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Abstract

We prove a freeness theorem for low-rank subgroups of one-relator
groups. Let F be a free group, and let w ∈ F be a non-primitive element.
The primitivity rank of w, π(w), is the smallest rank of a subgroup of F
containing w as an imprimitive element. Then any subgroup of the one-
relator group G = F/〈〈w〉〉 generated by fewer than π(w) elements is free.
In particular, if π(w) > 2 then G doesn’t contain any Baumslag–Solitar
groups.

The hypothesis that π(w) > 2 implies that the presentation complex
X of the one-relator group G has negative immersions: if a compact,
connected complex Y immerses into X and χ(Y ) ≥ 0 then Y Nielsen
reduces to a graph.

The freeness theorem is a consequence of a dependence theorem for
free groups, which implies several classical facts about free and one-relator
groups, including Magnus’ Freiheitssatz and theorems of Lyndon, Baum-
slag, Stallings and Duncan–Howie.

The dependence theorem strengthens Wise’s w-cycles conjecture, proved
independently by the authors and Helfer–Wise, which implies that the
one-relator complex X has non-positive immersions when π(w) > 1.

1 Introduction

1.1 One-relator groups

The beginnings of combinatorial group theory are often identified with Dehn’s
articulation of the word, conjugacy and isomorphism problems [Deh11], and
Magnus’ solution of the word problem for one-relator groups was an early tri-
umph of the subject [Mag32]. The contemporary approach to these decision
problems takes the geometric route: to solve them in a class of groups C, one
first shows that the groups in C admit some kind of geometric structure. The
fundamental example is the class of word-hyperbolic groups, for which the word,
conjugacy and isomorphism problems have all been solved. Related techniques
can be applied to handle other important classes: 3-manifold groups, sufficiently
small-cancellation groups and fully residually free groups, to name a few.

After a century of progress, it is remarkable that the class of one-relator
groups is still almost untouched by geometric techniques, and the conjugacy
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and isomorphism problems remain wide open. Many one-relator groups are
word-hyperbolic – all one-relator groups with torsion, and a randomly chosen
one-relator group is C ′(1/6) – but there is also a menagerie of non-hyperbolic ex-
amples, including Baumslag–Solitar groups, Baumslag’s example [Bau69], fun-
damental groups of two-bridge knot complements, and the recent examples of
Gardam–Woodhouse [GW19].

In this paper, we present theorems about the structure of one-relator groups
which begin to suggest a general geometric classification. A combinatorial map
of 2-complexes Y → X is called an immersion if it is locally injective. The
starting point for these results is a recent result established independently by
the authors [LW17] and by Helfer–Wise [HW16]: the presentation complex X
of a torsion-free one-relator group has non-positive immersions, meaning that
every connected, finite 2-complex Y that immerses into X either has χ(Y ) ≤ 0
or Nielsen reduces1 to a point. We investigate the negatively curved analogue
of this definition.

Definition 1.1. A compact 2-complex X has negative immersions if, for every
immersion from a compact, connected 2-complex Y to X, either χ(Y ) < 0 or Y
Nielsen reduces to a graph.

On the face of it, negative immersions should be a difficult condition to
check, since it applies to all immersed compact complexes Y . However, there
turns out to be a connection with a quantity defined by Puder [Pud14]

Definition 1.2. Let F be a free group and w ∈ F . The primitivity rank of w
is

π(w) = min{rk(K) | w ∈ K ≤ F and w not primitive in K} ∈ N ∪ {∞} ,

where, by convention, π(w) = ∞ if w is primitive in F , since in that case w is
primitive in every subgroup K containing w. Note that π(1) = 0, since 1 is an
imprimitive element of the trivial subgroup.

The first main theorem of this paper tells us that negative immersions for
the presentation complex X of a one-relator group G = F/〈〈w〉〉 are governed by
π(w).

Theorem 1.3 (Negative immersions for one-relator groups). The presentation
complex of the one-relator group F/〈〈w〉〉 has negative immersions if and only if
π(w) > 2.

Thus, negative immersions can be determined in practice for the presenta-
tion complexes of one-relator groups. There is an algorithm to compute the
primitivity rank π(w) – see Lemma 6.4 – and furthermore it is often easy to
compute it by hand for small examples by considering how a map representing
w factors through immersions.

1See Definition 6.7 for the definition of Nielsen reduction. For now it suffices to know that
Nielsen reduction is stronger than homotopy equivalence .
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Example 1.4. Let w = acaba−1b−1c−1 ∈ 〈a, b, c〉 = F3. As usual, if F3 is realised
as the fundamental group of a bouquet Ω of 3 circles then w can be represented
by an immersion S # Ω where S is a graph homeomorphic to a circle. Represent
a subgroup K ≤ F containing w by a finite graph Γ such that the map w factors
as

S # Γ # Ω .

If the edges labelled by a in S are not all identified in Γ then one such edge is
only crossed once, which implies that w is primitive in K. The same holds for
b and c, and this in turn implies that the map Γ→ Ω is the identity. Therefore
π(w) ≥ 3. Furthermore, the Whitehead graph of w is connected without cut
vertices, so w is not itself primitive. Therefore π(w) = 3.

The primitivity ranks of all words of length at most 16 in the free group of
rank 4 were computed by Cashen–Hoffmann [CH20].

Puder [Pud15, Corollary 8.3] proved that a generic word w in a free group
of rank k has π(w) = k, so in particular, when rkF > 2, a generic one-relator
complex has negative immersions. Theorem 1.3 follows from Lemma 6.10, which
is a finer classification of immersions from complexes with sufficiently large Euler
characteristic.

Non-positive immersions constrains the subgroup structure of a group. Re-
call that a group G is called coherent if every finitely generated subgroup is
finitely presented. Non-positive immersions implies a homological version of co-
herence: if X has non-positive immersions, then the second homology group of
any finitely generated subgroup of π1X is finitely generated [LW17, Corollary
1.6]. Indeed, Wise conjectured that the fundamental groups of complexes with
non-positive immersions are coherent. The authors and, independently, Wise,
have shown that one-relator groups with torsion are coherent [LWar, Wis18].

Our next theorem asserts that negative immersions also constrain the sub-
group structure of a one-relator group. Recall that a group G is called k-free if
every subgroup generated by k elements is free. The rank of a group G is the
minimal number of elements needed to generate G, and is denoted rk(G). Note
that, if G has a one-relator presentation with n generators, then either G is free
(of rank n− 1) or rk(G) = n; see Remark 6.15 below.

Theorem 1.5 (Low-rank subgroups of one-relator groups). Let G = F/〈〈w〉〉
be a one-relator group with π(w) > 1. There is a finite collection P1, . . . , Pn of
freely indecomposable, one-relator subgroups of G, each of rank π(w), with the
following property. Let H ≤ G be a finitely generated subgroup.

(i) If rk(H) < π(w) then H is free.

(ii) If rk(H) = π(w) then H is either free or conjugate into some Pi.

In particular, the one-relator group G is (π(w)− 1)–free.

The Pi are defined in Subsection 6.1. Theorem 1.5 is a cousin of Magnus’
Freiheitssatz, which says that if H is a proper free factor of a free group F and
the natural map H → F/〈〈w〉〉 is not injective then w is in fact conjugate into
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H [Mag30]. Theorem 1.5 follows immediately from Lemma 6.16, which applies
to homomorphisms from groups of low rank to G.

As far as the authors are aware, Theorem 1.5 implies all known k-freeness
theorems for one-relator groups. For instance, combining Theorem 1.5 with
[Pud15, Corollary 8.3] recovers the following theorem of Arzhantseva–Olshanskii
[AO96].

Corollary 1.6. A generic k–generator one-relator group is (k − 1)-free.

Generic one-relator groups satisfy the C ′(1/6) small-cancellation property.
However, we emphasise that there are many words w with π(w) > 2 that are
not small-cancellation, such as Example 1.4.

Remark 1.7. It follows immediately from Theorem 1.5 that π(w) is the minimal
rank of a non-free subgroup of the one-relator group G = F/〈〈w〉〉. In particular,
π(w) is an isomorphism invariant of G.

Taken together, Theorems 1.3 and 1.5 imply that one-relator groups with
negative immersions have a similar subgroup structure to hyperbolic groups.

Corollary 1.8. Let w be an element of a free group F . If the one-relator group
G = F/〈〈w〉〉 has negative immersions then G doesn’t contain any Baumslag–
Solitar groups and any finitely generated abelian subgroup of G is cyclic.

A famous question in geometric group theory asks whether or not a group
with a finite classifying space and without Baumslag–Solitar subgroups must be
hyperbolic [Bes, Question 1.1]. Lyndon’s identity theorem implies that presen-
tation complexes of torsion-free one-relator groups are classifying spaces, so in
light of Corollary 1.8, the case of one-relator groups with negative immersions
is of immediate interest.

Conjecture 1.9. Every one-relator group with negative immersions is hyper-
bolic.

A positive resolution of Conjecture 1.9 would resolve the conjugacy and iso-
morphism problems for the class of one-relator groups with negative immersions.
Of course, one can also ask whether one-relator groups with negative immer-
sions have other conjectural properties of hyperbolic groups, such as residual
finiteness and surface subgroups.

Since π(w) = 1 if and only if the corresponding one-relator group has tor-
sion, and these are known to be hyperbolic by the B. B. Newman Spelling
Theorem [New68, HW01], the remaining case of interest is π(w) = 2. One-
relator groups with primitivity rank two seem to behave differently than the
rest; we state a mild strengthening of Theorem 1.5 in this case.

Corollary 1.10. Let w be an element of a free group F . If π(w) = 2 then the
one-relator group G = F/〈〈w〉〉 contains a subgroup P ≤ G with the following
properties:

(i) P is a two-generator, one-relator group;

4



(ii) every two-generator subgroup of G is either free or conjugate into P .

We call the subgroup P the peripheral subgroup of G (we cannot currently
prove that P is an isomorphism invariant of G). We are unable to say anything
new about two-generator one-relator groups – note that, in this case, Corol-
lary 1.8 is vacuous and Corollary 1.10 is trivially true.

Example 1.11. Take K to be a rank-two free factor 〈x, y〉 of a free group F , and
let w = [x, y]. In this case, G = F/〈〈w〉〉 is the free product of P = K/〈〈w〉〉 ∼= Z2

together with a complementary free-group factor, and Corollary 1.10 implies
that every freely indecomposable two-generator subgroup of G is conjugate into
P . In this case, the conclusion also follows from the Kurosh subgroup theorem;
however, in more complicated examples, G will not split as a free product and
the Kurosh subgroup theorem will not apply.

Corollary 1.10 suggests the following natural counterpart to Conjecture 1.9.

Conjecture 1.12. Suppose π(w) = 2. Then G is hyperbolic relative to P .

Conjectures 1.9 and 1.12 provide a conceptual explanation for the fact that
all known examples of pathological one-relator groups have two generators.

1.2 The dependence theorem

In 1959, Lyndon proved that a non-trivial commutator in a free group F cannot
be expressed as a square [Lyn59]. In this paper, we view Lyndon’s theorem as
the first in a line of dependence theorems for free groups, which bound the rank
of the target of a homomorphism in which certain elements are forced either to
be conjugate or to have roots.

