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Abstract

Prior to the ACA, insurance companies could charge higher premiums – or outright deny
coverage – to people with preexisting health problems. But the ACA’s “guaranteed issue” pro-
vision forbids such price discrimination and denials of coverage. This paper seeks to determine
whether, after implementation of the ACA, nongroup private insurance plans have experienced
adverse selection. Our empirical approach employs a copula-based hurdle regression model,
with dependence modeled as a function of dimensions along which adverse selection might oc-
cur. Our main finding is that, after implementation of the ACA, nongroup insurance enrollees
with preexisting health problems do not appear to exhibit adverse selection. This finding sug-
gests that the ACA’s mandate that everyone acquire coverage might have attracted enough
healthy enrollees to offset any adverse selection.
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1 Introduction

This paper seeks to determine whether, after implementation of the Affordable Care Act (ACA),

nongroup private insurance plans, whether obtained through the exchanges or elsewhere, have

experienced adverse selection along dimensions that insurance companies are now prohibited from

using for premium adjustments, particularly preexisting conditions. We introduce a novel empirical

approach, based on copula functions, that allows for an investigation of selection effects along

multiple dimensions. Our main finding is that, after implementation of the ACA, we do not detect

evidence of adverse selection into nongroup insurance.

The ACA, passed by the U.S. Congress and signed by President Obama in 2010, placed strict

limitations on the types of information that private insurance companies may use to set insurance

premiums. In effect, those so-called “community rating” restrictions permit insurance companies

to adjust premiums along only the following dimensions: age, location, smoking status, and sin-

gle/family. Insurance companies may not adjust premiums along other dimensions that might

correlate with medical risk, such as gender, race, and preexisting health conditions.

The most noteworthy aspect of community rating, from an actuarial perspective, concerns

preexisting health conditions. Prior to the ACA, insurance companies in most states could charge

higher premiums – including prices near infinity, effectively denying coverage – to people with

preexisting health problems. But the ACA’s “guaranteed issue” provision, as it is known, forbids

such price discrimination with respect to preexisting health problems. This detail of the ACA

has raised concerns about a certain type of adverse selection, in which people with preexisting

health problems might be most likely to obtain coverage. Such adverse selection would result in a

sicker pool of enrollees, eventually requiring higher premiums to cover medical risks.

To reduce the possibility of adverse selection, the ACA includes what has become its most

famous, and hotly debated, provision: A mandate that everyone must acquire health insurance.
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For people without access to employer-based group coverage, the ACA established state- and

federally-operated marketplaces, often called “exchanges,” from which people can shop for ACA-

compliant plans offered by private insurance companies that participate in the exchanges. Yet

despite the mandate, concerns about adverse selection remain, in part because, for many people,

penalties for noncompliance fall below prices of insurance through the exchanges.

Simple calculations of mean health care spending, including those reported in this paper, show

far larger spending among subjects covered by nongroup insurance, relative to those lacking in-

surance. But, although striking, those differences in means do not, by themselves, point to the

sort of adverse selection that might destabilize nongroup insurance markets. First, some of those

differences owe to socioeconomic traits – for example, insured subjects tend to be older than their

uninsured counterparts. Second, some of those differences stem from moral hazard, in that insur-

ance lowers the point-of-service cost of obtaining health care, leading to increased spending. But

so long as insurance companies can accurately price policies with respect to socioeconomic traits

and moral hazard, neither of those first two explanations represents a threat to market stability.

However, the third possible explanation for those differences – adverse selection – is the one that

could potentially destabilize nongroup insurance markets. If, for example, subjects with preexisting

conditions seek nongroup plans, and if insurance companies no longer may price plans to reflect

those medical risks, then premiums for everyone would have to increase, potentially driving out

healthier enrollees, and thus destabilizing the nongroup insurance market.

Because the ACA still is a relatively new law, not many studies have investigated this topic.

Among the few, Sacks (2018), in a mostly descriptive piece, argues that “it does not appear

that large numbers of healthy people are exiting the Marketplaces.” By contrast, Panhans (2017)

reaches the opposite conclusion using exogenous premium variations in Colorado. A handful of

studies examine the three “insurance for insurers” mechanisms – referred to as risk

adjustment, risk corridors, and reinsurance – designed to serve as a last line of defense
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for insurers in the event of adverse selection (Layton, McGuire, and Sinaiko, 2016;

Geruso, Layton, and Prinz, 2017). Diamond, Dickstein, McQuade, Persson (2018), while not

explicitly a study of adverse selection, investigates the related issue of whether exchange enrollees

drop coverage soon after enrolling.

A related strand of literature investigates the Massachusetts health insurance reform, which

was enacted in 2006 and served as the template for the ACA. That literature appears to point

toward favorable selection following the Massachusetts reform, which speaks to the effectiveness

of the law’s insurance mandate at drawing healthier individuals into the risk pool (Hackmann,

Kolstad, and Kowalski, 2015).

The literature on asymmetric information offers several methods to test for adverse selection,

but some of them are poorly suited for the topic considered here. For example, one approach is

to estimate a regression of medical spending on insurance, and then sequentially add categories

of control variables to determine how those controls alter the link between insurance and medical

spending (Fang, Keane, and Silverman, 2008). While simple, such an exercise depends crucially

on the sequence in which those controls are added, with different sequences potentially yielding

conflicting findings (Gelbach, 2016).

Finkelstein and Poterba (2004) propose a method for testing for adverse selection, but their

approach works best for contracts, like annuities, where moral hazard is expected to be relatively

absent. Such is not the case for health insurance contracts. Moreover, Finkelstein and McGarry

(2006) present a method for isolating adverse selection, but their approach requires information on

insurance companies’ assessments of individuals’ medical risks as well as individuals’ subjective

self-assessments of their own risks. Such information is rarely available for general categories of

health care spending.

