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Simple Summary: This reseach explored the safety and feasibility of combining local chemotherapy
with fluorescence-guided resection in patients with a brain cancer, glioblastoma. The aim was to
determine if the combination of fluorescence-guided surgery using 5-aminolevulinic acid and BCNU
wafers left in the tumour cavity at the end of the operation was safe and did not prevent patients
getting subsequent chemo-radiotherapy. The results showed that combining local chemotherapy
with fluorescence-guided resection was tolerable in terms of surgical morbidity and overall toxicity.
However, any potential therapeutic benefit requires further investigation, preferably with improved
local delivery technologies.

Abstract: Background Glioblastoma (GBM) is the commonest primary malignant brain tumour in
adults and effective treatment options are limited. Combining local chemotherapy with enhanced
surgical resection using 5-aminolevulinic acid (5-ALA) could improve outcomes. Here we assess
the safety and feasibility of combining BCNU wafers with 5-ALA-guided surgery. Methods We
conducted a multicentre feasibility study of 5-ALA with BCNU wafers followed by standard-of-
care chemoradiotherapy (chemoRT) in patients with suspected GBM. Patients judged suitable for
radical resection were administered 5-ALA pre-operatively and BCNU wafers at the end resection.
Post-operative treatment continued as per routine clinical practice. The primary objective was
to establish if combining 5-ALA and BCNU wafers is safe without compromising patients from
receiving standard chemoRT. Results Seventy-two patients were recruited, sixty-four (88.9%) received
BCNU wafer implants, and fifty-nine (81.9%) patients remained eligible following formal histological
diagnosis. Seven (11.9%) eligible patients suffered surgical complications but only two (3.4%) were
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not able to begin chemoRT, four (6.8%) additional patients did not begin chemoRT within 6 weeks
of surgery due to surgical complications. Eleven (18.6%) patients did not begin chemoRT for other
reasons (other toxicity (n = 3), death (n = 3), lost to follow-up/withdrew (n = 3), clinical decision
(n = 1), poor performance status (n = 1)). Median progression-free survival was 8.7 months (95% CI:
6.4–9.8) and median overall survival was 14.7 months (95% CI: 11.7–16.8). Conclusions Combining
BCNU wafers with 5-ALA-guided surgery in newly diagnosed GBM patients is both feasible and
tolerable in terms of surgical morbidity and overall toxicity. Any potential therapeutic benefit for
the sequential use of 5-ALA and BCNU with chemoRT requires further investigation with improved
local delivery technologies.

Keywords: glioblastoma; 5-aminolevulinic acid; BCNU wafers; chemoRT; feasibility trial

1. Introduction

Each year in the UK around 11,725 new cases of brain or central nervous system
cancers are diagnosed, affecting around 7 per 100,000 of the population (source Cancer
Research UK). The commonest of these is WHO Grade IV Astrocytoma, Glioblastoma
(GBM), which accounts for over 80% of primary glial tumours. The median life expectancy
in optimally managed patients is only 12–14 months with only 25% surviving 24 months [1].
The current clinical management of patients diagnosed with a GBM involves a combination
of surgery, radiotherapy, and chemotherapy. However, survival trends for patients with
GBM have remained largely static, reflecting the lack of therapeutic options for patients
with these cancers [2]. Even in patients with a gross macroscopic resection, recurrence
is the norm, with over 80% of relapsed disease occurring within 2 cm of the resection
margin [3]. This observation has led to sustained interest in local therapies, particularly
local chemotherapy [4].

Poly [carboxyphenoxy-propane/sebacic acid] anhydride wafers containing 3.85%
carmustine-3-bis (2-choloroethyl 1)-1-Nitrosurea (BCNU) release carmustine over 2–3 weeks
after being placed onto the surface of the tumour resection cavity [5]. BCNU wafers are the
only local delivery technology approved for use in brain cancer patients. Initial clinical
trial evaluation of local therapy with BCNU wafers in primary high-grade glioma showed
promising improvement in survival [5,6]. However, these data were confounded by the
inclusion of both WHO grade IV and grade III gliomas, which have very different survival
profiles [7]. Subsequent long-term follow-up confirmed that grade III tumours dominated
the long-term survivor cohort [8], and the use of BCNU wafers in the primary setting
remains controversial [4,9].