Theorem (Lyndon, 1959). Let H = 〈a, b〉, v = [a, b], and consider the group
G = H ∗v=xn 〈x〉 where n = 2. If f : G→ F is a surjective homomorphism onto
a free group then rk(F ) ≤ 1.

Remark 1.13. Lyndon in fact proved this theorem for the word v′ = a2b2. This
is equivalent to the theorem for v = [a, b], by Dyck’s theorem.

Shortly afterwards, the hypotheses of Lyndon’s theorem were weakened to
cover the case when n ≥ 2; see, for example, [Bau60, Lemma 36.4]. The com-
mutator v = [a, b] in Lyndon’s theorem cannot be replaced by an arbitrary
element of the free group; indeed, adjoining a root to a generator a exhibits a
map in which the rank of the target group does not go down. We therefore need
a hypothesis that excludes generators. Recall that a collection of subgroups
{M1, . . . ,Mn} of a group H is called malnormal if Mi ∩ hMjh

−1 6= 1 implies
that i = j and h ∈Mi, for any indices i, j and h ∈ H.

Definition 1.14. A malnormal collection of cyclic subgroups {〈vj〉} of a group
H is called independent if there exists a free splitting H = H ′ ∗ 〈vk〉 of H,
for some k, with vj conjugate into H ′ for j 6= k. Otherwise, {〈vj〉} is called
dependent.
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Note that a singleton {〈v〉} in a free group H is dependent if and only if v is
not primitive. Using the theory of pro-p groups, Baumslag generalized Lyndon’s
theorem to all dependent malnormal singletons {〈v〉} [Bau65].

Theorem (Baumslag, 1965). Let H be a free group, {〈v〉} dependent (i.e. not
a primitive element) and malnormal (i.e. not a proper power) in H and n > 1.
If G = H ∗v=xn 〈x〉 and f : G → F is a surjective homomorphism onto a free
group, then rk(F ) < rk(H).

We now introduce the data for a more general dependence theorem. Let
H1, . . . ,Hl be free groups and {〈vi,j〉}i=1···l,j=1···mi a malnormal collection of
non-trivial cyclic subgroups of Hi. For each i and j, let ni,j be a positive
integer. We associate a graph of groups ∆ = ∆({Hi}, 〈x〉, {〈vi,j〉}, {ni,j}) to
these data as follows. There are l vertices labelled by the Hi, arranged around
one central vertex labelled 〈x〉. For each i and j, there is an edge which attaches
the subgroup 〈vi,j〉 to the index-ni,j subgroup of the vertex group 〈x〉 via the
homomorphism mapping vi,j to xni,j .2

A dependence theorem relates these data to the rank of a possible free image
of π1(∆). For instance, Lyndon’s theorem is the case when l = m = 1, H =
〈a, b〉, v = [a, b] and n = 2. A more general theorem of this form can be proved
using the techniques of [Lou13] (cf. Theorems 1.3 and 1.5 of that paper).

Theorem (Louder, 2013). Let H1, . . . ,Hl be free groups, {〈vi,j〉} a malnormal
collection of non-trivial cyclic subgroups of Hi and ni,j positive integers. Let ∆
be the associated graph of groups and let f : π1(∆) → F be a surjective homo-
morphism to a free group with f |Hi injective for each i. If the family {〈vi,j〉} is
dependent for each i, and

∑
i,j ni,j > 1, then

rk(F )− 1 <
∑
i

(rk(Hi)− 1) .

Baumslag’s theorem, and hence Lyndon’s, follows immediately. Indeed, if
f |H is not injective, the conclusion holds automatically, and otherwise the theo-
rem applies. A 1983 theorem of Stallings in a similar spirit also follows [Sta83a,
Theorem 5.3]; we discuss Stallings’ theorem in Subsection 5.1.

Another kind of dependence theorem constrains the integers ni,j in terms
of the ranks of the Hi. A prototypical result here is provided by a theorem of
Duncan and Howie, which extends and quantifies Lyndon’s theorem by bounding
from below the genus of a proper power [DH91]. A special case of the Duncan–
Howie theorem can be stated as follows.

Theorem (Duncan–Howie, 1991). Let Σ be a compact, orientable surface of
genus g with one boundary component; let H = π1(Σ) and let 〈v〉 = π1(∂Σ).
Let ∆ be the graph of groups obtained by adjoining an nth root to v (i.e. ∆ =
∆(H, 〈x〉, 〈v〉, n)) and f : π1(∆)→ F be a homomorphism onto a free group with
f(v) 6= 1. Then n ≤ rk(H)− 1 = 2g − 1.

2When l = 1 or mi = 1 we will drop the indices i or j as appropriate, to minimize notation.
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Just as Lyndon’s theorem was generalized from surfaces to more general de-
pendent malnormal families of cyclic subgroups, so the Duncan–Howie theorem
can be extended to arbitrary dependent malnormal families of cyclic subgroups.
The following theorem, proved by the authors and also Helfer–Wise, answered
Wise’s w-cycles conjecture, which was made in connection with the question of
whether or not one-relator groups are coherent [HW16, LW17].

Theorem (Louder–Wilton, Helfer–Wise). Let H be a free group, {〈vj〉} a mal-
normal collection of non-trivial cyclic subgroups of H and nj positive integers.
Let ∆ be the associated graph of groups and let f : π1(∆) → F be a homomor-
phism to a free group with f |H injective. If the family {〈vj〉} is dependent then∑
j nj ≤ rk(H)− 1.

Despite the fifty-nine years of work documented above, there are simple
examples that do not fall within the scope of these theorems. For instance, con-
sider the next example (which famously demonstrates that stable commutator
length does not coincide with commutator length in free groups).

Example 1.15. Let Σ be a torus with one boundary component. Let F = π1Σ =
〈a, b〉 and let w = [a, b] correspond to the boundary component. Consider the
homomorphism F → S3 given by a 7→ (23) and b 7→ (12), so w 7→ (123), and
let Σ′ → Σ be the 3-sheeted covering map corresponding to the stabiliser of
1 in S3. The boundary component unwraps three times in Σ′ and therefore,
by computing Euler characteristic, Σ′ is a surface of genus two with a single
boundary component, represented by v ∈ H = π1(Σ′).

In summary, in this example, rk(F ) = 2, rk(H) = 4, 〈u〉 is dependent and
malnormal in H, and the inclusion H → F sends v 7→ w3.

Example 1.15 is, of course, consistent with the theorems of Baumslag, the
first author and Duncan–Howie. However, the first two theorems only assume
that v 7→ wn with n > 1, and conclude that rk(F ) ≤ 3. Likewise, the Duncan–
Howie theorem asserts that n ≤ 3, but places no constraint on rk(F ). Intuitively,
one is lead to conjecture a common generalisation, which imposes an upper
bound on n+ rk(F ).

Theorem 1.16. Let H1, . . . ,Hl be free groups, {〈vi,j〉} a malnormal collection
of non-trivial cyclic subgroups of Hi and ni,j positive integers. Let ∆ be the
associated graph of groups and let f : π1(∆)→ F be a surjective homomorphism
to a free group with f |Hi injective for each i. Then

rk(F )− 2 +
∑
i,j

ni,j ≤
∑
i

(rk(Hi)− 1)

if the family {〈vi,j〉} is dependent for each i.

We do not know if the inequality of Theorem 1.16 is sharp; see Question 2.23.
As stated, Theorem 1.16 does not strictly generalize the Duncan–Howie the-

orem, since the map f in Theorem 1.16 is required to be injective on the Hi.
Theorem 2.21 relaxes the injectivity hypothesis to a hypothesis of ‘diagrammatic
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irreducibility’, which is weak enough to encompass the Duncan–Howie theorem;
see Corollary 5.8 for details.

The connection between the dependence theorem and one-relator groups
goes via an estimate on the Euler characteristic of the one-relator pushout of a
branched map; the reader is referred to Definitions 2.2 and 3.1 for the relevant
terms. A special case of the estimate can be stated as follows, which is a direct
consequence of Corollary 3.2.

Corollary 1.17. Let f : Y # X be an immersion from a compact, connected
two-complex Y to the presentation complex X of a one-relator group G =
F/〈〈w〉〉, with w not a proper power. If Y has no free faces then

χ(Y ) ≤ χ(Ŷ ) ,

where Ŷ is the one-relator pushout of f .

As well as the applications to non-positive immersions mentioned above, this
estimate on Euler characteristics also gives new proofs of Magnus’ Freiheitssatz
and Lyndon’s asphericity theorem; see Theorem 5.4.

1.3 Remarks about Theorem 1.16 and its proof

The proof of Theorem 1.16 combines stackings (first defined in [LW17]) with
adjunction spaces (the main tool of [Lou13]). The definition of a stacking was
inspired by the proof of the Duncan–Howie theorem, which in turn draws on
the theory of one-relator groups developed by Magnus and others, as well as the
tower argument of Papakyriakopoulos.

The adjunction space is the natural topological representative of the graph
of groups ∆ considered in the previous section. The map π1(∆) → F can be
realised by a second graph-of-spaces structure on the adjunction space, and the
rank of the underlying graph of gives an upper bound for rk(F ) – see Remark
2.10. In a nutshell, the idea of the proof is now to use the stacking constructed in
[LW17] to analyse the homology of the adjunction space in a manner reminiscent
of Morse theory. The stacking enables us to define fibrewise filtrations on the
adjunction space. An analysis of these filtrations reduces the proof of the main
theorem to a combinatorial lemma – the up-down lemma of §4.4.

The resulting inequality, that of Theorem 1.16, combines the degrees of the
adjunctions with the rank of the target. This improves on both the Duncan–
Howie theorem (and its generalisation in [LW17]), which only sees the degrees of
the adjunctions, and the theorems of Baumslag, Stallings and the first author,
which only see the rank of the target. Morally, Theorem 1.16 can be thought of
as a kind of non-abelian rank-nullity theorem.
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2 Graphs and graphs of graphs

2.1 Graphs

We start by recalling the basic set-up of graphs.
An (oriented) graph G is a tuple G = (VG, EG, ι, τ), where VG and EG are

sets, (called the vertices and edges of G, respectively) and ι : EG → VG and
τ : EG → VG are maps (called incidence maps). When convenient we suppress
the subscript G. We often use the letter α to denote an incidence map, which
might be either ι or τ .

A morphism of graphs is a pair of maps f : VG → VG′ and f : EG → EG′ ,
such that the natural diagrams

EG VG

EG′ VG′

α

f f

α

commute, for α = ι, τ . A graph is simple if its edges are determined by their
endpoints, i.e., if ι(e) = ι(e′) and τ(e) = τ(e′) then e = e′. Note that in this
case, the map (ι, τ) naturally identifies EG with a subset of VG × VG.

If there is a partition VG = IG t TG such that ι(EG) ⊆ IG and τ(EG) ⊆ TG
then G is called bipartite. A morphism of bipartite graphs is a morphism of
graphs that respects the bipartite structure. Again, if G is a simple bipartite
graph, then (ι, τ) identifies EG with a subset of IG × TG.

