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Abstract

Keywords

Demand response (DR) of commercial buildings by directly shutting down part of operating
chillers could provide an immediate power reduction for power grids. In this special fast DR event,
effective control needs to guarantee expected power reduction and ensure an acceptable indoor
environment. This study, therefore, developed a data-driven model predictive control (MPC) using
support vector regression (SVR) for fast DR events. According to the characteristics of fast DR
events, the optimized hyperparameters of SVR and shortened searching range of genetic algorithm
are used to improve the control performance. Meanwhile, a comprehensive comparison with
RC-based MPC is conducted based on three scenarios of power demand controls. Test results
show that the proposed SVR-based MPC could fulfill the control objectives of power demand and
indoor temperature simultaneously. Compared with RC-based MPC, the SVR-based MPC could
alleviate the time/labor cost of model development without sacrificing the control performance
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of fast DR events.

1 Introduction

The increasing demand for electricity and the rapid
development of renewable energy systems that is difficult
to be accurately predicted due to uncertain weather conditions
are challenging the reliable operation of power grids (Tuballa
and Abundo 2016). Keeping the real-time balance of power
grids between supply and demand sides is a critical issue.
Peak demand is one big concern to induce power imbalance
by challenging the capacity limit of power supply. A huge
expense is spent to upgrade the capacity of power grids to
overcome the problem of peak demand. The capacity for
the top 100 hours peak demand in a year accounts for nearly
20% of electricity costs of power grids. Due to the infrequent
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occurrence of these peaks, this part of the grid capacity
associated with transmission and generation is however
wasted most of the time in a year (Arnold 2011). Demand
response (DR) is considered a promising solution to help
power grids operate more smartly by enhancing reliability,
security, and flexibility. DR programs encourage end-users
(i.e., demand side of power grids) to address the power
imbalance using pricing information or economic incentives.
The end-users adjust their power utilization responding to
the needs of power grids. DR programs can benefit power
grids by avoiding the huge cost and ensuring healthy
operation, and meanwhile, building owners obtaining the
economic benefits (Tang et al. 2019; Popoola and Chipango
2021).
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Building demand response towards smart grids

Among power consumers at the demand side of power grids,
the building sector consumes about 40% of global energy
used (Kolokotsa et al. 2011). This share is still increasing as
the rapid growth of population, living quality improvement,
urbanization, etc. Building accounted for 74% of electricity
use in the United States in 2010 (DOE 2011) and 90% of
total electric energy in Hong Kong, China, in 2012 (EMSD
of Hong Kong 2014). The power use in buildings has elastic
characteristics and hence feasible to alter their loads for
power demand-side management. In commercial buildings,
heating, ventilation, and air-conditioning (HVAC) systems,
accounting for more than 50% of energy consumption, are
preferable to be used as a DR resource (Tang et al. 2018a;
Yuan et al. 2021). Meanwhile, building automation systems
and advanced technologies such as smart meters (Depuru
et al. 2011) could benefit the implementation of DR controls.
Demand shifting and demand limiting are two main
methods for building DR controls. Demand shifting by
rescheduling the operation of central air-conditioning
systems is widely adopted, which part of peak load (with
high price) is shifted to non-peak periods (with low price).
Demand limiting is to reduce and even switch off the
non-essential electric load in peak demand or DR events.
Indoor air temperature reset strategy is a popular way
to reshape the building power utilization for DR events
(Motegi et al. 2007; Yin et al. 2010). But the key shortage
of this method is the response time. By resetting indoor air
temperature, building power demand cannot be changed
immediately within a very short period, responding to
urgent needs/requests (e.g., sudden price change) of power
grids. This is because of the inherent delay in the system
reaction after the set-point changes of control states. To
provide an immediate power reduction in commercial
buildings, limiting the load of operating chillers attracted
extensive attention. Chillers account for high power demand
(even more than half in some cases) in cooling systems of
commercial buildings (Pérez-Lombard et al. 2008). Shutting
down parts of operating chillers is therefore regarded as an
effective fast DR control strategy and many related studies
have been conducted recently. Xue et al. (2015) conducted
a simulation test to validate the reaction delay of indoor
temperature reset strategies and discussed the necessity of
fast demand response. Tang et al. (2016) pointed out that
without proper control after switching off part of operating
chillers, system power demand could not be reduced
effectively. Under limited cooling supply, the pumps and
fans would be fully operated, and hence increased system
power demand and reduced the effect of DR controls. This
was because the current existing control strategies in central
air-conditioning systems were useful on the premise of

an assumption of sufficient cooling provided by chillers. To
solve the control failure problem under limited operating
chillers, a supply-based control strategy (Wang and Tang
2017) was developed for proper cooling distribution among
individual zones. Cui et al. (2015) developed an optimal
control strategy to manage the power demand of a central
air-conditioning system integrated with small-scale thermal
storage under a limited number of operating chillers. Ran
et al. (2020) developed a virtual sensor-based self-adjusting
control strategy during fast DR events to optimize the chilled
water flow of each AHU (air handling unit) for expected
indoor temperature control.

