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Abstract 

Inbreeding can lead to a loss of heterozygosity in a population, and, when combined with genetic drift, 

may reduce the adaptive potential of a species. However, there is uncertainty about whether 

resequencing data can provide accurate and consistent inbreeding estimates. Here, we perform an in-

depth inbreeding analysis for hihi (Notiomystis cincta), an endemic and nationally vulnerable passerine 

bird of Aotearoa New Zealand. We first focus on subsampling variants from a reference genome male, 

and find that low-density datasets tend to miss runs of homozygosity (ROH) in some places and 

overestimate ROH length in others, resulting in contrasting homozygosity landscapes. Low-coverage 

resequencing and 50K SNP array densities can yield comparable inbreeding results to high-coverage 

resequencing approaches, but the results for all datasets were highly dependent on the software settings 

employed. Secondly, we extended our analysis to ten hihi where low-coverage whole genome 

resequencing, RAD-seq and SNP array genotypes are available. We inferred ROH and individual 

inbreeding to evaluate the relative effects of sequencing depth versus SNP density on estimating 

inbreeding coefficients and found that high rates of missingness downwardly bias both the number and 

length of ROH. In summary, when using genomic data to evaluate inbreeding, studies must consider 

that ROH estimates are heavily dependent on analysis parameters, dataset density and individual 

sequencing depth. 

Keywords: whole-genome resequencing; genomic inbreeding; runs of homozygosity; SNP array; 

conservation genomics; Notiomystis cincta  
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1. Introduction 

Mating between close relatives may reduce fitness in offspring, an effect attributed to the unmasking of 

deleterious recessive mutations in regions of the genome that are rendered identical by descent (IBD; 

Charlesworth & Charlesworth, 1987; Bosse et al., 2019). Whilst inbreeding is generally undesirable, the 

stakes are especially high in at-risk species, for example where genetic diversity has been reduced by 

severe bottlenecks or habitat fragmentation (Maya-Garcia et al., 2017). For these reasons, estimation 

of the inbreeding coefficient (F) is commonly used in ecology, evolution and conservation biology where 

it may be employed as a proxy for adaptive potential and to inform population management strategies 

(Hoffmann et al., 2017). 

Early attempts to quantify inbreeding relied solely on pedigree-based estimators (FPED; Kardos et al., 

2016) until the widespread adoption of microsatellite markers in molecular ecology. Multi-locus 

microsatellite genotypes were frequently incorporated to validate and add to observational pedigrees 

(Pemberton, 2008) or to estimate multi-locus heterozygosity (MLH; Coltman et al., 1999; Marshall & 

Spalton, 2000; Slate et al., 2000), which is expected to correlate with inbreeding if there is high variance 

in inbreeding in a population (Slate et al., 2004). As genomics technologies have advanced, genome-

wide data is increasingly being employed to generate large datasets of single nucleotide polymorphisms 

(SNPs) that can be used to estimate MLH or genomic inbreeding coefficients (Leutenegger et al., 2003; 

Huisman et al., 2016b; Zilko et al., 2020). 

In addition to the genome-wide inbreeding measures, it is possible to determine the distribution and size 

of regions of the genome that contain runs of homozygosity (ROH). The idea of using runs of 

homozygosity as a means of understanding inbreeding has its origin in human studies (Broman & 

Weber, 1999; Gibson et al., 2006; McQuillan et al., 2008), but has been widely embraced in the 

agricultural and horticultural communities (Sölkner et al., 2010). To-date, most ROH-based studies have 

come from primary industry, particularly commercial livestock breeding (e.g. cattle in Zhang et al., 2015 

and in Forutan et al., 2018; horses in Grilz-Seger et al., 2018; pigs in Bosse et al., 2012; Schiavo et al., 

2020). Quantifying ROH on a large scale, sometimes involving hundreds of thousands of individuals, 

has proved a useful tool to track an individual’s ancestry (Kirin et al., 2010), find and explain variation 
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across individuals and populations (Pemberton et al., 2012) and to better understand their demographic 

history and disease architecture (Ceballos et al., 2018b). Longer stretches of homozygous segments 

are assumed to reflect IBD through recent inbreeding, whereas shorter runs indicate a more historic 

inbreeding event (Curik et al., 2014). Very short ROH are typically excluded from any inbreeding 

analysis, as they could simply occur due to population-specific linkage disequilibrium between markers 

(Ferenčaković et al., 2013; Pryce et al., 2014). To estimate genome-wide inbreeding FROH, the total sum 

of all runs of homozygosity segments is divided by the size of the autosomal genome of a species. 

