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Abstract 
Demand response (DR) of commercial buildings by directly shutting down part of operating 
chillers could provide an immediate power reduction for power grids. In this special fast DR event, 
effective control needs to guarantee expected power reduction and ensure an acceptable indoor 
environment. This study, therefore, developed a data-driven model predictive control (MPC) using 
support vector regression (SVR) for fast DR events. According to the characteristics of fast DR 
events, the optimized hyperparameters of SVR and shortened searching range of genetic algorithm 
are used to improve the control performance. Meanwhile, a comprehensive comparison with 
RC-based MPC is conducted based on three scenarios of power demand controls. Test results 
show that the proposed SVR-based MPC could fulfill the control objectives of power demand and 
indoor temperature simultaneously. Compared with RC-based MPC, the SVR-based MPC could 
alleviate the time/labor cost of model development without sacrificing the control performance 
of fast DR events.  
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1 Introduction 

The increasing demand for electricity and the rapid 
development of renewable energy systems that is difficult 
to be accurately predicted due to uncertain weather conditions 
are challenging the reliable operation of power grids (Tuballa 
and Abundo 2016). Keeping the real-time balance of power 
grids between supply and demand sides is a critical issue. 
Peak demand is one big concern to induce power imbalance 
by challenging the capacity limit of power supply. A huge 
expense is spent to upgrade the capacity of power grids to 
overcome the problem of peak demand. The capacity for 
the top 100 hours peak demand in a year accounts for nearly 
20% of electricity costs of power grids. Due to the infrequent  

occurrence of these peaks, this part of the grid capacity 
associated with transmission and generation is however 
wasted most of the time in a year (Arnold 2011). Demand 
response (DR) is considered a promising solution to help 
power grids operate more smartly by enhancing reliability, 
security, and flexibility. DR programs encourage end-users 
(i.e., demand side of power grids) to address the power 
imbalance using pricing information or economic incentives. 
The end-users adjust their power utilization responding to 
the needs of power grids. DR programs can benefit power 
grids by avoiding the huge cost and ensuring healthy 
operation, and meanwhile, building owners obtaining the 
economic benefits (Tang et al. 2019; Popoola and Chipango 
2021).   
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Building demand response towards smart grids 

Among power consumers at the demand side of power grids, 
the building sector consumes about 40% of global energy 
used (Kolokotsa et al. 2011). This share is still increasing as 
the rapid growth of population, living quality improvement, 
urbanization, etc. Building accounted for 74% of electricity 
use in the United States in 2010 (DOE 2011) and 90% of 
total electric energy in Hong Kong, China, in 2012 (EMSD 
of Hong Kong 2014). The power use in buildings has elastic 
characteristics and hence feasible to alter their loads for 
power demand-side management. In commercial buildings, 
heating, ventilation, and air-conditioning (HVAC) systems, 
accounting for more than 50% of energy consumption, are 
preferable to be used as a DR resource (Tang et al. 2018a; 
Yuan et al. 2021). Meanwhile, building automation systems 
and advanced technologies such as smart meters (Depuru 
et al. 2011) could benefit the implementation of DR controls. 
Demand shifting and demand limiting are two main 
methods for building DR controls. Demand shifting by 
rescheduling the operation of central air-conditioning 
systems is widely adopted, which part of peak load (with 
high price) is shifted to non-peak periods (with low price). 
Demand limiting is to reduce and even switch off the 
non-essential electric load in peak demand or DR events. 

Indoor air temperature reset strategy is a popular way 
to reshape the building power utilization for DR events 
(Motegi et al. 2007; Yin et al. 2010). But the key shortage  
of this method is the response time. By resetting indoor air 
temperature, building power demand cannot be changed 
immediately within a very short period, responding to 
urgent needs/requests (e.g., sudden price change) of power 
grids. This is because of the inherent delay in the system 
reaction after the set-point changes of control states. To 
provide an immediate power reduction in commercial 
buildings, limiting the load of operating chillers attracted 
extensive attention. Chillers account for high power demand 
(even more than half in some cases) in cooling systems of 
commercial buildings (Pérez-Lombard et al. 2008). Shutting 
down parts of operating chillers is therefore regarded as an 
effective fast DR control strategy and many related studies 
have been conducted recently. Xue et al. (2015) conducted 
a simulation test to validate the reaction delay of indoor 
temperature reset strategies and discussed the necessity of 
fast demand response. Tang et al. (2016) pointed out that 
without proper control after switching off part of operating 
chillers, system power demand could not be reduced 
effectively. Under limited cooling supply, the pumps and 
fans would be fully operated, and hence increased system 
power demand and reduced the effect of DR controls. This 
was because the current existing control strategies in central  
air-conditioning systems were useful on the premise of  

an assumption of sufficient cooling provided by chillers. To 
solve the control failure problem under limited operating 
chillers, a supply-based control strategy (Wang and Tang 
2017) was developed for proper cooling distribution among 
individual zones. Cui et al. (2015) developed an optimal 
control strategy to manage the power demand of a central 
air-conditioning system integrated with small-scale thermal 
storage under a limited number of operating chillers. Ran 
et al. (2020) developed a virtual sensor-based self-adjusting 
control strategy during fast DR events to optimize the chilled 
water flow of each AHU (air handling unit) for expected 
indoor temperature control. 

Model predictive control for building demand response 

Model predictive control (MPC) is an advanced method of 
processing control that is used to control a process while 
satisfying a set of constraints (Morari and Lee 1999). Due 
to its advantages of control robustness and accuracy (Afram 
and Janabi-Sharifi 2014), many studies are conducted on the 
applications of MPC for building power demand management 
and DR controls (Huang et al. 2009; Oldewurtel et al. 2012; 
Zong et al. 2012; Avci et al. 2013). Killian and Kozek (2016) 
summarized ten questions concerning MPC for energy- 
efficient buildings, spanning from the benefits of MPC, 
how to set up the MPC framework, and challenges of MPC 
implementation in real buildings to future direction of 
integrating MPC-based building control into smart grids and 
renewable energy resources. Olivieri et al. (2014) developed 
MPC-based optimal control strategies to achieve the building 
power demand reduction as utility needed. Three variables 
in the cooling system were optimized by MPC, i.e., return 
air temperature, chilled water temperature, and supply air 
temperature. Mai and Chung (2015) formulated a robust 
MPC algorithm to manage the power demand of HVAC 
systems in group-level commercial buildings. 