Model predictive control for building demand response

Model predictive control (MPC) is an advanced method of
processing control that is used to control a process while
satisfying a set of constraints (Morari and Lee 1999). Due
to its advantages of control robustness and accuracy (Afram
and Janabi-Sharifi 2014), many studies are conducted on the
applications of MPC for building power demand management
and DR controls (Huang et al. 2009; Oldewurtel et al. 2012;
Zong et al. 2012; Avci et al. 2013). Killian and Kozek (2016)
summarized ten questions concerning MPC for energy-
efficient buildings, spanning from the benefits of MPC,
how to set up the MPC framework, and challenges of MPC
implementation in real buildings to future direction of
integrating MPC-based building control into smart grids and
renewable energy resources. Olivieri et al. (2014) developed
MPC-based optimal control strategies to achieve the building
power demand reduction as utility needed. Three variables
in the cooling system were optimized by MPC, i.e., return
air temperature, chilled water temperature, and supply air
temperature. Mai and Chung (2015) formulated a robust
MPC algorithm to manage the power demand of HVAC
systems in group-level commercial buildings.

The core of MPC is to develop a model to grasp
the building system dynamics. Compared with the models
in building simulation software, RC (resistance—capacity)
physical-based models based on the energy conservation
law could be developed without rather detailed parameters
that are costly and impractical to be collected from a real
project. But considerable expert knowledge and engineering
experience and information such as weather information,
internal heat gain, and building geometry are still required.
Also, a specific developed RC model is not scalable and fit
for other buildings. RC models are therefore challenged by
the time-consuming and labor-intensive although it is
widely adopted for MPC in building system controls. As
the technology of machine learning emerging, data-driven
models elicit much attention in building energy modeling
(Fan et al. 2021a; Fan et al. 2021b), which own flexible
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structures for possibly extendable to different buildings.
Data-driven models could save the efforts and time required
for physical-based models by directly analyzing data inputs
and outputs to comprehensively identify the interactions
of different variables. SVR (support vector regression) is a
widely used data-driven approach to predict the building
energy dynamics due to its strong capability of non-linear
and time-series predictions. SVR transforms the nonlinear
problems as linear by mapping input and output data into
a high-dimensional feature space for the enhancement
of prediction accuracy and robustness. Chen et al. (2017)
developed an SVR model to predict the short-term electrical
load of office buildings as the baseline of demand response.
Zhang et al. (2016) proposed a time-series forecasting strategy
for the prediction of building energy consumption using SVR.
Paniagua-Tineo et al. (2011) predicted daily maximum
temperature using SVR and prediction results outperformed
neural networks. Pourjafari and Reformat (2019) proposed
an SVR-based MPC for the volt-var optimization of electrical
distribution systems. Xi et al. (2007) developed an SVR-based
MPC for simultaneous and accurate control of temperature
and relative humidity served by a central air-conditioning
system. The control performance was better than the results
when using neural fuzzy control. Generally, SVR is widely
applied for building load prediction, but limited studies
were conducted to combine SVR with MPC for building
thermal system control, which has been commonly used in
other domains such as electrical engineering.

When applying data-driven methods in MPC, the key
question is how to find the optimum due to the nonlinear
characteristics of data-driven models. The optimization
method for data-driven MPC can be categorized into dynamic
programming, gradient-based method, and intelligent
algorithm (Wang et al. 2019). Dynamic programming can
find the optimal solution by converting the data-driven model
into a convex optimization problem. This method requires
proficient knowledge of machine learning to transform
nonlinear and nonconvex problems into convex optimization
(Smarra et al. 2018). Moreover, the efforts and time costs
are therefore shifted from RC model development to the
processing of complicated optimization problems. Gradient-
based methods, as numerical solutions, can achieve a fast
convergence but are sensitive to the initial value of control
variables, which increases the risks of local convergency
and meaningless results. Compared with the numerical
solutions, intelligent algorithms are less sensitive to the
initialization and less troubled by local optimum, but the
computational efficiency is lower.

Research gap and objectives

During fast DR events, few studies are conducted in the
literature to optimize the system operation using data-driven

MPC. Additionally, limiting chiller power demand in buildings

would be applicable in other conditions such as the cooling

systems are operating abnormally, not only limited to fast

DR events. Recently more renewable energy resources are

trying to be integrated into building energy systems, which

potentially increases the need for building energy flexibility.

Li et al. (2020) studied the dynamic energy matching per-

formance between photovoltaic generation and load of PV

direct-driven air conditioning systems at minute-level time
scale to improve the evaluation in a transient way. From the
perspective of system resilience, the advanced control strategy
can effectively relieve the negative influences on the indoor
environment under the limited cooling supply and hence
guarantee a good control performance. This study, therefore,
intends to bridge the gap of how to apply the data-driven

MPC for fast demand response control. The proposed MPC

aims to achieve an expected power demand control and

create the best possible indoor environment simultaneously
in fast DR events. Genetic algorithm (GA) is adopted for
online optimization considering the computational speed.

The main contributions of this study include:

(1) Data-driven MPC based on the SVR prediction model
is applied for fast DR periods and its control performance
is validated by comparing with the RC-based MPC;

(2) Searching range of GA for online optimization is
narrowed down fully taking the characteristics of fast
DR event into account to alleviate the local convergence
and increase the computational speed. The penalty
function is applied to address the constraints of indoor
temperature when setting the objective function of GA
optimization;

(3) Three scenarios of control objectives in fast DR events,
i.e., minimum and smooth power demand, maximum
and smooth power demand reduction, and maximum
average power demand reduction, are studied to satisfy
different DR programs and also validate the control
performance of proposed control strategy under different
conditions.

