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Abstract [limit 200 words, current 199200]: 

Concomitant type 2 diabetes and chronic kidney disease (CKD) increases the risk of 

cardiovascular disease (CVD), including heart failure (HF). Renoprotective agents, while 

decreasing fluid overload and blood pressure and improving endothelial function and vascular 

tone, may protect against CVD and HF. Conversely, glucose-lowering drugs modestly 

ameliorate CVD risk and possibly even worsen HF outcomes. Recent studies demonstrate 

beneficial effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on CKD progression 

and, HF hospitalization, and other cardiovascular outcomes, in patients ±with and without 

diabetes. The underlying mechanisms are incompletely explained by modest improvements in 

blood pressure, glycemic control, body weight, and serum urate. In addition to inhibiting 

glucose reabsorption, SGLT2i reduce proximal tubular sodium reabsorption, possibly leading 

to transient natriuresis. We review the hypothesis that SGLT2i‘sthe natriuretic and osmotic 

diuretic effects of SGLT2i mediate their cardio-protective effects. The degree to which these 

benefits are related to changes in sodium, independent of the kidney, is currently unknown.  

Aside from effects on osmotically active sodium, we explore the intriguing possibility that 

SGLT2i could also modulate non-osmotic sodium storage. This alternative hypothesis is 

based on emerging literature that challenges the traditional two-compartment model of 

sodium balance to provide support for a three-compartment model that includes the binding of 

sodium to glycosaminoglycans, such as those in muscles and skin. This Rrecent research on 

non-osmotic sodium storage, as well as  and direct cardiac effects of SGLT2i, provides 

possibilities for other ways in which SGLT2i inhibitors might contribute to their benefits 

inmitigate HF risk. Overall, wWe reviewexplore the effects of SGLT2i on sodium balance 

and sensitivity, cardiac tissue, interstitial fluid and plasma volume, and non-osmotic sodium 

storage. 
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Introduction 

Type 2 diabetes (T2D) is an established risk factor for ischemic cardiovascular disease (CVD) 

and heart failure (HF).(1) The risks of ischemic CVD and HF are increased with albuminuria 

and/or impaired kidney function. Although in recent decades cardiovascular outcomes have 

improved for adults with or without T2D, reducing the burden associated with HF by treating 

classical cardiovascular risk factors has proven to be difficult and thus remains a major public 

health priority.(2) Accordingly, the introduction of sodium-glucose cotransporter (SGLT) 2 

inhibitors offers promise to mitigate cardiorenal disease in people with or without T2D. 

However, to better understand the role of these drugs in the cardiovascular system, it is 

important to define their mechanism of action on the cardiorenal axis. 

 The kidney contributes to glucose homeostasis by actively reabsorbing nearly all of 

the filtered glucose in the proximal tubule. Although the kinetics of renal glucose reabsorption 

were first described nearly 90 years ago, it took until the early 1970s to demonstrate that 

glucose reabsorption occurs in the proximal tubule through two distinct sodium-glucose 

cotransport systems. Shortly thereafter, two sodium-glucose cotransporters (SGLT1 and 

SGLT2) were discovered.(3) SGLT1 is a high-affinity, low-capacity transporter responsible 

for approximately 10% of the renal glucose reabsorption; SGLT2 is a low-affinity, high-

capacity transporter responsible for approximately 90% of the renal glucose reabsorption.(4, 

5) Together, these transporters are thought to be responsible for total renal glucose 

reabsorption. In addition to glucose reabsorption, SGLT1 and SGLT2 also facilitate 

concomitant sodium reabsorption. Approximately two-thirds of the total kidney sodium 

reabsorption occurs in the proximal tubule, although the extent to which this reabsorption is 

mediated by SGLT1 and SGLT2 presently remains unknown.(6)  

 SGLT2 inhibitors were granted marketing authorization in 2014 as glucose-lowering 

drugs, and work by inducing glucosuria. Through their mechanism of action, the 

                  



June 7, 2021 

6 
 

glucose-lowering effects of SGLT2 inhibitors in patients with chronic kidney disease (CKD) 

are modest.(7) However, these drugs have recently received considerable attention in large 

cardiovascular safety trials owing to favorable HF and renal benefits (Figure 1).  For example, 

in patients with T2D and high CVD risk, the EMPA-REG OUTCOME trial demonstrated a 