Given a graph G the geometric realization of G is the 1-complex

G = (VG t (EG × [−1, 1]))/{(e,−1) ∼ ι(e), (e, 1) ∼ τ(e)} .

We implicitly identify VG with its image in G.
The realization of a morphism of graphs f : G→ G′ is the map

f(x) =

{
f(x) if x ∈ VG
(f(e), t) if x = (e, t) ∈ e× [−1, 1]

The (Euler) characteristic of a graph G is defined to be quantity

χ(G) := |VG| − |EG| .

For a choice of v0 ∈ VG, we define π1(G, v0):= π1(G, v0). As usual, we will
suppress mention of the base point v0 when it will not cause confusion. In the
usual way, a morphism of graphs f : G→ G′ induces a homomorphism f∗ = f∗
on fundamental groups.
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The valence of a vertex v ∈ VG is defined to be

val(v):= #{e ∈ EG | ι(e) = v}+ #{e ∈ EG | τ(e) = v} .

If G is homeomorphic to S1 then we say that G is a cycle; equivalently, G is
finite and connected, and every vertex has valence two.

A morphism of graphs is an immersion if for all e 6= e′ and α ∈ {ι, τ},
α(e) = α(e′) implies f(e) 6= f(e′). Note that the realization f of an immersion
f is locally injective, and by Stallings [Sta83b, 5.3] induces an injective map f∗
on fundamental groups.

As in [Sta83b], a finite graph is called a core graph if there are no vertices
of valence 1.

2.2 Combinatorial complexes

We are now ready to define the class of 2-complexes that we will work with.

Definition 2.1. A combinatorial (2-dimensional) complex X is a tuple

(GX , SX , wX , oX)

where GX is a graph, SX is a disjoint union of cycles, wX : SX → GX is an
immersion of graphs and oX is an orientation on SX . We emphasise that oX
is not required to relate to the structure of SX as an oriented graph, and in
general, it will not.

As usual, we suppress subscripts when it will not cause confusion. We will
also often suppress mention of the orientation oX as well.

A morphism of combinatorial complexes f : X → X ′ consists of a map of
graphs f : GX → GX′ and an immersion s : SX → SX′ such that the diagram

SX SX′

GX GX′

s

wX wX′

f

commutes and s∗(oX′) = oX . We emphasise that, to avoid the notation becom-
ing too burdensome, we will usually use the same letter to denote the map of
2-complexes and the the map of 1-skeleta, and introduce the letter s to denote
the accompanying map of circles.

The realization of a combinatorial complex X is the space

X:= GX t (SX × [0, 1])/ ∼

where (θ, 0) ∼ w(θ) for all θ ∈ SX and (θ1, 1) ∼ (θ2, 1) whenever θ1 and
θ2 are in the same component of SX . Note that this definition is functorial: a
morphism f of combinatorial complexes X → X ′ naturally induces a continuous
map f : X → X ′. As usual, given a choice of vertex x0 in GX , we define
π1(X,x0):= π1(X, x0).
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A free face of a combinatorial complex X is an edge e ∈ EGX such that
|w−1
X (e)| = 1. Note that if X has a free face, then X can be simplified by a

simple homotopy, which collapses a 2-cell (see Section 6.2). The boundary of
X, ∂X, is the union of its free faces. The boundary of the realization, ∂X, is
the union of the closed edges corresponding to ∂X.

The link of a vertex v of GX is a graph L ≡ L(v) defined as follows. The
set of vertices of L is

VL:= {(x, α) ∈ EGX × {ι, τ} | α(x) = v}

and the set of edges is EL: = w−1(v) ⊆ VSX . Since SX is a disjoint union
of cycles, for each y ∈ EL there exist exactly two edges of ESX incident in
SX at y. Let iy be the edge immediately preceding y according to oX and
let αy ∈ {ι, τ} such that αy(iy) = y. Likewise, let ty be the edge immediately
following y according to oX and let βy(ty) = y. Then (w(iy), αy) and (w(ty), βy)
are both vertices of VL, and we define the incidence maps of L by setting ι(y) =
(w(iy), αy) and τ(y) = (w(ty), βy).

A morphism of combinatorial complexes f : X → X ′ naturally induces maps
on links fv : L(v)→ L(f(v)).

We can now define the class of morphisms that we are concerned with.
Informally, branched maps are maps that are locally injective away from vertices
and midpoints of 2-cells, and immersions are locally injective everywhere.

Definition 2.2. A morphism f : X → X ′ of combinatorial complexes is a
branched map if every induced map on links fv is an immersion. Furthermore,
if every fv is injective and the map s : SX → SX′ is injective on each component,
we say that f is an immersion. In this case, we write f : X # X ′.

In combinatorial group theory, a special role is played by van Kampen dia-
grams – planar 2-complexes that represent relations in the fundamental group.
These can be seen as special cases of morphisms of combinatorial complexes.

Definition 2.3. Let X be a combinatorial complex. A van Kampen diagram
over X is pair of morphisms

S → D → X

where S is a cycle and D∪SD2 is homeomorphic to the 2-sphere S2. If S → D
is an immersion and D → X is a branched map then the van Kampen diagram
is said to be reduced.

Remark 2.4. This notion of van Kampen diagram is slightly more general than
the standard one (cf. [LS01, Chapter III, §9]), since we allow branching over
the centres of the 2-cells in D.

The next lemma provides a useful characterization of branched maps.

Lemma 2.5. A morphism f of combinatorial complexes

SX SX′

GX GX′

s

wX wX′

f

11



is a branched map if and only if the map

(wX , s) : ESX → EGX × ESX′

is an embedding.

Proof. The link of an edge e in a combinatorial complex X is the set w−1
X (e).

For any vertex v of X, the map fv : L(v)→ L(f(v)) is an immersion if and only
if it does not fold any pair of edges of L(v). Equivalently, fv is an immersion if
and only if s restricts to an injective map on the star of every vertex of L(v).
Therefore, f is a branched map if and only if it induces injective maps on the
links of edges of X. To complete the proof of the lemma, note that s is injective
on each link w−1

X (e) if and only if the map (wX , s) is injective.

2.3 Graphs of graphs and the adjunction space

The construction below appears in various guises in the papers [Dic94, LM09,
Lou13].

Definition 2.6. A graph of graphs is a graph M = (VM , EM , ϕ, ψ), where the
vertex and edge sets VM and EM are collections of graphs. The elements of
VM are the vertex graphs of M , and the elements of EM are the edge graphs of
M . The incidence maps ϕ and ψ are considered as maps from VM to EM as
sets, but which specify morphisms of graphs. That is, given E ∈ EM there are
morphisms of graphs ϕE : E → ϕ(E) ∈ VM and ψE : E → ψ(E) ∈ VM .

Given a graph of graphs M , we construct a new graph ΓM , which is the
graph M with the additional data forgotten. There is a natural “forgetful”
(iso)morphism of graphs π : M → ΓM . For each x ∈ EΓM t VΓM , we let Mx

denote the graph π−1(x). In what follows we keep this notation. Furthermore, if
Me ∈ EM is an edge graph then ϕ(Me) ⊆Mv ∈ VM , for some v = ϕ(e) ∈ VΓM ,
and to avoid unnecessary subscripts, we denote the map ϕMe

simply by ϕ.
Likewise for ψ. In this way we think of M as being a family of graphs “indexed”
by the graph ΓM , which is just the graph of graphs M with its additional
structures stripped away.

A morphism of graphs of graphs f : M → M ′ is a morphism of graphs,
where the map f is endowed with additional structures compatible with the
graph of graphs structure, i.e., for each x ∈ ΓM , there is a morphism of graphs
fx : Mx →Mf(x) which is compatible with edge maps. That is, for each e ∈ EΓM

the following squares commute.

Me Mϕ(e) Me Mψ(e)

M ′f(e) M ′f(ϕ(e)) M ′f(e) M ′f(ψ(e))

ϕe

fe fϕ(e)

ψe

fe fψ(e)

ϕf(e) ψf(e)

The set of vertex graphs VM is the collection of graphs {Mv}v∈VΓM
, and we

abuse notation and denote the disjoint union
∐
Mv by MV . Likewise for edge

12



graphs. The realization M , defined below, has an additional graph of graphs
structure M ′ = ({MV }, {ME}, ϕ, ψ) with one vertex space and one edge space,
i.e., the underlying graph ΓM ′ has only one vertex and one edge, with edge
maps ϕ and ψ. Clearly M ′ is naturally homeomorphic to M . This additional
graph of graphs structure will turn up again in Subsection 4.2, where it is used
in a Mayer–Vietoris argument.

Definition 2.7. The realization of a graph of graphs M is the space

M := MV t (ME × [−1, 1])/ ∼

where (x,−1) ∼ ϕ(x) and (x,+1) ∼ ψ(x) for all x ∈ME .

The notion of realization allows us to define fundamental groups and other
topological invariants of M as usual. The Euler characteristic will play a par-
ticularly important role.

Definition 2.8. The (Euler) characteristic of a graph of graphs M is

χ(M):= χ(MV )− χ(ME) .

Note that χ(M) is the Euler characteristic of M .

Remark 2.9. Any oriented graph G = (VG, EG, ι, τ) can be regarded as a graph
of graphs by regarding VG and EG as graphs with no edges, and regarding the
edge maps ι and τ as morphisms of graphs. In this case the indexing graph has
one edge and one vertex, with edge maps ι and τ . In this case the forgetful map
returns the graph itself. Likewise, a bipartite graph may be regarded as a graph
of graphs indexed by a graph with two vertices and one edge.

We are particularly interested in graphs of graphs with connected vertex
and edge spaces. Given a graph of graphs M , there is a canonical M̂ with
connected vertex and edge spaces, and a morphism f : M̂ → M with the
following property: For each y ∈ ΓM , the restriction

f :
∐

x∈f−1(y)

M̂x →My

is an isomorphism of graphs. The vertex graphs of M̂ are the connected com-
ponents of the vertex graphs of M , the edge graphs of M̂ are the connected
components of the edge graphs of M , and the edge maps of M̂ are induced by
restriction. Furthermore, the realisation f : M̂ →M is a homeomorphism.

Therefore, without loss of generality, we may always assume that graphs of
graphs have connected vertex and edge spaces, and we will do so.

Remark 2.10. If the vertex and edge graphs of M are connected then the natural
map π1(M)→ π1(ΓM ) is surjective.

In the terminology of Wise and his coauthors, the realization M is a V H-
complex [BW99], and the maps ϕ and ψ are the incidence maps of the vertical

13



graph-of-graphs structure on M . We now turn our attention to the equally
natural horizontal graph-of-graphs structure on M , called W .