2 Schematic of MPC-based building power demand
control in DR events

Figure 1 illustrates the schematic of chiller power demand
control in a fast DR event. Once an urgent request from
power grids, the DR control is activated by switching off
part of operating chillers directly for an immediate power
reduction within a very short time. Three modules (i.e.,
chiller power demand optimizer, chiller load regulator, and
cooling distributor) are responsible to ensure the DR control
implemented properly to maximize revenues/rewards obtained
from power grids and keep the indoor environment
acceptable. The chiller demand optimizer is to optimize the
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Fig. 1 Schematic of chiller power demand control during fast DR events

chiller power demand set-points considering the control
objectives and constraints (e.g., indoor environment). The
function of this module is realized by the MPC approach.
The chiller load regulator is to implement the optimized
set-point of chiller power demand online by adjusting the
total chilled water flow into the buildings using the PID
algorithm amplified by a factor K. Under the total cooling
supply adjusted by the chiller load regulator represented by
the chilled water flow of the secondary loop, the cooling
distributor is responsible for allocating the cooling supply
properly among individual AHUs. This study is focused on
developing the module of chiller demand optimizer using
data-driven model predictive control (MPC) and the works
for the modules of chiller load regulator (Tang et al. 2018b)
and cooling distributor (Tang et al. 2016) can be found in
the previous studies.

In this study, the indoor environment is described by
indoor temperature, which has the highest impact on the
indoor environment compared with other factors (e.g.,
relative humidity). The immediate power reduction during DR
events is contributed by chillers in a central air-conditioning
system.

3 Data-driven MPC for chiller demand optimizer in
DR controls

3.1 Principle of MPC for chiller demand optimizer

Figure 2 presents the principle of MPC in the system
real-time (online) optimal control in fast DR events. The MPC
framework developed includes three parts, i.e., dynamic
model (SVR-based model, Section 3.2), model correction

(Section 3.3), and (online) optimization (Section 3.4). At
a sampling interval, MPC optimizes the current timestep
while keeping the future into account. Based on the collected
information (weather data, the trajectory of chiller power
demand set-point, etc.), the dynamic model predicts system
responses of targeted states (y, predicted indoor temperature
in this study) under a given group of control state values
over the prediction horizon. The modification/correction
using a factor (e) is to effectively address the disturbances
and unpredictable errors for improving the prediction
accuracy and control performance based on the measured
indoor temperature (y). The optimization result of chiller
power demand set-point is a trajectory of future control
signals that satisfy the system dynamics and the corresponding
constraints. But only the first control signal (u, chiller
power demand set-point) is sent to the system for imple-
mentation at the next sampling time and the rest of the
sequence is discarded. This process is repeatedly implemented
at the following process using the updated states of the next
prediction horizon.

Constraints Ittt
i Objective function |

Building

' Weather data |
1 i Building use !

Fig. 2 Principle of MPC strategy for chiller demand optimizer
during fast DR events
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3.2 Development of dynamic models for MPC
3.2.1 SVR model

e Principle of SVR

SVR (support vector regression) is a promising machine
learning approach for data regression because of its powerful
capability for nonlinear predictions (Ahmad et al. 2018).
The regression function of SVR is shown in Eq. (1), where
flx) is the prediction value; W is the high-dimensional weight
factor; b is an adjustable factor; ¢(x) represents the mapping
function; x is the inputs.

f(x)=Wio(x)+b (1)

The residual value between prediction f(x) and actual
value y is defined as Eq. (2). The ideal regression model is
set as the full residual within a range of ¢, as shown in Eq. (3).
The distances between data outside of the tube and identified
hyperplane are & (larger than ¢) and & (lower than —¢).
Figure 3 illustrates the schematic of key parameters (¢, &,
and &) and identified hyperplane in the SVR approach.

R(x,y)=y—f(x) )
—e<R(x,y)<c¢ (3)

The SVR identifies the optimum hyperplane by making
the hyperplane maximum flat (first term of Eq. (4)) and
addressing the data outside the tube with a penalty (second
term of Eq. (4)), where C is a penalty factor to determine
the trade-off between training error and model flatness. The
SVR optimization objective is subject to the constraints in
Egs. (5)-(7).

1 N
min F(W,b,5,8 ) = |[W[ +CY (& +&) (4)
i=1
Subject to:
v —Who(x,)-b<e+& i=12..,N (5)
Wio(x,)+b—y <e+& i=12..,N (6)
§>0,8 >0 (7)

This problem can be solved as a quadratic optimization
problem with inequality constraints (Zhang et al. 2016).
The high-dimensional weight factor W is obtained as
Eq. (8), where, 87 and f3; are the Lagrangian multipliers
by solving the quadratic problem. Then, the SVR function
is written as Eq. (9), where, K(x;—x) is the kernel function,
transforming data x into a higher dimensional feature
space. In this study, RBF (Radial Basis Function) kernel
function is selected for the data mapping (Li et al. 2009),

Fig. 3 Schematic of support vector regression

as shown in Eq. (10).

N

W:Z(ﬁ:_ﬁi>¢(xi) (®)

i=1
N

f(x)=> (B =B )K(x,—x)+b )

i=1

K(xy)=e"7F y>0 (10)

e SVR model development

The output of the SVR model for the data-driven MPC
during the fast DR event is the indoor air temperature (T;} ).
The indoor air temperature is dominantly influenced by
outdoor weather conditions and space usage in commercial
buildings (Xu et al. 2019). The calendar information could
well reflect the space usage schedule, e.g., occupants and
equipment (Fan et al. 2017; Fan et al. 2019). Therefore,
outdoor air temperature (T, ) and time (hour) of a day (¢)
are considered in the model, as shown in Eq. (11). Besides,
chiller power demand at current k time step ( P ) and indoor
air temperature of last time step (T*™') are involved.
The last time step of indoor temperature is to describe the
dynamic of temperature changes during the DR event. The
chiller power demand reflects the impacts of cooling supply on
indoor temperature. T . is the final indoor temperature

in,rev

predicted by MPC after the prediction result of SVR model
(T¥) is modified by a modification factor (eAk ) to address

the unpredictable disturbances and model uncertainties (in
Section 3.3).