The core of MPC is to develop a model to grasp     
the building system dynamics. Compared with the models 
in building simulation software, RC (resistance–capacity) 
physical-based models based on the energy conservation 
law could be developed without rather detailed parameters 
that are costly and impractical to be collected from a real 
project. But considerable expert knowledge and engineering 
experience and information such as weather information, 
internal heat gain, and building geometry are still required. 
Also, a specific developed RC model is not scalable and fit 
for other buildings. RC models are therefore challenged by 
the time-consuming and labor-intensive although it is 
widely adopted for MPC in building system controls. As 
the technology of machine learning emerging, data-driven 
models elicit much attention in building energy modeling 
(Fan et al. 2021a; Fan et al. 2021b), which own flexible  
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structures for possibly extendable to different buildings. 
Data-driven models could save the efforts and time required 
for physical-based models by directly analyzing data inputs 
and outputs to comprehensively identify the interactions  
of different variables. SVR (support vector regression) is a 
widely used data-driven approach to predict the building 
energy dynamics due to its strong capability of non-linear 
and time-series predictions. SVR transforms the nonlinear 
problems as linear by mapping input and output data into 
a high-dimensional feature space for the enhancement   
of prediction accuracy and robustness. Chen et al. (2017) 
developed an SVR model to predict the short-term electrical 
load of office buildings as the baseline of demand response. 
Zhang et al. (2016) proposed a time-series forecasting strategy 
for the prediction of building energy consumption using SVR. 
Paniagua-Tineo et al. (2011) predicted daily maximum 
temperature using SVR and prediction results outperformed 
neural networks. Pourjafari and Reformat (2019) proposed 
an SVR-based MPC for the volt–var optimization of electrical 
distribution systems. Xi et al. (2007) developed an SVR-based 
MPC for simultaneous and accurate control of temperature 
and relative humidity served by a central air-conditioning 
system. The control performance was better than the results 
when using neural fuzzy control. Generally, SVR is widely 
applied for building load prediction, but limited studies 
were conducted to combine SVR with MPC for building 
thermal system control, which has been commonly used in 
other domains such as electrical engineering.   

When applying data-driven methods in MPC, the key 
question is how to find the optimum due to the nonlinear 
characteristics of data-driven models. The optimization 
method for data-driven MPC can be categorized into dynamic 
programming, gradient-based method, and intelligent 
algorithm (Wang et al. 2019). Dynamic programming can 
find the optimal solution by converting the data-driven model 
into a convex optimization problem. This method requires 
proficient knowledge of machine learning to transform 
nonlinear and nonconvex problems into convex optimization 
(Smarra et al. 2018). Moreover, the efforts and time costs 
are therefore shifted from RC model development to the 
processing of complicated optimization problems. Gradient- 
based methods, as numerical solutions, can achieve a fast 
convergence but are sensitive to the initial value of control 
variables, which increases the risks of local convergency 
and meaningless results. Compared with the numerical 
solutions, intelligent algorithms are less sensitive to the 
initialization and less troubled by local optimum, but the 
computational efficiency is lower.  

Research gap and objectives 

During fast DR events, few studies are conducted in the 
literature to optimize the system operation using data-driven 

MPC. Additionally, limiting chiller power demand in buildings 
would be applicable in other conditions such as the cooling 
systems are operating abnormally, not only limited to fast 
DR events. Recently more renewable energy resources are 
trying to be integrated into building energy systems, which 
potentially increases the need for building energy flexibility. 
Li et al. (2020) studied the dynamic energy matching per-
formance between photovoltaic generation and load of PV 
direct-driven air conditioning systems at minute-level time 
scale to improve the evaluation in a transient way. From the 
perspective of system resilience, the advanced control strategy 
can effectively relieve the negative influences on the indoor 
environment under the limited cooling supply and hence 
guarantee a good control performance. This study, therefore, 
intends to bridge the gap of how to apply the data-driven 
MPC for fast demand response control. The proposed MPC 
aims to achieve an expected power demand control and 
create the best possible indoor environment simultaneously 
in fast DR events. Genetic algorithm (GA) is adopted for 
online optimization considering the computational speed. 
The main contributions of this study include:  
(1) Data-driven MPC based on the SVR prediction model 

is applied for fast DR periods and its control performance 
is validated by comparing with the RC-based MPC; 

(2) Searching range of GA for online optimization is 
narrowed down fully taking the characteristics of fast 
DR event into account to alleviate the local convergence 
and increase the computational speed. The penalty 
function is applied to address the constraints of indoor 
temperature when setting the objective function of GA 
optimization;  

(3) Three scenarios of control objectives in fast DR events, 
i.e., minimum and smooth power demand, maximum 
and smooth power demand reduction, and maximum 
average power demand reduction, are studied to satisfy 
different DR programs and also validate the control 
performance of proposed control strategy under different 
conditions. 

2 Schematic of MPC-based building power demand 
control in DR events 

Figure 1 illustrates the schematic of chiller power demand 
control in a fast DR event. Once an urgent request from 
power grids, the DR control is activated by switching off 
part of operating chillers directly for an immediate power 
reduction within a very short time. Three modules (i.e., 
chiller power demand optimizer, chiller load regulator, and 
cooling distributor) are responsible to ensure the DR control 
implemented properly to maximize revenues/rewards obtained 
from power grids and keep the indoor environment 
acceptable. The chiller demand optimizer is to optimize the 
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chiller power demand set-points considering the control 
objectives and constraints (e.g., indoor environment). The 
function of this module is realized by the MPC approach. 
The chiller load regulator is to implement the optimized 
set-point of chiller power demand online by adjusting the 
total chilled water flow into the buildings using the PID 
algorithm amplified by a factor K. Under the total cooling 
supply adjusted by the chiller load regulator represented by 
the chilled water flow of the secondary loop, the cooling 
distributor is responsible for allocating the cooling supply 
properly among individual AHUs. This study is focused on 
developing the module of chiller demand optimizer using 
data-driven model predictive control (MPC) and the works 
for the modules of chiller load regulator (Tang et al. 2018b) 
and cooling distributor (Tang et al. 2016) can be found in 
the previous studies.  