Instead, we adopt an alternative method that draws inspiration from seminal work on contract

theory by Chiappori and Salanié (2000). First, we jointly model nongroup insurance enrollment
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and medical spending using a bivariate copula. The control variables in the two marginals include

only those dimensions along which the ACA permits premium adjustments. By the logic of Chiap-

pori and Salanié, the dependence parameter from that copula blends the direct effect of insurance

on spending and any possible selection effect. We then give the dependence parameter a regression

structure based on characteristics that insurance companies are not permitted to use in setting

premiums. The coefficients attached to those characteristics in the dependence parameter inform

upon selection effects along those dimensions. Not only does this approach allow us to detect

the possible presence of adverse selection, but it also explicitly handles the commonly-noted, but

seldomly-addressed, concern that selection effects, if present, likely occur along multiple dimen-

sions, with potentially different magnitudes and directions (de Meza and Webb, 2001). To that

end, our proposed method can be viewed as an extension of the simple test proposed by Chiappori

and Salanié (2000).1

Our main finding is that, after implementation of the ACA, nongroup insurance enrollees

with preexisting health problems do not appear to exhibit adverse selection. In fact, we find

some evidence, albeit only marginally significant, of favorable selection with respect to preexisting

conditions. Therefore, despite that the law is still relatively young, and the political climate

regarding its support remains somewhat in flux, we conclude that fears of adverse selection seem

to have been misplaced.

2 Data

Data used in this study come from the Medical Expenditure Panel Survey (MEPS), collected and

published by the Agency for Healthcare Research and Quality, a unit of the U.S. Department of

Health and Human Services. The MEPS provides nationally-representative, micro-level informa-

tion on medical spending, insurance status, and health conditions. We focus on the 2015 and 2016

1Computationally, we implement our approach by building upon the already-available R (R Core Team, 2021)
package GJRM (Marra and Radice, 2021).
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waves of the survey, because those are the most recent waves publicly available at the time of this

writing, and also because most of the ACA statutes relevant to this study were fully active by

2015.

To isolate the nongroup private insurance market of interest, the estimation sample focuses

on non-elderly adults (18-64) who were never enrolled in Medicaid or Medicare, the two main

publicly-operated insurance options in the U.S. The sample also eliminates subjects enrolled in

group-based insurance, either through an employer or some other organization, because selection

effects for group-based coverage tend to be dominated by selection into employment. Furthermore,

even before the ACA, group-based plans rarely engaged in the sorts of denials of coverage central

to this study. The final estimation sample includes n = 6, 014 unique persons.

The main measure of medical spending is the sum of expenses – both out-of-pocket and insurer-

reimbursed – for all office-based services during the calendar year. (Almost all non-emergency care

in the U.S. requires some form of office-based contact with the medical system, so office-based

services provide a broad gauge of medical usage.) The main measure of private insurance coverage

is a simple binary indicator for whether the person ever had private nongroup insurance during

the calendar year. Based on that measure, approximately 26 percent of the estimation sample had

nongroup insurance, while 74 percent lacked any form of coverage, which speaks to the challenges

the ACA has confronted in extending coverage to this historically hard-to-insure population.

Table 1 reveals that enrollees of nongroup insurance spend more than their uninsured coun-

terparts. Some of those differences in spending owe to socioeconomic traits; for example, insured

subjects tend to be older, which might explain part of their higher spending. Some of those differ-

ences might reflect moral hazard, in that insurance lowers the costs of obtaining care, thus leading

to higher overall spending. But a third possibility, and the main threat to market stability, is

that relatively unhealthy subjects might select themselves into coverage, a phenomenon known as

“adverse selection.”
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Table 1 also attempts to shed light on the awkward distributional shape of annual office-based

spending (hereafter referred to as “spending”). First, a relatively large proportion of subjects

report zero spending, especially among those lacking insurance. Second, among subjects with

positive spending, the distribution shows high skewness, as evidenced by the difference between

means and medians. Those distributional quirks are what our copula-based hurdle model, discussed

below, seeks to address.

Tables 2 and 3 report sample means for spending and nongroup coverage, par-

titioned by socioeconomic characteristics that insurers may (Table 2) and may not

(Table 3) use for premium adjustments. Although not a formal test for adverse se-

lection, Table 2 suggests adverse selection with respect to age, in the sense that older

subjects spend more and have higher rates of nongroup coverage. Similar patterns

emerge for married individuals and non-smokers. (Note that, for confidentiality con-

cerns, the MEPS does not release publicly-available measures of location finer than

the four broad census regions.) Table 3 suggests adverse selection among females,

nonblacks/nonHispanics, and those with chronic conditions.

Most striking, and perhaps least surprising, is that spending appears to increase with chronic

health conditions, which are typically long-lasting ailments that require ongoing medical treatment.

(To calculate that measure, we sum binary measures for whether the subject has ever received a

diagnosis of: a physical limitation, high blood pressure, heart disease, heart attack, stroke, high

cholesterol, cancer, diabetes, arthritis, and asthma.)

3 Methodology

This section describes the adopted model (specifically, the main building blocks that make it up),

parameter estimation and inference.
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3.1 The model

Consider two random variables (Y1i, Y2i), for i = 1, . . . , n, where Y1i ∈ {0, 1}, Y2i ∈ {0,∞}, and

n represents the sample size. Variable Y1i indicates whether the person has nongroup insurance,

whereas Y2i denotes medical spending. Using a parametric copula C : (0, 1)2 → (0, 1) the joint

cumulative distribution function (cdf) of the two variables could be expressed as (e.g., Sklar, 1973;

Marra and Radice, 2017; Radice, Marra and Wojtys, 2016)

F (y1i, y2i) = C(F1(y1i), F2(y2i); θi), (1)

where F1(y1i) and F2(y2i) are cdfs of the marginals of Y1i and Y2i, taking values in (0, 1), and the

association parameter θi describes the dependence between Yi1 and Yi2 after covariate effects at

the marginal level are taken into account. Note that, as it will be made clear in the next sections,

the marginal cdfs depend on distributional parameters which are in turn linked to covariates and

coefficients; however, to avoid cluttering the notation we have suppressed this dependence in the

notation.