Relatively little research on ROH has been performed in non-model organisms. However, a key insight 

from ROH studies has been that a large proportion of deleterious homozygous genotypes seem to fall 

into ROH (Szpiech et al., 2013), leading to the prediction that ROH detection could be one of the most 

powerful methods to investigate inbreeding depression (Keller et al., 2011). As genomic technologies 

have become more affordable, the opportunity to infer individual ROH in animals of high ecological 

importance or of conservation concern has therefore received increasing attention (Grossen et al., 2018; 

Hooper et al., 2020; Humble et al., 2020; Wang et al., 2021; Escoda & Castresana, in press). For 

example, a large-scale collared flycatcher (Ficedula albicollis) study on genomic inbreeding and 

historical demography found ROH sizes between 953bp and 17.5Mbp (Kardos et al., 2017), with highest 

ROH abundance in regions of low recombination rate. Moreover, population-level studies of Isle Royale 

wolves (Canis lupus) revealed high variance in genomic inbreeding between individuals, with some 

individuals showing homozygosity across whole chromosomes (Hedrick et al., 2017; Kardos et al., 

2017). 

SNP datasets can be generated at resolutions ranging from whole genome resequencing, to reduced 

representation approaches, such as restriction site-associated DNA sequencing (RAD-seq), and 

targeted SNP genotyping, for example using SNP arrays. In agricultural applications, SNP arrays 

harbouring between 50,000 (e.g. sheep (Ovis aries) in Purfield et al., 2017) and 200,000 (e.g. coho 

salmon (Oncorhynchus kisutch) in Yoshida et al., 2020) high quality, informative markers across the 

genome are commonly employed to estimate inbreeding. Although SNP arrays have also been applied 

to estimate inbreeding in wild populations in a handful of cases (Huisman et al., 2016a; Vendrami et al., 

2019), genome-wide SNP datasets to estimate inbreeding in ecology and evolution are generated 
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primarily from reduced representation and whole-genome resequencing approaches (Hoffman et al., 

2014; Knief et al., 2015; Berenos et al., 2016; Kardos et al., 2018a; Robinson et al., 2019; Niskanen et 

al., 2020). Compared to SNP arrays, these datasets differ in the density of genotyped sites and in the 

confidence of genotype calls, as well as their scalability and their costs (Davey et al., 2013; Fuentes-

Pardo & Ruzzante, 2017).  

The accuracy of inbreeding measures in a population is dependent on linkage disequilibrium between 

neighbouring markers, which is influenced by factors such as the effective population size and selection 

intensity (Ceballos et al., 2018b). We therefore assume that larger SNP datasets are better at capturing 

a ‘true’ inbreeding value (Hillestad et al., 2017), however, the high costs of high coverage whole-genome 

resequencing across many individuals makes this approach unfeasible for most wild populations (Minias 

et al., 2019). As low-coverage whole-genome resequencing data is less costly to generate, it could prove 

to be a promising alternative to SNP array datasets if genotyping many more loci outweighs the risk of 

underestimating heterozygous calls due to low per-site depth, leading to ROHs being overestimated 

(Ceballos et al., 2018a). Conversely, for both SNP array and sequencing data, there is also the 

possibility that some genotypes are miscalled as heterozygyote, which may underestimate some ROHs. 

In addition, for both low coverage resequencing and for reduced representation approaches, the uneven 

distribution of genotyped markers across the genome may mean that certain regions of the genome are 

overlooked and some ROH remain undetected. Further, a recent review examining dozens of ROH 

studies (Meyermans et al., 2020) has found that many studies lack an explanation for why certain 

software parameters to detect ROH were chosen and fail to examine what impact that could have based 

on the marker density or sequencing depth of a given dataset (e.g. failing to detect ROH, or screening 

only parts of the genome). 