Let ι and τ be the incidence maps coming from the defining data of the
graphs in VM and EM . We define a new intermediate graph of graphs structure,
N , as follows: N has one vertex graph V with vertex set tv∈VΓM

VMv
and edge

set te∈EΓM
VMe , with edge maps induced by ϕ and ψ, and N has one edge graph

E with vertex set tv∈VΓM
EMv and edge set te∈EΓM

EMe , with edge maps again
induced by ϕ and ψ. The collection of incidence maps τ and ι join together to
induce maps τ : E → V and ι : E → V . We then set W = N̂ . The next lemma
records the fact that this is an alternative graph of graphs structure on M .

Lemma 2.11. The realizations W and M are homeomorphic.

Remark 2.12. It is the fact that our graphs and their morphisms are oriented
that automatically endows M with the dual graph-of-graphs decomposition.
This need not hold for graphs of unoriented graphs.

Remark 2.13. The underlying graph ΓW is the pushout of the diagram

∐
Me

∐
Mv

ϕ

ψ

in the category of (oriented) graphs.

A morphism of combinatorial complexes naturally defines a graph of graphs
– the adjunction space.

Definition 2.14. Let f : X → X ′ be a morphism of combinatorial complexes.
The adjunction space M ≡M(f) is the (bipartite) graph of graphs with vertex
set

VM := {GX , SX′} ,

edge set
EM := {SX}

and incidence maps given by s : SX → S′X and w : SX → GX .

2.4 Resolving

We now specialize the discussion above to the case of interest for our main
theorem. We start with two combinatorial complexes and a map h between
them, defined by the following data.

P S

Γ Ω

σ

λ w

h

Let M be the adjunction space of h and let W be the horizontal graph of
graphs associated with M . We now observe that this set-up entails the existence
of various natural maps, summarized in the following commutative diagram.

14



S

P W ΓW Ω

Γ

w
w

σ

λ

m l

h

The morphism h determines a map of graphs3 W → Ω that sends vertical
vertex-graphs to vertices and vertical edge-graphs to midpoints of edges.

We now resolve this map, by factoring it through the underlying graph ΓW
of W . The map W → Ω factors through the natural map m : W → ΓW . There
are natural morphisms S → W and Γ → W which, when composed with m,
descend to morphisms S → ΓW and Γ → ΓW . By Remark 2.13, the maps
S → Ω and Γ → Ω factor through a canonical map of graphs l : ΓW → Ω; the
map of graphs W → Ω then factors as:

W
m−→ ΓW

l−→ Ω .

For the most part in what follows, this enables us to replace Ω by ΓW , and for
that reason, we will also denote by w the natural map S → ΓW , even though,
strictly speaking w is a map from S to Ω.

We denote by ΓIW the graph obtained by Stallings folding the map l : ΓW →
Ω to an immersion. Note that χ(ΓIW ) ≥ χ(ΓW ).

Remark 2.15. We can use this set-up to draw group-theoretic conclusions about
π1(Ω), since the induced homomorphism π1(W ) → π1(Ω) factors through the
map m∗ : π1(W ) → π1(ΓW ). Note that point preimages in m are connected,
and therefore m∗ is surjective.

2.5 The dependence theorem

The boundary of W consists of those edges of Γ that are hit by precisely one
element of P .

Definition 2.16. Let W be the horizontal graphs of graphs for the adjunction
space defined above. The boundary of W is

∂W = {e ∈ EΓ | |λ−1(e)| = 1} .

The boundary of W is

∂W =
⋃

e∈∂W

e× (−1, 1) ⊆ Γ .

By construction ∂W is the boundary of the complex defined by λ : P → Γ.
As mentioned above, when W has nonempty boundary, this complex can be

3But not of graphs of graphs.
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Figure 1: Schematic of W . The realization W is the graph of spaces obtained
by gluing the ends of P × I to Γ and S using λ and σ. We think of Γ and S
as running through W horizontally. The vertical graph-of-graphs structure on
W is cartoonishly depicted above, with vertex spaces W v and edge spaces W e.
The morphism of graphs W → Ω factors as l ◦ m, where m is the projection
from W to its underlying graph ΓW .

simplified by a collapse. We call this circumstance independent (since it implies
the group-theoretic notion of independence given in the introduction). We will
also be interested in a strengthening of this, in which the whole image of S in
ΓW (and therefore in Ω) is covered at least twice by the boundary.

Definition 2.17. The map λ : P → Γ is independent if ∂W 6= ∅; otherwise, it
is called dependent. The map λ : P → Γ is strongly independent (over Ω) if, for
all e ∈ w(ES), |∂W ∩We| ≥ 2; otherwise, it is called weakly dependent (over Ω).

Example 2.18. Let Ω be the (oriented) graph with one vertex v and two edges
a and b, and let X be the combinatorial complex (Ω, S, w, o), where S is a cycle
with three edges, w : S → Ω is the immersion determined by the word abb, and
o is arbitrary. The realization of X is the Möbius strip, with one boundary edge
labeled a. Let Y = (Γ, P, λ, o′) be the combinatorial complex corresponding
to the annular connected double cover of X with the two lifts of the vertex
identified (with o′ pulled back from o). Then the boundary of W consists of
two edges which both map to the edge a in Ω, so ∂W does not (doubly) surject
w(ES) = EΩ, and in this case λ, which represents the attaching map for the
two two-cells in Y , is weakly dependent. It is not, however dependent, since the
boundary is non-empty.

We are interested in the setting where h is a branched map. This has the
following consequences for W .

Lemma 2.19. Let W be the horizontal graphs of graphs for the adjunction space
associated to a branched map h.

(i) The graph WE is a simple bipartite graph.

(ii) The incidence maps of W are injective on the edges of each edge space We,
and also on the set of vertices of We that come from S.
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The proof is left as an easy exercise.

Remark 2.20. If S is connected and σ : P → S is a covering map then, for each
s ∈ Sx ⊂Wx, val(s) = deg(σ).

In our case, the complex defined by the map w : S → Ω will be a one-relator
complex, meaning that S is just a single cycle. We call w indivisible if it does
not factor through a proper covering map S → S′.

We can now state the dependence theorem in the form in which we prove it.

Theorem 2.21 (Dependence theorem). Let h be a branched map of combina-
torial complexes as above, and let W be the horizontal graph of spaces for the
adjunction space. Suppose further that S is a single cycle and that w : S → Ω
is indivisible. If λ : P → Γ is weakly dependent then

χ(Γ) + deg(σ)− 1 ≤ χ(ΓW ) .

Usually, following [Sta83b], subgroups of free groups are represented by im-
mersions of connected graphs, so for the purposes of generalizing the theorems of
Baumslag and Stallings it is safe to restrict to immersions of connected Γ→ Ω.
However, in order to strengthen the Duncan–Howie theorem we need to allow
maps that are not immersions.

Example 2.22. Theorem 2.21 does not hold when the condition that w be indi-
visible is relaxed, as the following example illustrates. Let Ω be the graph with
one vertex v and one one-cell e, let h : Γ→ Ω and w : S → Ω be the connected
degree-two and degree-three covers, respectively, and let P → Ω be the con-
nected degree-six cover. Let λ : P → Γ be the degree-three cover and σ : P → S
a degree-two cover. In this example, ΓW ∼= Ω, and λ is weakly dependent, since
each vertex and edge graph We and Wv is isomorphic to the complete bipartite
graph K2,3, but the theorem predicts

0 + 2− 1 ≤ 0

which is, of course, false.

If h is a branched map and λ is weakly dependent then χ(ΓW ) ≤ −1, and
in this case Theorem 2.21 implies the inequality

χ(Γ) + deg(σ) ≤ 0 ,

which is precisely Wise’s w-cycles conjecture [HW16, LW17].
Since we do not know if the inequality of Theorem 2.21 is sharp, we pose

the question here.

Question 2.23. Are there W as above, with λ dependent, such that

χ(Γ) + deg(σ)− 1 = χ(ΓW )

for all deg(σ) ≥ 2 and χ(ΓW ) ≤ −1? What about for λ weakly dependent?

We next explain how Theorem 2.21 implies Theorem 1.16.
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Proof of Theorem 1.16. We may assume that f(w) is not a proper power in F :
if there are v ∈ F , k ≥ 1, such that f(w) = vk then, since f is surjective, if

rk(F )− 2 +
∑
i,j

kni,j ≤
∑
i

(rk(Hi)− 1) ,

then certainly

rk(F )− 2 +
∑
i,j

ni,j ≤
∑
i

(rk(Hi)− 1) .

We take Ω to be a rose with F = π1(Ω) a free group, Γ to be a graph
immersing into Ω, for which the components have fundamental groups Hi, and
λ : P → Γ an immersion of a disjoint union of cycles into Γ that represent the
family {vi,j}. Since each f(vi,j) is conjugate into 〈w〉, these factor through a
common cycle w : S → Ω which induces the maps σ : P → S and λ : P → Γ. We
may therefore construct the adjunction space M and its associated horizontal
graph of graphs W .

By definition, π1(∆) = π1(M), which is in turn canonically isomorphic to
π1(W ) by Lemma 2.11. The map π1(W )→ F is surjective by Remark 2.10 and
factors through the surjection m∗ : π1(W )→ π1(ΓW ) so χ(F ) = χ(Ω) ≥ χ(ΓW ).

Because {〈vi,j〉} is dependent, it follows that the map λ : P → Γ is depen-
dent, in particular weakly dependent. Since {〈vi,j〉} is malnormal, the natural
map P → Γ ×Ω S is an embedding, so (Γ, P ) → (Ω, S) is a branched map of
2-complexes, by Lemma 2.5. The result now follows from Theorem 2.21, after
noting that

deg(σ) =
∑
i,j

ni,j ,

that χ(Ω) = 1− rk(F ), and that χ(Γ) =
∑
i(1− rk(Hi)).

3 One-relator pushouts

We consider a branched map f from a combinatorial complex Y to a one-relator
complex X – that is, X is a combinatorial complex with a single 2-cell. Suppose
w : S → Ω is the attaching map defining X, and the map λ : P → Γ defines
Y . In this section we will see that the realization of the pushout ΓW of Γ and
S along P is the one-skeleton of a “best” one-relator complex Ŷ that the map
Y → X factors through. The dependence theorem implies that when Y cannot
be simplified in an obvious way, i.e. when Y doesn’t have any free faces, then
χ(Y ) ≤ χ(Ŷ ).

The components Pi of P are the boundaries of the 2-cells of Y . The degree
of branching of Pi under f is denoted by ni, and is the degree of the covering
map σ|Pi : Pi → S. Clearly∑

i

(ni − 1) = deg(σ)−#{e | e is a two-cell in Y } . (1)
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Definition 3.1 (One-relator pushout). The one-relator complex defined by the
map w : S → ΓW is denoted by Ŷ , and is called the one-relator pushout of Y .
The map l extends to a branched map Ŷ to X (also denoted by l). By Remark
2.13, Ŷ has the following universal property:

Y Z X

Ŷ

∃!
l

whenever Z → X is a morphism of degree one.
Similarly, the immersed one-relator pushout Ŷ I is the complex defined by

the natural map S → ΓIW . It enjoys a similar universal property for immersions
Z → X of degree one.

In the context of one-relator complexes, the dependence theorem gives a
relation between the Euler characteristics of Y and Ŷ .