In this study, the indoor environment is described by 
indoor temperature, which has the highest impact on the 
indoor environment compared with other factors (e.g., 
relative humidity). The immediate power reduction during DR 
events is contributed by chillers in a central air-conditioning 
system. 

3 Data-driven MPC for chiller demand optimizer in 
DR controls 

3.1 Principle of MPC for chiller demand optimizer 

Figure 2 presents the principle of MPC in the system 
real-time (online) optimal control in fast DR events. The MPC 
framework developed includes three parts, i.e., dynamic 
model (SVR-based model, Section 3.2), model correction  

(Section 3.3), and (online) optimization (Section 3.4). At  
a sampling interval, MPC optimizes the current timestep 
while keeping the future into account. Based on the collected 
information (weather data, the trajectory of chiller power 
demand set-point, etc.), the dynamic model predicts system 
responses of targeted states (yʹ, predicted indoor temperature 
in this study) under a given group of control state values 
over the prediction horizon. The modification/correction 
using a factor (e) is to effectively address the disturbances 
and unpredictable errors for improving the prediction 
accuracy and control performance based on the measured 
indoor temperature (y). The optimization result of chiller 
power demand set-point is a trajectory of future control 
signals that satisfy the system dynamics and the corresponding 
constraints. But only the first control signal (u, chiller 
power demand set-point) is sent to the system for imple-
mentation at the next sampling time and the rest of the 
sequence is discarded. This process is repeatedly implemented 
at the following process using the updated states of the next 
prediction horizon. 

 

Fig. 2 Principle of MPC strategy for chiller demand optimizer 
during fast DR events 

 
Fig. 1 Schematic of chiller power demand control during fast DR events 
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3.2 Development of dynamic models for MPC 

3.2.1 SVR model 

Principle of SVR 

SVR (support vector regression) is a promising machine 
learning approach for data regression because of its powerful 
capability for nonlinear predictions (Ahmad et al. 2018). 
The regression function of SVR is shown in Eq. (1), where 
f(x) is the prediction value; W is the high-dimensional weight 
factor; b is an adjustable factor; φ(x) represents the mapping 
function; x is the inputs.  

( ) ( )Tf φ b= +x W x                              (1) 

The residual value between prediction f(x) and actual 
value y is defined as Eq. (2). The ideal regression model is 
set as the full residual within a range of ε, as shown in Eq. (3). 
The distances between data outside of the tube and identified 
hyperplane are ξ (larger than ε) and ξ* (lower than −ε). 
Figure 3 illustrates the schematic of key parameters (±ε, ξ, 
and ξ*) and identified hyperplane in the SVR approach.  

( ) ( ),R x y y f= - x                              (2) 

( ),ε R x y ε- £ £                                (3) 

The SVR identifies the optimum hyperplane by making 
the hyperplane maximum flat (first term of Eq. (4)) and 
addressing the data outside the tube with a penalty (second 
term of Eq. (4)), where C is a penalty factor to determine 
the trade-off between training error and model flatness. The 
SVR optimization objective is subject to the constraints in 
Eqs. (5)–(7).  

( ) ( )2

1

1min , , ,
2

N

i i i i
i

F b ξ ξ C ξ ξ* *

=

= + +åW W          (4) 

Subject to:  

( )T 1,2, ,i i iy φ b ε ξ i N- - £ + = ¼W x              (5) 

( )T 1,2, ,i i iφ b y ε ξ i N*+ - £ + = ¼W x             (6) 

0, 0i iξξ *³ ³                                   (7) 

This problem can be solved as a quadratic optimization 
problem with inequality constraints (Zhang et al. 2016). 
The high-dimensional weight factor W is obtained as  
Eq. (8), where, iβ*  and βi are the Lagrangian multipliers 
by solving the quadratic problem. Then, the SVR function 
is written as Eq. (9), where, K(xi−x) is the kernel function, 
transforming data x into a higher dimensional feature 
space. In this study, RBF (Radial Basis Function) kernel 
function is selected for the data mapping (Li et al. 2009), 

 
Fig. 3 Schematic of support vector regression 

as shown in Eq. (10).  

( ) ( )
1

N

i i i
i

β β φ*

=

= -åW x                           (8) 

( ) ( ) ( )
1

N

i i i
i

f β β K b*

=

= - - +åx x x                  (9) 

( )
2

, e , 0γK γ- -= >x yx y                         (10) 

 SVR model development 

The output of the SVR model for the data-driven MPC 
during the fast DR event is the indoor air temperature ( in

kT ). 
The indoor air temperature is dominantly influenced by 
outdoor weather conditions and space usage in commercial 
buildings (Xu et al. 2019). The calendar information could 
well reflect the space usage schedule, e.g., occupants and 
equipment (Fan et al. 2017; Fan et al. 2019). Therefore, 
outdoor air temperature ( out

kT ) and time (hour) of a day (t) 
are considered in the model, as shown in Eq. (11). Besides, 
chiller power demand at current k time step ( ch

kP ) and indoor 
air temperature of last time step ( 1

in
kT - ) are involved.   

The last time step of indoor temperature is to describe the 
dynamic of temperature changes during the DR event. The 
chiller power demand reflects the impacts of cooling supply on 
indoor temperature. in,rev

kT  is the final indoor temperature 
predicted by MPC after the prediction result of SVR model  
( in

kT ) is modified by a modification factor ( ke ) to address  
the unpredictable disturbances and model uncertainties (in 
Section 3.3).  

