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Abstract

Objectives

To investigate the associations of plasma lamivudine (3TC), abacavir (ABC), emtricitabine

(FTC) and tenofovir (TFV) concentrations with cognitive function in a cohort of treated peo-

ple with HIV (PWH).

Methods

Pharmacokinetics (PK) and cognitive function (Cogstate, six domains) data were obtained

from PWH recruited in the POPPY study on either 3TC/ABC or FTC/tenofovir disoproxil

fumarate (TDF)-containing regimens. Association between PK parameters (AUC0-24: area

under the concentration-time curve over 24 hours, Cmax: maximum concentration and

Ctrough: trough concentration) and cognitive scores (standardized into z-scores) were evalu-

ated using rank regression adjusting for potential confounders.

Results

Median (IQR) global cognitive z-scores in the 83 PWH on 3TC/ABC and 471 PWH on FTC/

TDF were 0.14 (-0.27, 0.38) and 0.09 (-0.28, 0.42), respectively. Higher 3TC AUC0-24 and

Ctrough were associated with better global z-scores [rho = 0.29 (p = 0.02) and 0.27 (p = 0.04),

respectively], whereas higher 3TC Cmax was associated with poorer z-scores [rho = -0.31
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(p<0.01)], independently of ABC concentrations. Associations of ABC PK parameters with

global and domain z-scores were non-significant after adjustment for confounders and 3TC

concentrations (all p’s>0.05). None of the FTC and TFV PK parameters were associated

with global or domain cognitive scores.

Conclusions

Whilst we found no evidence of either detrimental or beneficial effects of ABC, FTC and TFV

plasma exposure on cognitive function of PWH, higher plasma 3TC exposures were gener-

ally associated with better cognitive performance although higher peak concentrations were

associated with poorer performance.

Introduction

Whilst combination antiretroviral therapy (cART) has markedly improved the life expectancy

of people with HIV (PWH), mild to moderate cognitive problems remain prevalent [1] and

represent an important concern for PWH due to their potential impact on survival, quality-of-

life and functional ability [2, 3].

Current cART regimens result in suppression of HIV RNA in both the plasma compart-

ment and, in most individuals, the cerebrospinal fluid. Improvement in overall cognitive func-

tion is generally observed after commencing cART [4, 5]. However, cART-related

neurotoxicity is often listed as a possible contributor to cognitive impairment in virally sup-

pressed PWH [6]. Both direct and indirect mechanisms have been proposed to describe the

role of cART toxicity in the development of cognitive problems in PWH, including interac-

tions with vascular disease mechanisms and accelerated/accentuated brain ageing, induced

mitochondrial dysfunctions, alterations of blood-brain barrier functionality, and direct

peripheral nerve toxicity [7, 8]. In particular, the original nucleoside reverse transcriptase

inhibitors (NRTIs) were associated with mitochondrial toxicities [9] and concerns exist

whether modern NRTIs also exhibit similar toxicities which may affect the central nervous sys-

tem (CNS).

Efficacy and neurotoxicity of cART regimens are likely to be driven by the concentration of

each drug in both the plasma and CNS compartments as low concentrations may be associated

with sub-optimally controlled HIV replication, whereas excessive concentrations may be asso-

ciated with neurotoxicity. Nevertheless, limited clinical data exist on the effects, either benefi-

cial or detrimental, of the exposure to different concentrations of specific cART agents,

particularly NRTIs, on cognitive function of PWH. Here we investigated the association

between cognitive function and plasma pharmacokinetics (PK) of four NRTIs that are cur-

rently in common use: lamivudine (3TC), abacavir (ABC), emtricitabine (FTC) and tenofovir

(TFV), in a real-life cohort of PWH on cART.

Methods

Study design and participants

PWH were recruited in the POPPY study from HIV outpatient clinics in UK/Ireland from

April 2013-January 2016 [10]. Inclusion criteria were: documented presence of HIV infection,

white or black-African ethnicity, likely route of HIV acquisition via sexual exposure and ability

to comprehend the study information leaflet. For the present analysis, we included those on

cART regimens with an NRTI backbone of either 3TC/ABC or FTC/tenofovir disoproxil
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fumarate (TDF), currently the two most commonly used NRTI combinations (tenofovir alafe-

namide was not in widespread use in the UK at the time of study visit). Moreover, only partici-

pants who provided a plasma sample for PK testing and completed the assessment of cognitive

function at the study visit were included. Socio-demographic and lifestyle characteristics were

also collected via a structured interview with trained staff. The study was approved by the UK

National Research Ethics Service (NRES; Fulham London, UK number 12/LO/1409). All par-

ticipants provided written informed consent.