Corollary 3.2 (One-relator pushout inequality). Let f : Y → X be a branched
map from a compact combinatorial complex Y to a one-relator complex X de-
fined by w : S → Ω, with w indivisible. If the restriction f |∂Y : ∂Y → w(ES) is
not at least two-to-one then

χ(Y ) +
∑
i

(ni − 1) ≤ χ(Ŷ ) ≤ χ(Ŷ I) .

In particular, if Y has no free faces and f is an immersion then χ(Y ) ≤ χ(Ŷ ).

Proof. By (1),

χ(Y ) +
∑
i

(ni − 1) = χ(Γ) + deg(σ) ,

so if χ(Y ) +
∑
i(ni − 1) > χ(Ŷ ) then χ(Γ) + deg(σ) > χ(ΓW ) + 1 and by

the dependence theorem for each edge e of of ΓW , |∂W ∩We| ≥ 2. The map
∂W → w(ES) is therefore at least two-to one, and since ∂Y = ∂W , so is f |∂Y .
This proves the first inequality.

The second inequality is clear since the one-skeleton ΓIW of Ŷ I is obtained

from the one-skeleton ΓW of Ŷ by folding.

4 Proof of the dependence theorem

4.1 Stackings

As well as the adjunction space, the second tool that we will use is the notion
of a stacking from [LW17]. In that paper, a stacking of a map w : S → Ω was
defined to be a lift of w to an embedding into Ω×R (where R denotes the real
numbers). Here, we use an equivalent, combinatorial, version of the definition.
Given an injection of sets α : C → D and a total order ≤ on D, we let α∗(≤)
denote the pullback order on C.
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Definition 4.1 (Stacking). Let w : S # Ω be an immersion of graphs. A
stacking of w is a collection of orders ≤x on w−1(x) for x ∈ w(S), such that
α∗(≤α(e)) =≤e for each e ∈ w(ES) and α = ι or α = τ .

Figure 2: A stacking gives an inclusion w̃ : S ↪→ Ω× R and vice-versa. This is
a picture of a stacking of (the realization of) the word w = uuvuvvUUV UV V
in the rose with two petals. This word can be written as a commutator in two
inequivalent ways (see [BF05]).

Lemma 4.2 (Loo-roll lemma [LW17, Lemma 17]). Any indivisible immersion
w : S # Ω from a cycle to a graph has a stacking.

For the rest of the paper we will write realizations in normal rather than
boldface font.

4.2 Computing the characteristic of W

In this subsection, we observe that Theorem 2.21 can be proved by estimating
the Euler characteristic of a certain chain complex C naturally associated to any
graph of graphs W . All coefficients are in a fixed but arbitrary field.

The chain complex C is

0→ H1(WE) =
⊕

e∈EΓW

H1(We)
∂→ H1(WV ) =

⊕
v∈VΓW

H1(Wv)→ 0 ,

with boundary map ∂ = τ# − ι#. As usual, the Euler characteristic of a chain
complex is the alternating sum of the dimensions of its terms, so

χ(C) = b1(WV )− b1(WE) .

Lemma 4.3. Let W be any graph of graphs with connected vertex and edge
graphs, and with underlying graph ΓW . Then

χ(W ) + χ(C) = χ(ΓW ) .

Proof. By definition,

χ(W ) = χ(WV )− χ(WE)

= b0(WV )− b1(WV )− b0(WE) + b1(WE)

= −(b1(WV )− b1(WE)) + (b0(WV )− b0(WE)) .
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Since the vertex and edge spaces are connected, χ(ΓW ) = b0(WE) − b0(WV ),
and the result follows.

When W is the adjunction space associated to a branched map, we obtain
that estimating χ(C) suffices to prove Theorem 2.21.

Lemma 4.4. Let h be a branched map of combinatorial complexes as above,
and let W be the horizontal graph of spaces for the adjunction space. Then

χ(Γ) + χ(C) = χ(ΓW ) .

Proof. This is immediate from the previous lemma, because

χ(W ) = χ(Γ) + χ(S)− χ(P ) ,

but S and P are disjoint unions of circles, and so χ(S) = χ(P ) = 0.

4.3 Fiberwise filtering W

Let W be the horizontal graph-of-graphs decomposition for the adjunction space
of a branched map, and consider the chain complex C indexed by the graph ΓW .
In this section we use stackings to replace C by a pair of chain complexes C±
indexed by S and which have easily computable characteristic.

Let Wx = (Sx t Γx, Px, λ, σ) be a (bipartite) vertex or edge graph of W ,
where Sx = Wx ∩ S, Γx = Wx ∩ Γ, Px = Wx ∩ P. For each vertex s ∈ Sx, let
Ps = σ−1(s).

Suppose that w : S → Ω has a stacking, which we pull back to a stacking of
w : S → ΓW . For s ∈ Sx define

W+
x (s) = Γx ∪ {t | t ≤x s} ∪ {p | σ(p) ≤x s}

and
W−x (s) = Γx ∪ {t | s ≤x t} ∪ {p | s ≤x σ(p)} .

Let s + 1 be the successor of s and s − 1 be the predecessor of s, when
defined, and interpret W+

x (s − 1) as Γx if s is minimal and W−x (s + 1) as Γx
if s is maximal. The order ≤x gives two filtrations of Wx by the sublevel sets
W±x (s).

Γx ( · · · (W+
x (s− 1) (W+

x (s) (W+
x (s+ 1) ( · · · (Wx (2)

and

Γx ( · · · (W−x (s+ 1) (W−x (s) (W−x (s− 1) ( · · · (Wx . (3)

For s ∈ Sx, define

A±(s) = H1(W±x (s))/H1(W±x (s∓ 1)) .
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The quotient group A±(s) represents the additional first homology gained when
going from W±x (s∓ 1) to W±x (s). See Figure 4. Summing over s ∈ Sx, we have

H1(Wx) ∼=
⊕
s∈Sx

A±(s) . (4)

The attaching map αe : We →Wα(e) is injective on S–vertices and respects the
orders ≤∗, so α∗(≤α(e)) =≤e, and there are therefore restrictions

W±e (s)→W±α(e)(α(s))

such that

αe(W
±
e (s∓ 1)) ⊆W±α(e)(α(s∓ 1)) ⊆W±α(e)(α(s)∓ 1) .

Because h is a branched map, by Lemma 2.5, each αe : Pe → Pα(e) is injective,
so αs : Ps → Pα(s) is as well, so there are induced injections

α±s,# : A±(s) ↪→ A±(α(s)) . (5)

Again, summing over s ∈ Sx, there are maps

α±e,# =
⊕
s∈Se

α±s,# :
⊕
s∈Se

A±(s) ↪→
⊕

s∈Sα(e)

A±(s) . (6)

Figure 3: The map α : We → Wα(e) is injective on Pe and induces an injection
A±(s) ↪→ A±(α(s)). In this example two vertices of Γe are identified in Γα(e).
The map α respects the sublevelset filtrations (2) and (3). Here we have drawn
Sx as sitting “above” the Γx so this picture should be thought of as illustrating
the filtration (2).

We now define a pair of auxiliary chain complexes C± by replacing each
H1(Wx) in C using the isomorphism (4), using the sum of the maps from (6) as
the boundary map, that is

∂±:=
⊕

e∈EΓW

τ±e,# − ι
±
e,# .
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And so

C± =

0→
⊕

e∈EΓW

⊕
s∈Se

A±(s)
∂±−→

⊕
v∈VΓW

⊕
s∈Sv

A±(s)→ 0

 . (7)

By (4), χ(C±) = χ(C). Since

VS =
⊔

v∈VΓW

Sv and ES =
⊔

e∈EΓW

Se ,

after reindexing, (7) becomes

C± =

(
0→

⊕
e∈ES

A±(e)→
⊕
v∈VS

A±(v)→ 0

)
,

with boundary maps coming from (5).
These auxiliary chain complexes enable us to relate χ(C) to the vector spaces

A±(s) that come from the filtrations of the Wx.

Lemma 4.5. Suppose S is a cycle. Then

max{dim(A±(s)) | s ∈ S} ≤ χ(C) .

The proof uses the following naive estimate.

Remark 4.6. Let a1, . . . , an and b1, . . . , bn−1 be non-negative integers, and sup-
pose that ai ≥ bi ≤ ai+1 for i = 1 . . . n− 1. Then

a1 − b1 + · · · − bn−1 + an ≥ max{ai, bi} .

Proof of Lemma 4.5. Pick an edge g ∈ w(ES) ⊆ EΓW , and let m+ and m− be
the minimal and maximal elements of Sg with respect to the order ≤g. Since
m± is minimal/maximal,

VW±g (m±) = Γg ∪ {m±}

and
EW±g (m±) = {p | σ(p) = m±} .

By Lemma 2.19 Wg is simple, so if p ∈ EW±g (m±) then p is determined by λ(p),

and W±g (m±) is therefore Γg with λ(Pm±) coned off, so A+(m+) ∼= A−(m−) ∼=
0. Removing m± from S therefore doesn’t change the characteristic of the chain
complexes C±, i.e.

χ(C±) = χ(C±|Srm±)

where

C±|Srm± =

0→
⊕

e∈ESrm±
A±(e)→

⊕
v∈VS

A±(v)→ 0

 .
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The chain complex C±|Srm± is over an interval S rm±, which makes its Euler
characteristic easy to estimate. Label and reorient S so that VS = {v±1 , . . . , v±n }
and ES = {m±, e±1 , . . . , e

±
n−1} with ι(e±i ) = v±i (for i = 1, . . . , n) and τ(e±i ) =

v±i+1 (for i = 1, . . . , n − 1). Set a±i = dim(A±(v±i )) and b±j = dim(A±(e±j )).
Then

χ(C) = χ(C±) = a±1 − b
±
1 + a±2 − · · ·+ a±n−1 − b

±
n−1 + a±n .

Since α : A±(e) → A±(α(e)) is injective, a±i ≥ b±i ≤ a±i+1 for i = 1, . . . , n − 1,
and

χ(C) ≥ max{a±i , b
±
i } = max{dim(A±(s)) | s ∈ S} ≥ 0

by Remark 4.6.

Remark 4.7. It is not clear from the start that χ(C) is non-negative. It follows
from Mayer–Vietoris that the chain complexes C±rm±, and therefore C±, have
their homology concentrated in dimension 0.

χ(C±) = dim(H0(C±))

The special case χ(Γ) = χ(ΓW ) is of some interest since it implies the the-
orems of Baumslag and Stallings. In these cases χ(C) = 0, and by Lemma 4.5
dim(A±(s)) = 0 for all s ∈ S. By (4), H1(Wx) = 0 for all x ∈ ΓW , but a
connected graph with trivial homology is a tree. If deg(σ) ≥ 2 then no s ∈ Sx
has valence one, so there are at least two valence-one vertices in Γx, hence λ is
strongly reducible, and therefore reducible. This case is argued differently in the
paper [Lou13]. There it was shown directly that the vertices in Γx are cutpoints
in Wx, and acylindricity of the associated graph of groups ∆ then implied that
the edge and vertex spaces are trees. Since this is not true in general, we use
stackings to argue indirectly that if χ(C) < deg(σ)−1 then the edge spaces have
“treelike” features, and ultimately, valence one vertices.