Surgical advances have led to improved cytoreduction without compromising pa-
tient safety [10]. Improved cytoreduction in turn significantly improves clinical outcomes
for GBM patients [11]. An important surgical adjunct that improves tumour resection
is fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA), which improves
resection and progression-free survival [12]. A complete resection based on 5-ALA fluores-
cence can offer greater than 6-month OS in glioblastoma patients without an increase in
post-operative neurological deficits [13,14].

The evaluation of local therapies in the context of current standard of care lacks
prospective data [9]. The combination of fluorescence-guided resection using 5-ALA with
local delivery of BCNU could enhance the benefit of subsequent chemoradiotherapy by
optimizing disease control in the immediate post-operative period of 4–6 weeks until
definitive treatment begins [7]. However, a prospective study to evaluate the safety,
feasibility, and potential clinical benefit of combining 5-ALA and BCNU wafers in the
surgical management of patients with newly diagnosed GBM has yet to be reported.

The development and evaluation of local delivery technologies has to take place in
the context of the modern standard of clinical care. Therefore, it is necessary to understand
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the feasibility, tolerability, and safety of integrating BCNU wafers into the current pathway
of care.

The aim of this clinical trial was to understand the impact of BCNU wafers on post-
operative recovery and completion of chemoradiotherapy. We also sought to determine
if the use of BCNU wafers was associated with increased surgical complications or new
neurological deficits in patients undergoing 5-ALA resections. A secondary objective was
to identify a signal of efficacy sufficient to support a randomized clinical trial.

2. Materials and Methods
2.1. Study Design and Treatment

This was a single arm study to evaluate the safety and tolerability of combining 5-ALA
and BCNU wafers in the surgical management of patients with newly diagnosed GBM. The
primary objective of the study was to identify any serious adverse impact of combining
5-ALA resection and BCNU-wafer insertion on post-operative recovery and completion of
subsequent standard therapy. The secondary objective was to gather preliminary evidence
of progression-free survival (PFS), overall survival (OS), and patient-reported QoL to
inform the feasibility of an efficacy study.

Patients suspected of having a GBM based on magnetic resonance imaging (MRI) and
judged suitable for radical resection at the neuro-oncology multi-disciplinary team (MDT)
meetings (tumour board) were administered 5-ALA pre-operatively (up to 20 mg/kg,
dissolved in tap water, 3–5 h prior to anaesthesia). Following intra-operative histological
confirmation of “high-grade glioma likely GBM”, patients received BCNU-wafers after the
tumour had been radically resected (up to eight discs, each containing 7.7 mg carmustine
plus 192.3 mg polifeprosan 20). Subsequent radiotherapy and chemotherapy continued as
per standard clinical practice [1].

Signed informed consent was obtained from all patients before any study-specific
procedures were undertaken. Patient registration and trial management were performed
by the Cancer Research United Kingdom and University College London Cancer Trials
Centre (ClinicalTrials.gov identifier: NCT01310868, accessed on 21 June 2021).

2.2. Patients and Assessments

In addition to pre-operative MDT review, additional eligibility criteria were: age
≥18 years and WHO performance status of 0 or 1. Patients were excluded from trial
participation if they had HIV, significant infection, or comorbidities that would preclude
radical therapy; active liver disease; received concomitant anti-cancer therapy except
steroids; a history of other malignancies within 5 years; undergone previous brain surgery
or cranial radiotherapy; platelets < 100 × 109/L; Mini-Mental State Examination score < 15;
were pregnant or lactating or had evidence of contra-indication to 5-ALA or BCNU wafers.
Eligibility assessments were completed a maximum of 2 weeks prior to registration.