In species conservation, it is essential to be able to draw reliable conclusions about the level of 

consanguinity between individuals. This is especially important if populations are small, natural dispersal 

is limited and individuals chosen for breeding programs and translocations originate from the same 

remnant source population (Weeks et al., 2011; Armstrong et al., 2021). Maintaining a healthy level of 

genetic diversity is important in conservation management, but obtaining accurate knowledge of this 

diversity can be difficult and expensive to obtain from large-scale population genomics analysis. Hence, 
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with the growing number of low coverage and reduced representation resequencing studies (Puckett, 

2017), it is important to address what influence marker density and marker type has on evaluating 

identity-by-decent. This will help to correctly infer the conservation status and adaptive potential of a 

species (McMahon et al., 2014; Hedrick & Garcia-Dorado, 2016; Kardos et al., 2016; McLennan et al., 

2019; Alemu et al., 2021). 

In this manuscript, we explore and evaluate the impact of different genotype datasets on estimating 

inbreeding in the hihi (Notiomystis cincta; stitchbird), an endemic, Vulnerable passerine bird of Aotearoa 

New Zealand. Genome-wide genotype datasets have been obtained using a custom 50K SNP array, 

RAD-seq and low-coverage whole genome resequencing. In conjunction with a draft hihi reference 

genome, this data allows us to assess how the properties of these different SNP datasets can influence 

our assessment of inbreeding in a model system for conservation genomics. 

2. Materials and Methods 

Study system and sampling 

The hihi is an endemic Aotearoa bird that was once distributed across Te Ika a Māui (the North Island). 

Deforestation and the introduction of predatory mammals led to a sharp decline in hihi numbers, until by 

the 1880s only one population on Te Hauturu-o-Toi (Little Barrier Island; 36°12’S, 175°05’E), in the 

Hauraki Gulf, remained (Brekke et al., 2011). Today, re-established populations of hihi can be found in 

seven different mammalian predator-free sanctuaries, including on the island of Tiritiri Matangi (36°36’S, 

174°53’E). This study includes data for three hihi nestlings from Tiritiri Matangi, sampled in the 

2012/2013 austral breeding season, and one adult sampled on Te Hauturu-o-Toi in 2006/2007, six 

adults in 2010/2011 and one adult male sampled in October 2017. The blood sample from the 2017 Te 

Hauturu-o-Toi male has been utilised to assemble a high quality reference genome while the other ten 

samples have been genotyped with low coverage whole genome resequencing (4.2-9.8x), RAD-seq and 

a SNP array (see below). We refer to the genome assembly individual as Yellow in reference to the 

vibrant Yellow neck and shoulder feather band found on hihi males. The remaining ten birds are labelled 

as Hihi_01 - Hihi_10 and were selected to represent both the historic population and the largest of the 
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reintroduced populations, which have current population sizes of around 2,000 and 200 hihi respectively 

(Parlato et al., 2021). 

Genome assembly for the reference individual 

We generated a draft genome assembly for Yellow using Oxford Nanopore Technologies (ONT) long 

read sequencing. Genomic DNA was extracted using the NEB Monarch gDNA extraction. Sequencing 

libraries were prepared using the ligation sequencing kit (LSK-109) and run across 8 MinION R9.4.1 

flow cells. To maximise output, flow cells were flushed with the nuclease wash kit (WSH-003) and new 

library loaded 3-5 times during each sequencing run. A total of 62.7 Gb raw data was obtained following 

base-calling with Guppy v3.6.2 (https://github.com/nanoporetech). This data was filtered to remove any 

contaminating adaptor sequence using PoreChop v0.2.4 (Wick et al., 2017). Further filtering was 

performed with NanoPack tools (Wick et al., 2017): sequences derived from the DCS internal control 

were removed with Nanolyse v.1.2.0; reads were also filtered for quality (>q10) and to exclude reads 

shorter than 5 kb using NanoFilt v 2.6.0.  

The filtered dataset of 42.22 Gb with a read N50 of 14.8 kb was assembled using FLYE v2.7 

(Kolmogorov et al., 2019) with the “keep haplotypes” flag enabled. The same reads were then used for 

two rounds of assembly polishing with racon (v 1.4.13). The resulting draft assembly has a total size of 

1,058.9 Mb and is comprised of 1,117 contigs, with a contig N50 of 6.768 Mb. 98.2% of the assembly 

sequence is contained in 260 contigs of 300kb or greater. Genome completeness is 92.2% as measured 

using BUSCO v 4.1.4 (Simao et al., 2015) with the odb10_aves dataset.  