( )1
in ch out in, , ,k k k kT f P T T t-=                           (11) 


in,rev in
k k

kT T e= +                                 (12) 

To improve the prediction performance of SVR for online 
control, two steps are added in this study before model 
training, i.e., data normalization and SVR hyperparameter 
optimization.    

Data normalization: for improving the prediction 
efficiency and preventing individual data from overflowing, 
the dataset (inputs and outputs) are normalized by Eq. (13) 
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before training, where vmax and vmin are the corresponding 
maximum and minimum values, respectively; iv ¢  and vi 

represent the normalized and original datasets of inputs 
and outputs, respectively. After the prediction results (G) 
of SVR model obtained, the predicted values (G) should  
be transformed into the actual prediction value q̂  by   
Eq. (14), where qmax and qmin are the maximum and minimum 
values of prediction results, respectively.  

min

max min

i
i

v vv
v v

-¢ =
-

                               (13) 

( )min max minq̂ q G q q= + ⋅ -                       (14) 

SVR hyperparameter optimization (γ and C): In Eq. (4), 
C represents the tolerance of prediction error. A higher C 
will result in a lower prediction error but a higher risk of 
over-fitting and vice versa. In Eq. (10), γ is the parameter of 
kernel function to handle nonlinear regression by mapping 
the dataset into a high-dimensional feature space. To optimize 
these two parameters, the grid search method is used to 
exhaustively test the possible combination of γ and C by 
evaluating each case performance. Then the best combination 
is selected for the following SVR model development. To 
avoid the overfitting in the parameter optimization process, 
k-folds cross-validation is performed and k is set as 6 in 
this study.  

 SVR model performance evaluation 

To evaluate the performance, three performance indices are 
used, i.e., root means square error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE). 
The definitions of these three performance indices are 
shown in Eqs.(15)–(17), where îY  is the prediction value of 
the SVR model; Yi is the actual measurement; n is the total 
number of measurements. 

( )22

1
ˆ

RMSE
n

i ii
Y Y
n

=
-

=
å                       (15) 

1
ˆ| |

MAE
n

i ii
Y Y
n

=
-

=
å                          (16) 

1

ˆ| |1MAPE
n

i i

ii

Y Y
n Y=

-
= å                          (17) 

3.2.2 RC model 

The RC model is regarded as a reference in this study to 
achieve a comparison with the SVM model for online control 
during fast DR events. The schematic of the building RC 
thermal model is shown in Figure 4, describing the heat 
exchanges and energy balances between outdoor, indoor 
and building envelop. This model is used to predict the 
indoor air temperature under a given chiller power demand. 
The RC model embedded into MPC is as the format of 
Eqs. (18)–(19).  

1 d d dk k k k+ ⋅ ⋅= + + ⋅X A X B u E d                   (18) 


dk k ke⋅= +y C X                               (19) 

where, Ad, Bd, Cd, and Ed are the coefficients. System state 
Xk = [Tw,ex Tw,in Tim,1 Tim,2 Tin]T. The indoor air temperature 
can be obtained directly by measurement, while the other 
unmeasurable variables can be estimated by the Kalman 
filter (Simon 2006; Afram and Janabi-Sharifi 2014). Control 
input uk = Pch (Pch is the chiller power demand). The 
disturbance vector dk = [Isolar Tout Qinter]T. yk is the prediction 
output, i.e., Tin. The detailed meanings of parameters in 
system state vector and disturbance vector can be found 
in Appendix A, which is in the Electronic Supplementary 
Material (ESM) of the online version of this paper. 

3.3 Model correction  

In the above two models, the prediction result is further  
revised by a factor ke  to address the prediction errors and  
hence improve the accuracy. Its value is determined by  

 
Fig. 4 Heat fluxes and energy balances in building thermal model (Tang and Wang 2019) (reprint by permission from Tang and Wang
(2019), © Elsevier) 
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the first-order exponential smoothing method, as shown by  
Eq. (20). The modification factor at the (k+1)th interval (i.e., 
1ke + ) is calculated by the prediction error (ek) and the value  
( ke ) at the kth time step. θ is a weighting factor (0 < θ < 1). 
ek is the prediction error obtained by comparing the actual 
measurement with the predicted value at the kth time step.  
ke  is the factor at the kth time step. At the start of the DR  

event, the initial value of ke (k = 1) is set as zero.  

 1 (1 )k k ke θ e θ e+ = ´ + - ´                         (20) 

3.4 Online control optimization  

Three scenarios are considered for optimal control of 
chillers in fast DR events, i.e., minimum and smooth power 
demand, maximum and smooth power demand reduction, 
and maximum average power demand reduction. Different 
power demand controls would be required in different DR 
programs (Li et al. 2016). Meanwhile, a comprehensive 
comparison between the SVR-based MPC and RC-based 
MPC is achieved to test the performance of the proposed 
data-driven MPC. The optimization controls of three 
scenarios are formulated as follows:   

  Scenario 1: Minimum and smooth power demand control 

Problem formulation: In scenario 1, chiller demand control 
during DR events provides a minimum and smooth power 
demand profile while maintains indoor temperature acceptable. 
The objective function of this scenario is described as Eq. (21). 
The first item is to realize a smooth power demand control 
and the second is for minimizing the power demand, where, 

ch
kP = [Pch (k + 1|k) ... Pch (k + Np|k)]. The argument (k + Np|k) 

means the prediction results at (k+Np)th considering the  
measurements up to the kth time step. chillerP  is the average  
predicted chiller demand over the prediction horizon (Np) 
at the kth step, as calculated by Eq. (22). λ1 is a weighting 
factor. N is the prediction horizon of the entire DR event 
and its value is based on the time step (step) and time 
duration (D) of the DR event, as shown in Eq. (24). Note 
that the prediction horizon (Np) at each sampling time is 
shrunk over the entire DR event, not a fixed value. Due to 
the characteristic of such fast DR events lasting for a short 
period, the shrunk prediction horizon can cover the rest of 
the DR event (i.e., from the next time step (i.e., k + 1) to 
the end of DR event) to effectively grasp the dynamics of 
control states.  

