because there was very little overlap between the spatial filters of different 

varicosities, we did not proceed with demixing the fluorescence data63. For quality control, we 

removed varicosities with a signal to noise ratio (SNR) below the 95th percentile of the 

distribution of SNRs of varicosity-sized regions within the neuropil. Following Pnevmatikakis 

et al., (2016)63, the SNR was defined as the peak ΔF/F for that varicosity normalized by the 

noise standard deviation (estimated from the power spectrum). In addition to this, a small 

number of varicosities (2%) were manually removed following visual inspection for artefacts. 

Neuropil fluorescence was calculated using masks of size 20 x 20 μm excluding any pixel 

within twice the average varicosity radius. We also excluded pixels whose correlation with 

their neighboring pixels was above the 95th percentile, to avoid bleaching in localized saturated 

regions. The resulting neuropil signal was small and only accounted for 4.6 ± 4.5 x 10-4 % of 

the variance of the activity of the corresponding varicosity (Supp. Fig. 4). As a result, this was 

not subtracted to avoid inflating noise due to low baseline fluorescence. ΔF/F was then 

calculated as follows: 
(ிିிబ)

ிబ
 where 𝐹 is raw fluorescence (averaged over all pixels within the 

varicosity, or within all varicosities corresponding to the same putative axon after grouping 

procedure described below) and 𝐹 is the baseline fluorescence (10th percentile of 𝐹). 
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Varicosity grouping into putative axons 

Comparison of the normalized fluorescence transients (ΔF/F) revealed that some varicosities 

exhibited highly correlated activity. To isolate responses from putative parallel fiber axons, we 

grouped varicosities using a semi-automated procedure based on correlations in functional 

activity as well as spatial alignment along the overall direction taken by the parallel fiber 

population (Extended Data Fig. 2a). For each experiment, we first obtained the average fiber 

direction by hand tracing small segments of parallel fibers observed in the Z stacks in ImageJ. 

Next, within each patch, we iteratively grouped a pair of candidate varicosities (or putative 

parallel fibers) into a new putative axon if the following three criteria were satisfied: 

(1) Spatial arrangement: we estimated the putative parallel fiber connecting the candidate 

varicosities as the best linear fit to the locations of the identified varicosities. If any of the 

candidate varicosities were further than 1 μm from the fiber, the putative parallel fiber was 

rejected. We also rejected putative parallel fibers that were orientated at an angle greater than 

27° of the average fiber direction for that experiment (this number was estimated as two 

standard deviations of fiber angles across all datasets; Extended Data Fig. 2a, b).  

(2) Functional correlation: we required that the total activity (ΔF/F) correlation between 

candidate varicosities be greater than a threshold value. For this threshold value, we required a 

null distribution for the correlation between varicosities on different parallel fibers. For this 

null distribution, we used the distribution of correlations between varicosities on different 

patches of the same experiment (Extended Data Fig. 2c), as they were unlikely to be on the 

same parallel fiber due to our staggered patch arrangement. For the threshold correlation, we 

took the 95th percentile of this distribution.  

(3) Deviation from linear scaling: if the candidate varicosities belong to the same parallel fiber, 

and assuming they are in the linear regime of GCaMP6f, their activity would be a scaled version 

of each other. We estimated the deviation from linear scaling as the minimum projected 

variance of the data. We denote this projection vector as v (Extended Data Fig. 2d-i; we also 

tried using the vector orthogonal to the vector obtained from linear regression, which yielded 

similar results). To take into account varying noise levels, we normalized this quantity by the 

variance of the distribution of baseline fluorescence projected onto v. The baseline distribution, 

which presumably represented noise, was obtained by fitting a mixture of two 2D Gaussians to 

the activity of the varicosities, and taking the lower-mean Gaussian. Finally, we rejected all 

pairs for which this “linear deviation ratio” exceeded 1.5. 

After this automated procedure, we visually inspected all data for clear misclassifications, 

which we corrected manually, including misses (due to sparsely active varicosities whose low 
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event rates precluded the second condition, 6.0% of total groupings), and false positives (due 

to varicosities with visually distinct events missed by the third condition, 16.4% of total 

groupings). This resulted in an average of 1.27 varicosities per putative parallel fiber. To cross 

check our grouping algorithm, we measured the distance between neighbouring varicosities 

within each putative axon comprising more than one identified varicosity, as this was not used 

as a criterion in our procedure, and found that it was consistent with the mean and range of 

intervaricosity distances previously reported28 (Fig. 1d). The analysis was repeated for every 

patch placed in the volume for the recording session. All putative axons, from the different 

patches, were used for further analysis. 

 

Granule cell somatic calcium analysis 

We performed GrC somatic two photon imaging in two mice used for the parallel fiber imaging. 