Patients underwent a routine clinical MRI scanning protocol including contrast-
enhanced MRI prior to the surgery, within 72 h of surgery, for radiotherapy planning,
after three cycles of adjuvant temozolomide treatment, post-adjuvant temozolomide treat-
ment (after six cycles), and then at 6-monthly intervals or upon symptomatic progression.
MRI protocols varied between centres with regard to field strength (1.5 T or 3 T) and
exact scanning parameters but included as a minimum T2, FLAIR, DWI, and pre- and
post-contrast T1-weighted sequences in a matching plane. Images were not reviewed
centrally prior to patient inclusion but were reviewed by two neuroradiologists upon
study completion. Complete resection of enhancing tumour was defined as lack of any
residual enhancement in the post-operative MRI (within 72 h). Radiological progression
was defined as per RANO criteria [15].

Neurological examinations using NIH stroke score, surgical complications, adverse
events, performance status, quality of life (QoL), and a record of the administration of
steroids, other treatment, and concomitant medications were reported at baseline; within

ClinicalTrials.gov
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one month of surgery; pre-radiotherapy; pre-, mid-, and post-adjuvant chemotherapy; at
12-, 18-, and 24-months post-surgery; and then 6-monthly until death.

2.3. Genetic Analysis

Samples were tested for IDH1 and IDH2 mutations as follows: the IDH1 R132H
mutation by immunostaining [16] followed, if negative, by pyrosequencing to identify if
any of the less frequent mutations were present, i.e., IDH1 R132G, IDH1 R132C, IDH2
R172K, IDH2 R172M, and IDH2 R172W mutations [17]. The average MGMT methylation
of CpGs 74–89 inclusive was determined by bisulphite modification of DNA followed by
pyrosequencing. An average value over these 16 CpGs of greater than 10% was taken to
indicate significant methylation [17].

2.4. Outcomes and Statistical Considerations

The primary objective was to establish that the combined use of 5-ALA and BCNU
wafers did not compromise a patient from getting standard chemoRT. Assuming a target
rate of ≥95% completing chemoRT, <85% of eligible patients completing chemoRT due to
the combined use of 5-ALA and BCNU would be unacceptable. Using an exact sample
size calculation, with one-sided 5% significance level and 80% power, 60 eligible patients
receiving 5-ALA and BCNU wafers were required. The following endpoints were included
to further assess safety and tolerability: procedure compliance; post-operative complication
rate; failure to start, delays and interruptions to chemoRT due to surgical complications;
WHO performance status before and after surgery. The secondary objective was to gather
preliminary evidence of progression-free survival (PFS), overall survival (OS), and patient-
reported QoL.

The outcome measures are presented using descriptive statistics. PFS and OS were
analysed using the Kaplan–Meier method; patients were censored on the date they were
last seen if no event had occurred. Analyses were carried out on all eligible patients, unless
otherwise stated, and were generated using SAS software version 9.4 (SAS Institute Inc.,
Cary, NC, USA) and GraphPad Prism version 6 (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Patients

Seventy-two patients were recruited from eight UK sites between July 2011 and
May 2013. High suspicion of GBM was confirmed in sixty-two cases based on typical
appearances of an intra-axial tumour with aggressive enhancement, surrounding T2-
hyperintensity and no restricted diffusion within the enhancing component. Seven were
classified as not typical for GBM, three of these were subsequently confirmed as GBM on
histopathological analysis and four were other tumour types. Three patients did not have
preoperative images available for central review.

Sixty-four (88.9%) of the seventy-two patients recruited received BCNU wafer im-
plants; fifty-nine patients had an extent of resection ≥90%, one patient had 70%, and data
were unavailable for four patients (neurosurgeon considered resection to be complete
in all four cases). Eight patients (11.1%) did not receive BCNU wafer implants due to
“high-grade glioma likely GBM” not being confirmed peri-operatively in four patients,
ventricular breach in three patients, and peri-operative haemorrhage in one patient. A
further four patients were ineligible due to GBM not being diagnosed post-operatively
(anaplastic oligodendroglioma (n = 3, two grade 3 and one not specified); anaplastic as-
trocytoma (n = 1, grade 3)), and one patient had a simultaneous diagnosis of unrelated
cutaneous sebaceous carcinoma.

In total, 59 (81.9%) of the seventy-two patients recruited remained eligible to partici-
pate in the study after formal diagnosis (Figure 1). The characteristics of all eligible patients
are shown in Table 1; median age was 59 years (range 37–71) and 37 (62.7%) were male.
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Table 1. Patient characteristics—eligible patients.