Because we limit the covariates in the marginals to characteristics insurance companies may

use to adjust premiums – age, location, smoking status, and single/family – remaining traits, such

as preexisting conditions, become absorbed into the dependence term. Consequently, as explained

by Chiappori and Salanié (2000), that dependence term, which appears to be positive in our data,

blends together two economic phenomena: (1) the effect of insurance on spending, sometimes called

“moral hazard,” and (2) the indirect effect of unobserved (to the insurance company) attributes that

simultaneously correlate with both insurance enrollment and medical spending. Health economists

refer to that indirect effect as “adverse selection” if it makes the dependence term more positive.

It is adverse selection that represents the primary threat to the stability of nongroup insurance

markets. Being a scalar-valued parameter, the dependence parameter does not allow us to untangle

moral hazard and adverse selection, nor is that the explicit goal of this paper.
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However, extending the approach of Chiappori and Salanié (2000), we can specify the de-

pendence term as a function of unobserved (to the insurance company) attributes, in order to

determine how those attributes contribute to adverse selection. To see that logic, note that,

as it is commonly defined, moral hazard is purely a consequence of insurance lowering

the point-of-service price of medical services; it has nothing to do with person-specific

attributes that might induce adverse selection (Chassagnon and Chiappori, 1997).

The reason for that separability is that moral hazard-related actions induced by an

insurance contract do not depend upon a person’s “riskiness,” but rather on its partial

derivative – that is, the extent to which riskiness changes after accepting an insurance

contract. And partial derivatives, implicitly, impose a ceteris paribus assumption on

other arguments. Therefore, if, say, preexisting conditions cause the dependence term to in-

crease, implying simultaneous increases in the probability of insurance enrollment and medical

spending, then such a finding would offer evidence of adverse selection with respect to preexisting

conditions.

Four configurations of outcomes are possible: y1i = 0, y2i = 0 (denoted by (y01i; y
0
2i) in what

follows), y1i = 0, y2i > 0 (y01i; y
+
2i), y1i = 1, y2i = 0 (y11i; y

0
2i) and y1i = 1, y2i > 0 (y11i; y

+
2i), and each

maps to a data distribution given by a product of a bivariate hurdle probability and a density for

the positive outcomes. The joint probability mass function for the hurdle part can be described as

F h(y11i, y
+
2i) = Ch(F h

1 (y
1
1i), F

h
2 (y

+
2i); θ

h
i )

F h(y01i, y
0
2i) = 1− F h

1 (y
1
1i)− F h

2 (y
+
2i) + Ch(F h(y11i), F

h(y+2i); θ
h
i )

F h(y01i, y
+
2i) = F h

2 (y
+
2i)− Ch(F h

1 (y
1
1i), F

h
2 (y

+
2i); θ

h
i )

F h(y11i, y
0
2i) = F h

1 (y
1
1i)− Ch(F h

1 (y
1
1i), F

h
2 (y

+
2i); θ

h
i )

. (2)

The term F h is the joint probability mass function defined for the pair of binary random variables

in the hurdle part, and F h
1 and F h

2 are the cdfs for the two binary outcomes, nongroup insurance

and positive medical spending. The function Ch, joining the marginals, is a parametric copula
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with dependence parameter θhi .

For subjects with positive spending, the second part of the hurdle model examines the rela-

tionship between nongroup insurance and the amount of medical expenses given positive spending.

Thus, the second part of the hurdle setup involves mixed data, with both binary and continuous

responses. The joint probability density function (pdf) has the following copula representation

f c(y1i, y2i|y2i > 0) = hc (F c
1 (y1i|y2i > 0), F c

2 (y2i|y2i > 0); θci )
y1i

× (1− hc (F c
1 (y1i|y2i > 0), F c

2 (y2i|y2i > 0); θci ))
1−y1i f c

2(y2i|y2i > 0),

(3)

where f c is the joint pdf defined for the pair of mixed outcomes given positive spending; f c
2 and F c

2

denote the density and distribution functions of the positive health care expenditure respectively,

and F c
1 represents the cdf of yi1|yi2 > 0. Assuming that Cc(·, ·; θci ) is a copula that joins the

marginals, hc(·, ·; θci ) is then defined as

hc (F c
1 (y1i|y2i > 0), F c

2 (y2i|y2i > 0); θci ) =

(

∂Cc (F c
1 (y1i|y2i > 0), F c

2 (y2i|y2i > 0); θci )

∂F c
2 (y2i|y2i > 0)

)

where θci is the dependence parameter that is associated with copula Cc.

[Maybe a few sentences here addressing Referee 1’s 2nd comment from a statistical

perspective? And then that discussion could segue naturally into the next paragraph?]

Two-part hurdle models require that the mechanism that governs whether Y2i is positive must

remain separate from the process that determines the magnitude of Y2i when it is positive. The

appropriateness of that separation is especially important in the present context, where we attempt

to link both parts to insurance status. To be sure, such a decoupling is not valid in all settings,

especially in classic Heckman-style selection problems where the selection process correlates with

magnitude, even after accounting for covariates. But two-part hurdle specifications have become

a methodological cornerstone for medical spending, due to the “principal-agent” setup of the U.S.

health care system, where patients (principals) typically initiate contact with physicians (agents),

but then physicians determine appropriate levels of care (Zweifel, 1981; Deb and Trivedi, 2002).

Manning et al. (1987, p. 109), in their seminal study of the RAND Experiment, crystallize this

9



view by observing that “...the decision to receive some care is largely the consumer’s, while the

physician influences the decision about level of care.” Thus, we follow conventions established in

the health economics literature and assume the validity of such a decoupling.