As GrCs are densely packed, we imaged a single plane in the GrC layer with a field of view of 

250 μm, rather than using patches at different depths. To identify GrC somata and extract their 

ΔF/F traces, we used the software package Suite2p65 available on GitHub (github.com/cortex-

lab/Suite2P). 

 

Identification of the active and quiet wakefulness states 

We labelled timepoints as belonging to periods of AS and QW based on behavioral recordings. 

We first smoothed whisker amplitude and wheel motion index over 500 ms, centred around 

their modes, and normalized by their standard deviation. Timepoints in which these assays of 

locomotion and whisking variables were both below 0.1 were defined as QW; periods in which 

they were above 0.1 for at least 3 seconds were defined as AS. Note that the criteria are 

purposefully strict to avoid mislabelling. 

  

Definition of positively and negatively modulated parallel fibers 

For each parallel fiber, we calculated the difference between the average ΔF/F during AS and 

the average ΔF/F during QW. We then calculated the two-sided p-value compared to a null 

distribution obtained with 1000 trials in which we shuffled time in 1 s blocks. Positively and 

negatively modulated parallel fibers were defined by having a significant increase or decrease 

in mean ΔF/F during AS compared to QW, when compared to the shuffle control (p < 0.05).  

 

Analysis of the spatial structure of parallel fiber activity 
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To analyse spatial structure in parallel fiber activity, we calculated the correlation coefficient 

of parallel fiber ΔF/F over the full recording as well as the distance between fibers. The XY 

distance (Fig. 2c and Extended Data Fig. 7b) was calculated for each patch within an 

experiment. For each putative axon, we first found the centroid of the spatial filter (comprising 

the ROIs for each varicosity associated with that axon), then projected each centroid onto the 

dimension orthogonal to the average fiber direction for that experiment. The distance between 

the projected centroids was then the distance between fibers in the same patch. For the XYZ 

distance (Extended Data Fig. 7c), we instead considered all pairs of parallel fibers in an 

experiment (across all patches) by projecting the centroids of each parallel fiber onto the plane 

orthogonal to the average fiber direction, and calculating the 2D distance between centroids. 

In the nearest-neighbor (NN) analysis, NN distances were calculated as the average distance of 

each positively modulated parallel fiber to the nearest positively modulated parallel fiber 

(similar for negatively modulated). In the shuffle control, positively modulated (or negatively 

modulated) labels were randomly shuffled.  

 

 

Identification of locomotion onset and analysis of activity  

We calculated the correlations between parallel fibers during locomotion onsets (Extended 

Data Fig. 4). Locomotion was defined as any time point in which wheel speed exceeded 1.5 

cm/s. Locomotion onsets were identified by finding locomotion time points with a gap of at 

least 500 ms from the previous instance of locomotion. The correlation coefficient between 

parallel fibers was calculated after concatenating 1 s periods centered around every locomotion 

onset in the experiment. To compare these defined behaviors against the multiple behaviors 

encompassed in the AS, we also calculated the correlation coefficient during the same number 

of time points randomly selected within the AS. 

 

Analysis of manifolds 

To analyse the structure of the activity space associated with different behaviors, we defined 

the AS manifold as the set of neural activity patterns during timepoints labelled as AS (similarly 

for the QW representation). Unlabelled timepoints were excluded from these definitions. For 

visualization purposes only, in some figures we additionally labelled all timepoints (including 

unlabelled timepoints) according to a continuous AS-QW scale (Fig. 3b, 4b, Extended Data 

Fig. 8). To do this, we projected the data onto the ‘state dimension’ (the vector separating the 
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means of the AS vs QW representations), z-scored, and capped the resulting value between -1 

to 1. 

The orthogonality of the manifolds was assessed by measuring the first principal angle between 

the QW and AS subspaces. To calculate the principal angle, we first found a planar embedding 

for both AS and QW manifolds. We used singular value decomposition to find a rank-2 

approximation to the population activity during the AS as 𝑋ௌ  ≈  𝑈ௌ𝑆ௌ𝑉ௌ (similarly for 

QW). The first principal angle between 𝑈ௌ and 𝑈ொௐ is given by66 

 

𝑈ொௐ
  =  𝑈ொௐ − 𝑈ௌ

ᇱ 𝑈ௌ𝑈ொௐ 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 ቀ𝜎௫൫𝑈ொௐ
 ൯ቁ 

 

where 𝜎௫൫𝑈ொௐ
 ൯ is the maximum singular value of 𝑈ொௐ

  (the residual of 𝑈ொௐ that is 

orthogonal to 𝑈ௌ). We calculated 𝜃 using the function subspace.m in MATLAB. If 𝑈ொௐ and 

𝑈ௌ are orthogonal, the residual 𝑈ொௐ
  and thus the angle 𝜃 will be large. In a vector space of 

high extrinsic dimensionality (i.e., large number of neurons), random vectors are likely to be 

orthogonal. Therefore, to ensure that the orthogonality of the AS and QW subspaces is a feature 

of the data, and not due to added measurement noise, we compared to a control in which we 

first shuffled the time indices of the data in 1 s blocks, then calculated the principal angle 

between the first and second halves of this random data. This shuffling breaks the structure of 

the two defined manifolds so that they no longer represent different behavioral states. For 

manifold analyses, datasets with fewer than 100 axons were excluded. 