T;r’: = f(Pcﬁ’Tolf.lt”I—;sil’t) (11)
’I;xli,rev = ’I;ﬁ + €k (12)

To improve the prediction performance of SVR for online
control, two steps are added in this study before model
training, i.e., data normalization and SVR hyperparameter
optimization.

Data normalization: for improving the prediction
efficiency and preventing individual data from overflowing,
the dataset (inputs and outputs) are normalized by Eq. (13)
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before training, where vm. and vmi, are the corresponding
maximum and minimum values, respectively; v! and v;
represent the normalized and original datasets of inputs
and outputs, respectively. After the prediction results (G)
of SVR model obtained, the predicted values (G) should
be transformed into the actual prediction value g by
Eq. (14), where gm.x and gmin are the maximum and minimum
values of prediction results, respectively.

V,'/ — Vi — vmin (13)
Vmax - Vmin
é:qmin +G(qmax _qmin) (14)

SVR hyperparameter optimization (y and C): In Eq. (4),

C represents the tolerance of prediction error. A higher C
will result in a lower prediction error but a higher risk of
over-fitting and vice versa. In Eq. (10), y is the parameter of
kernel function to handle nonlinear regression by mapping
the dataset into a high-dimensional feature space. To optimize
these two parameters, the grid search method is used to
exhaustively test the possible combination of y and C by
evaluating each case performance. Then the best combination
is selected for the following SVR model development. To
avoid the overfitting in the parameter optimization process,
k-folds cross-validation is performed and k is set as 6 in
this study.

o SVR model performance evaluation

To evaluate the performance, three performance indices are
used, i.e., root means square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE).
The definitions of these three performance indices are
shown in Eqs.(15)-(17), where Yl is the prediction value of

the SVR model; Y; is the actual measurement; # is the total

number of measurements.

Exterior

Outdoor
envelope

MAE = (16)

S Y-
n

1@y
MAPE—HZ—

i=1 i
3.2.2 RC model

The RC model is regarded as a reference in this study to
achieve a comparison with the SVM model for online control
during fast DR events. The schematic of the building RC
thermal model is shown in Figure 4, describing the heat
exchanges and energy balances between outdoor, indoor
and building envelop. This model is used to predict the
indoor air temperature under a given chiller power demand.
The RC model embedded into MPC is as the format of
Eqgs. (18)-(19).

X =Ag X, +B-u, +E; - d; (18)

Y =Cy- X+ (19)

where, A4, By, Cs, and Ey are the coefficients. System state
Xi = [Twex Twin Timy Tima Tin]™. The indoor air temperature
can be obtained directly by measurement, while the other
unmeasurable variables can be estimated by the Kalman
filter (Simon 2006; Afram and Janabi-Sharifi 2014). Control
input ux = Po (P is the chiller power demand). The
disturbance vector di = [Lotar Tour Qinter] ™+ Yk is the prediction
output, ie., Tin. The detailed meanings of parameters in
system state vector and disturbance vector can be found
in Appendix A, which is in the Electronic Supplementary
Material (ESM) of the online version of this paper.

3.3 Model correction

In the above two models, the prediction result is further
revised by a factor e, to address the prediction errors and

hence improve the accuracy. Its value is determined by

Fig. 4 Heat fluxes and energy balances in building thermal model (Tang and Wang 2019) (reprint by permission from Tang and Wang

(2019), © Elsevier)
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the first-order exponential smoothing method, as shown by
Eq. (20). The modification factor at the (k+1)™ interval (i.e.,
€..,) is calculated by the prediction error (ex) and the value

(& ) at the k'™ time step. 6 is a weighting factor (0 < 0 < 1).
ex is the prediction error obtained by comparing the actual
measurement with the predicted value at the k™ time step.
¢, is the factor at the k™ time step. At the start of the DR

event, the initial value of ¢, (k = 1) is set as zero.

ey =0xe +(1—0)xe, (20)

3.4 Online control optimization

Three scenarios are considered for optimal control of
chillers in fast DR events, i.e., minimum and smooth power
demand, maximum and smooth power demand reduction,
and maximum average power demand reduction. Different
power demand controls would be required in different DR
programs (Li et al. 2016). Meanwhile, a comprehensive
comparison between the SVR-based MPC and RC-based
MPC is achieved to test the performance of the proposed
data-driven MPC. The optimization controls of three
scenarios are formulated as follows:

o Scenario 1: Minimum and smooth power demand control

Problem formulation: In scenario 1, chiller demand control
during DR events provides a minimum and smooth power
demand profile while maintains indoor temperature acceptable.
The objective function of this scenario is described as Eq. (21).
The first item is to realize a smooth power demand control
and the second is for minimizing the power demand, where,
P} = [Pq, (k+ 1]k) ... Poy (k + Ny|k)]. The argument (k + N,|k)
means the prediction results at (k+N,)" considering the

measurements up to the k™ time step. P,,.. is the average

predicted chiller demand over the prediction horizon (N,)
at the k™ step, as calculated by Eq. (22). A, is a weighting
factor. N is the prediction horizon of the entire DR event
and its value is based on the time step (step) and time
duration (D) of the DR event, as shown in Eq. (24). Note
that the prediction horizon (N,) at each sampling time is
shrunk over the entire DR event, not a fixed value. Due to
the characteristic of such fast DR events lasting for a short
period, the shrunk prediction horizon can cover the rest of
the DR event (i.e., from the next time step (i.e., k + 1) to
the end of DR event) to effectively grasp the dynamics of
control states.