3.1.1 Specification of marginal distributions and copula

We use probit formulations for the marginal distributions for the bivariate hurdle part of the

model, as alternative setups (logit and cloglog links) appeared to offer little improvement to fit.

That is, we specify F h
1 (y

1
1i) = Φ(η1i) and F h

2 (y
+
2i) = Φ(η2i), where Φ is the cdf of a standard

normal distribution. Similarly, the marginal distribution for y1i in the bivariate model with binary

and continuous responses is modeled with a probit, F c
1 (y

1
1i) = Φ(η3i). The predictors ηvi ∈ R,

for v = 1, 2, 3, ..., contain covariate and coefficients and are defined in generic terms in the next

section.

To accommodate the highly-skewed shape of positive expenditures, we explored several dis-

tributions, including log-normal, gamma, Dagum, Weibull, inverse Gaussian, with the Dagum

appearing to offer the best fit, according to Akaike information criterion (AIC) values and residual

diagnostics. The Dagum pdf is

f c
2(y2i|y2i > 0) =

aipi
y2i







(

y2i
bi

)aipi

{(

y2i
bi

)ai
+ 1

}pi+1






,

where y2i > 0 and bi > 0, ai > 0, pi > 0 are the related distributional parameters. The correspond-

ing cdf is

F c
2 (y2i|y2i > 0) =

{

1 +

(

y2i
bi

)

−ai
}

−pi

.

Note that, for the Dagum distribution, the expectation and variance of Y2i are given by non-linear

combinations of bi, ai, pi (see, e.g., Table 2 in Marra and Radice, 2017). Also, these parameters are

specified as bi = exp(η4i), ai = exp(η5i) and pi = exp(η6i) which allow us to link these coefficients

to regression effects. (The use of the inverse link function exp(·) ensures that the parameters are

always estimated as positive values.)
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Our main focus is in the dependence parameters, θhi and θci , which, as noted, combine the effect

of insurance on spending and selection effects. But then, by specifying those dependence terms as

regression functions of traits that insurance companies may not use to adjust premiums, coefficients

attached to those traits inform upon whether selection effects exist with respect to those traits.

Thus, we specify the dependence terms as functions of predictors: θhi = mh(η7i) and θci = mc(η8i),

where mh and mc are one-to-one transformations which ensure that the dependence parameters lie

in their ranges (see Table 1 in Marra and Radice (2017) for the list of transformations; the table

also shows the relation between θ and the Kendall’s τ coefficient, which is a measure of association

that lies in the customary range [−1, 1]). The copulae considered here include the Clayton, Frank,

Gaussian, Gumbel and Joe, as well as 180 degree rotations of the Clayton, Gumbel, and Joe

copulas. Note that, as pointed out for instance by Genest and Neslehova (2007), the result of Sklar

(1973) for Ch and Cc can only guarantee that the copula is unique over the range of the outcomes.

In a regression context, however, this potential issue is less likely to be a concern mainly because

regression structures in the marginals generate additional variation in the outcomes and thus more

completely cover the outcome domains (e.g., Joe, 2014; Nikoloulopoulos and Karlis, 2010; Trivedi

and Zimmer, 2017).

The reader is referred to the help file of GJRM (Marra and Radice, 2021) for the full list of

implemented marginal distributions and copulae.

3.1.2 Predictor specification

This section provides some details on the construction of the model’s additive predictors. For the

sake of simplicity a generic ηi is considered. Recall that the main advantages of using additive

predictors are that various types of covariate effects can be dealt with, and that such effects can be

flexibly determined without making strong parametric a priori assumptions regarding their forms

(Wood, 2017).

We proceed by defining ηi as a function of an intercept and smooth functions of sub-vectors of
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a generic covariate vector called zi . That is,

ηi = β0 +
K
∑

k=1

sk(zki), i = 1, . . . , n, (4)

where β0 ∈ R is an overall intercept, zki denotes the k
th sub-vector of the complete covariate vector

zi (containing, e.g., binary, categorical, continuous, and spatial variables) and the K functions

sk(zki) represent generic effects which are chosen according to the type of covariate(s) considered.

Each sk(zki) can be approximated as a linear combination of Jk basis functions bkjk(zki) and

regression coefficients βkjk ∈ R, i.e. (Wood, 2017)

Jk
∑

jk=1

βkjkbkjk(zki). (5)

This formulation implies that the vector of evaluations {sk(zk1), . . . , sk(zkn)}
T can be written as

Zkβk with βk = (βk1, . . . , βkJk)
T and design matrix Zk[i, jk] = bkjk(zki). This allows the predictor

in equation (4) to be written as

η = β01n + Z1β1 + . . .+ ZKβK , (6)

where 1n is an n-dimensional vector made up of ones. Equation (6) can also be written in a more

compact way as η = Zβ, where Z = (1n,Z1, . . . ,ZK) and β = (β0,β
T

1 , . . . ,β
T

K)T.

Each βk has an associated quadratic penalty λkβ
T

kDkβk whose role is to enforce specific prop-

erties on the kth function, such as smoothness. Note that Dk only depends on the choice of basis

functions, but not on βk. Smoothing parameter λk ∈ [0,∞) controls the trade-off between fit and

smoothness, and plays a crucial role in determining the shape of ŝk(zki). The overall penalty can

be defined as βTDλβ, where Dλ = diag(0, λ1D1, . . . , λKDK). Finally, the smooth functions are

subject to centering (identifiability) constraints.