 

Linear regression 

We used cross-validated linear regression to predict a behavioral variable (whisker set point or 

locomotion speed) either based on the first K PCs (principal component regression) or on 

parallel fiber population activity (lasso regression). For training, we used 80% of the data (in 

random 1 s blocks), and calculated the error as the fraction of unexplained variance of the 

behavioral variable in the held-out data (Fig 5a, b). This was repeated for 10 random samples 

of training/test data to obtain the average cross-validated unexplained variance. For principal 

component regression, the ‘optimal’ K was defined as the number of PCs that minimized this 

average cross-validated unexplained variance (Fig. 5b). We used a similar protocol for lasso 

regression, instead varying the penalty from λ = 10-3 to 1. To determine whether GrC 

representations are distributed across the population, we quantified the number of parallel 
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fibers with a nonzero coefficient at the optimal λ. For comparison, we also calculated the 

unexplained variance when regressing against a single neuron (‘best’ parallel fiber, i.e., which 

minimized the unexplained variance). Finally, to quantify QW-only decoding, we repeated 

principal component regression constraining both the test data and the training data to QW 

periods (taking the optimal K). For a control, we compared the performance of the QW-only 

decoder to one in which the timestamps of the training data were randomly sampled as 1s 

blocks from all timepoints in the experiment (combining both QW and AS periods). The 

shuffled decoder was tested on the same held-out data as the QW-only decoder. 

 

Dimensionality analysis 

We used a bi-cross-validated version of principal component analysis (PCA) to infer the 

dimensionality of neural representations during spontaneous behavior16,18,64,67. To control for 

differing population sizes across experiments, we randomly subsampled a fixed number of 

parallel fibers from the population. We randomly selected 80% of the data (training data 𝑋௧, 

chosen in 1 s blocks) to calculate the first K PCs, resulting in the following low-rank 

approximation: 

 

𝑋௧ = 𝑈𝑆௧𝑉௧  

 

To cross-validate these PCs, we split the remaining 20% of the test data into a second partition 

of training neurons (𝑋ଵ
௧, 80% of the population) and test neurons (𝑋ଶ

௧). The low-rank matrix 

decomposition for the test data can be written in block format: 

 

[𝑋ଵ
௧; 𝑋ଶ

௧] = [𝑈ଵ; 𝑈ଶ]𝑆௧𝑉௧ 

 

We use the upper block to estimate the latent dynamics (𝑆௧𝑉௧) via linear regression, and use 

the lower block to predict 𝑋ଶ
௧. Note that this linear regression step is only well-defined if the 

latent dynamics is shared across neurons. The lower bound of the dimensionality is the number 

of PCs required to maximize the explained variance of 𝑋ଶ
௧. For each experiment, this procedure 

was repeated for 10 random samples of the population, as well as random selections of 

training/test data. The extrapolated dimensionality was then inferred as the number of PCs that 

would be required to attain 100% variance explained, using linear extrapolation across 

experiments. To validate this procedure, we tested a simple model (Extended Data Fig. 10) in 
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which we used exponentially distributed singular values (𝑆) and random orthonormal vectors 

(𝑈, 𝑉) to create a 60-dimensional representation embedded in a space of 300 (extrinsic) 

dimensions. We then tested our procedure with different amounts of zero-mean normally 

distributed noise, verifying that the lower bound of the dimensionality increases linearly with 

the maximum variance explained (Extended Data Fig. 10). 

 

Statistical analyses 

All statistical tests were two-tailed. All error bars indicate s.e.m. Throughout the manuscript, 

n refers to the number of experiments, N to the number of animals. 

 

Code availability 

The SilverLab LabVIEW Imaging Software is available on GitHub at 

https://github.com/SilverLabUCL/SilverLab-Microscope-Software. Analysis scripts are 

available at https://github.com/SilverLabUCL/ParallelFibres. 

 

Data availability statement 

Data presented in main figures and extended data figures are available in the data source files 
or on FigShare (https://doi.org/10.5522/04/14482977). Raw data is available on request due to 
its size.  
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