Patient Characteristic. N = 59

n (%)

Gender

Female 22 (37.3)
Male 37 (62.7)

Karnofsky Performance Status

100 21 (35.6)
90 29 (49.2)
80 6 (10.2)
70 1 (1.7)
60 2 (3.4)

WHO Performance Status

0 37 (62.7)
1

2–4
22 (37.3)
0 (0.0)

Tumour Location

Frontal 20 (33.9)
Parietal 14 (23.7)

Temporal 14 (23.7)
Central 1 (1.7)

Occipital 1 (1.7)
Other: Frontal and Parietal 3 (5.1)

Other: Temporal and Parietal 3 (5.1)
Other: Parietal and Occipital 2 (3.4)
Other: Frontal and Temporal 1 (1.7)
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Table 1. Cont.

Patient Characteristic. N = 59

Tumour Hemisphere

Left 29 (49.2)
Right 29 (49.2)
Both 1 (1.7)

Median (Range)

Age (years) 59.0 (37.0–71.0)
Haemoglobin (g/dL) 14.7 (11.7–17.7)

Platelets (×109/L) 258.0 (125.0–475.0)
INR (n = 52) 0.9 (0.8–1.1)

Absolute Neutrophil Count (×109/L) (n = 57) 11.1 (2.2–21.7)
White Blood Cell Count (×109/L) 12.9 (4.9–25.3)

3.2. Treatment Compliance and Safety

Seven (11.9%) of the fifty-nine eligible patients suffered surgical complications: wound
infections were reported in five patients (8.5%) and cerebrospinal fluid (CSF) leakage in
four patients (6.8%). Two patients (3.4%) were not able to begin chemoRT due to surgical
complications: one wound infection and one CSF leakage. Other reasons patients were not
able to start chemoRT were other toxicity (n = 3: diabetes; muscle weakness; lung infection,
back pain, and perforated bowel); death (n = 3); lost to follow-up (n = 2); clinical decision
(n = 1); consent withdrawn (n = 1); and poor performance status (n = 1).

In total, 46 (78.0%) of the fifty-nine eligible patients received chemoRT, including 4
(6.8%) patients whose further treatment was delayed beyond 6 weeks after surgery due to
surgical complications: 3 wound infections and 1 CSF leakage. Radiotherapy was given
over a median (range) of 30 (30–31) fractions, with a total dose of 60.0 (54.0–62.0) Gy.
Temozolomide was given concomitantly with radiotherapy over 42 (1–48) days at 75.0
(75.0–75.0) mg/m2 per day. Concomitant chemoRT was interrupted in a total of 18 (39.1%)
of the forty-six patients. Chemotherapy was interrupted in 13/46 (28.3%) patients due to
toxicity (n = 11: bone marrow suppression (n = 4); thromboembolic event (n = 2); confusion;
colon perforation; infection; dysphasia; oedema), logistical reasons (n = 1), and unknown
(n = 1), and radiotherapy was interrupted in 12/46 (26.1%) patients due to toxicity (n = 4:
bilateral retinal detachment; confusion; wound oedema; wound infection) and logistical
reasons (n = 8).

Forty-three (93.5%) of the forty-six patients who received chemoRT continued to
adjuvant chemotherapy, one patient progressed before starting, and two were lost to
follow-up. Adjuvant chemotherapy was completed without interruption in 24/43 (55.8%)
patients, with 19/43 (44.2%) patients unable to complete adjuvant chemotherapy without
interruption due to: toxicity (n = 11), disease progression (n = 5), administrative failure
(n = 2), and unknown (n = 1).

During the course of the study, 34 (57.6%) of the fifty-nine eligible patients reported
79 adverse events of maximum grade ≥ 3 (Table 2), the most common of which were
muscle weakness and seizure, which were each reported in 5 patients (8.5%). None of
these grade ≥3 adverse events were “likely” related to 5-ALA, whilst 7 events in 6 patients
(10.2%) were at least “possibly” related to the BCNU wafers: wound infection (n = 2), sepsis
(n = 2), cerebrospinal fluid leakage (n = 1), cerebral oedema (n = 1), and seizure (n = 1).
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Table 2. Reported grade 3 or higher adverse events—eligible patients.