Plasma NRTI concentrations and PK parameters

NRTI concentrations were measured by a validated method on ultra-performance liquid chro-

matography (ACQUITY, Waters) [11] in plasma samples collected at study baseline. Briefly,

200 μL of plasma was subjected to solid phase extraction (MCX cartridge, Waters) and the elu-

tants were dried under nitrogen stream before being re-constituted in 50 μL of water. The

NRTI drugs were separated using a C18 BEH column (1.7 μm, 2.1 mm x 100 mm, Waters).

For each of the four NRTIs, population PK models were determined using nonlinear mixed

effects (NONMEM v.7.3) using the $PRIOR subroutine to stabilise the models and aid parti-

tion of inter-individual and residual variabilities. The impact of covariates on antiretroviral

apparent oral clearance was evaluated. Covariates included weight, age, sex, ethnicity, creati-

nine clearance (for TFV and FTC only) and the following genotypes: ABCC2 24C>T, ABCC2

1249G>A, ABCC10 526G>A, ABCC10 2843T>C (for TFV) and SCL47A1 G>A (for FTC).

Univariate associations were assessed followed by multivariate analysis if more than one covar-

iate was found to be significant. Model fit was assessed by statistical and graphical methods. A

decrease in the minimal objective function value (-2�log likelihood) of at least 3.84 units (cor-

responding to a p-value<0.05) was required to accept a model with an extra parameter. Once

significant covariates were incorporated, a backwards elimination process was performed and

biologically plausible covariates generating an increase in the objective function value of at

least 10.83 (i.e. p<0.001) units were retained. Using the final models, the following PK param-

eters were generated: area under the concentration-time curve from 0h to 24h (AUC0-24),

maximum concentration (Cmax) and trough concentration (Ctrough) as described previously

[12, 13].

Assessment of cognitive function

Assessment of cognitive function was performed using the computerized CogState battery, as

reported previously [14]. The battery covered the six cognitive domains of visual learning, psy-

chomotor function, visual attention, executive function, verbal learning and working memory.

Raw test scores were log-transformed or arcsine root-transformed as recommended by the

CogState guidelines for analysis and integrity and quality checks were applied to ensure that

scores were generated from completed and fully understood tasks; individual test scores not

meeting these checks were excluded from analysis. Individual test scores were converted into

z-scores (mean of 0, standard deviation of 1) using the means and standard deviations

obtained in the whole cohort of PWH. Domain z-scores were obtained by averaging individual

test z-scores within the same domain, and a global z-score of overall cognitive function was

obtained by averaging the six domain z-scores. For all z-scores, a higher value indicates better

cognitive function.

Statistical analysis

Analyses were conducted separately for those receiving 3TC/ABC and those receiving FTC/

TDF. Continuous variables, including PK parameters and cognitive z-scores, were
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summarized using the median and the interquartile range (IQR); categorical variables were

described using frequencies and percentages. Associations between NRTI PK parameters and

cognitive z-scores were assessed using a series of rank regression models, one for each combi-

nation of cognitive domain/global score, NRTI and PK parameter (7x4x3 models). In each

model, the cognitive score was considered as the dependent variable and the NRTI PK param-

eter as an independent variable in addition to the following confounders, selected a priori: age,

gender, ethnicity, education, recreational drug use, alcohol consumption, glomerular filtration

rate (estimated using the Chronic Kidney Disease Epidemiology Collaboration equation [15]),

depressive symptoms (assessed via the Patient Health Questionnaire-9 [16]) use of ritonavir/

cobicistat boosted protease inhibitor and use of efavirenz. In addition, for the analyses involv-

ing FTC and TFV PK parameters, body mass index (BMI) was added given it significantly cor-

related with FTC and TFV PK parameters. Multivariable analyses were conducted as follows,

in order to investigate associations of each PK parameter for one NRTI, independently of the

concentration of the other NRTI in the regimen. For each combination of cognitive domain/

global score, NRTI regimen (i.e. 3TC/ABC and FTC/TDF) and PK parameter, a rank regres-

sion model was performed (i.e. 7x2x3 models) with the simultaneous inclusion of the PK

parameter of both NRTIs and the same confounders previously listed. All analyses were per-

formed using the statistical software SAS v9.4 with p-values <0.05 considered as statistically

significant.

