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PURPOSE: Breast cancer risk has conventionally been assessed using family history (FH) and rare high/moderate penetrance
pathogenic variants (PVs), notably in BRCA1/2, and more recently PALB2, CHEK2, and ATM. In addition to these PVs, it is now possible
to use increasingly predictive polygenic risk scores (PRS) as well. The comparative population-level predictive capability of these
three different indicators of genetic risk for risk stratification is, however, unknown.

METHODS: The Canadian heritable breast cancer risk distribution was estimated using a novel genetic mixing model (GMM). A
realistically representative sample of women was synthesized based on empirically observed demographic patterns for
appropriately correlated family history, inheritance of rare PVs, PRS, and residual risk from an unknown polygenotype. Risk
assessment was simulated using the BOADICEA risk algorithm for 10-year absolute breast cancer incidence, and compared to
heritable risks as if the overall polygene, including its measured PRS component, and PV risks were fully known.

RESULTS: Generally, the PRS was most predictive for identifying women at high risk, while family history was the weakest. Only the

PRS identified any women at low risk of breast cancer.

CONCLUSION: PRS information would be the most important advance in enabling effective risk stratification for population-wide

breast cancer screening.

Genetics in Medicine; https://doi.org/10.1038/541436-021-01258-y

INTRODUCTION

Risks of breast cancer (BC), are known to be influenced by genetic
susceptibility, with three general sources of information for
assessing this susceptibility: (1) family history (FH); (2) high-risk
but rather uncommon deleterious variants in several susceptibility
genes, such as BRCAT and BRCA2 (pathogenic variants, PVs); and
most recently (3) common susceptibility variants, which can be
efficiently combined into a polygenic risk score (PRS). Mavaddat
et al. [1] recently developed a 313 single-nucleotide polymorph-
ism (SNP)-based PRS, accounting for approximately 20% of the
polygenic risk of BC.

In this context, there is considerable interest in applying as
much of this genetic information as possible for stratified BC
screening and prevention strategies [2], including possible
changes to breast cancer screening programs. BC screening in
most developed countries is typically offered to women based on
their age, usually starting at age 50. Assessing a women's genetic
risk would enable organized screening programs to offer BC
screening starting at earlier ages to high-risk women, and possibly
later ages and/or lower frequencies to low-risk women [3].

Considerable debate remains whether the net benefits of such
changes to BC screening programs would be worthwhile in terms
of earlier BC detection, false positives, overdiagnosis, costs,
feasibility, and acceptability, though recent studies do suggest
that tailoring BC screening programs to individual risks would
likely be cost-effective compared to current “one size fits all” age-
only based screening programs [3, 4]. Central to such a cost-
effectiveness assessment is (1) the comparative value of FH, PV,
and PRS for risk prediction, which in turn requires (2) valid

estimates of the joint distribution of these risk factors in the
population. It is these latter two questions that are the focus of
this paper.

Population-wide estimates of the joint distribution of women'’s
FH, PV, and PRS are unavailable, so recent cost-effectiveness
evaluations [3-6] have had to rely on partial and more
approximate approaches. From a health provider or public policy
perspective, though, the question is how such risk-based screen-
ing would work on a population level, taking account of the full
range of variations in women'’s risks and the various ways of
capturing this risk.

In this analysis, we first provide a realistic estimate of the
population joint distribution of FH, PV, and PRS for Canada. To do
this, we make use of BOADICEA [7], a well validated risk model
that incorporates FH, PV, and PRS and is widely used to predict a
woman’s BC risk [8]. We then examine which genetic information
from amongst FH, PV, and PRS would be most important for
assessing a woman’s BC risk at the level of detail usable by
BOADICEA, including the possibility of very detailed FH informa-
tion for all first- and second-degree relatives, not only for BC, but
also for prostate, ovarian, and pancreatic cancer, as these are
informative for BC risk and can be taken into account by
BOADICEA [9].

MATERIALS AND METHODS

These results were derived from our novel genetic mixing model (GMM),
which produces realistic population estimates of the full multivariate joint
population distribution of FH, PV, and PRS, including correlations, since
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there are no adequately representative directly observed unbiased
population surveys of sufficient sample size. GMM embodies the core
BOADICEA risk algorithms by incorporating its relevant software code.