min Jucy = <] (B4~ Paer ) (B4~ Par )+ B4 BT

P

(21)

1 k+N,
Pt = N chh (t | k) (22)
p t=k+1
N, =N—k+1 (23)
N =D/ step (24)

The indoor temperature of DR event would be without
violating maximum acceptable limit (Twa), ie., Eq. (25).
Under the limited cooling supply in the DR event, there is
no concern about indoor temperature lower limit (Tpm)
(i.e., lower than original set-points) and hence T is set as
the original set-point. The chiller power demand should be
maintained within its capacity, i.e., between the minimum
(Pehiller,min) and maximum capacity (Pepiiermax) Of retained
chillers (i.e., Eq. (26)). The optimized control variables of the
k™ time step is ux = [ PX ] = [P (k + 1[K) ... Par (k + Ny|K)].
But only the first value of Py (k + 1|k) is sent out to be
implemented at the (k + 1) time step.

Tmin S TI’; S Tmax (25)
Pchiller,min S uk g Pchiller,max (26)

Online optimization: To solve the formulated problems,
the quadratic program is used for the RC-based MPC to
identify the optimal control solutions because the RC model
is linear. In contrast, the SVR model is nonlinear, and
therefore genetic algorithm (GA) is employed for online
optimization due to its powerful ability for solving nonlinear
optimization problems. GA is an evolutionary search
algorithm via the process of natural selection. It makes a
population of individuals evolve to an optimal solution by
successive modifications. Three steps, i.e., selection, crossover,
and mutation, are experienced to create the next generation
based on the current generation at each modification (Tuhus-
Dubrow and Krarti 2010). To ensure the optimization
performance of GA and search best possible optimal
solutions, two efforts are made in this study:

(1) Shortened searching range of GA. Local convergency is
a critical issue when using GA, which causes the solution
converged to local optimum not global optimum, and
therefore results in bad optimization performance. To
alleviate this problem, the target control state (chiller
power demand) is restricted within a narrow searching
range. This is benefited by the characteristic of fast
DR. At the start of such events, retained number of
operating chillers (i.e., m) is optimized considering the
constraints of indoor environment and then keeps
unchanged in the entire events (the determination of
retained chiller number can be found in Tang et al.
(2018D)). So the searching range of chiller power demand
is located in a narrow range of [(m — 1)P — 8, mP + f3]
rather than the range covering the cumulative capacity
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of all the operating chillers, where P is the rated capacity
of chillers; 8 is a safety factor, which is set as around half
of rated chiller power to cover enough searching range.

(2) To address the constraint of indoor temperature when
conducting the GA optimization, the penalty function
is used to combine the constraint into the objective
function, as shown in Eq. (27), where, Jrc,1 represents
the objective function set for the RC-based MPC
optimization in scenario 1. £ is a weighting factor,
making the first and second terms in the objective
function at a similar magnitude. Jsvr: is the objective
function for SVR-based MPC in scenario 1.

min Jgr; = Jren + £ ~[min(Tm =T

max >

0)—min(T, —T,,,,0)]
(27)

o Scenario 2: Maximum and smooth power demand reduction
control

In scenario 2, chiller demand control during DR events
provides a maximum and smooth power demand reduction
compared with a given baseline. The objective function of
this scenario is shown in Egs.(28)-(30). In Eq. (28), the first
part is to make power reduction stable and the second part
is for a maximum power reduction, where, P} . is the
matrix of chiller power demand reduction from the (k + 1)
time step to the end of DR event, i.e., P} = [Pehrea (k +
1|k) ... Pehrea (k + Np|k)]. Pf is the optimized chiller power
demand at the k™ time step. P} .. is the baseline of chiller
power demand without any DR control (i.e., original power
demand). The constraints are indoor temperature limits
and chiller capacity, which are the same as scenario 1, as
defined in Egs. (25)-(26). Using penalty function for handling
the indoor temperature constraints, Eq. (31) is the objective
function of SVR-based MPC using genetic algorithm, where,
Jrc represents the objective function set for the RC-based
MPC optimization in scenario 2. £, is a weighting factor. Jsvr2
is the objective function for SVR-based MPC in scenario 2.

min Jye,
1 — —T
= N_P (I,c]}{l,red - Pch,red ) (Pc];l,red - Pch,red ) - )LZ : I’ci,red : I)clli,redT
(28)
l)c]l:,red = Pclil,base - pc]]i (29)
1 k+N,
I)ch,red = N_ chh,red (t | k) (30)
p t=k+1

min ]SVR,Z = ]Rc,z +£z'[min(Tin —T,

max >

0)—min(T, —T,,,,0)]
(31)

o Scenario 3: Maximum average power demand reduction
control

In scenario 3, chiller demand control during the DR events

is for a maximum average power reduction compared with
baseline and simultaneously keeps indoor temperature
accepted. At the k™ sampling time, the objective function is
shown in Eq. (32), where, P} and P}, . are optimized
chiller demand and corresponding baseline from the (k + 1)
time step to the end of DR event, respectively. The constraints
are indoor temperature limits and chiller capacity, as defined
in Egs. (25)-(26). Equation (33) is the objective function
of SVR-based MPC using genetic algorithm that indoor
temperature constraints are involved in using the penalty
function, where, Jrcs represents the objective function set
for the RC-based MPC optimization in scenario 3. £; is a
weighting factor, of which value is set based on the rated
chiller power demand. Jsvr;s is the objective function for
SVR-based MPC in scenario 3.