Results

Characteristics of study participants

A total of 1073 PWH were recruited into the POPPY study, of which 1046 (97.5%) were on

cART and 811 (75.6%) were on a cART regimen including either 3TC/ABC (n = 137) or FTC/

TDF (n = 674). Among these, 596 (73.5%) PWH provided a plasma sample of whom 554

(68.3%) completed the cognitive assessment and were therefore included in these analyses

(n = 83 on 3TC/ABC, n = 471 on FTC/TDF). Overall, the majority of the 554 PWH were male

(87.4%), of white ethnicity (89.5%) with a median (IQR) age of 52 (46, 58) years. The median

(IQR) CD4+ T-cell count was 660 (500, 850) cells/μL and 512 (92.6%) had a viral load<50 cop-

ies/mL (Table 1).

The median (IQR) global z-score was 0.11 (-0.28, 0.41) in all PWH, and 0.14 (-0.27, 0.38)

and 0.09 (-0.28, 0.42) in those on 3TC/ABC and FTC/TDF, respectively (Table 1).

Associations between PK parameters and cognitive z-scores

Univariable associations between PK parameters and cognitive scores, not accounting for

potential confounders are shown in S1 and S2 Figs in S1 File. After adjusting for potential con-

founders, higher 3TC AUC0-24 and Ctrough were associated with higher global z-scores

[adjusted rho (95% CI) of 0.28 (0.02, 0.54) and 0.26 (0.01, 0.52), respectively, p = 0.03 and

p = 0.05], with 3TC Cmax showing a negative association [adjusted rho (95% CI) = -0.28 (-0.51,

-0.05), p = 0.02, Fig 1]. In particular, 3TC PK parameters were associated with the psychomo-

tor, visual attention and working memory domains with similar patterns to those observed for

the global z-score (S3 Fig in S1 File).

Associations of ABC PK parameters with global [adjusted rho (95% CI) of 0.13 (-0.10,

0.36), p = 0.27, 0.09 (-0.13, 0.32), p = 0.41 and 0.13 (-0.11, 0.37), p = 0.28 for AUC0-24, Cmax

and Ctrough respectively) and domain z-scores were weak and non-significant (Fig 1 and S3 Fig

in S1 File). When 3TC and ABC PK parameters were evaluated simultaneously in the same

model, higher 3TC AUC0-24 and Ctrough were associated with greater global z-scores [adjusted

rho (95% CI) of 0.26 (-0.01, 0.54), p = 0.06 and 0.24 (-0.03, 0.52), p = 0.09, respectively]
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whereas higher 3TC Cmax was associated with lower z-scores [adjusted rho (95% CI) of -0.27

(-0.50, -0.04), p = 0.02], with similar trends for the psychomotor, visual attention and working

memory domains. On the other hand, ABC PK parameters did not show significant associa-

tion with global and domain cognitive scores (all p’s>0.05, Fig 1 and S3 Fig in S1 File).

Among PWH on FTC/TDF, none of the three PK parameters for either FTC or TFV was

significantly associated with global or domain z-scores when these were considered individu-

ally and also when considered simultaneously (Fig 1 and S3 Fig in S1 File).

Table 1. Characteristics of POPPY participants with PK and cognitive data.

n (%) or median (IQR) All PWH (n = 554) PWH on 3TC/ABC (n = 83) PWH on FTC/TDF (n = 471)

Gender

Male 484 (87.4%) 61 (73.5%) 423 (89.8%)

Female 70 (12.6%) 22 (26.5%) 48 (10.2%)

Age [years] 52 (46, 58) 52 (46, 59) 52 (46, 58)

Ethnicity

Black-African 58 (10.5%) 12 (14.5%) 46 (9.8%)

White 496 (89.5%) 71 (85.5%) 425 (90.2%)

Sexual orientation

MSM/homosexual 445 (80.3%) 57 (68.7%) 388 (82.4%)

Heterosexual 109 (19.7%) 26 (31.3%) 83 (17.6%)