35% relative risk reduction in hospitalization for HF for empagliflozin versus placebo,(8) 

while the CANVAS Program with canagliflozin demonstrated beneficial cardiovascular and 

renal outcomes.(9) The CREDENCE trial, which studied the effects of canagliflozin in 

patients with T2D and diabetic kidney disease,(10) reported a reduction in HF hospitalization 

by 39% (95% CI 20%–53%), in addition to attenuating loss of kidney function. Given the 

strong link between CKD and HF, this further emphasizes the importance of the cardiorenal 

axis.(10) By comparison, studies assessing the cardiovascular effects of glucose lowering per 

se, when mediated by other agents, had not demonstrated similar benefits, while HF outcomes 

may even be worsened by some glucose-lowering drugs.(11, 12)  

 Since publication of the results of several  these and other cardiovascular safety trials 

(Figure 1), as well as real-world effectiveness studies (e.g., CVD-REAL(13)), investigators 

and clinicians have considered a variety of potential mechanisms underlying the cardiorenal 

benefits of SGLT2 inhibition. It is generally agreed that (modest) reductions in blood pressure 

(BP), glucose concentrations, body weight, and serum urate concentrations do not fully 

explain the observed cardiovascular benefits.(14, 15) Although the exact pathways are not 

fully understood, the purpose of this article is to describe the effects of SGLT2 inhibitors on 

sodium handling beyond diuresis and natriuresis per se, and to discuss the proposed 

cardiovascular consequences of changes in sodium sensitivity and balance, including direct 

sodium-related cardiac effects, effects on interstitial fluid and plasma volume, and changes in 

non-osmotic sodium storage.  

 

Field Code Changed

Field Code Changed
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Figure 1 Summary of hospitalization for heart failure results from recent cardiovascular 

safety trials of SGLT2 inhibitors.  

 

Values in brackets are 95% confidence intervals. Values were derived from the trials‘ publications; 

slightly different terminology was used in the trials to describe heart failure hospitalization: EMPA-

REG and DECLARE used ―rate per 1000 pt-yrs‖, CANVAS used ―number of participants per 1000 

pt-yrs‖, and CREDENCE and DAPA-HF used ―events per 1000 [or 100 for DAPA-HF] pt-yrs‖. 

 

CANVAS, CANagliflozin cardioVascular Assessment Study; CREDENCE, Canagliflozin and Renal 

Events in Diabetes with Established Nephropathy Clinical Evaluation; DAPA-HF, Dapagliflozin and 

Prevention of Adverse Outcomes in Heart Failure; DECLARE, Dapagliflozin Effect on 

Cardiovascular Events–Thrombolysis in Myocardial Infarction 58; EMPA-REG, EMPAgliflozin 
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cardiovascular outcome event trial in type 2 diabetes mellitus patients—Removing Excess Glucose; 

HR, hazard ratio; SGLT2, sodium-glucose cotransporter 2; yrs, years. 

 

Sodium balance, sodium sensitivity, and cardiovascular health 

Given the well-known role of sodium in cardiovascular health, we next address recent 

research that challenges traditional views about sodium homeostasis, with potential 

implications for the pathophysiology and treatment of HF, including, including the 

pathophysiological role of interstitial sodium in HF, as reviewed elsewhere.(16) In most adult 

populations, the average salt intake well exceeds the ~5-g daily limit recommended by the 

World Health Organization.(17) Excessive salt intake has been linked to hypertension, 

CVD,(18) and CKD. Although the pathogenesis underlying the relationship between 

excessive salt intake and cardiorenal complications remains debated, the leading hypothesis 

for decades has been that—in so-called salt-sensitive individuals—excess sodium intake with 

concomitant impaired renal sodium excretion results in extracellular volume (ECV) expansion 

and hypertension.(19) Particularly iIn patients with CKD, lower glomerular filtration rate 