( ) ( )T

,1 ch chiller ch chiller
T

1 ch ch
p

1min k k k k
RCJ P P λ

N
é ù= - ⋅ -ê ⋅ ú⋅+
ë û

P P P P  

(21) 

( )
p

chiller ch
p 1

|1 k N

t kN
kP tP

+

= +

= å                          (22) 

p 1N N k= - +                                 (23) 

/N D step=                                   (24) 

The indoor temperature of DR event would be without 
violating maximum acceptable limit (Tmax), i.e., Eq. (25). 
Under the limited cooling supply in the DR event, there is 
no concern about indoor temperature lower limit (Tmin) 
(i.e., lower than original set-points) and hence Tmin is set as 
the original set-point. The chiller power demand should be 
maintained within its capacity, i.e., between the minimum 
(Pchiller,min) and maximum capacity (Pchiller,max) of retained 
chillers (i.e., Eq. (26)). The optimized control variables of the 
kth time step is uk = [ ch

kP ] = [Pch (k + 1|k) ... Pch (k + Np|k)]. 
But only the first value of Pch (k + 1|k) is sent out to be 
implemented at the (k + 1)th time step.   

min in max
kT T£ £T                                (25) 

chiller,min chiller,maxkP P£ £u                          (26) 

Online optimization: To solve the formulated problems, 
the quadratic program is used for the RC-based MPC to 
identify the optimal control solutions because the RC model 
is linear. In contrast, the SVR model is nonlinear, and 
therefore genetic algorithm (GA) is employed for online 
optimization due to its powerful ability for solving nonlinear 
optimization problems. GA is an evolutionary search 
algorithm via the process of natural selection. It makes a 
population of individuals evolve to an optimal solution by 
successive modifications. Three steps, i.e., selection, crossover, 
and mutation, are experienced to create the next generation 
based on the current generation at each modification (Tuhus- 
Dubrow and Krarti 2010). To ensure the optimization 
performance of GA and search best possible optimal 
solutions, two efforts are made in this study:  
(1) Shortened searching range of GA. Local convergency is 

a critical issue when using GA, which causes the solution 
converged to local optimum not global optimum, and 
therefore results in bad optimization performance. To 
alleviate this problem, the target control state (chiller 
power demand) is restricted within a narrow searching 
range. This is benefited by the characteristic of fast  
DR. At the start of such events, retained number of 
operating chillers (i.e., m) is optimized considering the 
constraints of indoor environment and then keeps 
unchanged in the entire events (the determination of 
retained chiller number can be found in Tang et al. 
(2018b)). So the searching range of chiller power demand 
is located in a narrow range of [(m − 1)P − β, mP + β] 
rather than the range covering the cumulative capacity 
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of all the operating chillers, where P is the rated capacity 
of chillers; β is a safety factor, which is set as around half 
of rated chiller power to cover enough searching range. 

(2) To address the constraint of indoor temperature when 
conducting the GA optimization, the penalty function 
is used to combine the constraint into the objective 
function, as shown in Eq. (27), where, JRC,1 represents 
the objective function set for the RC-based MPC 
optimization in scenario 1. £1 is a weighting factor, 
making the first and second terms in the objective 
function at a similar magnitude. JSVR,1 is the objective 
function for SVR-based MPC in scenario 1.  

( ) ( )[ ]SVR,1 RC,1 1 in max in minmin min , ,0 min 0J J T T T T= -⋅+ - -£  
(27) 

  Scenario 2: Maximum and smooth power demand reduction 
control 
In scenario 2, chiller demand control during DR events 
provides a maximum and smooth power demand reduction 
compared with a given baseline. The objective function of 
this scenario is shown in Eqs.(28)–(30). In Eq. (28), the first 
part is to make power reduction stable and the second part 
is for a maximum power reduction, where, ch,red

kP  is the 
matrix of chiller power demand reduction from the (k + 1)th 
time step to the end of DR event, i.e., ch,red

kP = [Pch,red (k + 
1|k) ... Pch,red (k + Np|k)]. ch

kP  is the optimized chiller power 
demand at the kth time step. ch,base

kP  is the baseline of chiller 
power demand without any DR control (i.e., original power 
demand). The constraints are indoor temperature limits 
and chiller capacity, which are the same as scenario 1, as 
defined in Eqs. (25)–(26). Using penalty function for handling 
the indoor temperature constraints, Eq. (31) is the objective 
function of SVR-based MPC using genetic algorithm, where, 
JRC,2 represents the objective function set for the RC-based 
MPC optimization in scenario 2. £2 is a weighting factor. JSVR,2 
is the objective function for SVR-based MPC in scenario 2. 

 
( ) ( )

RC,2

T T
ch,red ch,red ch,red ch,red 2 ch,red ch,red

p

min
1 k k k k

J

P P λ
N

é ù= - ⋅ -ê ⋅ ú⋅-
ë û

P P P P
 

(28) 

ch,red ch,base ch
k k kP P P= -                              (29) 

( )
p

ch,red ch,red
p 1

1 |
k N

t k
P P t k

N

+

= +

= å                       (30) 

 ( ) ( )[ ]SVR,2 RC,2 2 in max in minmin , 0 minmin , 0J J T T T T= + ⋅ - - -£  
(31) 

 Scenario 3: Maximum average power demand reduction 
control 

In scenario 3, chiller demand control during the DR events 

is for a maximum average power reduction compared with 
baseline and simultaneously keeps indoor temperature 
accepted. At the kth sampling time, the objective function is 
shown in Eq. (32), where, ch

kP  and ch,base
kP  are optimized 

chiller demand and corresponding baseline from the (k + 1)th 
time step to the end of DR event, respectively. The constraints 
are indoor temperature limits and chiller capacity, as defined 
in Eqs. (25)–(26). Equation (33) is the objective function 
of SVR-based MPC using genetic algorithm that indoor 
temperature constraints are involved in using the penalty 
function, where, JRC,3 represents the objective function set 
for the RC-based MPC optimization in scenario 3. £3 is a 
weighting factor, of which value is set based on the rated 
chiller power demand. JSVR,3 is the objective function for 
SVR-based MPC in scenario 3. 