University degree or above 255 (46.0%) 45 (54.2%) 210 (44.6%)

BMI [kg/m2] 25.5 (23.1, 28.0) 25.2 (23.1, 27.8) 25.5 (23.1, 28.0)

eGFR [mL/min/1.73m2] 92.1 (78.7, 102.0) 93.9 (74.7, 105.8) 90.7 (79.5, 101.3)

Recreational drug use 168 (30.3%) 21 (25.3%) 147 (31.2%)

History of ID use 66 (11.9%) 11 (13.3%) 55 (11.7%)

On boosted PI 170 (30.7%) 33 (39.8%) 137 (29.1%)

On efavirenz 184 (33.2%) 15 (18.1%) 169 (35.9%)

On 3TC/ABC 83 (15.0%) 83 (100.0%) 0 (0.0%)

On FTC/TDF 471 (85.0%) 0 (0.0%) 471 (100.0%)

Time since HIV diagnosis [years] 12.8 (8.2, 19.3) 15.5 (11.0, 20.3) 12.3 (7.7, 18.9)

Nadir CD4+ T cell count [cells/mm3] 216 (130, 310) 205 (140, 304) 218 (130, 310)

CD4+ T cell count [cells/mm3] 660 (500, 850) 700 (575, 865) 656 (490, 831)

HIV RNA <50 copies/ml 512 (92.6%) 80 (96.4%) 432 (91.9%)

AUC0-24 [mg�h/l] N/A 3TC: 9.9 (7.7, 15.8) FTC: 10.4 (9.2, 12.0)

ABC: 12.7 (11.0, 14.4) TFV: 2.7 (2.4, 3.3)

Cmax [mg/l] N/A 3TC: 2.4 (2.3, 2.5) FTC: 1.1 (1.1, 1.2)

ABC: 4.2 (4.0, 4.4) TFV: 0.3 (0.2, 0.3)

Ctrough [μg/l] N/A 3TC: 12.4 (3.0, 126.7) FTC: 75.0 (59.0, 99.0)

ABC: 2.6 (1.4, 4.6) TFV: 53.0 (44.0, 67.0)

Time between last NRTI dose and PK sampling [hours] 14.2 (5.0, 17.0) 12.9 (4.6, 16.0)

Global z-score 0.11 (-0.28, 0.41) 0.14 (-0.27, 0.38) 0.09 (-0.28, 0.42)

Visual learning z-score 0.10 (-0.39, 0.54) 0.17 (-0.29, 0.51) 0.09 (-0.44, 0.55)

Psychomotor z-score 0.21 (-0.43, 0.62) 0.13 (-0.50, 0.64) 0.22 (-0.43, 0.62)

Visual attention z-score 0.12 (-0.46, 0.59) 0.18 (-0.43, 0.55) 0.11 (-0.48, 0.60)

Executive function z-score 0.20 (-0.38, 0.61) 0.09 (-0.47, 0.57) 0.21 (-0.38, 0.62)

Verbal learning z-score 0.19 (-0.44, 0.77) 0.23 (-0.17, 0.77) 0.17 (-0.51, 0.75)

Working memory z-score 0.12 (-0.34, 0.45) 0.15 (-0.42, 0.50) 0.11 (-0.34, 0.45)

IQR: interquartile range; MSM: men having sex with men; BMI: body-mass index; ID: injection drug; PI: protease inhibitor.

https://doi.org/10.1371/journal.pone.0253861.t001
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Discussion

We found no evidence of either detrimental or beneficial associations of ABC, FTC and TFV

plasma exposure with cognitive function among PWH. In particular, controversies have existed

with regards to the effect of ABC on cognitive performance, with one cohort study describing a

beneficial effect [17] and a randomized controlled trial reporting no improvement of cognitive

function after ABC initiation in PWH with HIV-associated dementia [18]. In our analysis, we

did not observe any relationship between ABC concentration and cognitive scores.