Development of GMM

GMM is an interacting agent, continuous time, Monte Carlo microsimula-
tion model. It simulates key demographic events—union formation and
dissolution, nulliparity and parity-specific fertility—as well as relationships
that reflect blended families including half-siblings, and all-cause mortality.
This builds on the software architectures and sociodemographic dynamics
parameters of Statistics Canada’s Lifepaths [10] and the Canadian
Partnership Against Cancer's HPV component of the Cervical Cancer [11]
models. Each simulation starts with 4 million men and women whose ages
are distributed according to the recent Canadian population age structure.
Each starting individual is endowed with a randomly assigned genotype
(PRS + presence or absence of PVs in each of the five genes + residual
unobserved polygenic risk) using the population prevalences in BOADICEA.
For the purpose of these analyses, the population prevalences of the PVs in
Canada were assumed to be those in the standard implementation of
BOADICEA.

As (continuous) time unfolds in a simulation, men and women form
unions, have children and stepchildren, pass on their genetic endowments,
possibly have incident cancers, and eventually die. Each simulation
continues for about 200 years, so at the end there is a representative
cross-sectional sample of women where all their first- and second-degree
relatives have also been simulated at least up to the age of the proband’s
risk assessment, and where each family member in the proband’s pedigree
has a biologically appropriate genotype.

GMM retains pointers to each relative (parent, grandparent, child, aunt,
uncle, etc.), tracking the evolution of each woman'’s pedigree through time,
enabling FH to be extracted at any specific age for postulated BC risk
assessment. By construction, the simulated distribution of pedigrees
reasonably reflects correlations of both demography and genetics.

Union formation and dissolution and fertility dynamics are based on
multivariate transition probability density functions as in the Statistics
Canada LifePaths [10] and Canadian Partnership Against Cancer HPV
models [11]. Couples in first and/or subsequent stable unions generate
births based on observed fertility rates conditional on a woman'’s single
year of age and parity at each moment during her lifetime, enabling
realistic distributions of age differences between mothers and their
children, numbers of female siblings, and age differences between women
and their siblings.

For genetic susceptibility, GMM is based on the most recent version of
BOADICEA [7], including both variants in BRCA1, BRCA2, PALB2, CHEK2, and
ATM (PV), and a polygenic component that models the effects of a large
number of variants of small effect. GMM, following the methodology
described in [7], divides the overall polygenotype into two independent
normally distributed components: “known," which is measured by the PRS
and assumed to account for 20% of polygenic risk [1], leaving 80% as
“unknown," which represents the residual familial aggregation of BC risk
not attributable to PVs or to the PRS as specified.

Individuals’ PVs are initially assigned to the founding population based
on the assumed allele frequencies [9] and then transmitted to offspring
according to Mendel's first law. Two polygenotypes are assigned to each
individual (male and female) in the starting population by drawing
randomly one number from a Gaussian distribution with variance yo? for
the known component (i.e., the PRS), and a second number from an
independent Gaussian distribution with variance (1 - y)o? for the unknown
residual component, where y=0.2, i.e,, the PRS is taken to represent 20%
of the variability in the overall polygenotype. Subsequently, the two
polygenotypes for each newborn child are drawn from each of these two
Gaussian distributions, one for the PRS and the other for the unknown
residual portion of the polygenotype, with means for each of these two
distributions set equal to averages of the values for that child’s parents,
with variances y02/2 and (1 - y)02/2, respectively. These formulae ensure
that the polygenic distributions are stable over generations. GMM then
simulates BC incidence for every individual in the population, thus
generating the pedigrees to enable FH to be constructed for any given
proband.

It should also be noted that GMM explicitly simulates the genetic risks
and incidences of ovarian, prostate, and pancreatic cancers. It uses exactly
the same age-specific incidence and relative risks as the internal BOADICEA
algorithms. The resulting simulated cancer occurrences are then made
available to BOADICEA by the GMM algorithms to the extent that the risk
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assessment scenario being simulated (e.g., no FH, or FH only for first-
degree relatives) is posited as being provided by the proband as part of
her FH.