Adverse Events N = 59

n (%)
Any grade 3 or higher * 34 (57.6)

Any grade 3+ at least “possibly” related to 5-ALA 0 (0)

Any grade 3+ at least “possibly” related to BCNU wafers 6 (10.2)
Sepsis 2 (3.4)

Wound Infection 2 (3.4)
Cerebrospinal Fluid Leakage 1 (1.7)

Cerebral Oedema 1 (1.7)
Seizure 1 (1.7)

Any grade 3+ at least “possibly” related to surgery 15 (25.4)
Wound Infection 3 (5.1)
Muscle Weakness 2 (3.4)

Seizure 2 (3.4)
Thrombolytic Event 2 (3.4)

Blurred Vision 1 (1.7)
Cerebral Abscess 1 (1.7)

Cerebrospinal Fluid Leakage 1 (1.7)
Cerebral Oedema 1 (1.7)

Intra-operative Neurological Injury 1 (1.7)
Paraesthesia 1 (1.7)

Sepsis 1 (1.7)
Stroke 1 (1.7)

Visual Field Loss 1 (1.7)
* Grade 4 = 9 patients (15.3%); Grade 5 = 2 patients (3.4%).

3.3. Efficacy

Long-term follow-up was collected for more than four years after the last patient
was registered; 1 patient (1.7%) was alive without progression, 3 patients (5.1%) were
alive having progressed, and 55 patients (93.2%) had died. Causes of death were dis-
ease/progression (n = 50), combination of disease and treatment related complications
(n = 2), surgical complications and stroke (n = 1), septicaemia (n = 1), and one missing.

Median PFS was 8.7 months (95% CI: 6.4-9.8; Figure 2A), and median OS was
14.7 months (95% CI: 11.7-16.8, Figure 2B). In exploratory analyses, there was strong evi-
dence of longer OS in the total resection group compared with partial resection (HR = 0.47,
95% CI: 0.26–0.85, p = 0.01); the same direction of effect was also observed for PFS, although
this did not reach statistical significance (HR = 0.63, 95% CI: 0.35–1.14, p = 0.12) (Figure 3).

Compared with baseline WHO performance status, where available, 31 patients
(31/57, 54.4%) were in the same category or improved post-surgery, and 26/57 (45.6%) had
a lower WHO performance status post-surgery. In 6/57 (10.5%) post-surgery performance
status was lower by more than one category.

There was a decrease in median Mini-Mental State Examination score between regis-
tration and post-adjuvant chemotherapy assessment (from a median of 28.0 to 26.0 points,
p = 0.04; Table 3A) and an increase in median NIH Stroke Score (0.0 to 0.5 points, p = 0.001;
Table 3B). There was no marked change in EORTC QoL functional domains over time,
except for physical functioning (100.0 to 73.3 points, p < 0.001) and social functioning
(83.3 to 66.7 points, p = 0.05), which decreased between registration and post-adjuvant
chemotherapy assessment (Table 3C,D).
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Table 3. (A–D) Mini-Mental State Examination (A), NIH Stroke Scale (B), and Quality of Life (C,D)—eligible patients.

(A) Mini-Mental State Examination (0–30, Severe to No Cognitive Impairment).

Visit N = 59 Median (IQR)

Registration 58 28.0 (25.0, 29.0)
Post-adjuvant chemotherapy 18 26.0 (22.0, 29.0)

Change from registration to post-adjuvant chemotherapy 18 −1.5 (−4.0, 2.0)

(B) NIH Stroke Scale (0–42, No to Severe Symptoms).

Visit N = 59 Median (IQR)

Registration 58 0.0 (0.0, 1.0)
Post-surgery 54 0.0 (0.0, 1.0)

Pre-radiotherapy 39 0.0 (0.0, 2.0)
Post-radiotherapy 34 0.5 (0.0, 2.0)

Mid-adjuvant chemotherapy 26 1.0 (0.0, 2.0)
Post-adjuvant chemotherapy 18 0.5 (0.0, 2.0)

Change from registration to post-adjuvant chemotherapy 18 0.0 (0.0, 0.2)

(C) Quality of Life: EORTC QLQ-C30 Functional Domains (0–100, No to High/Healthy Level of Functioning).