min ( )RC,3 ch ch,base
p

1 k kJ
N

= -P P                          (32) 

 ( ) ( )[ ]SVR,3 RC,3 3 in max in minmin , 0 minmin , 0J J T T T T⋅= + - - -£  
(33) 

4 Test platform 

Computer-based dynamic simulation is an effective way to 
test and validate online optimal control strategies before 
implementation. A co-simulation test platform on TRNSYS- 
MATLAB (Klein et al. 2006) is set up to validate the 
SVR-based MPC in fast DR events. The detailed dynamic 
models of components in a central air-conditioning system 
are involved in the platform (Wang 1998). The centrifugal 
chiller model is employed for the chiller dynamic and 
performance, which is mainly based on impeller tip speed, 
impeller exhaust area, impeller blade angle, and thirteen 
co-efficient parameters. The compression process in the 
compressor, the heat transfer process in the evaporator and 
the condenser are simulated in the model. Air handling 
unit (AHU) model in Wang (1998) is used, which is based 
on classical number of transfer unit (NTU) and heat transfer 
effectiveness (ε) methods to realize the heat transfer 
calculation. Both dry and wet regions are considered for 
the calculation of heat conversion coefficient on the air side. 
The energy performance and characteristics of pump at 
various speeds are simulated using fourth-order poly-nominal 
function as described in Wang (1998). 

System configuration: the central chiller plant for the 
tests is a typical primary constant-secondary variable chilled 
water system. It is modified on basis of a central air- 
conditioning system of a high-rise commercial building in 
Hong Kong. The system is shown in Figure 1. Six identical 
chillers with a rated cooling capacity of 4080 kW are employed 
in the chiller plant. Every chiller is equipped with a constant- 
speed primary pump with a capacity of 172.5 L/s. The chilled 
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water pumps in the secondary loop of the system are variable 
speed pumps.   

Model development: to train the SVR model, system 
identification is performed on the TRNSYS test platform. 
The indoor temperature setpoints, which are generated by 
a random sequence, are regarded as the excitation input to 
obtain the system dynamics. The upper and lower bounds 
of random sequence are 23.5 °C and 27.5 °C respectively, 
which are 0.5 °C higher/lower than the acceptable range in 
this study, [24 °C, 27 °C]. The hyperparameter combination 
of γ and C in the SVR model are 2 and 16, respectively, 
optimized by grid search in k-folds cross-validation as 
illustrated in Section 3.2.1 (k is set as 6). The values of R 
and C in RC model are presented in Table 1, and the model 
accuracy has been validated in Tang and Wang (2019). The 
values of coefficient matrixes Ad, Bd, Ed, and Cd in the 
discrete-time state-space model for RC-based MPC are 
given in Appendix B, which is in the Electronic Supplementary 
Material of the online version of this paper. 

Test settings: the DR period for the urgent request of 
power grids is assumed to be 2 hours from 2:00 p.m. to 4:00 
p.m. Once the DR signal is received from power girds, DR 
control will shut down one of four operating chillers and 
remain three chillers operating accordingly. The outdoor 
weather condition of the test day is shown in Figure 5, which 
is a typical summer day in Hong Kong. The set-point of 
indoor air temperature is 24 °C under normal system 
operation, while under DR control, the maximum indoor 
temperature accepted is 27 °C (3 °C increase). The parameters 
of Population Size, Max-Generation, and Function-Tolerance 
in GA for the online optimization of SVR-based MPC are  

Table 1 Parameters of R and C for the tests 

 Rw,o 
(m2·K/W) 

Rw 
(m2·K/W) 

Rw,in 
(m2·K/W) 

Ri,1 
(m2·K/W)

Ri,2 
(m2·K/W)

Value 0.0942 0.0892 0.0039 0.0024 0.0107 

 
Rwin 

(m2·K/W) 
Cw,1 

(J/(m2·K)) 
Cw,2 

(J/(m2·K)) 
Cim,1 

(J/(m2·K))
Cim,2 

(J/(m2·K))

Value 0.0105 9.229×108 9.997×108 8.811×107 9.725×107

 
Fig. 5 Outdoor weather condition on the test day 

set as values of 100, 160, and 10−6 respectively. The RC-based 
MPC for the online optimal control problem is solved 
using the YALMIP optimization toolbox (Lofberg 2004) with 
Gurobi solver (Gurobi Optimization 2014). The time step 
of the dynamic simulation is set as 1 second. The sampling 
time for the online two MPC strategies is 15 min, i.e., the 
set-points are updated every 15 min.  

5 Results and discussion 

5.1 Model validation and necessity of MPC 

Model validation 
The data of five summer workdays in a week were selected 
to validate the prediction of the SVR model. The predicted 
values by RC and SVR as well as actual indoor temperatures 
are shown in Figure 6. The results of three evaluation 
indices (MAE, MAPE, and RMSE) are presented in Table 2 
to describe the model accuracy. The SVR model could well 
predict the system dynamic of indoor temperature and even 
is a little better than the RC model. 

Necessity of MPC for fast DR optimal control 
Without predictive controls, the indoor temperature and 
chiller power demand cannot be controlled as expected 
simultaneously (Tang and Wang 2019). If maintaining the 
indoor temperature at the upper limit, the chiller will be 
operating passively to meet the cooling demand rather than 
at the expected load profile for DR programs. Similarly, if 
chiller power demand is operating without considering system 
dynamics to predict the indoor temperature response, the 
indoor temperature will deviate from the optimal condition 
obviously, which would cause maximum indoor temperature 
increase to unacceptable at a higher risk. In addition, MPC 
can relieve the serious fluctuation resulted from suddenly 
significant changes of switching off operating chillers directly 
at the start of such fast DR events.   