1
N

P

(32)

: k k
min ]RC,3 = (I)Ch - I)Ch,base )

min Jogs = Jees + £, '[min(Tin =T

max >

0)—min(T, —T,,,,0)]
(33)

4 Test platform

Computer-based dynamic simulation is an effective way to
test and validate online optimal control strategies before
implementation. A co-simulation test platform on TRNSYS-
MATLAB (Klein et al. 2006) is set up to validate the
SVR-based MPC in fast DR events. The detailed dynamic
models of components in a central air-conditioning system
are involved in the platform (Wang 1998). The centrifugal
chiller model is employed for the chiller dynamic and
performance, which is mainly based on impeller tip speed,
impeller exhaust area, impeller blade angle, and thirteen
co-efficient parameters. The compression process in the
compressor, the heat transfer process in the evaporator and
the condenser are simulated in the model. Air handling
unit (AHU) model in Wang (1998) is used, which is based
on classical number of transfer unit (NTU) and heat transfer
effectiveness (¢) methods to realize the heat transfer
calculation. Both dry and wet regions are considered for
the calculation of heat conversion coefficient on the air side.
The energy performance and characteristics of pump at
various speeds are simulated using fourth-order poly-nominal
function as described in Wang (1998).

System configuration: the central chiller plant for the
tests is a typical primary constant-secondary variable chilled
water system. It is modified on basis of a central air-
conditioning system of a high-rise commercial building in
Hong Kong. The system is shown in Figure 1. Six identical
chillers with a rated cooling capacity of 4080 kW are employed
in the chiller plant. Every chiller is equipped with a constant-
speed primary pump with a capacity of 172.5 L/s. The chilled
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water pumps in the secondary loop of the system are variable
speed pumps.

Model development: to train the SVR model, system
identification is performed on the TRNSYS test platform.
The indoor temperature setpoints, which are generated by
a random sequence, are regarded as the excitation input to
obtain the system dynamics. The upper and lower bounds
of random sequence are 23.5 °C and 27.5 °C respectively,
which are 0.5 °C higher/lower than the acceptable range in
this study, [24 °C, 27 °C]. The hyperparameter combination
of y and C in the SVR model are 2 and 16, respectively,
optimized by grid search in k-folds cross-validation as
illustrated in Section 3.2.1 (k is set as 6). The values of R
and C in RC model are presented in Table 1, and the model
accuracy has been validated in Tang and Wang (2019). The
values of coefficient matrixes A4, Bg, E4, and Cy in the
discrete-time state-space model for RC-based MPC are
given in Appendix B, which is in the Electronic Supplementary
Material of the online version of this paper.

Test settings: the DR period for the urgent request of
power grids is assumed to be 2 hours from 2:00 p.m. to 4:00
p.m. Once the DR signal is received from power girds, DR
control will shut down one of four operating chillers and
remain three chillers operating accordingly. The outdoor
weather condition of the test day is shown in Figure 5, which
is a typical summer day in Hong Kong. The set-point of
indoor air temperature is 24 °C under normal system
operation, while under DR control, the maximum indoor
temperature accepted is 27 °C (3 °C increase). The parameters
of Population Size, Max-Generation, and Function-Tolerance
in GA for the online optimization of SVR-based MPC are

Table 1 Parameters of R and C for the tests

Ry, Ry Ryin Ri; Ri»
(m*K/W)  (m*K/W) (m*K/W) (m*K/W) (m>K/W)
Value 0.0942 0.0892 0.0039 0.0024 0.0107
Rwin Cw,l Cw,2 Cim,l Cim,z
(m*K/W)  (/(m*K))  (/(m*K)) (/(m>K)) (/(m*K))
Value 0.0105 9.229x10%  9.997x10°® 8.811x107  9.725%x10”
Outdoor Air Temperature = = Horizontal Global Radiation
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Fig. 5 Outdoor weather condition on the test day

set as values of 100, 160, and 10°° respectively. The RC-based
MPC for the online optimal control problem is solved
using the YALMIP optimization toolbox (Lofberg 2004) with
Gurobi solver (Gurobi Optimization 2014). The time step
of the dynamic simulation is set as 1 second. The sampling
time for the online two MPC strategies is 15 min, i.e., the
set-points are updated every 15 min.

5 Results and discussion

5.1 Model validation and necessity of MPC

Model validation

The data of five summer workdays in a week were selected
to validate the prediction of the SVR model. The predicted
values by RC and SVR as well as actual indoor temperatures
are shown in Figure 6. The results of three evaluation
indices (MAE, MAPE, and RMSE) are presented in Table 2
to describe the model accuracy. The SVR model could well
predict the system dynamic of indoor temperature and even
is a little better than the RC model.

Necessity of MPC for fast DR optimal control
Without predictive controls, the indoor temperature and

chiller power demand cannot be controlled as expected
simultaneously (Tang and Wang 2019). If maintaining the
indoor temperature at the upper limit, the chiller will be
operating passively to meet the cooling demand rather than
at the expected load profile for DR programs. Similarly, if
chiller power demand is operating without considering system
dynamics to predict the indoor temperature response, the
indoor temperature will deviate from the optimal condition
obviously, which would cause maximum indoor temperature
increase to unacceptable at a higher risk. In addition, MPC
can relieve the serious fluctuation resulted from suddenly
significant changes of switching off operating chillers directly
at the start of such fast DR events.