Visit N = 59 Physical
Functioning

Role
Functioning

Emotional
Functioning

Cognitive
Functioning

Social
Functioning

Registration 58 100.0 (86.7, 100.0) 83.3 (50.0, 100.0) 79.2 (66.7, 91.7) 66.7 (66.7, 83.3) 83.3 (66.7, 100.0)
Pre-radiotherapy 36 80.0 (62.5, 93.3) 66.7 (33.3, 100.0) 83.3 (66.7, 95.8) 75.0 (66.7, 83.3) 66.7 (50.0, 83.3)
Post-radiotherapy 34 76.7 (53.3, 93.3) 66.7 (33.3, 100.0) 83.3 (66.7, 100.0) 66.7 (50.0, 83.3) 66.7 (33.3, 100.0)

Mid-adjuvant
chemotherapy 29 73.3 (60.0, 93.3) 66.7 (33.3, 100.0) 83.3 (66.7, 100.0) 66.7 (50.0, 83.3) 66.7 (33.3, 100.0)

Post-adjuvant
chemotherapy 20 73.3 (60.0, 86.7) 66.7 (33.3, 100.0) 75.0 (66.7, 100.0) 83.3 (66.7, 83.3) 66.7 (50.0, 100.0)

Change from
registration to
post-adjuvant
chemotherapy

20 −20.0 (−40.0, 0.0) 0.0 (−33.3, 33.3) 0.0 (−20.8, 8.3) 0.0 (−16.7, 16.7) −16.7 (−41.7, 0.0)

(D) Quality of Life: EORTC QLQ-BN20 (0–100, No to Severe Symptoms).

Visit N = 59 Future
Uncertainty

Visual
Disorder Motor Dysfunction Communication

Deficit

Registration 58 33.3 (16.7, 58.3) 0.0 (0.0, 22.2) 11.1 (0.0, 22.2) 16.7 (0.0, 33.3)
Pre-radiotherapy 36 25.0 (16.7, 50.0) 5.6 (0.0, 22.2) 22.2 (11.1, 33.3) 11.1 (0.0, 27.8)
Post-radiotherapy 34 29.2 (8.3, 50.0) 5.6 (0.0, 22.2) 16.7 (0.0, 33.3) 11.1 (0.0, 33.3)

Mid-adjuvant
chemotherapy 29 16.7 (8.3, 41.7) 0.0 (0.0, 11.1) 11.1 (0.0, 22.2) 11.1 (0.0, 33.3)

Post-adjuvant
chemotherapy 18 16.7 (8.3, 41.7) 0.0 (0.0, 11.1) 11.1 (0.0, 33.3) 11.1 (0.0, 22.2)

Change from
registration to
post-adjuvant
chemotherapy

18 −8.3 (−25.0, 16.7) 0.0 (0.0, 0.0) 0.0 (0.0, 22.2) 0.0 (0.0, 11.1)

3.4. IDH1 and IDH2 Mutation and MGMT Methylation Analysis

Tumour tissue from forty-five patients were comprehensively analysed for IDH1 or
IDH2 mutations and methylation of sixteen sites (CpG’s 74–89) in the CpG island of the
MGMT gene. Only 1 (2.2%) of these was found to have an IDH1 mutation, the common
R132H mutation; there were no other IDH1 or IDH2 mutations. Seventeen (37.8%) were
considered to be methylated. In exploratory analyses, there was no strong evidence of a
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difference in PFS (HR = 0.67, 95% CI: 0.35–1.30, p = 0.24) or OS (HR = 0.65, 95% CI: 0.32–1.33,
p = 0.24) between methylated and unmethylated groups, respectively (Figure 4).
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4. Discussion

We report the results of a prospective single-arm feasibility study to evaluate the safety
and tolerability of combining 5-ALA and BCNU wafers in the surgical management of
patients with newly diagnosed GBM.