5.2 Analysis of control performance during the DR 
event—Scenario 1  

In scenario 1, the control performance was evaluated 
considering two aspects: smooth and minimum chiller 
power demand and indoor air temperature below the 
acceptable upper limit (i.e., 27 °C). Figure 7(a) presents the 
optimized power demand set-points of chiller in the DR 
event by two MPC approaches. The difference in the results 
of two methods was within a small range. The standard 
deviation of chiller power demand during the event that 
could quantify the smoothness of chiller power demand 
was 89.1 kW using SVR-based MPC, near to the result of 
67.9 kW using RC-based MPC. Although the difference  
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Table 2 Evaluation indices of SVR model and RC model 

 MAE (°C) MAPE (%) RMSE (°C) 

SVR model 0.108 0.429 0.328 

RC model 0.251 0.892 0.460 

 
Fig. 7 Set-points of chiller power demand optimized by SVR-based 
MPC and RC-based MPC (a), and actual chiller power demand 
using SVR-based MPC (b) in the DR event—Scenario 1 

between the maximum and minimum power demands was 
1244 kW, this was induced by the sudden change of system 
operation at the start of the DR event (switching off operating 
chillers directly). After the system reached the new balance, 
the chiller power demand fluctuation was relieved significantly 

and well followed the optimized set-points using SVR-based 
MPC, as shown in Figure 7(b).  

Figure 8 shows the indoor temperatures of the DR 
event using two MPC approaches. During the DR event, 
the maximum indoor temperature was almost below the 
upper limit using the SVR-based MPC (only a short period 
exceeded the limit with a maximum value of 27.2 °C, which 
also demonstrated no potential for a further power reduction). 
In Table 3, the average power demand reduction of 570 kW 
(i.e., 19.3%) was achieved by SVR-based MPC, which was 
similar to the RC-based MPC.  

5.3 Analysis of control performance during the DR 
event—Scenario 2 

In scenario 2, the objective of DR control was to achieve a 
maximum and smooth (stable) power reduction contributed 
by chillers with ensuring the indoor temperature below the 
upper limit. The power reduction was obtained based on a 
pre-defined baseline profile of building operating without 
any DR controls. In this study, the baseline was not the focus  

 
Fig. 8 Indoor temperature profiles during the DR event using 
SVR-based and RC-based MPC approaches—Scenario 1 

 
Fig. 6 Predicted indoor temperature profiles using RC model and SVR model compared with actual measurements 
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and hence assumed to be known during the DR event. 
Figure 9(a) presents the set-points of chiller power 

demand optimized by two MPC approaches during the fast 
DR event. The optimized results were similar with a few 
differences between these two approaches. The standard 
deviation of power demand reduction during the event  
was 76.6 kW using SVR-based MPC, even better than that 
of 81.2 kW using the RC-based approach. The difference 
between the maximum and minimum power demand 
reduction was obvious, caused by the sudden change of 
system operation at the start of the DR event. About 10 min 
later, actual chiller power demand reduction could be stable 
and well follow the optimized set-points of SVR-based MPC, 
as shown in Figure 9(b).  

Figure 10 shows the indoor temperatures of the DR 
event using two MPC approaches. During the DR event, 
the maximum indoor temperature was almost below the 
upper limit using SVR-based MPC (with a maximum value   

 
Fig. 9 Set-points of chiller power demand optimized by SVR-based 
MPC and RC-based MPC (a), and actual chiller power demand 
using SVR-based MPC approach (b) in the DR event—Scenario 2 

 
Fig. 10 Indoor temperature profiles during the DR event using 
SVR-based and RC-based MPC approaches—Scenario 2 

of 26.8 °C). In Table 4, the average power demand reduction 
of 528 kW (i.e., 17.2%) was achieved by SVR-based MPC, 
which was similar to the RC-based MPC, but the maximum 
temperature was lower than that of RC-based MPC. 
Considering the indoor temperature at the last half hour of 
the DR event was around the limit value, the power reduction 
was achieved almost at the maximum.  

5.4 Analysis of control performance during the DR 
event—Scenario 3 

In scenario 3, the DR control was to maximize the average 
chiller power reduction by maintaining the indoor temperature 
below the upper limit (27 °C). The main difference in this 
scenario between the above two cases was that the power 
demand control was simplified as a value to evaluate the 
control performance rather than an expected profile. This 
case was therefore easier and more practical for the real 
applications. The baseline of average chiller power demand 
was assumed to be known in this scenario.   

Figure 11(a) presents the optimized set-points of chiller 
power demand using two approaches during the DR event. 
The difference between the optimized results using these 
two methods was kept within a very small range. The actual 
chiller power demand could well track the optimized chiller 
power demand set-points optimized by SVR-based MPC, as 
shown in Figure 11(b). The average power demand during 

Table 3 Control performance using SVR-based and RC-based MPC approaches—Scenario 1 

Actual chiller power demand 

 
Maximum 

(kW) 
Minimum 

(kW) 
Standard 

deviation (kW) 
Average 

demand (kW) 
Average 

reduction (kW) 
Percentage 

(%) 

Indoor 
temperature 

Maximum (°C)

SVR-based MPC 3019 1775 89.1 2377 570 19.3 27.2 

RC-based MPC 3137 2017 67.9 2449 498 16.9 27.0 

Note: baseline of chiller power demand in this scenario is simplified as the value just before the DR event (i.e., 2947 kW) 
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the DR event was 2394 kW, about 22.0% of power reduction 
achieved by SVR-based MPC which was similar to that of 
RC-based MPC (i.e., 22.3%), as presented in Table 5. 