Application

GMM performs two parallel calculations of BC risk for each woman at the
age posited in a given simulation scenario for her risk assessment. First, the
assessed risk is calculated using BOADICEA for the combination of the FH,
PV, and PRS information provided to BOADICEA. Note that this information
may be incomplete. (See the following section for a description of
parameter scenarios.) Second, the heritable risks are calculated using the
same internal BOADICEA risk algorithm. These heritable risks are those for
each woman associated with the five PVs, the PRS, plus the “unknown”
residual portion of her polygene. For these latter calculations, FH is
irrelevant, since cancer risk is assumed independent of that observed in
relatives, once the proband’s genotype, PV and PRS and residual
polygenotype, are fully known. The differences in the information used
to compute assessed and heritable risk are illustrated in Fig. 1. Note that
the heritable risk measure is not the “true” or “overall” risk. It is the risk if all
inherited risk factors were known precisely at birth; it does not consider
other known risk factors, for example parity or breast density (specifically
their nonheritable components), nor other unknown risk factors.

RESULTS
Genetic risk assessment scenarios

From a population perspective, the two central program or policy
parameters of a risk-based stratified screening program are (1) the
age at which women'’s risks are assessed, and (2) the threshold
defining “high risk.” A further parameter is the risk threshold for
being classified as “low risk.” For ages at risk assessment, we focus
on ages 30 to 50 in five-year steps. Since average absolute cancer
incidence risk increases nonlinearly with age, and we are going to
be evaluating risk stratification occurring at different ages, it is
important for the risk thresholds to be age varying. Therefore, we
have expressed these thresholds as multiples of the age-specific
absolute 10-year risk. For the high-risk thresholds, we consider a
series of multiples: 2.0, 2.5, 3.0, 3.5, and 5.0, while for the low-risk
threshold we consider similarly defined risk thresholds of 0.5 and
0.8 times the age-specific absolute 10-year risk.

Given a set of these parameters, as well as the specific set of
(possibly partial) genetic information provided by each woman to
BOADICEA for her individual-level risk assessment, GMM produces
the population distribution of predicted assessed genetic risks.
BOADICEA by design, and hence GMM in its use of the BOADICEA
algorithm, also produces appropriate unbiased risk assessments
even when passed only partial information on the proband.

For FH, we explored four possible scenarios: (1) no FH
information provided at all by the woman (“none”), (2) a simple
yes/no for whether the proband’s mother was diagnosed with BC
at age <45 (FHm45), (3) full information for first-degree relatives
only (FH1), or (4) full information for both first- and second-degree
relatives (FH2).

Figure 2 shows the percentages of women identified as high
risk depending on which directly measured genetic information is
provided to BOADICEA for risk assessment, assuming the
assessments are all at age 40 and include full family history
information for all first-degree relatives (FHT). At the outermost
level, a series of five high-risk thresholds ranging from 2.0 to 5.0
times age 40 absolute risk of BC incidence is displayed along the
horizontal axis. Then within each high-risk threshold category, the
assessed risk for four combinations of genetic information ([PV yes/
no] x [PRS yes/no]) plus as a fifth, the estimated full heritable risk,
are shown.

At all high-risk thresholds (Hi-RT), the proportion of women
identified as high risk based on heritable risk is substantially larger
than any of the proportions based on assessed risks. As expected,
for each kind of BOADICEA input, the percentages of women
assessed as high-risk decline as the high-risk threshold increases.

Genetics in Medicine
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Fig. 1 Kinds of information used by the genetic mixing model (GMM) to compute assessed and heritable risks of breast cancer incidence.
Items outlined in red were used as inputs to BOADICEA for computing the assessed risk; those outlined in blue were used by other BOADICEA

algorithms for computing the heritable risk.

With a high-risk threshold of 5.0, less than half of one percent of
women would be assessed as high risk (bars a to d in the rightmost
set of vertical bars); this amounts to less than one-sixth of all
women who are heritably at high risk (bar e in this same rightmost
set of bars).

For all the high-risk thresholds, the percentages assessed as high
risk is smallest when neither PRS nor PV is taken into account. If
PVs are included (but not PRS), the percentage of high-risk women
increases only slightly at the 2.0 high-risk threshold (Hi-RT), but
more markedly as Hi-RT increases. In contrast, providing PRS but
not PVs to BOADICEA increases the percentages of women
assessed as high risk at all thresholds. The incremental importance
of PRS alone compared to PV information alone declines, and
eventually reverses as the risk threshold increases to the last =5.0
relative risk threshold.