For parametric, linear effects, equation (5) becomes zTkiβk, and the design matrix is obtained

by stacking all covariate vectors zki into Zk. No penalty is typically assigned to linear effects

(Dk = 0). This would be the case for binary and categorical variables.
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For continuous variables the smooth functions are represented using the regression spline ap-

proach. Specifically, for each continuous variable zki, sk(zki) is approximated by
∑Jk

jk=1 βkjkbkjk(zki),

where the bkjk(zki) are known spline basis functions. The design matrix Zk comprises the basis

function evaluations for each i, and hence describe Jk curves which have potentially varying de-

grees of complexity. We employ low rank thin plate regression splines which are numerically stable

and have convenient mathematical properties, although other spline definitions and corresponding

penalties are supported in our implementation. To enforce smoothness, a conventional integrated

square second derivative spline penalty is typically employed (this is also the default option in

the software). That is, Dk =
∫

dk(zk)dk(zk)
Tdzk, where the jthk element of dk(zk) is given by

∂2bkjk(zk)/∂z
2
k and integration is over the range of zk. The formulae used to compute the basis

functions and penalties for many spline definitions are provided by Wood (2017) who also discusses

their theoretical properties. This specification allows us to avoid arbitrary modeling decisions, such

as choosing the appropriate degree of a polynomial or specifying cut-points, which could induce

misspecification bias.

Other specifications can be employed. These include varying coefficient smooths obtained by

multiplying one or more smooth components by some covariate(s), smooth functions of two or

more continuous covariates, random and Markov random field smoothers.

3.2 Some estimation and inferential details

Let us define the overall quantities δT = (βT

1 , . . . ,β
T

8 ) and Sλ = diag(λ1S1, . . . ,λ8S8), where λ
T
v =

(λvkv , . . . , λvKv
) for v = 1, . . . , 8. Parameter vectors β1, . . . ,β8 and their corresponding penalty

matrices and smoothing parameter vectors are associated with η1i . . . , η8i, respectively. Recall from

Section 3.1.1 that in our model eight parameters can potentially be specified as functions of additive

predictors, hence the notation adopted here. However, if the user wishes to employ, for instance,

a two-parameter distribution instead of the Dagum then there would be seven parameters and the

notation would be adapted accordingly. Using equations (2) and (3), assuming that a random
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sample (y1i; y2i; zi), i = 1, . . . , n is available, the log-likelihood function can be written as

ℓ(δ) =
∑

y0
1i

& y0
2i

log
(

F h(y01i, y
0
2i)

)

+
∑

y0
1i

& y
+

2i

log
(

F h(y01i, y
+
2i)

)

+
∑

y1
1i

& y0
2i

log
(

F h(y11i, y
0
2i)

)

+
∑

y1
1i

& y+
2i

log
(

F h(y11i, y
+
2i)

)

+
∑

y+
2i

log (f c(y1i, y2i|y2i > 0)) .

Because of the flexible predictors employed here, the use of a classic (unpenalized) optimization

algorithm is likely to result in component estimates that are too rough to produce practically

useful results (e.g., Wood, 2017). Therefore, we maximize ℓp(δ) = ℓ(δ)− 1
2δ

TSλδ. The above log-

likelihood structure suggests that parameter estimation can be carried using two separate bivariate

copula models, one for the hurdle part and the other for the continuous part. Facilities to achieve

this using GJRM are already available and are based on the works by Radice, Marra and Wojtys

(2016) and Klein et al. (2019) to which we refer the reader for further details.

‘Confidence’ intervals for any linear and nonlinear function of δ are obtained from a Bayesian

point of view, by recalling that the penalty term associated with the smooth functions of covariates

represents the prior belief that these functions are likely to be smoother rather than wiggly. This

implies setting an improper multivariate Normal prior on δ, which then leads to the posterior

distribution δ
·

∼ N (δ̂,−Ĥ
−1
p ), where Hp is the model’s penalized Hessian. The rationale for

using this result post-estimation is provided, for instance, in Marra and Radice (2017). They also

show that using the above posterior distribution yields confidence intervals with better frequentist

properties than those obtained using a frequentist approach itself. Other advantages of using the

Bayesian result are that the distribution of nonlinear functions of δ can easily be obtained by

posterior simulation and that the resulting distribution need not be symmetric.

4 Empirical results

This section breaks the results down separately for each part of the hurdle specification. We

label the part that models whether spending is positive as “Part 1” and the part that models the
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magnitude of positive spending as “Part 2.”

4.1 Part 1

The first part of the hurdle specification jointly models the probability of nongroup insurance and

the probability of positive spending. Each of those marginal probabilities relies on a probit setup,

as alternative link function choices offered little improvement to fit.

For the copula linking those two probabilities, Table 4 shows AIC values for several choices of

copulas, each with different dependence patterns. The Rotated Gumbel copula appears to offer

the best fit, although other copulas with similar shapes, such as the Clayton and Rotated Joe,

perform similarly. Those copulas all show asymmetric dependence, with dependence strongest in

the lower tail, suggesting that subjects with small probabilities of having insurance also tend to

have small probabilities of positive spending, but that that correlation becomes weaker for larger

probabilities. (Note that, because evidence overwhelmingly suggested positive dependence, we did

not consider rotations of the Clayton, Joe, and Gumbel copulas designed to accommodate negative

associations.)

Having settled upon probit marginals glued together via a Rotated Gumbel copula, Table 5

presents parameter estimates (i.e., regression coefficients with associated standard errors),

while limiting the covariates to traits that insurance companies may use to adjust premiums. Age

and being married appear to positively correlate with insurance enrollment and positive medical

spending. Likewise, subjects residing in the Midwest or West appear more likely to have insurance

and positive expenses, relative to their counterparts residing in the (relatively poorer) South.

Meanwhile, smokers are less likely to have insurance and medical expenses, suggesting that smoking

status picks up some unobserved traits that tend to correlate with smoking.

The main focus of this study, appearing near the bottom of the Table 5, is the dependence

parameter, which is positive and precisely estimated. As noted above, that positive dependence

term combines the effect of insurance on spending and the indirect effect of unobserved (to the
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insurance company) attributes that simultaneously correlate with both insurance enrollment and

medical spending.