Evaluation of whether average power reduction reached 
its maximum could be based on the indoor temperature 
profile. The best condition with maximum reduction was 
to maintain the indoor temperature operating at the upper 
limit (27 °C) in the entire DR period. This meant that there 
was no potential for a further power reduction at any time 
of the DR event. The time duration of indoor temperature 
over 26.5 °C was calculated to reflect the degree of achieved 
maximum power reduction. As shown in Figure 12, the 
temperature was almost maintained at its upper limit using 
SVR-based MPC with a duration of 112 minutes over  
26.5 °C in the two hours DR event, which was better than 
using RC-based MPC (i.e., 102 min). As a result, more 
reduction was achieved by SVR-based MPC but with a   

 

Fig. 11 Set-points of chiller power demand optimized by SVR-based 
MPC and RC-based MPC (a), and actual chiller power demand 
using SVR-based MPC strategy (b) in the DR event—Scenario 3 

similar maximum indoor temperature (27.07 °C) compared 
with the results using RC-based MPC. 

Table 5 Control performance using SVR-based and RC-based 
MPC approaches—Scenario 3 

Actual power demand Indoor temperature

 

Average 
demand 

(kW) 

Average 
reduction 

(kW) 
Percentage 

(%) 
Maximum 

(°C) 

Time 
duration 

(min) 

SVR-based 
MPC 2394 676 22.0 27.07 112 

RC-based 
MPC 2385 685 22.3 27.12 102 

Note: baseline of average chiller power demand in this scenario is 3070 kW. 

 
Fig. 12 Indoor temperature profiles during the DR event using 
SVR-based and RC-based MPC approaches—Scenario 3 

5.5 Comparison of two methods 

According to the results, SVR can get a relatively better 
prediction performance of building dynamics than RC 
model because RC model needs some inputs that are not 
easily accurately measured such as internal heat gain while 
SVR is capable of capturing the nonlinear relations only 
driven from inputs and output data. According to the three 
scenarios, SVR-based MPC can achieve a similar control 
performance as RC-based MPC method. Although more 
accurate prediction is obtained by SVR, the optimization 
process using GA will get an approximate solution rather  

Table 4 Control performance using SVR-based and RC-based MPC approaches—Scenario 2 

Actual power demand 

 
Maximum 

reduction (kW) 
Minimum 

reduction (kW) 
Standard 

deviation (kW)
Average 

demand (kW)
Average 

reduction (kW)
Percentage  

(%) 

Indoor temperature 
Maximum 

(°C) 

SVR-based MPC 1187 501 76.6 2542 528 17.2 26.8 

RC-based MPC 1209 487 81.2 2498 572 18.6 26.9 

Note: baseline of average chiller power demand in this scenario is 3070 kW. 
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than an exact solution, which would negatively influence 
the control performance. Besides, the SVR-based MPC can 
effectively handle the suddenly significant change at the 
start of DR events, which means more uncertain and serious 
disturbance on the control system compared with other 
normal conditions of parameter changes (e.g., weather data, 
occupant number), and therefore the robustness of the 
proposed method is demonstrated. 

The advantages of SVR-based MPC when applied for 
fast DR controls, compared with RC-based MPC, include: 
(1) The flexible structure of models. The SVR-based MPC 
control could be easily adjusted and applied for other 
targeted buildings, but the RC-based model is specialized 
for a specific control system and difficult to be extended 
even in the same building. (2) The saving in efforts and time 
costs for modeling. SVR-based MPC can reduce the efforts 
caused by considering detailed system dynamics in the 
developing process of RC-based models. (3) Less information 
and data for SVR model inputs without sacrificing the 
prediction accuracy. Only four inputs are required, i.e., 
chiller power demand, outdoor and indoor temperatures, 
and time (hour of a day), which are easily measurable. 
Contrarily, RC model needs internal heat gain, solar radiation, 
and parameters such as split radiative/convective heat gain 
of solar radiation additionally, which are difficult to be 
measured and obtained accurately.  

6 Conclusion 

Demand response (DR) is an effective method to benefit 
and strengthen the health operation of power grids. In 
commercial buildings, shutting down part of operating 
chillers could fulfill the need of immediate power reduction 
for smart grids. In such special events, the advanced control 
strategy would be adopted for the optimal control of an 
acceptable indoor environment and expected power demand. 
This study, therefore, bridged the gap of using SVR-based 
data-driven model predictive control (MPC) for fast DR 
events. To enhance the control performance, the data-driven 
MPC was equipped with optimized hyperparameters, penalty 
function for constraints of indoor temperature, and shortened 
searching range for genetic algorithm optimization fully 
considering the characteristics of such DR events. The 
control performance was compared with RC-based MPC 
under three different scenarios.   

Test results show that the SVR outperforms the RC 
model on the prediction of building dynamics due to its 
nonlinear regression ability and no inputs required of 
difficulty to be measured. SVR-based MPC approach could 
optimize the controls for chiller power demand and indoor 
temperature simultaneously under three different control 

scenarios. The results in detail are presented as follows. 
Overall, the proposed SVR-based MPC can achieve a similar 
better control performance as using RC-based method for 
the optimal controls of fast DR events. From the perspectives 
of modeling effort and extendable ability, SVR-based MPC 
method is advantageous over RC-based MPC for the control 
of fast DR events.    
 In scenario 1 of minimum and smooth power demand 

control, using SVR-based MPC, 19.3% of power reduction 
was achieved with a standard deviation of chiller power 
demand of 89.1 kW, which was approaching the results 
of RC-based MPC.  

 In scenario 2 of maximum and smooth power demand 
reduction control, using SVR-based MPC, 17.2% of power 
reduction was achieved with a standard deviation of chiller 
power demand reduction of 76.6 kW and a maximum 
indoor temperature of about 26.8 °C, which were a little 
better controlled than RC-based MPC.  

 In scenario 3 of maximum average power demand 
reduction control, the SVR-based MPC kept the indoor 
temperature almost at its upper limit to maximize the 
average power demand reduction (22.0%) in the DR event, 
which means, compared with using RC-based MPC, a 
similar power reduction was achieved but with a lower 
maximum indoor temperature.  
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