4.4 The up-down lemma and the proof of Theorem 2.21

The final ingredient of the proof of the dependence theorem is the up-down
lemma. To formulate it, we first recapitulate some of the discussion from Sec-
tion 4.3 in general terms.

Consider a finite bipartite graph B = (U tV,E, σ, λ) with an order ≤ on V .
For v ∈ V define

B+(v) = U ∪ {v′ | v′ ≤ v} ∪ {e | σ(e) ≤ v}

and
B−(v) = U ∪ {v′ | v′ ≥ v} ∪ {e | σ(e) ≥ v} .

Let
A±(v) = H1(B±(v))/H1(B±(v ∓ 1)) ,

where we interpret B+(v − 1) as U if v is minimal and B−(v + 1) as U if v is
maximal. A vertex v ∈ V is good if

max{dim(A±(v))} = val(v)− 1 .
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A vertex u ∈ U is good if it has valence one.

Figure 4: Illustration of a filtration associated to an order ≤ on a (simple)
bipartite graph B. The elements of U are all drawn at the same level, and
elements of V are placed vertically. To keep the pictures uncluttered we omit
elements of U which aren’t connected to vertices in V ∩ B+(v). The number
below each graph is the dimension of A+(v) for the vertex v added at that stage.
The graph B has 6 + 6 vertices and 18 edges, for a characteristic of −6, and is
connected with first betti number 0 + 0 + 2 + 2 + 1 + 2.

Lemma 4.8 (Up-down lemma). Let B be a simple connected bipartite graph
which is not a point. Let ≤ be an order on V . Then

|{p ∈ V ∪ U | p is good.}| ≥ 2 .

Proof. The proof is by induction on |V |. Suppose that |V | = 1. If |U | = 1 then
V = {v}, U = {u}, v has valence 1, dim(A±(v)) = val(v)− 1 = 0, so v is good,
and |λ−1(u)| = 1 so u has valence one, so is good. If |U | ≥ 2 then there are
|U | ≥ 2 valence one vertices in U .

Suppose that |V | ≥ 2, and let m− and m+ be the maximal and minimal
elements of V , respectively. If m− and m+ are both good then we are done.

The long exact sequence for the pair (B,B+(m− − 1)) reduces to the exact
sequence

0→ A+(m−)→ H1(B,B+(m− − 1))→ H0(B+(m− − 1))→ H0(B)→ 0 . (8)

Since B r B+(m− − 1) has one vertex m− and has val(m−) edges connect-
ing B+(m− − 1) to m−, the relative homology group H1(B,B+(m− − 1)) is
val(m−)− 1 dimensional. Since B is connected, dim(H0(B)) = 1. Suppose now
that m− is not good. Since B is simple, dim(A−(m−)) = 0, and since m− is not
good, dim(A+(m−)) < val(m−)− 1, so by (8) dim(H0(B+(m− − 1))) > 1, and
B+(m−− 1) is therefore not connected and Brm− has at least two connected
components. Let Bm− be the closure of a connected component of B r m−

which doesn’t contain m+. By induction on |V |, Bm− has at least two good
vertices, one of which is not m−. Let g be this vertex. If m+ is good then m+

and g are both good. Argue symmetrically if m− is good and m+ is not good.
Thus we assume both m− and m+ are not good. Again, let Bm− be the

closure of a connected component of Brm− which doesn’t contain m+, and let
Bm+ be the closure of a connected component of Brm+ which doesn’t contain
m−. The vertices m− and m+ are good in Bm− and Bm+ , respectively, and
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Bm− and Bm+ are disjoint. By induction on |V |, Bm− and Bm+ each contain
at least two good vertices, at least one of which is not m− or m+, respectively.
A good vertex in Bm− which is not m− is good in B, and a good vertex in Bm+

which is not m+ is good in B as well, so B has at least two good vertices.

Figure 5: Illustration for Lemma 4.8. In this case neither m− nor m+ is good.
We picture U as sitting below m− and above m+.

With the up-down lemma in hand, we can finally prove the dependence
theorem.

Proof of Theorem 2.21. We prove the contrapositive. Suppose that

χ(Γ) + deg(σ)− 1 > χ(ΓW ) .

Our goal is to prove that W is strongly independent.
By Lemma 4.5, χ(C) is bounded from below by

max
x∈ΓW

max
s∈Sx
{dim(A±(s))}

so
χ(Γ) + max

x∈ΓW
max
s∈Sx
{dim(A±(s))} ≤ χ(Γ) + χ(C) = χ(ΓW ) ,

where the last equality is given by Lemma 4.4. If χ(Γ) + deg(σ) − 1 > χ(ΓW )
then

max
x∈ΓW

max
s∈Sx
{dim(A±(s))} < deg(σ)− 1 . (9)

To show that W is strongly independent, we need to show that |∂W ∩We| ≥ 2
for each e ∈ w(ES) ⊆ EΓW .

To that end, choose e ∈ w(ES). By Lemma 2.19(i), We is a simple graph, so
we may apply the up-down lemma to We by setting B = We, V = Se, U = Γe,
E = Pe, and ≤=≤e. Remark 2.20 asserts that deg(σ) = val(s), so (9) implies
that dim(A±(s)) < val(s) − 1 for all s ∈ Se. In particular, no vertex in Se is
good. Since the up-down lemma guarantees two good vertices in We, it follows
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that there are two good vertices in Γe. A good vertex in Γe has valence one, so
|∂W ∩We| ≥ 2.

This is true for all e ∈ w(ES), but this is precisely what it means for the
map λ : P → Γ to be strongly independent.

5 Stallings; Magnus and Lyndon; Duncan–Howie

In this section we show how the dependence theorem implies its predecessors
mentioned in the introduction. We have already seen that it implies Theorem
1.16, which in turn implies Baumslag’s theorem. We next state a generalization
of Stallings’ theorem and explain how it follows as well. In the following subsec-
tion we explain how the dependence theorem implies Magnus’ Freiheitssatz and
Lyndon’s asphericity theorem. Finally, we explain how the dependence theorem
implies a strengthening of the theorem of Duncan–Howie.

5.1 Conjugacy and homology

A homomorphism of free groups f : H → F induces a map f∼ : H/∼→ F/∼ on
sets of conjugacy classes. A 1983 theorem of Stallings, which we also think of as
a kind of dependence theorem, relates f∼ to the induced map on abelianizations,
f# : H1(H)→ H1(F ) [Sta83a, Theorem 5.3].

Theorem (Stallings). Let f : H → F be an injection of finitely generated free
groups. If f# is injective then so is f∼.

(A homomorphism f for which f∼ is injective is sometimes called a Frattini
embedding ; cf. [OS04].)

In this section we quantify Stallings’ theorem, and compare how badly f∼
and f# may fail to be injective. In the case of f#, the failure of injectivity is
measured by the rank of the kernel. To measure the failure of f∼ to be injective,
we define

γ(f) = max
[v]∈F/∼

{|f−1
∼ ([v])|} ∈ N ∪ {∞} ,

the maximal number of conjugacy classes in H that are identified in F . Using
this terminology, Stallings’ theorem asserts: if γ(f) > 1 then rk(ker(f#)) > 0.

The main result of this section is a corollary of the dependence theorem that
strengthens Stallings’ theorem by comparing rk(ker(f#)) to γ(f).

Corollary 5.1. Let f : H → F be an injection of finitely generated free groups.
Then

rk(ker(f#)) ≥ γ(f)− 1 .

Proof. By Marshall Hall’s theorem, f identifies H with a free factor in some
subgroup K of finite index in F . Each conjugacy class of F splits into at
most |F : K| conjugacy classes in K, and does not split any further in f(H).
Therefore, γ(f) ≤ |F : K|, and in particular is finite.
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The proof proceeds by induction on m = γ(f). In the base case, m = 1,
there is nothing to prove, so we assume that m ≥ 2. We may also assume that
H and F are finitely generated. Let u1, . . . , um be a collection of non-conjugate
elements realizing γ(f).

Since free groups have unique roots, for each uj there is a unique vj ∈ H such

that uj = v
kj
j , with kj ≥ 1 maximal. Using uniqueness of roots again, it follows

that {〈vj〉} forms a malnormal family of cyclic subgroups of H. Since the f(uj)
are all conjugate to each other, the f(vj) are all conjugate into some common
cyclic subgroup 〈w〉 of F . Therefore, each f(vj) is conjugate to wnj for some
unique integer nj . As in the introduction, these data define a graph of groups
∆ and f extends to a homomorphism φ : π1(∆)→ F . Let L = φ(π1(∆)) ≤ F .

Since f(H) is contained in L we have rk(im(f#)) ≤ rk(L) and so the rank-
nullity lemma applied to f# gives

rk(ker(f#)) = rk(H)− rk(im(f#)) ≥ rk(H)− rk(L) .

If the malnormal family {〈vj〉} is dependent then Theorem 1.16 implies that

rk(H)− rk(L) ≥

(
m∑
i=1

ni

)
− 1 ≥ m− 1 .

These two estimates together imply the result, so it remains to deal with the
case in which {〈vj〉} is independent.

After permuting indices and conjugating the vj appropriately, this means
that

H = K ∗ 〈vm〉

and vj ∈ K for j < m. Therefore, by the inductive hypothesis applied to
f |K : K → F , we have rk(ker(f#|H1(K))) ≥ m − 2. Since f(v1)nm is conjugate
to f(vm)n1 , the class

c = nm[v1]− n1[vm]

is non-zero in H1(H), is contained in the kernel of f#, but is not in H1(K).
Therefore,

rk(ker(f#)) ≥ rk(ker(f#|H1(K))) + 1 ≥ m− 1

as required.

Remark 5.2. Corollary 5.1 is sharp. Let F = 〈a, b〉 and

H = 〈a, bab−1, . . . , bn−2ab2−n, bn−1ab1−n〉

with f the inclusion map. The n basis elements biab−i of H are conjugate in F
and rk(ker(f#)) = n− 1.
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5.2 The Freiheitssatz and Lyndon asphericity

We again consider a one-relator group G = F/〈〈w〉〉. As usual, we think of F
as the fundamental group of a graph Ω, and realise w as an immersion S # Ω,
where S is a cycle. Note that w may be a proper power vk, where k ≥ 1 is
assumed to be maximal. In this section we show how Corollary 3.2 implies the
Freiheitssatz and Lyndon asphericity. In what follows X is the presentation
complex (Ω, S, w) of the one-relator group G, where w : S → Ω is the attaching
map of the two cell, and Z is the presentation complex of the one-relator group
(Ω, S, v). There is a natural map q : X → Z, equal to the identity on Ω and a k
sheeted cover on S. Note that q is not a branched map in the sense of Definition
2.2 if k > 1.

Definition 5.3 (Surface diagram). A singular surface diagram in X is a mor-
phism f : Y → X of combinatorial complexes, such that the link of every vertex
in Y is a union of points, cycles and intervals. A singular surface diagram
f : Y → X is reduced if the induced map q ◦ f is a branched map.