Although high 3TC plasma exposures over the dosing interval of 24 hours and at the end of

such interval were associated with greater cognitive performance, both overall and in some

specific domains, maximum 3TC plasma concentrations were associated with poorer cognitive

function. These findings may underline the importance of having sustained plasma drug expo-

sure to ensure viral activity in all compartments. However, high 3TC peak concentrations may

result in toxicity manifesting in poorer cognitive performance. If confirmed, this would sug-

gest close monitoring of 3TC dosing and adherence to ensure optimal concentrations not

exceeding thresholds potentially linked with toxicities. Importantly, we previously showed that

higher 3TC exposure is associated with low glomerular filtration rates, suggesting that high

3TC Cmax may be observed in PWH with renal disease [12, 13]. Nevertheless, associations of

3TC PK parameters with cognitive scores were robust to potential confounding due to factors,

including kidney function. We acknowledge that observing potential beneficial and potential

detrimental effects with PK parameters and cognitive function with the one antiretroviral

agent, here 3TC, within this one study, is not typical of what we may have expected to have

observed, especially given the overall favourable safety profile of 3TC [19].

Our analysis has several limitations. Given our cross-sectional study, causal links cannot be

assessed. Moreover, confounding due to adherence and other unmeasured factors may be

additional sources of bias. Given the high number of statistical tests conducted, false positive

findings may have occurred; therefore results should be interpreted with caution. Whilst we

accounted for the concomitant use of efavirenz and boosted protease inhibitors, our sample

size did not allow stratification according to individual third drugs in addition to the NRTI

backbones considered. Therefore, we were not able to investigate how the potential beneficial

or neurotoxic effect of a specific NRTI backbone may have changed depending on the third

Fig 1. Regression coefficients (i.e. adjusted rho) from rank regression evaluating the associations of PK parameters with global z-scores. Associations are

adjusted for age, gender, ethnicity, education, estimated glomerular filtration rate, use of ritonavir/cobicistat boosted protease inhibitor and use of efavirenz

(3TC and ABC PK parameters), plus BMI (for FTC and TFV PK parameters only). Univariable estimates: one NRTI at the time in separate models;

multivariable estimates: both NRTIs in the regimen in the same model (one model for each PK parameter).

https://doi.org/10.1371/journal.pone.0253861.g001
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drug. Importantly, we have assessed plasma PK parameters and not measurements of antire-

troviral exposure intracellularly or in the CNS. Compared to plasma concentrations, CSF

NRTI concentrations might be more directly associated with effects in the CNS, also based on

the evidence that cART regimens with higher penetrations in the CNS are associated with

lower HIV RNA levels and better cognitive function [20]. Cerebrospinal fluid and brain are

two different compartments of the CNS and different concentrations of antiretroviral drugs

can be found in the two compartments [21]. In particular, TDF has been shown to have low

CNS penetration [22] and, consequently, plasma concentrations may not reflect CNS concen-

trations and related neurotoxic effects. Similarly, since NRTIs require intracellular activation,

characterization of the intracellular level of the active triphosphate metabolite of NRTIs would

have provided a better indication of virologic effectiveness and, therefore, of potential benefi-

cial/detrimental effects on cognition than plasma NRTIs concentrations [23]. For these rea-

sons, PK assessments in cerebrospinal fluid, brain tissue and other sites of the CNS, as well as

characterizations of NRTIs intracellular metabolites, would be needed to provide some insight

into antiretroviral drug exposure in the CNS and future work to assess exposure within this

sanctuary site and any cognitive effects of such exposure are required. Finally, whilst regimens

comprising a NRTI backbone remain the recognized standard of care, NRTI-sparing regimens

have been investigated for their potential to reduce lifelong drug exposure and minimize the

toxicity of NRTIs. Although limited, the evidence regarding potential difference between

NRTI-based and NRTI-sparing regimens suggests no differences in cognitive function [24].

Nevertheless, further studies are needed to evaluate the effects related to concentrations of

other classes of antiretroviral drugs such as protease and integrase inhibitors. Finally, at the

time this study was conducted, tenofovir alafenamide was not in widespread use in the UK but

is now one of the recommended NRTIs. Recent findings have shown no changes in cognitive

performances in PWH switching from TDF to TAF, despite a significant reduction in TFV

concentrations in CSF [25]. Therefore, it is unlikely that associations found would been differ-

ent in more recent cohorts with higher rates of TAF use.

These limitations withstanding, these results could have implications for the development

of treatment strategies for PWH with cognitive disorders, the identification of optimal drug

concentrations and neurotoxicity thresholds, and for the design of future research pro-

grammes for PWH with or at risk of cognitive disorders.
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