(GFR) reduces the rate of sodium and fluid excretion, possibly leading toand activation of the 

renin–angiotensin–aldosterone system (RAAS) result in and, consequently, through various 

mechanisms, leads to reduced cardiac output, elevated venous pressure, reduced renal 

perfusion, reduced cardiac output, and ultimately HF. The net results of these 

pathophysiological changes include further sodium and water retention with activation of the 

RAAS and the sympathetic nervous system. However, carefully designed sodium-balance 

studies in so-called ‗salt-resistant‘ participants, i.e., individuals in whom increased salt intake 

does not increase BP or body water/weight, show that much of the ingested sodium excess is 

in fact not excreted in the urine.(20) Rather, these studies have proposed that sodium may be 

stored non-osmotically (i.e., without altering ECV) at extrarenal locations, which serve to act 

as an osmotic sodium buffer. For example, daily rhythmic fluctuations in total body sodium 

Formatted: Font: 11 pt

                  



June 7, 2021 

9 
 

content were found with large variations in 24-hour urinary sodium excretion, despite a fixed 

sodium intake, which suggests non-osmotic sodium accumulation and the storage of salt in a 

third body compartment.(20) Osmotic excretion of significant amounts of sodium has also 

been shown in healthy people after hypertonic saline infusion.(21) Using 
23

Na magnetic 

resonance imaging (MRI), muscle and skin were shown to contain considerable amounts of 

sodium without associated water retention.(22) Another compartment that binds sodium in a 

non-osmotic manner and thus could influence ECV and BP regulation is the endothelial 

surface layer (ESL), or glycocalyx, located on the luminal side of the vascular endothelium. 

The ESL has abundant negatively charged glycosaminoglycans and is in direct contact with 

circulating blood sodium and glucose. These glycosaminoglycans have been shown to display 

avid sodium-binding capacity.(23) Emerging literature has challenged the traditional two-

compartment model of sodium balance providing support to a three-compartment model that 

includes the binding of sodium to glycosaminoglycans, such as those in the muscles and skin. 

ESL damage has been observed in patients with T2D(24) and CKD,(25) which could explain 

(at least in part) the salt sensitivity observed in this population. Other functions of the ESL 

include production of nitric oxide due to shear stress and formation of a barrier to prevent 

circulating inflammatory cells from reaching underlying tissues. Consistent with these data, 

restoration of the ESL by sulodexide, a mixture of ESL constituents, has been shown to 

reduce BP.(26)  

 Although non-osmotic sodium storage seems beneficial in the short term, saturated 

sodium depots in the skin have been linked to both hypertension and left ventricular 

hypertrophy.(27) Additionally, high versus low dietary sodium intake has been shown to 

increase the number of monocytes,(28) which could trigger an inflammatory response. 

Furthermore, inflammation of the interstitium might drive microvascular and macrovascular 

stiffening and possibly impair endothelial function.(29)  
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 Non-osmotic buffering of sodium in tissues, such as glycocalyx, may reduce the 

adverse hemodynamic effects of sodium in the short term, although longstanding sodium 

overload may have deleterious consequences for the cardiovascular system. For example, 

some evidence suggests that sodium accumulation in the endothelial glycocalyx could lead to 

arterial stiffness.(30) Accordingly, strategies to reduce tissue and interstitial sodium by 

facilitating renal sodium excretion may enhance cardiovascular health, although we stress that 

the concept of non-osmotic sodium storage remains theoretical, while efforts are undertaken 

to more definitively determine its presence and role. We next discuss other mechanisms 

behind the putatively central role of sodium in mediating the favorable cardiorenal effects of 

SGLT2 inhibition. 

 

Effects of SGLT2 inhibitors on sodium balance 

While SGLT2 inhibitors were primarily designed to lower plasma glucose concentrations, it is 

evident that there is concomitant inhibition of proximal tubular sodium uptake with the 

inhibition of glucose reabsorption. Data showing inhibition of lithium reabsorption, as a 

marker for proximal tubular function, support this notion.(31) However, studies of proximal 

tubular sodium absorption have not been conducted in people with HF. Initial natriuresis is 

thought to contribute to the osmotic diuresis, which drives the increased urine output 

associated with acute SGLT2 inhibition, as shown in some(32, 33) but not all studies.(31) The 

placebo-controlled RECEDE-CHF trial conducted in patients with T2D and HF demonstrated 

a significant increase in 24-hour urine volume without an increase in urinary sodium 

concentration when empagliflozin was used in combination with a loop diuretic.(34) While 