This definition agrees with the usual notions of reduced disk and sphere
diagram. The following theorem, which is the main theorem of this section, is
a common generalization of Magnus’ Freiheitssatz and Lyndon asphericity.

Theorem 5.4 (Magnus, Lyndon). Let X be the presentation complex of a one-
relator group, and f : Y → X a reduced singular surface diagram. If χ(Y ) ≥ 1
then w(S) ⊆ f(∂Y ).

Proof. If w(S) 6⊆ f(∂Y ) then certainly w(S) 6⊆ q(f(∂Y )), so we may replace X
by Z. Let Ŷ be the one-relator pushout of the map Y → Z. By Corollary 3.2,
χ(Y ) ≤ χ(Ŷ ), so χ(Ŷ ) ≥ 1. Since Ŷ is one-relator, and v is indivisible, Ŷ is the
disk D, and ΓW = ∂D is a cycle. Since Y → Z is a branched map, it doesn’t
fold faces, but since Y → Z factors through D, no two two-cells in Y share an
edge. Thus Y is a tree of disks. In this case, ∂Y clearly surjects w(S).

Magnus’ Freiheitssatz [Mag30], corresponding to the case when Y is a disk,
and Lyndon asphericity [Lyn50, Coc54], corresponding to the case where Y is a
sphere, follow immediately.

Corollary 5.5 (Magnus’ Freiheitssatz). Consider a one-relator group G =
F/〈〈w〉〉. If H is a proper free factor of free group F and the natural map H → G
is not injective then w is conjugate into H.

Proof. Let H be a free factor of F and γ ∈ H an element that dies in G. Take
X to be a presentation complex of G in such a way that H is realized by a
subgraph of the one-skeleton. We can realize γ as an immersed loop in X with
image in the subgraph that carries H. Since γ dies in G, γ factors through a
reduced disk diagram f : Y → X by van Kampen’s lemma, in such a way that
γ surjects the boundary ∂Y . By Theorem 5.4 the restriction of f to ∂Y surjects
w(S), and hence γ does too. Since γ ∈ H, it follows that w is conjugate into
H.
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Corollary 5.6 (Lyndon asphericity). Let X be the presentation complex of
a one-relator group G = F/〈〈w〉〉. If Y is homeomorphic to a 2-sphere, no
combinatorial map Y → X is reduced.

5.3 Roots of products of commutators

Definition 5.7. Let F be a free group. The genus or commutator length of an
element v ∈ F is defined to be the minimal g ∈ N such that

v = [a1, b1] · · · [ag, bg] .

The Duncan–Howie theorem is an estimate on the commutator length of a
proper power v = wn: it asserts that n ≤ 2g − 1 [DH91]. Here, we view it as
a dependence theorem about maps H → F where H is the fundamental group
of a surface Σ with boundary, and ∂Σ maps to powers of conjugates of w. In
this section, we prove another corollary of Theorem 2.21, which strengthens the
Duncan–Howie theorem.

Corollary 5.8. Let F be a free group and consider v a non-trivial element
which is both a k–th power and a product of g commutators, that is there are
ai, bi, w ∈ F with 1 ≤ i ≤ g and

v = [a1, b1] · · · [ag, bg] = wk .

Then
rk(〈a1, . . . , ag, b1, . . . , bg, w〉) + k − 1 ≤ 2g .

Since w 6= 1, the group 〈a1, . . . , ag, b1, . . . , bg, w〉 is a non-abelian free group,
and hence has rank at least 2. Therefore, k ≤ 2g − 1, recovering the Duncan–
Howie estimate.

Figure 6: When Σ is orientable the map λ : P → Γ is a branched map since
otherwise Σ contains a Möbius band.

Proof of Corollary 5.8. Represent the subgroup 〈ai, bi〉 ≤ F by a map f : Σ →
Ω from an orientable surface of genus g with one boundary component, so
that f |∂Σ represents the element v. We may assume that f doesn’t pinch any
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simply closed curves, and that w is indivisible in 〈a1, . . . , ag, b1, . . . , bg, w〉. By
[Cul81], we may realize Σ as the mapping cylinder of λ : P → Γ, where P is
a cycle representing the boundary of Σ, with a morphism of graphs h : Γ →
Ω representing 〈a1, . . . , ag, b1, . . . , bg〉. Orientability of Σ implies that λ is a
branched map. See Figure 6. The induced map from the pushout ΓW surjects
〈a1, . . . , ag, b1, . . . , bg, w〉, and the inequality then follows from the dependence
theorem.

6 Subgroups of one-relator groups

The results of this section show how π(w) controls the subgroup structure of
the one-relator group G = F/〈〈w〉〉.

6.1 Primitivity rank and w–subgroups

Recall the definition of the primitivity rank π(w) from the introduction (Defi-
nition 1.2). We start with a few simple observations.

(i) The word w is primitive in F if and only if π(w) =∞.

(ii) Unless w is primitive, rk(F ) is an upper bound for π(w).

(iii) The word w is a proper power if and only if π(w) = 1.

(iv) If w is contained in a subgroup H ≤ F and w is primitive in F then w
is primitive in H. Therefore, the primitivity rank of w when viewed as
an element of H is at least the primitivity rank of w when viewed as an
element of F .

We now turn to the second definition needed for the main lemma.

Definition 6.1. Let F be a free group and w ∈ F a non-trivial element. A
subgroup K of F is a w–subgroup if:

(i) K contains w as an imprimitive element;

(ii) rk(K) = π(w); and

(iii) every proper overgroup K ′ of K in F has rk(K ′) > rk(K).

In the easiest case w–subgroups are cyclic; this occurs if and only if π(w) = 1,
i.e. when w is a proper power uk.

Example 6.2. If w = uk ∈ F with k > 1 and u not a proper power then 〈u〉 is the
unique w–subgroup of F . It is well-known that the inclusion 〈u〉/〈〈w〉〉 → F/〈〈w〉〉
is injective [LS01, Proposition II.5.17].

So when π(w) = 1, a w–subgroup is unique and malnormal. In fact, mal-
normality holds in general.
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Lemma 6.3. If K ≤ F is a w–subgroup then K is malnormal. In particular,
if wg ∈ K then g ∈ K.

Proof. Let g ∈ F ; then K ≤ 〈K, g〉 and rk(〈K, g〉) ≤ rk(K) + 1. If kg1 = k2 for
k1, k2 ∈ Kr1 then there is a non-trivial relation between K and g and so, since
free groups are Hopfian, rk(〈K, g〉) ≤ rk(K). Therefore, by the definition of a
w–subgroup, 〈K, g〉 = K, so g ∈ K.

Uniqueness in the case π(w) = 1 extends to finiteness in general, and the
finite list of w–subgroups is computable. Here we deduce computability from
Whitehead’s algorithm [Whi36]; an alternative algorithm is described in [Pud14,
Appendix A].

Lemma 6.4. There are only finitely many w–subgroups in a free group F , and
there is an algorithm that lists them.

Proof. If F is the fundamental group of a based finite graph Ω, then any finitely
generated subgroup K can be realized by a based immersion of finite core graphs
Λ # Ω, and if w is contained in K then the immersion w : S → Ω lifts to Λ. We
only need to consider subgroups K for which w is not contained in a proper free
factor, and for such subgroups K, every edge of Λ is in the image of w. Unless
w is primitive in K, every edge of Λ is hit at least twice by w, so we only need to
consider the finitely many based immersions Λ # Ω with |Λ| ≤ |w|/2. For each
such Λ # Ω, Whitehead’s algorithm decides whether or not w is primitive in K.
Keep those Λ of minimal rank, and of these the w–subgroups are the maximal
ones with respect to inclusion: K ≤ K ′ if and only if the based immersion
Λ → Ω factors through the based immersion Λ′ → Ω, which can be checked
trivially.

If we realize F as the fundamental group of a core graph Ω and w by an
immersion w : S → Ω then each of the finitely many w–subgroups Ki is realized
by an immersion of core graphs Λi # Ω. We may then define complexes Qi =
Λi ∪w D (where w is the unique, by Lemma 6.3, lift of w to Λi), which come
equipped with immersions Qi # X. These play a key role in the classification
of immersions Y # X with χ(Y ) = 2− π(w).

Definition 6.5. If Ki ≤ F is a w–subgroup we also call Pi = Ki/〈〈w〉〉 a w–
subgroup of G = F/〈〈w〉〉.

The w–subgroups come equipped with homomorphisms Pi → G induced by
the immersions Qi # X. The name ‘w–subgroup’ turns out to be justified,
since by Theorem 6.17 these homomorphisms are injective.

Remark 6.6. Whenever a one-relator group F/〈〈w〉〉 splits freely, the word w is
conjugate into a free factor of F [LS01, Proposition II.5.13]. In particular, every
w-subgroup Pi = Ki/〈〈w〉〉 is at most one-ended, since w is not contained in a
proper free factor of Ki. (Note that Z is a HNN extension of the trivial group,
and in particular splits freely.)
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6.2 Nielsen reduction

This section introduces the strong version of homotopy equivalence that plays
a role in our main results.

Definition 6.7. Let X,X ′ be combinatorial 2-complexes. A Nielsen equiv-
alence between X and X ′ is a homotopy equivalence f : GX → GX′ and a
homeomorphism s : SX → SX′ such that f ◦ wX ' wX′ ◦ s. (Here, we use
the notation of Definition 2.1.) In this case, we say that X and X ′ are Nielsen
equivalent.

Let Y be another 2-complex. We say that X Nielsen reduces to Y if X is
Nielsen equivalent to a wedge Y ∨

∨
iD

2
i , where the D2

i are 2-discs with the
standard cellular structure.

Complexes that Nielsen reduce to graphs can also be characterized alge-
braically. The following theorem is an easy consequence of the fact that any
pair of bases of a free group are related by Nielsen moves [LS01, Proposition
I.4.1].

Proposition 6.8. A two-complex Y Nielsen reduces to a graph if and only if
the conjugacy classes represented by the attaching maps for the two-cells of Y
have representatives which are a sub-basis of the free group π1(Y (1)).

We will make use of the following technical fact about Nielsen reduction.
It is an immediate consequence of Proposition 6.8, because the pullback of a
sub-basis along an immersion is a sub-basis.

Lemma 6.9. Let U, Y be 2-complexes. If U immerses in Y and Y Nielsen
reduces to a graph, then U Nielsen reduces to a graph. In particular, if Y is
one-relator and the attaching map is along a primitive element, then U Nielsen
reduces to a graph.

6.3 One-relator pushouts and primitivity rank

We can now classify immersions of finite complexes Y # X when χ(Y ) is
sufficiently large: specifically, when χ(Y ) ≥ 2− π(w).

Lemma 6.10. Let G = F/〈〈w〉〉 be a one-relator group as above, and X a
presentation complex of G, with w represented by an immersion w : S # Ω.
Let Y # X be an immersion from a compact connected one- or two-complex Y
to X. Suppose that χ(Y ) ≥ 2 − π(w), that Y has no free faces, and that the
one-skeleton of Y is a core graph.