Perhaps counterintuitively, if the PRS is known, then including
PVs actually reduces the percentage assessed as high risk when Hi-
RT is lowest at 2.0, but increases the percentage of women
assessed as Hi-RT for higher risk thresholds, comparing the heights
of the c and d vertical bars when scanning across the groups of
bars from lower to higher Hi-RTs. This apparent paradox is
explained in connection with Fig. 3.

Figures 3a, b show the extent to which women'’s risks are
reclassified under two scenarios for the information they would
provide to BOADICEA, assuming assessment at age 40 and full FH1
information has been provided, with Fig. 3a showing the
incremental effects on assessed BC risks of providing PRS
information given PV has already been provided, and Fig. 3b
providing PV given PRS has already been provided. The proportion
of women in the highest risk interval (=5.0 times age 40 absolute
risk) increases with the addition of PV information as indicated by
the rightmost vertical bar in Fig. 3b, an increase in the proportion
of women classified as high risk of about 0.5%. Moving to the left
we see for example in the [2.5, 3.0] risk interval that there is a
decrease in the percentage of women of about 0.2% while in the
[2.0, 2.5] risk interval, the decrease is over 0.4%. As a result, the
sum of the decreases in the percentages of women in the risk
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intervals from 2.0 to <5.0 is greater than the increase in the
percentage for the top open-ended >5.0 risk interval. Thus, for a
risk threshold = 2.0 times age-specific absolute risk, the net effect
of adding PV information to PRS information for purposes of risk
assessment is negative; the addition of PV information in this case
more often moves women down rather than up in terms of their
assessed risk.

(Note, though, that these are net amounts of movements or
reclassifications across risk intervals; for any one risk interval, some
women will have moved in while others will have moved out.
While it would be interesting to visualize the gross reclassification
flows, this is not practically feasible. Instead of simply comparing
two separate Monte Carlo microsimulation runs of GMM, as has
been done here, it would be necessary to enlarge GMM
significantly in such a way that each woman in a simulation
could at any given age have multiple calls to BOADICEA to assess
her risk under varying scenarios for the information provided to
BOADICEA. This is beyond the intended scope of GMM.)

In contrast to Fig. 3b, Fig. 3a shows the net effects when PRS is
added to the information provided to BOADICEA when PV has
already been provided. These effects are an order of magnitude
larger than in Fig. 3b, with almost a tenfold larger scale on the
vertical axis. AlImost all women move from having assessed risks
just below average—some to higher risk intervals, but more often
to lower risk intervals. Virtually no women move to the highest risk
intervals (=3.5) with the addition of the PRS information.

The next three figures all show the univariate distributions of
both assessed (thick bars) and heritable risks (thin bars) in
horizontal stacked bar chart form. These thick and thin bars are
further color-coded to show either the two low-risk intervals (dark
and light blue for very low and low respectively) or the two high-
risk intervals (red and orange for very high and high respectively).
In between are those residually at “average” risk. Vertically, each
figure shows a series of scenarios with different combinations of
age at risk assessment, the kind of FH information provided to
BOADICEA, whether or not PV and/or PRS information is provided

SPRINGER NATURE
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Fig. 2 Percentages of women at high risk by Genetic Testing Scenario and High Risk Threshold. All women are assessed at age 40 and
family history information provided to BOADICEA is always first degree relatives only. Results are sorted along the horizontal axis with inner
grouping by genetic testing scenario (a to d) plus the “heritable” risk (e), and then sorted in the outer grouping by high-risk threshold (multiple
of ten-year absolute risk at age 40). “Heritable” denotes women classified as high risk assuming all of their pathogenic variant (PV), polygenic
risk score (PRS), and the unobserved residual portion of the polygenotype were known.
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Fig. 3 Net reclassification of the assessed risk at age 40 for two scenarios for adding the genetic information to compute the assessed
risk for breast cancer. In both scenarios, first-degree family history (FH1) is taken as known. a Results obtained by including the polygenic risk
score (PRS) given the pathogenic variant (PV) is already used for the risk assessment. b Results obtained by including the PV information given

PRS is already used. Note the very different vertical axis scales.

to BOADICEA, and the high-risk threshold expressed relative to the
age-specific absolute BC risk.