RECEDE-CHF did not find a significant increase in the fractional excretion of sodium with 

empagliflozin, another study did,(32) a difference possibly explainable by the different time 

points studied between the two studies as well as differences in sodium intake at baseline. 
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Notably, the major limitation of current studies showing natriuresis with SGLT2 inhibition is 

that study participants were not on a fixed-sodium diet. The DAPASALT study, by contrast, 

was conducted in patients (N=17) with T2D and preserved kidney function on a fixed-sodium 

diet.(31) The study participants received dapagliflozin and had 24-hour urine collected prior 

to treatment, after acute dosing, after 2 weeks of treatment, and 3 days after treatment 

cessation, but changes in natriuresis or plasma volume were not found.(31) Whereas the bulk 

of sodium is reabsorbed in the proximal tubule, it is unclear to what extent SGLT2 

transporters contribute to total sodium reabsorption in absolute terms. This phenomenon may 

be particularly relevant in people with T2D, in whom there is increased glucose flux through 

the SGLT2 transporters due to chronic tubular hyperglycemia. It is likely that SGLT2 

transporters also interact functionally with Na
+
/H

+
 exchanger isoform 3 (NHE3) in the 

proximal tubule (Figure 2).  

 

Figure 2 Schematic of a nephron and SGLT inhibitors.  
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NHE3, Na+/H+ exchanger isoform 3; SGLT, sodium-glucose cotransporter; SGLT2, sodium-glucose 

cotransporter 2. 

 

As such, SGLT2 inhibition is associated with marked inhibition of NHE3, even in the absence 

of glucose, which is likely to account for a significant proportion of the natriuresis observed 

with agents of this class.(35) Another study (conducted in various animal models and human 

cells) did not find that SGLT2 inhibition with empagliflozin inhibited the ubiquitously 

expressed plasma membrane Na
+
/H

+
 exchanger NHE1, however.(36) Limited data exist 

describing proximal sodium reabsorption in humans with T2D before and during SGLT2 

inhibitor therapy.(31) The kidneys rapidly adapt to the initial natriuresis by matching sodium 

excretion to sodium intake, maintaining a neutral sodium balance. Therefore, sodium 

excretion is usually not altered with prolonged treatment,(37, 38) likely because of 

compensatory sodium reabsorption at more distal tubular segments. Where the additional 

sodium is being absorbed remains unclear. Any increase in renal sodium absorption induced 

by SGLT2 inhibition is likely distal to the macula densa, as the decline in estimated GFR 

induced by SLGT2 inhibition through tubuloglomerular feedback is thought to be driven by 

increased sodium and chloride concentrations detected by the macula densasodium balance is 

restored rapidly, and owing to blockade of sodium absorption proximally, there is increased 

delivery of sodium to the macula densa. Gene expression analyses of key sodium transporters 

located in the distal tubule could expand knowledge of these compensatory pathways in 

humans. 

 The natriuresis and osmotic diuresis associated with SGLT2 inhibition has been shown 

in some studies to be associated with a modest reduction in plasma volume,(39-41) although a 

study of canagliflozin treatment found this reduction to be attenuated at week 12.(42) The 

reduction in plasma volume is reflected by an increase in hematocrit and radioactive-labeled 

albumin,(43) which is sustained during prolonged treatment, but is reversed after cessation of 

Formatted: Font: 11 pt
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therapy. A mathematical model-based analysis to assess the fluid effects of dapagliflozin and 

the loop diuretic bumetanide was recently reported, based on data acquired in a healthy 

volunteer study of these two drugs.(40, 41) A key finding of this analysis was that a similar 

reduction in interstitial volume occurred in response to dapagliflozin as compared to that 

observed with bumetanide, but a smaller reduction was observed in plasma volume, which 

may result in improved tissue perfusion and less acute kidney injury (AKI) incidence with 

SGLT2 inhibition compared with loop diuretics. Such studies highlight the differences 

between SGLT2 inhibitors and loop diuretics. However, the hypothesis that SGLT2 inhibitors 

reduce interstitial volume is based on modeling assumptions, and not on direct measurements. 