Table 6 attempts to determine whether adverse selection actually exists with respect to those

unobserved (to the insurance company) attributes. Our approach involves specifying the depen-

dence term as a function of those attributes. The main results of interest, shown in the right-hand

panel of Table 6, fail to find evidence of selection with respect to gender, race (black), and BMI.

However, the coefficient attached to ethnicity (Hispanic) is negative and precisely estimated, sug-

gesting favorable selection along that dimension.

Focusing on the all-important number of chronic conditions, the statistically insignificant co-

efficient suggests that subjects with preexisting health problems do not appear to adversely select

into nongroup insurance. In fact, lack of statistical significance notwithstanding, the negative

coefficient suggests that subjects with preexisting health problems might positively select out of

insurance. Although somewhat counterintuitive, many widely-cited studies have reported similar

findings in other types of insurance markets (Finkelstein & McGarry, 2006; Pauly, 2005; Cameron

& Trivedi, 2013).

One explanation for lack of adverse selection is that risk aversion, as opposed to unobserved

health problems, might represent the primary driver of insurance demand. To explore that pos-

sibility we added to the dependence parameter a binary measure of whether the person disagrees

“strongly” or “somewhat” that he or she likes to take risks. We omitted this measure from our

baseline models, due to the variable’s highly subjective nature. Nonetheless, the coefficient of that

variable failed to achieve statistical significance in the dependence parameter, casting doubt on

whether risk aversion explains the lack of adverse selection.

Another explanation, and the one that seems to corroborate evidence from the Massachusetts

health insurance reform (Hackmann, Kolstad, and Kowalski, 2015), is that the ACA’s mandate,

despite its relatively toothless penalties, might have drawn enough healthy enrollees into nongroup
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risk pools to offset adverse selection. This conjecture is impossible to verify without detailed panel

data on pre- and post-reform enrollees, but it seems the most likely explanation for the evident

lack of adverse selection.

Of course, using linear combinations of control variables might hide nonlinear relationships,

especially for nonbinary variables. To explore that possibility, for “Age” in the two marginals and

“Number of chronic conditions” in the dependence term, we replaced the covariate/slope terms

with smooth spline functions, as described in Section 3.1.2. Figure 1 shows graphs of those splines,

with 95% percent confidence bands. (All other coefficients were very similar to those reported in

Table 6.) The left-hand panel of Figure 1 shows that subjects between about 25 and 45 years

of age have lower probabilities of nongroup insurance enrollment, while subjects above 45 have

higher probabilities. The second panel shows that the probability of positive medical spending

increases in an (approximately) linear fashion with age. The right-hand panel shows the negative,

but insignificant, link between chronic conditions and the dependence term. The confidence band

appears to fan out as chronic conditions increase, largely because only 2 percent of subjects in

the estimation sample report more than 4 chronic conditions. Nevertheless, the figure indicates

that chronic conditions never appear to contribute positively to the dependence term, offering no

evidence of adverse selection along that dimension.

4.2 Part 2

The second part focuses on subjects with positive spending. Mirroring the model selection process

for the first part, we first choose appropriate marginals based on separate estimation of each

marginal, before turning to the copula. We again opt for a probit specification for the probability

of insurance enrollment. For positive spending, we attempted several distributions including the

lognormal, Weibull, gamma and Dagum, all of which allow for the highly skewed shape of positive

spending. The Dagum appeared to offer the best fit, according to AIC calculations and the residual

plots reported in Figure 2. Note that only parameter b (see Section 3.1.1) was specified as function
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of η since including predictors in the other parameters did not lead to improvements to fit. As for

the copula, Table 7 shows that AHM offers the best fit.

Having settled upon probit/Dagum marginals and the AHM copula, Table 8 presents estimates.

Coefficients of control variables produce similar signs to those reported in Part 1. [I’ll add a few

sentences about the marriage coefficients here.] Shown near the bottom of the table, the

dependence term, though smaller in magnitude than in Part 1, is positive and precisely estimated.

Again, that positive number combines the effect of insurance on spending with possible selection

effects.

Table 9 specifies the dependence term as a function of controls to determine the extent, if any, to

which those attributes contribute to adverse selection among positive spenders. In contrast to Part

1, the coefficient of female is positive, indicating that positive-spending females might adversely

select into nongroup insurance, relative to their male counterparts. Meanwhile, the coefficient of

BMI suggests (marginally significant) favorable selection along that dimension. Most importantly,

the coefficient attached to chronic conditions is indistinguishable from zero, which, similar to Part

1, indicates a lack of adverse selection with respect to that all-important dimension.

Figure 3 shows spline estimates for age and chronic conditions. The patterns are somewhat

similar to those observed in Part 1, although less precisely estimated, perhaps due to the smaller

sample size compared to Part 1. Again, most importantly, the link between chronic conditions and

dependence never appears to be significantly positive.

Finally, recognizing that some health conditions might require more medical at-

tention than others, we return to our baseline specifications, for both Parts 1 and 2,

and replace the chronic conditions variable with separate indicators for specific condi-

tions. Reporting only the coefficient estimates from the dependence parameter, Table

10 produces the same conclusion: chronic conditions do not appear to contribute to

adverse selection. The lone exception is asthma in Part 1 of the model, although
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considering that Table 10 contains nearly 20 coefficients for health conditions, a Type

I error would not be surprising at conventional levels of statistical significance.

5 Partial Effects of Insurance on Spending

Our copula-based setup allows us to recover a partial effect of insurance on spending, with particular

focus on how chronic conditions alter that relationship. We focus on Part 1, because the coefficient

of chronic conditions in Part 2 is nearly zero.