The four sets of rows in Fig. 4 correspond to various high (age-
specific) relative risk thresholds (Hi-RT), and within each Hi-RT all
four combinations of (PRS yes/no) x (PV yes/no). Without any PRS

SPRINGERNATURE

information provided to BOADICEA, no one is assessed (thick bars)
at either “very low” (<0.5) or “low” (0.5 to 0.8) risk. With PRS (but
not PV) provided, approximately 20% of women are assessed as
very low risk, and almost 50% as low risk. These proportions all
increase by about three percentage points when PV is also

Genetics in Medicine
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Fig. 4 Univariate assessed and heritable breast cancer risk distributions by genetic information provided to BOADICEA and by high-risk
threshold (Hi-RT, the multiple of the age-specific absolute risk of breast cancer incidence). In all cases, the risk assessment is for women
aged 40 with their full first-degree family (FH1) proband information provided to BOADICEA. The rows are sorted by Hi-RT, and within the Hi-
RT groups by whether the polygenic risk score (PRS) and/or pathogenic variant (PV) information has been used.

included in the BOADICEA assessment. First-degree family history
(FH1), in the absence of any genetic testing (i.e., no PV or PRS),
only identifies a very small fraction of women as high risk, and
then only when the high-risk threshold is 2.0. For high-risk
thresholds at 2.5, 3.0, or 3.5 times age 40 absolute BC risk, FH1
identifies essentially no women at high or very high risk.

The distributions of heritable risks (thin bars) are unaffected by
the information provided to BOADICEA. These risks depend only
on PV, PRS, and the unknown portion of the polygene. The only
variation is at high risk, since only the threshold for defining high
risk is varying down the rows, with results corresponding to those
in Fig. 2 above. About 60% of women are at very low heritable risk
(=0.5), while over 70% are either very low or low risk (<0.8). The
proportion at high heritable risk declines as the high-risk threshold
increases. (Those at “very high” risk do not vary as this group is a
subset of the high-risk group.) In all cases, women assessed as high
or low risk comprise only a fraction of the corresponding heritable
risk percentages. For example, while essentially no women are
assessed as high risk in the absence of the PV and PRS information
when Hi-RT > 2.5, the percentages of women with heritable high
risk ranges from 11.5% when Hi-RT =2.0 to 8.8% at 2.5 to a bit
over 5.7% when it is 3.5.

Figure 5 focuses on the kind of family history information
provided to BOADICEA for risk assessment: (1) no FH information
at all ("none”), (2) whether or not the woman’s mother had BC by
age 45 (FHm45), (3) information for all first-degree relatives (FH1),
and (4) information for all first- and second-degree relatives (FH2).
In all scenarios, women have their risk assessed at age 40, and
both PV and PRS information are considered at risk assessment.

At all four high-risk thresholds, the proportion of women
identified as high risk increases as more detailed FH information is
provided, though these increases are all relatively small. Further,
providing more information on FH increases the proportions of

Genetics in Medicine

women assessed as low and very low risk, since knowing of an
absence of FH reduces the assessed risk.

Figure 6 shows selected GMM results for varying ages at risk
assessment, focusing on whether or not PV information is
provided to BOADICEA, in addition to PRS and FH1, and Hi-RT =
2.5. The proportions of women defined as being at high heritable
risk (rightmost thin bars) show almost no variation from age 30 to
age 50. In contrast, the percentage assessed as high-risk declines
with age, whether or not PV information is provided to BOADICEA.
The assessed proportions at very low and low risk decline
noticeably with increasing age at assessment, as do the
proportions with very low and low heritable risk. However, even
at age 50, the usual starting age for organized BC screening, about
15% of women have very low assessed genetic BC risks while over
40% would have assessed risks less than 0.8 times their age-
specific population average. At all ages, including PVs in the risk
assessment increases the proportions of women assessed as very
low or low risk.