Further, although the mechanism by which SGLT2 inhibitors reduce interstitial volume is not 

known, osmotic diuresis resulting from increased urinary glucose excretion might lead to 

more electrolyte‐free water clearance.(32, 44) Possibly because of their different site of action 

in the tubular system, these drug classes have markedly different effects on potassium, uric 

acid, glucose, renal hemodynamics, and markers of the RAAS (Figure 3).(40, 41) SGLT2 

inhibitors have consistently been shown to modestly increase renin levels due to their 

diuretic/natriuretic effect.(45) Reductions in interstitial fluid volume may contribute to the 

cardiovascular benefits observed in recent cardiovascular safety trials, particularly vis-à-vis 

HF.(46) A mediation analysis of the EMPA-REG OUTCOME trial found that change in 

hematocrit explained 51.8% of the effect of empagliflozin versus placebo on the risk of 

cardiovascular death.(14) Increased higherhematocrit has also been observed in patients with 

T2D without HF(47, 48) and in patients with HF with reduced ejection fraction (HFrEF) (in 

which 42% had a history of diabetes at baseline).(49)  

 

Figure 3 Plasma renin activity with SGLT2 inhibition. (A) Increase in plasma renin activity 

by 117% after 1 week of bumetanide treatment in healthy volunteers (adapted from: Wilcox et 
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al. 2018(41), Figure S6; available at: 

https://www.ahajournals.org/doi/10.1161/JAHA.117.007046; use under CC BY-NC 4.0; text 

slightly updated, parts of panels A and B combined layout altered, and color added); (B) 

Week 12 change from baseline in plasma renin activity in patients with T2D treated with 

DAPA or HCTZ (based on data from: Heerspink et al. 2013(43), Table 2); (C) Changes in 

plasma volume markers during DAPA treatment versus placebo treatment in patients with 

T2D; P<0.01 (adapted from: Eickhoff et al. 2019, Figure 2, fourth panel from the left; 

available at: https://www.mdpi.com/2077-0383/8/6/779; used under CC BY 4.0; text slightly 

updated, layout altered, and color added).(50)  

 

DAPA, dapagliflozin; HCTZ, hydrochlorothiazide; SGLT2, sodium-glucose cotransporter 2; T2D, 

type 2 diabetes. 

 

Changes in hematocrit could reflect hemodynamic changes related to plasma volume 

contraction, which may reduce ventricular filling pressures and cardiac workload.(14, 43) It is 
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unclear whether the beneficial HF outcomes are partly because of a direct increase in 

hematocrit or attributable to factors underlying the increase in hematocrit, although the latter 

is more likely. Changes in hematocrit are unlikely to be explained by changes in plasma 

volume alone. The natriuretic response induced by SGLT2 inhibitors might restore the 

physiologic tubuloglomerular feedback, thus lowering intraglomerular pressure, as stated 

above.(51) Changes in kidney physiology could then lead to changes in renal oxygen 

metabolism that affect erythropoietin production, although this remains speculative. An 

increase in erythropoiesis, resulting from a decrease in distal tubular oxygen content 

secondary to increased workload, could contribute to the rise in hematocrit and could be a 

marker of a beneficial action of these agents given that increased erythropoietin levels may 

contribute to improved myocardial oxygen delivery.(47) It is partly through this possible 

sequence of events that SGLT2 inhibitors could benefit the heart. Treatment with 

dapagliflozin has been shown to suppress hepcidin levels.(52) Given that SGLT2 inhibition 

has been shown to reduce adipose tissue inflammation in a murine model of obesity,(53) this 

also raises the intriguing possibility that SGLT2 inhibition might reduce hepcidin levels via 

an anti-inflammatory effect, subsequently improving anemia associated with HFrEF. The 

effects of SGLT2 inhibitors on interstitial fluid and circulatory volumes should be confirmed, 

and downstream effects explored, to better understand their cardio-protective mechanisms.  