Therefore, using the converged parameter estimates from Part 1, we calculate

Pr(yi2 > 0 | yi1 = 1)− Pr(yi2 > 0 | yi1 = 0),

which would be equivalent to Pr(y2i = 1|y1i = 1)− Pr(y2i = 1|y1i = 0), where

Pr(y2i = 1|y1i = 1) =
C (Φ(η1i),Φ(η2i); θi)

Φ(η1i)
,

and

Pr(y2i = 1|y1i = 0) =
Φ(η

(y1i=0)
2i )− C (Φ(η1i),Φ(η2i); θi)

1− Φ(η1i)
.

In other words, this provides the difference in the probability of positive spending between a person

with and without nongroup insurance.

Figure 4 shows partial effects for one observation in our data; we choose a person with attributes

relatively close to sample medians. That person has zero chronic conditions, but we recoded that

variable several times to see how chronic conditions alter the partial effect. For zero chronic

conditions, nongroup insurance correlates with an increase of 0.296 in the probability of positive

spending, and that estimate differs statistically from zero. We stress that that number does not

provide the causal effect of insurance on positive spending, because residual selection effects might

remain. But it does remove selection effects stemming from variables that appear in our model:

age, married, smokes, region, gender, race, ethnicity, BMI, and chronic conditions.
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As the number of chronic conditions increases, the partial effect hardly budges from 0.296,

indicating a lack of selection with respect to preexisting health problems. The main message from

Figure 4, and indeed the main punchline of this paper, is that we fail to uncover evidence of adverse

selection with respect to preexisting health problems.

6 Conclusion

The Affordable Care Act (ACA) forbids insurance companies from adjusting premiums with respect

to certain attributes that are widely believed to correlate with medical risk, a restriction known

as “community rating.” The most important of those attributes is preexisting health problems.

This feature of the ACA, although seemingly popular with American voters, has raised concerns

about adverse selection, in which people with health problems might be disproportionately likely

to comply with the ACA’s mandate that everyone have insurance coverage, resulting in a relatively

sicker risk pool.

Focusing on the market for nongroup insurance, this paper explores whether, after implemen-

tation of the ACA, enrollees really do exhibit adverse selection with respect to attributes that

insurance companies must ignore. We adopt a copula-based hurdle model with the dependence

parameter specified as a function of those attributes, which allows us to determine the existence

(and direction) of selection patterns stemming from those attributes. Because our approach focuses

on dependence between nongroup insurance enrollment and medical spending after conditioning

on certain covariates, our method can be viewed as an extension of Chiappori and Salanié (2000).

Our main finding is that nongroup insurance enrollees do not appear to exhibit adverse selection,

particularly with respect to preexisting health problems. In fact, the first part of our hurdle speci-

fication finds some evidence of favorable selection with respect to preexisting conditions, although

that result fails to achieve statistical significance at conventional levels.

Overall, we conclude that, at least so far, fears of community rating/guaranteed issue causing
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adverse selection seem to have been misplaced. The most likely explanation is that the ACA’s

mandate, despite its relatively small penalties for noncompliance, might have attracted enough

healthy enrollees to offset any adverse selection. We stress, however, that the ACA is still relatively

young, and political support for the law seems to whipsaw with respect to whichever party has

political power. Furthermore, our findings apply just to nongroup private insurance markets. The

ACA also introduced sweeping changes to public insurance arrangements, but investigating those

likely requires a separate study.

Statistically, the copula-based hurdle model that we employ should prove useful for any outcome

variable that has high probability mass at zero and a long upper tail, and where the underlying

mechanism that determines whether the variable is positive can be decoupled from the process that

determines its magnitude if positive. Medical spending is one such example, but other variables

with similar distributional shapes, such as household income or charitable contributions, might also

apply. Moreover, whether used in a hurdle context or not, the copula approach, via its estimable

dependence parameter, should offer researchers the ability to uncover otherwise difficult-to-detect

details related to selection and endogeneity.
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Table 1: Summary statistics for office-based spending (n = 6,014)

Nongroup insurance No insurance

n = 1,553 n = 4,461

Any spending? 0.64 0.33

Spending among positive spenders

mean 1,087 343

median 179 0
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Table 2: Sample means of spending and nongroup coverage partitioned by traits insurers may
use to adjust premiums

Spending Nongroup coverage

age < 40 294 0.19

age ≥ 40 793 0.33

married = 0 371 0.21

married = 1 778 0.33

smokes = 0 571 0.26

smokes = 1 321 0.22

Northeast 523 0.21

Midwest 465 0.32

West 483 0.30

South 582 0.23

Table 3: Sample means of spending and nongroup coverage partitioned by traits insurers may
not use to adjust premiums

Spending Nongroup coverage

female = 0 333 0.23

female = 1 754 0.29

black = 0 545 0.26

black = 1 482 0.23

Hispanic = 0 811 0.39

Hispanic = 1 255 0.12

BMI 1st quartile 582 0.30

BMI 2nd quartile 452 0.26

BMI 3rd quartile 449 0.24

BMI 4th quartile 654 0.22

chronic conditions = 0 241 0.22

chronic conditions = 1 789 0.30

chronic conditions = 2 728 0.35

chronic conditions ≥ 3 1554 0.34
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Table 4: AIC values for PART 1 copula model (margins are Bernoulli with probit links)

Copula AIC

Gaussian 13,974

Clayton 13,971

Rotated Clayton (180 degrees) 14,001

Joe 14,004

Rotated Joe (180 degrees) 13,974

Gumbel 13,982

Rotated Gumbel (180 degrees) 13,971
Frank 13,982

AHM 13,972

FGM 13,990

Student-t (with df = 3) 13,972

Plackett 13,979
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Table 5: Rotated Gumbel copula model estimates of Part 1 (regression coefficients with stan-
dard errors in parentheses)

Nongroup insurance Any spending

Age 0.016∗∗ 0.024∗∗

(0.001) (0.001)

Married 0.246∗∗ 0.160∗∗

(0.038) (0.036)

Smokes −0.110∗∗ −0.197∗∗

(0.052) (0.048)

Northeast −0.060 0.010

(0.061) (0.056)