Of the seventy-two patients who underwent 5-ALA resection, 64 (88.9%) received
BCNU wafers. Eight patients (11.1%) did not receive BCNU wafer implants due to “high-
grade glioma likely GBM” not being confirmed peri-operatively in four patients, ventricular
breach in three patients, and peri-operative haemorrhage in one patient. A further four
patients were ineligible due to GBM not being diagnosed post-operatively (anaplastic
oligodendroglioma (n = 3, two grade 3 and one not specified); anaplastic astrocytoma (n = 1,
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grade 3)). One patient had a simultaneous diagnosis of unrelated cutaneous sebaceous
carcinoma. These exclusions meant that 59 (81.9%) of the seventy-two patients who
underwent 5-ALA resection remained eligible.

Surgical complications of CSF leakage and wound infection were reported in 7 (11.9%)
eligible patients. Grade 3 or higher adverse events possibly related to BCNU wafers
were uncommon (2× wound infection, 2× sepsis, 1× CSF leakage, 1× cerebral oedema,
1× seizures), and there were no reports of intracranial hypertension.

In total, 46 (78.0%) of the eligible patients received chemoradiotherapy; 13 (22.0%)
did not get further treatment, but only 2/59 (3.4%) were the result of using BCNU wafers.
A further 4/59 (6.8%) were delayed starting further treatment due to surgical complications
arising from BCNU wafers in 5-ALA resected GBM.

These data suggest that the use of 5-ALA combined with BCNU wafers had limited
impact on patients receiving further treatment.

The morbidity associated with the use of BCNU wafers is variably reported in the
literature. The available RCT data antedates the use of 5-ALA but reports no difference in
cerebral oedema, wound healing, infections, seizures, and thromboembolic events between
patients receiving BCNU wafers and controls [5,6,8,18]. Interestingly only CSF leaks (5% vs.
0.8%) and intracranial hypertension (9.1% vs. 1.7%) were significantly increased in patients
receiving wafer implants in the study by Westphal et al. [5]. In a prospective observational
surgical series of 113 GBM patients across 15 neurosurgical centres reflecting real-world
practice in the UK, post-operative complications were reported in 23.6% (27/113), with
surgical complications accounting for 48.1% (13/27) [19]. In this prospective study, the
overall surgical complication rate was 11.9%, with CSF leakage in four patients and wound
infection in five patients. These data are similar to several retrospective reports involving
over 2300 patients [20–23]. In our study only 2 (3.4%) patients did not receive chemoRT
due to surgical complications, which is again consistent with these retrospective studies.

However, treatment was interrupted in 18/46 (39.1%) patients who received concomi-
tant chemoradiotherapy, due to toxicity or logistical reasons, and 19/43 (44.2%) of patients
receiving adjuvant chemotherapy were unable to complete treatment without interruption,
of which 11 (25.6%) were due to toxicity. These data are consistent with non-surgical trial
data; in RTOG 0525 for example, 120/351 (34.2%) patients receiving standard adjuvant
chemotherapy reported grade 3–5 toxicity [24]. Overall, our data suggests that the morbid-
ity associated with intra-operative chemotherapy in the modern surgical era is acceptable
and should not be used as a justification for withholding treatment or investing in research,
including clinical trials.

The question of efficacy of BCNU wafers remains controversial. In this study we
report a median PFS of 8.7 months and OS of 14.7 months, after the majority of patients
(92.2%) who received BCNU wafers had >90% resection based on post-op MRI data. In
exploratory analysis, a complete resection was associated with longer OS than that seen in
patients with a partial resection (median 16.8 vs. 10.3 months, respectively).

Several retrospective series reported improved survival from the use of BCNU wafers
in the context of modern chemoradiotherapy and 5-ALA [21–23]. One study compared
5-ALA and BCNU versus control standard of care and concluded that there was synergy
between enhanced resection using 5-ALA combined with the implantation of BCNU
wafers [23]. Importantly, they also reported an increase in the number of patients surviving
more than 3 years. Another reviewed 1659 high-grade glioma and reported a median
survival of 18 months in newly diagnosed patients, with benefit from implanted wafers [22].
However, no distinction was made between anaplastic astrocytomas (WHO grade III) and
GBM (WHO grade IV). Long-term follow-up of a cohort of GBM patients prospectively
recruited into an RCT reported a trend for enhanced survival in BCNU-treated patients that
did not reach significance [8]. In this RCT, of 11 patients alive after 56 months follow-up,
6 were Grade III astrocytomas, 2 were Grade IV astrocytomas, and 3 were “other” on
histological diagnosis. In contrast, a retrospective evaluation of 5-ALA and BCNU in a UK
cohort of 260 histologically confirmed GBM patients concluded that no residual disease,
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no residual fluorescence, and post-operative radio- and chemotherapy were all associated
with improved outcome, but the use of BCNU wafers had no impact on survival [20].