 Aside from inducing changes in osmotically active sodium, SGLT2 inhibitors could 

also modulate non-osmotic sodium storage, although less evidence is available to support this 

hypothesisin this area.(40) In a porcine model of HF, empagliflozin reduced skin sodium 

content and interstitial fluid volume to a greater extent than did furosemide.(54) Karg and 

colleagues explored this hypothesis iIn a study in which 51 participants with T2D were 

treated with dapagliflozin or placebo for 6 weeks, . sSodium content in the skin and muscles 

of the lower leg was measured by 
23

Na-MRI.(55) Serum sodium, 24-hour urinary sodium 

                  



June 7, 2021 

16 
 

excretion, and muscle sodium content were not significantly unchanged at 6 weeks by 

dapagliflozin treatment; however, skin sodium content was reduced. Similar studies in 

patients with CKD, who commonly manifest extracellular volume overload, should be 

conducted.  

 In summary, SGLT2 inhibitors were initially designed to reduce tubular glucose 

reabsorption, thereby lowering serum glucose and glycosylated hemoglobin. However, 

SGLT2 inhibitors might also induce a natriuretic response associated with diuresis, with a 

more pronounced effect on interstitial fluid compared with plasma volume. Natriuresis is 

unlikely to completely explain the benefits of SGLT2 inhibition, since it is transient (i.e., 

likely present in the first 24 hours after first dosing) and modest when compared with 

diuretics,(33) and recent findings may even call for re-examination of this hypothesis.(31) 

Accordingly, other consequences of SGLT2-inhibitor–induced alterations in sodium handling, 

i.e., changes in systemic hemodynamics and the vascular system, as well as potential non-

osmotic sodium storage, may also contribute to the observed cardiovascular benefit (Figure 

4). 

 

Figure 4 Putative sodium-centric mechanisms of benefit of SGLT2 inhibitors in people with 

T2D and cardiorenal disease. 
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BP, blood pressure; T2D, type 2 diabetes; SGLT2, sodium-glucose cotransporter 2. 
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Effects of SGLT2 inhibition on arterial stiffness and endothelial function 

SGLT2 inhibition demonstrates durable BP reduction, which may partly account for their 

cardiorenal benefits and may be partly driven by reductions in body sodium content.(8, 9, 56) 

SGLT2 inhibitors have also been shown to reduce arterial stiffness and improve endothelial 

function. Arterial stiffness, determined largely by the elastin-to-collagen ratio in the vessel 

wall, is associated with the risk for cardiovascular events. Accordingly, noninvasive measures 

of central and peripheral arterial stiffness can serve as useful surrogate markers to determine 

the effectiveness of pharmacotherapies in improving cardiovascular health.(57) 

 Arterial stiffness, measured by pulse wave velocity (PWV), decreased in response to 

8 weeks of empagliflozin 25 mg in an open-label, prospective clinical trial in young adults 

with type 1 diabetes mellitus.(58) Consistent with these data, a post hoc analysis from phase 3 

trials in adults with T2D demonstrated reduced arterial stiffness, as assessed by pulse pressure 

and ambulatory arterial stiffness index, and arterial resistance as measured by mean arterial 

pressure, in response to empagliflozin.(59) In a pilot study in 16 adults with T2D, two days of 

dapagliflozin 12.5 mg was shown to increase flow-mediated dilatation and to reduce PWV 

and renal resistive index, independent of BP reductions.(60) These data suggest that the 

effects of SGLT2 inhibition on systemic and renal vascular stiffness and on endothelial 

dysfunction are acute and persistent. Empagliflozin or dapagliflozin also restore nitric oxide 

production by human endothelial cells, which may contribute to the beneficial effects of 

SGLT2 inhibition on endothelial function, although such results were not in vivo and used 

high empagliflozin concentrations (1 µM).(61, 62) In vivo data from a porcine model of 

patients with HF without diabetes indicate that empagliflozin improves NO signaling and 

diastolic function.(63) An additional post hoc analysis of pooled data from four phase 3 

studies demonstrated that canagliflozin attenuated pulse pressure and mean arterial pressure in 
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adults with T2D.(64) Finally, trials have also demonstrated improvement in endothelial 

function by reactive hyperemia peripheral arterial tonometry(65) and flow-mediated 

dilatation(66) in response to dapagliflozin in adults with T2D. The mechanisms by which 

SGLT2 inhibition reduces arterial stiffness and improves endothelial dysfunction are not fully 

understood but may be related to changes in sodium exposure.(67, 68) The effect of SGLT2 

inhibition on arterial stiffness This is particularly important  relevant to for the glycocalyx, 

which, as noted above, functions as a non-osmotic sodium buffer and which can be damaged 

by sodium and glucose overload.  