Midwest 0.247∗∗ 0.202∗∗

(0.051) (0.049)

West 0.202∗∗ 0.100∗∗

(0.044) (0.041)

South (omitted) – –

– –

Constant −1.484∗∗ −1.270∗∗

(0.062) (0.058)

Dependence τ (95% interval) 0.23 (0.21, 0.26)

* p < .10; ** p < .05

Table 6: Rotated Gumbel copula model estimates of Part 1 (regression coefficients with stan-
dard errors in parentheses). Here the dependence parameter is expressed as a function of covariates

Nongroup insurance Any spending Dependence

Age 0.016∗∗ 0.024∗∗ Female −0.028

(0.001) (0.001) (0.155)

Married 0.245∗∗ 0.155∗∗ Black 0.036

(0.038) (0.036) (0.204)

Smokes −0.100∗ −0.188∗∗ Hispanic −0.502∗∗

(0.052) (0.048) (0.199)

Northeast −0.058 0.008 BMI 0.003

(0.061) (0.056) (0.015)

Midwest 0.248∗∗ 0.198∗∗ Number of chronic conditions −0.096

(0.051) (0.049) (0.076)

West 0.204∗∗ 0.086∗∗

(0.044) (0.042)

South (omitted) – –

– –

Constant −1.489∗∗ −1.286∗∗ Constant 1.056∗∗

(0.062) (0.059) (0.391)

* p < .10; ** p < .05
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Figure 1. Part 1: Estimated smooth effects of age on nongroup insurance and positive spending,
and of number of chronic conditions on the dependence parameter on the scale of the predictor,
and associated 95% point-wise intervals. The jittered rug plot, at the bottom of the graph, shows

the covariate values.
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Table 7: AIC values for Part 2 copula model (margins are Bernoulli with probit link for
insurance, and Dagum for spending)

Copula AIC

Gaussian 41331.9

Clayton 41338.1

Rotated Clayton (180 degrees) 41350.7

Joe 41357.6

Rotated Joe (180 degrees) 41340.4

Gumbel 41341.8

Rotated Gumbel (180 degrees) 41330.9

Frank 41329.2

AHM 41328.7
FGM 41328.9

Student-t (with df = 3) 41336.6

Plackett 41329.5
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Figure 2. Histogram and normal Q-Q plot of randomised normalized quantile residuals (Dunn &
Smyth, 1996) for the Dagum marginal modeling positive spending.
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Table 8: AMH copula estimates of Part 2 (regression coefficients with standard errors in paren-
theses)

Nongroup insurance Positive spending

Age 0.013∗∗ 0.018∗∗

(0.002) (0.002)

Married 0.023 0.018

(0.053) (0.057)

Smokes −0.068 −0.172∗∗

(0.079) (0.084)

Northeast −0.042 0.071

(0.088) (0.094)

Midwest 0.299∗∗ −0.025

(0.072) (0.079)

West 0.195∗∗ 0.106

(0.063) (0.068)

South (omitted) – –

– –

Constant −0.918∗∗ 4.326∗∗

(0.097) (0.169)

a (95% interval) – 1.07 (1.01,1.12)

p (95% interval) 1.81 (1.52, 2.20)

Dependence τ (95% interval) 0.15 (0.12, 0.18)

* p < .10; ** p < .05
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Figure 3. Part 2: Estimated smooth effects of age on nongroup insurance and positive values of
spending, and of number of chronic conditions on the dependence parameter on the scale of the
predictor, and associated 95% point-wise intervals. The jittered rug plot, at the bottom of the

graph, shows the covariate values.
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Table 9: AMH copula estimates of Part 2 (regression coefficients with standard errors in paren-
theses). Here the dependence parameter is expressed as a function of covariates

Nongroup insurance Positive spending Dependence

Age 0.013∗∗ 0.018∗∗ Female 0.344∗∗

(0.002) (0.002) (0.165)

Married 0.020 0.020 Black −0.017

(0.053) (0.057) (0.250)

Smokes −0.064 −0.174∗∗ Hispanic 0.152

(0.079) (0.084) (0.203)

Northeast −0.060 0.066 BMI −0.027∗

(0.088) (0.094) (0.014)

Midwest 0.296∗∗ −0.025 Number of chronic conditions 0.004

(0.072) (0.076) (0.063)

West 0.183∗∗ 0.105

(0.064) (0.068)

South (omitted) – –

– –

Constant −0.925∗∗ 4.331∗∗ Constant 1.200∗∗

(0.097) (0.170) (0.395)

a (95% interval) – 1.07 (1.01,1.13)

p (95% interval) 1.81 (1.50, 2.20)

* p < .10; ** p < .05
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Figure 4. Partial effect of insurance on the probability of positive spending (with 95% confidence
band)
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Table 10: AMH copula estimates of dependence, with specific chronic conditions (regression
coefficients with standard errors in parentheses)

Any spending Positive spending

Dependence Dependence

Female −0.098 0.405∗∗

(0.158) (0.181)

Black 0.071 −0.085

(0.207) (0.277)

Hispanic −0.402∗∗ 0.071

(0.205) (0.212)

BMI 0.005 −0.028∗

(0.013) (0.015)

Physical limitation −0.253 −0.059

(0.419) (0.420)

High blood pressure −0.037 0.159

(0.206) (0.192)

Heart disease −0.818 0.533

(1.439) (0.798)

Had a stroke −1.235 −0.475

(1.363) (0.572)

High cholesterol −0.138 −0.222

(0.230) (0.196)

Cancer 0.324 0.097

(0.341) (0.491)

Diabetes −0.848 0.415

(0.558) (0.318)

Arthritis 0.220 −0.129

(0.253) (0.221)

Asthma 0.540∗∗ 0.007

(0.245) (0.280)

Constant 1.150∗∗ 1.225∗∗

(0.353) (0.416)

* p < .10; ** p < .05
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