5.2 Analysis of control performance during the DR
event—Scenario 1

In scenario 1, the control performance was evaluated
considering two aspects: smooth and minimum chiller
power demand and indoor air temperature below the
acceptable upper limit (i.e., 27 °C). Figure 7(a) presents the
optimized power demand set-points of chiller in the DR
event by two MPC approaches. The difference in the results
of two methods was within a small range. The standard
deviation of chiller power demand during the event that
could quantify the smoothness of chiller power demand
was 89.1 kW using SVR-based MPC, near to the result of
67.9 kW using RC-based MPC. Although the difference
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Fig. 6 Predicted indoor temperature profiles using RC model and SVR model compared with actual measurements

Table 2 Evaluation indices of SVR model and RC model

MAE (°C) MAPE (%) RMSE (°C)
SVR model 0.108 0.429 0.328
RC model 0.251 0.892 0.460
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Fig. 7 Set-points of chiller power demand optimized by SVR-based
MPC and RC-based MPC (a), and actual chiller power demand
using SVR-based MPC (b) in the DR event—Scenario 1

between the maximum and minimum power demands was
1244 kW, this was induced by the sudden change of system
operation at the start of the DR event (switching off operating
chillers directly). After the system reached the new balance,
the chiller power demand fluctuation was relieved significantly

and well followed the optimized set-points using SVR-based
MPC, as shown in Figure 7(b).

Figure 8 shows the indoor temperatures of the DR
event using two MPC approaches. During the DR event,
the maximum indoor temperature was almost below the
upper limit using the SVR-based MPC (only a short period
exceeded the limit with a maximum value of 27.2 °C, which
also demonstrated no potential for a further power reduction).
In Table 3, the average power demand reduction of 570 kW
(i.e., 19.3%) was achieved by SVR-based MPC, which was
similar to the RC-based MPC.

53 Analysis of control performance during the DR
event—Scenario 2

In scenario 2, the objective of DR control was to achieve a
maximum and smooth (stable) power reduction contributed
by chillers with ensuring the indoor temperature below the
upper limit. The power reduction was obtained based on a
pre-defined baseline profile of building operating without
any DR controls. In this study, the baseline was not the focus
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Fig. 8 Indoor temperature profiles during the DR event using
SVR-based and RC-based MPC approaches—Scenario 1
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Table 3 Control performance using SVR-based and RC-based MPC approaches—Scenario 1

Actual chiller power demand

Indoor
Maximum Minimum Standard Average Average Percentage temperature
(kw) (kW) deviation (kW) demand (kW) reduction (kW) (%) Maximum (°C)
SVR-based MPC 3019 1775 89.1 2377 570 19.3 27.2
RC-based MPC 3137 2017 67.9 2449 498 16.9 27.0

Note: baseline of chiller power demand in this scenario is simplified as the value just before the DR event (i.e., 2947 kW)

and hence assumed to be known during the DR event.

Figure 9(a) presents the set-points of chiller power
demand optimized by two MPC approaches during the fast
DR event. The optimized results were similar with a few
differences between these two approaches. The standard
deviation of power demand reduction during the event
was 76.6 kW using SVR-based MPC, even better than that
of 81.2 kW using the RC-based approach. The difference
between the maximum and minimum power demand
reduction was obvious, caused by the sudden change of
system operation at the start of the DR event. About 10 min
later, actual chiller power demand reduction could be stable
and well follow the optimized set-points of SVR-based MPC,
as shown in Figure 9(b).

Figure 10 shows the indoor temperatures of the DR
event using two MPC approaches. During the DR event,
the maximum indoor temperature was almost below the
upper limit using SVR-based MPC (with a maximum value
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Fig. 9 Set-points of chiller power demand optimized by SVR-based
MPC and RC-based MPC (a), and actual chiller power demand
using SVR-based MPC approach (b) in the DR event—Scenario 2
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Fig. 10 Indoor temperature profiles during the DR event using
SVR-based and RC-based MPC approaches—Scenario 2

of 26.8 °C). In Table 4, the average power demand reduction
of 528 kW (i.e., 17.2%) was achieved by SVR-based MPC,
which was similar to the RC-based MPC, but the maximum
temperature was lower than that of RC-based MPC.
Considering the indoor temperature at the last half hour of
the DR event was around the limit value, the power reduction
was achieved almost at the maximum.

54 Analysis of control performance during the DR
event—Scenario 3

In scenario 3, the DR control was to maximize the average
chiller power reduction by maintaining the indoor temperature
below the upper limit (27 °C). The main difference in this
scenario between the above two cases was that the power
demand control was simplified as a value to evaluate the
control performance rather than an expected profile. This
case was therefore easier and more practical for the real
applications. The baseline of average chiller power demand
was assumed to be known in this scenario.