DISCUSSION

There is growing interest in using women'’s genetic risk informa-
tion to personalize broad-based BC screening programs to their
predicted risk, e.g., using the BOADICEA risk prediction tool. We
have first developed and applied GMM to estimate the distribu-
tions of BC risk predictions for a plausibly realistic simulated
population sample of Canadian women. We have then used GMM
simulations to compare the impacts of using not only FH and PVs,
but also the most recent PRS [1] for population-level risk
assessments.

PVs, especially in BRCAT and BRCA2, have long been the focus
for identifying women at the highest risk, along with FH. However,
our analysis shows that at the population rather than individual
level, PRS appears far more important for purposes of risk

SPRINGER NATURE
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Fig. 5 Univariate assessed and heritable breast cancer risk distributions by type of family history information provided to BOADICEA and
by high-risk threshold (Hi-RT, the multiple of the age-specific absolute risk of breast cancer incidence). In all cases, the risk assessment is
for women aged 40 and with both pathogenic variant (PV) and polygenic risk score (PRS) proband information provided to BOADICEA.
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Fig. 6 Univariate assessed and heritable breast cancer risk distributions by age at risk assessment and whether or not pathogenic (PV)
information is provided to BOADICEA. In all cases, the risk assessment is for women with both polygenic risk score (PRS) and first-degree
family history (FH1) information provided to BOADICEA. The high-risk threshold (HI-RT) in all cases is 2.5 (the multiple of the age-specific

absolute risk of breast cancer incidence).

stratification for BC screening. Further, and contrary to some
current thinking [12], information on FH appears of limited value
as a risk stratifying tool at a population level, especially if this
information is only dichotomous, such as whether or not a woman
has a first-degree relative who has already had BC. More extensive
FH information remains of limited importance; information on
second-degree relatives is even less incrementally informative,

SPRINGER NATURE

while more expensive and difficult to collect accurately. FH is more
informative in older than younger woman, since BC incidence,
including in individuals at high risk and their relatives, increases
with age.

This analysis has a number of limitations. BOADICEA [7] includes
a range of other risk factors not considered, such as breast density,
parity, and ages at menopause and menarche. The sensitivity of
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the results to the uncertainty in estimated prevalences for the PVs
has not been explored. However, estimates from different studies
are broadly similar, at least in European populations [13, 14].
The effect sizes for the PRS may also vary somewhat among
different ethnicities [15]. While GMM is using recent Canadian
demographic transition data, it generates a steady-state popula-
tion distribution, not one reflecting historical and projected
trends. Still, the results are likely to be qualitatively similar in a
wide range of populations.

Randomized controlled screening studies that incorporate the
PRS are ongoing [2], [16] and several recent simulation studies
suggest considerable promise for enhanced breast cancer screen-
ing for women assessed as high risk, though without full
consideration of the joint impacts of the three kinds of genetic
information included in this study [4, 6]. The PERSPECTIVE 1&l pilot
study, currently underway [2, 17], will offer important new evidence
on the practicalities of population-level risk assessment. As a result,
with significant improvements in risk prediction, especially using a
PRS and the BOADICEA risk prediction tool [7], the option of shifting
to risk stratification for BC screening offers the prospect of
improving the balance of benefits and harms [3-6, 18].

Further, identifying women at low risk offers the opportunity
to avoid an important part of the costs and adverse effects of BC
screening (e.g., false positives, overdiagnosis) by reducing
their screening intensity. However, as highlighted in this study,
only by including PRS in the risk assessment would this be
possible.

Finally, the analysis presented pertains only to women and their
risks for BC. Still, the incidence of both male and female BC, as well
as ovarian, prostate and pancreatic cancer, is simulated for
everyone in the population because the shared genetics of the
proband’s family members affect her BC risk. This part of the
simulation uses the same algorithms as BOADICEA.

Conclusion

This analysis suggests that where there are tradeoffs, population-
wide programs for BC screening that seek to stratify women by
their genetic risk should focus first on PRS, not on more highly
penetrant but rarer variants, nor family history. However, firmer
conclusions must await embedding these GMM results in a fuller
cost-effectiveness evaluation that includes BC screening, treat-
ment, progression, mortality, and other harms and benefits (e.g.,
as in the Cancer Intervention and Surveillance Modeling Network
(CISNET) models [4].
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