 

Direct sodium-related cardiac effects of SGLT2 inhibition 

The full mechanisms of action of SGLT2 inhibition remain incompletely understood. Given 

the potentiating effect of increased myocardial intracellular sodium concentrations in HF, 

various lines of research have investigated the direct effects , independent of the kidneys, of 

SGLT2 inhibitors on the heart in in vitro model systems. Direct effects of SGLT2 inhibition 

on sodium concentrations in cardiomyocytes have been identified, independent of systemic 

effects produced via the kidney, which is remarkable given the absence of SGLT2 receptors 

in the heart. For example, empagliflozin was shown to decrease cardiac cytoplasmic sodium 

concentration via cardiac NHE inhibition.(69) Apart from sodium-mediated effects, other 

direct effects, reviewed elsewhere,(70) are possibly also involved in the long-term cardio-

protective effects of SGLT2 inhibitors, but are beyond outside of the scope of the present 

articlereview. 

 

Moving from mechanisms to clinical outcomes 

As briefly stated, SGLT2 inhibition has yieldedshown remarkable effects on cardiovascular 

(particularly HF) and kidney renal outcomes in large clinical trials (Figure 1).(8-10, 56, 71, 
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72) These results were confirmed in cardiovascular safety trials in patients with T2D and 

established CVD or at high risk for cardiovascular events in the DECLARE-TIMI 58(56) and 

CANVAS(9) studies, which also demonstrated improvement in HF outcomes without 

previous documented HF or established CVD at baseline. Since echocardiography was not 

routinely performed to assess ejection fraction in these cardiovascular safety trials, any 

differential effect of SGLT2 inhibitors on patients with HF with preserved or reduced ejection 

fraction merits further study. Based on the beneficial HF findings in cardiovascular safety 

trials, dedicated HF trials were designed to characterize the effects of SGLT2 inhibition in 

preventing adverse outcomes in patients with HF. In the DEFINE-HF study, treatment with 

dapagliflozin indeed reduced symptoms and improved the quality of life in 263 patients with 

HF and reduced ejection fraction (HFrEF) with or without T2D, despite no significant 

reduction in levels of N-terminal pro b-type natriuretic peptide.(73) In the DAPA-HF trial, 

which recruited 4744 patients with or without T2D with New York Heart Association class II, 

III, or IV HF and ejection fraction ≤40%, dapagliflozin reduced the primary endpoint 

consisting of a composite of cardiovascular death or worsening HF (hospitalization or an 

urgent visit resulting in intravenous therapy for HF) by 26% (95% CI 15%–35%).(72) No 

differences were observed between individuals with or without diabetes.(72) (74)(75)First, 

cConfirmation of beneficial effects in patients with HFrEF has come from the EMPEROR-

Reduced study, which investigated the effects of empagliflozin on HF outcomes, in patients 

with or without diabetes.(74) Reverse left ventricular remodeling with SGLT2 inhibition has 

also been demonstrated in patients with HFrEF with (75) or without T2D.(76) 

 The CREDENCE trial, which studied the effects of canagliflozin in patients with T2D 

and diabetic kidney disease,(62) reported a reduction in HF hospitalization by 39% (95% CI 

20%–53%), in addition to attenuating loss of kidney function. Given the strong link between 

CKD and HF, this further emphasizes the importance of the cardiorenal axis.(62)  
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 The limited effect of SGLT2 inhibitors on atherothrombotic disease (11% reduction in 

MACE in a recent meta-analysis(77)), and the strong effects on HF and kidney outcomes with 

early divergence of group outcomes (benefits seen after 3 months), strongly point to a 

hemodynamic effect that relates to sodium balance as postulated here. The fact that SGLT2 

inhibitors improve HF outcomes to the same extent in patients with HFrEF with HFrEF with 

and without diabetes is the strongest argument to date that these beneficial effects are 

completely glucose independent.  