Figure 11(a) presents the optimized set-points of chiller
power demand using two approaches during the DR event.
The difference between the optimized results using these
two methods was kept within a very small range. The actual
chiller power demand could well track the optimized chiller
power demand set-points optimized by SVR-based MPC, as
shown in Figure 11(b). The average power demand during
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Table 4 Control performance using SVR-based and RC-based MPC approaches—Scenario 2

Actual power demand

Indoor temperature

Maximum Minimum Standard Average Average Percentage Maximum
reduction (kW)  reduction (kW)  deviation (kW) demand (kW) reduction (kW) (%) (°C)
SVR-based MPC 1187 501 76.6 2542 528 17.2 26.8
RC-based MPC 1209 487 81.2 2498 572 18.6 26.9

Note: baseline of average chiller power demand in this scenario is 3070 kW.

the DR event was 2394 kW, about 22.0% of power reduction
achieved by SVR-based MPC which was similar to that of
RC-based MPC (i.e., 22.3%), as presented in Table 5.
Evaluation of whether average power reduction reached
its maximum could be based on the indoor temperature
profile. The best condition with maximum reduction was
to maintain the indoor temperature operating at the upper
limit (27 °C) in the entire DR period. This meant that there
was no potential for a further power reduction at any time
of the DR event. The time duration of indoor temperature
over 26.5 °C was calculated to reflect the degree of achieved
maximum power reduction. As shown in Figure 12, the
temperature was almost maintained at its upper limit using
SVR-based MPC with a duration of 112 minutes over
26.5 °C in the two hours DR event, which was better than
using RC-based MPC (i.e., 102 min). As a result, more
reduction was achieved by SVR-based MPC but with a
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Fig. 11 Set-points of chiller power demand optimized by SVR-based
MPC and RC-based MPC (a), and actual chiller power demand
using SVR-based MPC strategy (b) in the DR event—Scenario 3

similar maximum indoor temperature (27.07 °C) compared
with the results using RC-based MPC.

Table 5 Control performance using SVR-based and RC-based
MPC approaches—Scenario 3

Actual power demand Indoor temperature

Average  Average Time
demand reduction Percentage Maximum duration
(kW) (kW) (%) (°C) (min)
SVR-based
MPC 2394 676 22.0 27.07 112
RC-based
MPC 2385 685 22.3 27.12 102

Note: baseline of average chiller power demand in this scenario is 3070 kW.
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Fig. 12 Indoor temperature profiles during the DR event using
SVR-based and RC-based MPC approaches—Scenario 3

5.5 Comparison of two methods

According to the results, SVR can get a relatively better
prediction performance of building dynamics than RC
model because RC model needs some inputs that are not
easily accurately measured such as internal heat gain while
SVR is capable of capturing the nonlinear relations only
driven from inputs and output data. According to the three
scenarios, SVR-based MPC can achieve a similar control
performance as RC-based MPC method. Although more
accurate prediction is obtained by SVR, the optimization
process using GA will get an approximate solution rather
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than an exact solution, which would negatively influence
the control performance. Besides, the SVR-based MPC can
effectively handle the suddenly significant change at the
start of DR events, which means more uncertain and serious
disturbance on the control system compared with other
normal conditions of parameter changes (e.g., weather data,
occupant number), and therefore the robustness of the
proposed method is demonstrated.

The advantages of SVR-based MPC when applied for
fast DR controls, compared with RC-based MPC, include:
(1) The flexible structure of models. The SVR-based MPC
control could be easily adjusted and applied for other
targeted buildings, but the RC-based model is specialized
for a specific control system and difficult to be extended
even in the same building. (2) The saving in efforts and time
costs for modeling. SVR-based MPC can reduce the efforts
caused by considering detailed system dynamics in the
developing process of RC-based models. (3) Less information
and data for SVR model inputs without sacrificing the
prediction accuracy. Only four inputs are required, i.e.,
chiller power demand, outdoor and indoor temperatures,
and time (hour of a day), which are easily measurable.
Contrarily, RC model needs internal heat gain, solar radiation,
and parameters such as split radiative/convective heat gain
of solar radiation additionally, which are difficult to be
measured and obtained accurately.

6 Conclusion

Demand response (DR) is an effective method to benefit
and strengthen the health operation of power grids. In
commercial buildings, shutting down part of operating
chillers could fulfill the need of immediate power reduction
for smart grids. In such special events, the advanced control
strategy would be adopted for the optimal control of an
acceptable indoor environment and expected power demand.
This study, therefore, bridged the gap of using SVR-based
data-driven model predictive control (MPC) for fast DR
events. To enhance the control performance, the data-driven
MPC was equipped with optimized hyperparameters, penalty
function for constraints of indoor temperature, and shortened
searching range for genetic algorithm optimization fully
considering the characteristics of such DR events. The
control performance was compared with RC-based MPC
under three different scenarios.

Test results show that the SVR outperforms the RC
model on the prediction of building dynamics due to its
nonlinear regression ability and no inputs required of
difficulty to be measured. SVR-based MPC approach could
optimize the controls for chiller power demand and indoor
temperature simultaneously under three different control

scenarios. The results in detail are presented as follows.
Overall, the proposed SVR-based MPC can achieve a similar
better control performance as using RC-based method for
the optimal controls of fast DR events. From the perspectives
of modeling effort and extendable ability, SVR-based MPC
method is advantageous over RC-based MPC for the control
of fast DR events.

o In scenario 1 of minimum and smooth power demand
control, using SVR-based MPC, 19.3% of power reduction
was achieved with a standard deviation of chiller power
demand of 89.1 kW, which was approaching the results
of RC-based MPC.

o In scenario 2 of maximum and smooth power demand
reduction control, using SVR-based MPC, 17.2% of power
reduction was achieved with a standard deviation of chiller
power demand reduction of 76.6 kW and a maximum
indoor temperature of about 26.8 °C, which were a little
better controlled than RC-based MPC.

e In scenario 3 of maximum average power demand
reduction control, the SVR-based MPC kept the indoor
temperature almost at its upper limit to maximize the
average power demand reduction (22.0%) in the DR event,
which means, compared with using RC-based MPC, a
similar power reduction was achieved but with a lower
maximum indoor temperature.
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