(i) If χ(Y ) > 2− π(w) then Y reduces to a graph.

(ii) If χ(Y ) = 2 − π(w) then either Y reduces to a graph or Y # X factors
through some Qi # X.
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Proof. Since Y has no free faces, Corollary 3.2 implies that χ(Ŷ I) ≥ χ(Y ),
where Ŷ I is the immersed one-relator pushout of Y (Definition 3.1.)

We first prove item (i). Suppose that χ(Y ) > 2 − π(w). If π1(ΓIW ) is the

subgroup of F corresponding to the 1-skeleton of Ŷ I ,

rk(π1(ΓIW )) = 2− χ(Ŷ I) ≤ 2− χ(Y ) < π(w) .

Since π1(ΓIW ) is a subgroup of F of rank less than π(w), w represents a primitive
element of π1(ΓIW ), so Y reduces to a graph, by Lemma 6.9.

The proof of item (ii) is similar. If Y is a graph there is nothing to prove.
If w is primitive in π1(ΓIW ) then, as in the previous paragraph, Y reduces to
a graph. Otherwise, rk(π1(ΓIW )) = π(w) and w is not primitive in π1(ΓIW ),
so there is a w–subgroup Ki of F containing π1(ΓIW ). Since Y (1) is a core
graph, ΓIW is also a core graph, and so the immersion ΓIW # Ω factors through

Q
(1)
i = Λi. Therefore Ŷ I # X factors through Qi # X, and so Y # X also

factors through Qi.

6.4 Homomorphisms from finitely generated groups

In this section we combine the observations from the previous subsections and
finally prove Theorem 1.5. The first lemma provides a tool for promoting results
about immersions to results about subgroups.

Lemma 6.11. A combinatorial map of finite 2-complexes X → Y factors as

X → Z # Y

where X → Z is surjective and π1-surjective.

Proof. This is part of [LWar, Lemma 4.1].

This has the following useful consequence.

Lemma 6.12. Let Y be a finite 2-complex, and let f : H → π1(Y ) be a homo-
morphism from a finitely presented group. Then there is a an immersion from
a finite, connected 2-complex g : Z # Y and a surjection h : H → π1(Z) such
that f = g∗ ◦ h.

Proof. Let 〈x1, . . . , xm | r1, . . . , rn〉 be a finite presentation for H. Let R →
Y be a combinatorial map from a rose R with petals corresponding to the
xi. Each relator rj is the boundary of a singular disc diagram Dj → Y . Let
X be constructed by gluing the Dj to R along their boundaries. There is a
combinatorial map X → Y realizing the homomorphism f . Applying Lemma
6.11, X → Y factors through an immersion Z # Y .

For homomorphisms from finitely generated groups, we obtain the following,
slightly weaker, result.
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Lemma 6.13. Let Y be a finite 2-complex, and let f : H → π1(Y ) be a ho-
momorphism from an n–generator group. There is a sequence of π1-surjective
immersions of finite, connected 2-complexes without free faces

Z0 # Z1 # · · ·# Zi # · · · ,

an immersion g from the direct limit Z = lim−→Zi into Y and a π1-surjection
h : H → π1(Z) such that f = g∗ ◦h. Furthermore, we may take rk(π1(Z0)) ≤ n.

Proof. The existence of the sequence of immersions is [LWar, Lemma 4.4], and
the final assertion about rk(π1(Z0)) is an immediate consequence of its proof.

In general, when one applies Lemma 6.11 there may be no relation between
the Euler characteristics of the complexes X and Z. However, we will obtain
some control using a theorem of Howie. Recall that a group is locally indicable
if every non-trivial finitely generated subgroup has infinite abelianization.

Theorem ([How81, Corollary 4.2]). If X is a 2-complex and Y ⊆ X is a
connected subcomplex such that π1(Y ) is locally indicable and H2(X,Y ) = 0
then the map π1(Y )→ π1(X) induced by inclusion is injective.

We use Howie’s theorem to prove the following lemma, which can also be
deduced from earlier results of Stallings [Sta65, p171].

Lemma 6.14. If X is a connected 2-complex and π1(X) is generated by n
elements, then

χ(X) ≥ 1− n

with equality only if π1(X) is free on n generators.

Proof. Let x1, . . . , xn be a generating set for π1(X). Since X is 2-dimensional
and b1(X) ≤ n it is clear that χ(X) ≥ 1 − n, so it suffices to show π1(X)
is free on the xi if χ(X) = 1 − n. We can realize the xi by a combinatorial
π1-surjection of a rose f : R → X. Let M be the mapping cylinder of f , a
2-complex homotopy-equivalent to X. If χ(M) = 1 − n then H2(M) = 0 and
the natural map H1(R) → H1(M) is injective. Therefore, by the long exact
sequence of a pair, H2(M,R) = 0 and so by Howie’s theorem, π1(R)→ π1(M)
is injective, since free groups are locally indicable. Therefore, π1(M) = π1(X)
is free on the xi.

Remark 6.15. Lemma 6.14 quickly implies a classical result of Magnus [Mag39].
In the one-relator case (which Magnus attributes to Dehn), the result is as
follows: if G = Fn/〈〈w〉〉, then either G ∼= Fn−1 or rk(G) = n [LS01, Proposition
II.5.11].

Lemma 6.14 also enables us to prove the group-theoretic analogue of Lemma 6.10,
from which Theorem 1.5 follows immediately.

Lemma 6.16. Let G = F/〈〈w〉〉 be a one-relator group with π(w) > 1, and let
f : H → G be a homomorphism from a finitely generated group H.
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(i) If rk(H) < π(w) then f factors through a free group.

(ii) If rk(H) = π(w) and H is not free of rank π(w) then either f factors
through a free group or f(H) is conjugate into some w–subgroup Pk.

Proof. By Lemma 6.13, there is a sequence of π1-surjective immersions of finite,
connected 2-complexes without free faces

Z0 # Z1 # · · ·# Zi # · · ·

so that f factors through π1(Z), where Z = lim−→Zi. Therefore, if f does not
factor through a free group, π1(Z) is not free. Since free groups are Hopfian,
π1(Zi) is not free for all but finitely many i, and so we may assume without loss
of generality that π1(Zi) is not free for any i.

If rk(H) < π(w) then, for all i,

χ(Zi) ≥ 2− rk(H) > 2− π(w)

by Lemma 6.14, and so Zi Nielsen reduces to a graph by Lemma 6.10, which
contradicts the assumption that π1(Zi) is not free. This proves item (i).

If rk(H) = π(w) then, similarly, χ(Zi) ≥ 2− π(w) for all i, and since π1(Zi)
is not free, we must have χ(Zi) = 2 − π(w). Therefore, by Lemma 6.10, each
immersion Zi # X factors through some Qk(i) # X. Since there are only
finitely many Qk by Lemma 6.4, there is a k such that Zi # X factors through
Qk for infinitely many i, whence f factors through Pk. This proves item (ii).

6.5 w–subgroups are subgroups

At last we can prove, as claimed, that the w-subgroups Pi really are subgroups
of the one-relator group G. Recall that the maps Pi → G are induced by
immersions of one-relator complexes Qi # X.

Theorem 6.17. Let F be a free group with w ∈ F . The natural maps Pi → G
are injective.

Proof. We assume that w is nontrivial and that π(w) > 1, since the case π(w) =
1 is well-known, as noted in Example 6.2.

Let γ : S1 → Qi be an edge loop whose image in X is null-homotopic. Let
D be a van Kampen diagram for γ. Let R = Qi ∪γ D, which comes equipped
with a natural map R→ X. By Lemma 6.11, this factors as

R→ Z # X

with R → Z a π1-surjection; in particular, we obtain a π1-surjection Qi # Z.
The complex Z retracts to a subcomplex Y ⊆ Z without free faces, and since
Qi has no free faces the immersion Qi → X factors through the retraction to
Y . Now, H = π1(Y ) is generated by π(w) elements and is not free of rank π(w)
since it is a quotient of Pi, so by Lemma 6.14, χ(Y ) ≥ 2− π(w). Therefore, by
Lemma 6.10, either Y reduces to a graph or it factors through some immersion
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Qj # X. But the immersion Qi # X factors through the immersion Qi # Y ,
so by Lemma 6.9, if Y reduces to a graph then Qi does too, contradicting the
definition of a w–subgroup. Therefore Y # X factors through some Qj . It
follows that Ki ≤ Kj (where these are the w–subgroups of F corresponding
to Qi and Qj respectively) so, by the definition of a w–subgroup, i = j and
Qi → Qj is an isomorphism. Therefore, R retracts to Qi, so γ was already
null-homotopic in Qi. This proves the theorem.

Using Remark 6.6, we see that π(w) is an invariant of the isomorphism type
of the one-relator group G.

Corollary 6.18. If w ∈ F is a word in a free group then π(w) is the minimal
rank of a non-free subgroup of the one-relator group G = F/〈〈w〉〉.

6.6 The case π(w) = 2

As explained in the introduction, the results of the previous section show that,
when π(w) > 2, the subgroup structure of G = F/〈〈w〉〉 is like the subgroup
structure of a hyperbolic group. In this section, we examine the case π(w) = 2,
and notice that the non-negatively curved behaviour of G is concentrated in a
particular subgroup. This follows from the next result, which shows that in this
case there is a unique w–subgroup of F .

Proposition 6.19. Let F be a free group and w ∈ Fr1 an imprimitive element
that is not a proper power. If H1 and H2 are rank-two subgroups of F with w
contained in, but not primitive in, both H1 and H2, then 〈H1, H2〉 also has rank
two.

If π(w) = 2 then there is a unique w-subgroup of F .

Proof. Since w is imprimitive and not a proper power, Theorem 1.16 applies to
give

1 ≤ (rk(H1)− 1) + (rk(H2)− 1)− (rk(〈H1, H2〉)− 1) ,

and since rk(H1) = rk(H2) = 2, it follows that rk(〈H1, H2〉) = 2 as required.
Suppose that π(w) = 2. Let H = {Hi} be the set of rank-two subgroups

of F so that w ∈ Hi and w is not primitive in Hi; H is finite by Lemma
6.4, and since π(w) = 2, H is non-empty. Considering the partial order on H
given by inclusion, the previous paragraph now implies that each pair has an
upper bound, and it follows that H has a unique maximal element K, which is
necessarily the unique w–subgroup.

Therefore, in this case, we drop the unnecessary subscript i and write P
for the w–subgroup of G. In light of Conjecture 1.12 we make the following
definition.

Definition 6.20. If π(w) = 2 then P is the peripheral subgroup of G.
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We do not currently know how to prove that P is uniquely defined in G up to
isomorphism. However, Lemma 6.16 shows that if G ∼= F/〈〈w〉〉 ∼= F ′/〈〈w′〉〉 are
isomorphic then the corresponding peripheral subgroups P and P ′ are conjugate
into each other, which somewhat justifies the term ‘peripheral’. If Conjecture
1.12 held then P would be malnormal inG, and therefore would be a well-defined
isomorphism invariant.
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