The observed median PFS and OS of 8.7 months and 14.7 months here are similar to
non-surgical studies in mixed MGMT methylated and unmethylated GBM populations
using modern neuro-oncology protocols [24–26]. In an exploratory analysis, patients who
were MGMT methylated generally displayed similar outcomes compared with those who
were unmethylated despite a small number of patients in the methylated group having
longer survival (>24 months in five patients). However, the sample size here is too small to
draw definitive conclusions.

The use of BCNU wafers did not markedly impact performance status or quality of life
(QoL) in this single-arm study. A decline in performance status in the early post-operative
period was observed, but this was consistent with recovery from the surgical procedure
itself [27]. There was no marked change in EORTC QoL functional domains over time,
except for physical and social functioning, which decreased between registration and post-
adjuvant chemotherapy assessment. These data are consistent with a retrospective analysis
showing that BCNU wafers did not significantly reduce early post-operative KPS [21]. In
the randomized-double blind phase III trial of Avastin in Glioblastoma (AVAglio) study
(BO21990), the median time to deterioration in performance status was 6 months in the
placebo arm and 9 months in the experimental arm [26]. The functional changes observed in
our cohort of patients are consistent with those reported for high-grade glioma patients [28]
and likely reflect a combination of treatment effect and disease progression rather than
local delivery of chemotherapy [24].

An unexpected challenge in this study was rapid, accurate intra-operative diagnosis.
The incidence of patients who could not be diagnosed as “high-grade glioma likely GBM”
on frozen sections during surgery was 5.6% (4/72); these patients did not get wafers
implanted. In patients who did receive BCNU wafers based on peri-operative tissue
analysis, 6.3% (4/64) were re-diagnosed as anaplastic oligodendroglioma (n = 3) and
anaplastic astrocytoma (n = 1). No patient had their wafers removed as a consequence of
the change in diagnosis, but these examples highlight the importance of accurate diagnostic
information in real-time during the operative procedure [29,30] in order to optimize surgical
contribution to precision treatment in the context of local therapy [31].

The main limitation of this feasibility study was that the single-arm design does not
allow for a direct comparison with a group of patients who did not receive the combination
of 5-ALA and BCNU wafers. Additionally, the relatively moderate sample size means
that evidence for therapeutic benefit is limited, and further investigation is required in a
randomized setting. However, we provide prospective data with long-term follow-up in a
multicentre trial setting which will help to inform the design of future studies. The nature
of such research will need to recognize that perhaps the biggest issue with local delivery
strategies for GBM is the characteristics of the BCNU wafers themselves. The biomaterial
is stiff and releases the majority of its payload rapidly; this interferes with local wound
healing, promoting the potential for CSF leakage and local infection.

The results of our study serve to emphasize that the clinical and biomaterials commu-
nities need to work together to deliver material that is more closely aligned with end-user
requirements [32]. This has been discussed at length elsewhere [33], but a softer mate-
rial that adheres to the irregular surface of the tumour cavity, elutes drug over a longer
timescale, and is biodegradable would seem a reasonable starting point [34] (Figure 5).
The engineering should be coupled with a clinical trial strategy for delivering results from
the clinic to provide quantitative lessons and benchmarks that will guide the biomaterials
community in developing novel local chemotherapy delivery systems.
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5. Conclusions

• Use of 5-ALA and BCNU wafers in the surgical management of newly diagnosed
GBM patients is both feasible and tolerable in terms of surgical morbidity and over-
all toxicity.

• Any potential therapeutic benefit of 5-ALA and BCNU wafers with chemoRT requires
further investigation
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