 Several studies that might support or refute these hypotheses are currently ongoing. 

First, confirmation of beneficial effects in patients with HFrEF has come from the 

EMPEROR-Reduced study, which investigated the effects of empagliflozin on HF outcomes, 

in patients with or without diabetes.(77) Second, tThe DELIVER (dapagliflozin; 

NCT03619213) and EMPEROR-Preserved (empagliflozin; NCT03057951) studies 

investigate whether the reduction in HF hospitalization extends to patients with HF with 

preserved ejection fraction and with normal or near normal kidney function (without 

albuminuria)these benefits of HF hospitalization extend to people with HF with preserved 

ejection fraction. The phase 3 DAPA-CKD trial, which was stopped early based on 

overwhelming efficacy, reported a hazard ratio for the composite of death from 

cardiovascular causes or hospitalization for HF of 0.71 (95% CI 0.55–0.92; P=0.009) as well 

as benefit on kidney outcomes, in patients people with CKD with and without diabetes.(71) 

Third, studies such as DAPACARD (NCT03387683) and ERADICATE-HF (NCT03416270) 

investigate the underlying mechanisms, focusing on myocardial substrate metabolism, sodium 

reabsorption, and plasma volumes. 

 

Conclusion 

Field Code Changed
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The recently introduced class of glucose-lowering SGLT2 inhibitors has received much 

attention because of their remarkable yet largely unexpected cardiorenal benefits, in particular 

with respect to prevention and treatment of HF. Comprehensive understanding of the 

mechanisms underlying these benefits currently remains elusive and is subject to ongoing 

investigations. It is evident that glucose-lowering per se, as well as reductions in BP and 

plasma volume or increases in hematocrit, do not fully explain the cardiovascular benefits. It 

has been proposed that protection may occur via both metabolic (cardiorenal metabolism and 

substrate utilization) and non-metabolic effects. This review has summarized data on the 

salutary effects of SGLT2 inhibition unrelated to glucose metabolism, including changes in 

sodium balance, sodium sensitivity, and direct sodium effects on the heart and non-osmotic 

sodium stores, and hypothesized that these may partly contribute to improved HF outcomes. 

Importantly, however, data correlating either changes in extracellular sodium stores or direct 

cardiac effects with clinical outcomes are not yet available. Moreover, despite some support, 

the non-osmotic sodium hypothesis is novel and remains to be fully validated. Better 

understanding of the non-osmotic mechanisms underpinning the cardiorenal benefits of 

SGLT2 inhibition may allow researchers to assess the effects of SGLT2 inhibitors in 

combination with other drugs that affect sodium.  
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Lay summary [<100 words, plus three brief bullets of the work applies to patients; currently 

100 words] 

 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have cardiovascular benefits that include 

heart failure outcomes in patients with and without diabetes. As the underlying mechanisms 

are only partly explained by improvements in blood pressure, body weight, or glucose control, 

other mechanisms have been proposed. We focus here on a central role for effects on sodium 

as underlying the positive benefits of SGLT2i in heart failure. We explore the new (though 

still unconfirmed) idea that SGLT2i exert some of their positive effects by affecting non-

osmotic sodium (i.e., sodium bound to muscles and skin and not dissolved in the blood).  

 

 SGLT2i have emerged as a class of drugs, previously prescribed for patients with type 

2 diabetes, that have in more recent years been shown to have substantial heart and 

kidney clinical benefits in patients with and without type 2 diabetes  

 The degree to which these benefits are related to kidney-independent changes in 

sodium homeostasis is currently unknown 

 Better understanding of the non-osmotic mechanisms underpinning the benefits of 

SGLT2 inhibition on heart failure (with reduced or preserved left ventricular ejection 

fraction) may allow researchers to assess the effects of SGLT2i in combination with 

other treatments that affect sodium balance 
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Visual Take-Home Graphic 

 

Legend: Sodium may occupy a central role in the many mechanisms by which SGLT2 

inhibitors might benefit people with heart failure 
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