The assembly was repeat masked using Repeat Masker v4.1.0 (Smit et al., 2015a) with a custom library 

created by combining all known avian repeats from Dfam release 3.2 (Hubley et al., 2016) with the 

output of de novo repeat identification in the draft hihi genome using RepeatModeler (open-1.0.11; Smit 

et al., 2015b). In total, 146.7 Mb, corresponding to 13.86% of the genome, was excluded by masking. 

Genomic data and SNP genotyping 

All ten additional hihi under investigation have RAD-seq data, whole genome resequencing, and have 

been genotyped using a custom 50K Affymetrix SNP array. This array was developed before the 
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generation of the hihi reference genome through identification of SNPs from de-novo assembly of RAD-

seq from 26 individuals, including these ten birds, and low-coverage whole-genome sequencing 

(lcWGS) of these ten individuals  (detailed in de Villemereuil et al. (2019), Duntsch et al. (2020) and Lee 

et al. (in prep)). Of the 58,466 SNPs included on the array, 45,553 markers passed initial default quality 

control metrics in the Axiom Analysis Suite software and were classified as ‘PolyHighResolution’ (i.e., 

polymorphic SNPs with call rate of >95%, at least two minor alleles observed and genotype clusters 

well-separated) and were used in these analyses. 

To locate SNPs from the lcWGS, RAD-seq and SNP array datasets in the reference assembly we 

mapped these datasets onto the assembly contigs. SNPs included in the SNP array were localised to 

positions in the Yellow reference assembly by BLAST searches using flanking sequences. The RAD-

seq data from the ten individuals was processed through the Stacks 2.53 pipeline (Catchen et al., 2013). 

Raw reads were submitted to process_radtags with default parameters. Individual, filtered read sets 

were mapped to the Yellow reference assembly using BWA-mem v0.7.17 (Li, 2013), manipulated in 

SAMtools v1.10 (Li et al., 2009) and then run through the Stacks populations analysis module as a single 

population to call SNPs. The lcWGS dataset reads were first quality-filtered using Trimmomatic (v0.39; 

Bolger et al., 2014) with default settings and then aligned to the reference using BWA-mem. Genotyping 

was performed with GATK Haplotype Caller (v4.1.4.1) in GCVF mode (with -ERC BP_RESOLUTION; 

Poplin et al., 2018). Both the RAD-seq and lcWGS SNP datasets were filtered with BCFtools 1.10.2 to 

include only biallelic sites with a minimum minor allele count of three and SNPs in repeat regions 

excluded. In addition, the lcWGS dataset was filtered in PLINK v1.9 (--max-missing 0.8 --maf 0.02; 

Chang et al., 2015) to ensure low levels of genotype call missingness. As recommended in Meyermans 

et al. (2020), no pruning for minor allele frequency or linkage disequilibrium was performed on any of 

the medium-density genotype datasets (RAD-seq, SNP array data). The RAD-seq data contains 26,447 

SNPs with 18% average missing data, while the lcWGS filtering resulted in a final dataset containing 

2,018,863 genomic markers with a mean coverage of 7.45 and 2.2% missing data (Supplementary Table 

S1).  

To explore datasets of different marker density and quality, the lcWGS data for all ten hihi was divided 

into marker sets at five different call depth stringency levels. In the first instance, the data remained as 
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it was (2,018,863 sites; henceforth “lcWGS”), and in four other cases we adjusted the minimum mean 

depth (--min-meanDP) filtering threshold value in vcftools (Danecek et al., 2011). Only sites with mean 

depth values of greater than or equal to 6, 7, 8 and 9 over all ten individuals are included in those new 

datasets, leaving 1,746,437 (“lcWGS6”), 1,302,507 (“lcWGS7”), 644,631 (“lcWGS8”) and 195,184 

(“lcWGS9”) variants for further analysis. 

SNP genotyping for the reference individual 

Genotype calls for Yellow were obtained by mapping the long reads back to the reference assembly 

using Minimap2 v2.17 (Li, 2018) and calling sequence variants using longshot v0.4.1 (Edge & Bansal, 

2019). The list of variant sites identified in a first round of genotyping were then augmented by sites 

identified as variable in the other sequence/genotyping datasets from the ten individuals and recalled. 

Genotypes were called at the mapped lcWGS, SNP array and RAD-seq SNPs, as well as one dataset 

combining all variants (including unique variants detected only in the reference genome assembly), for 

sites in the reference genome that had a longshot genotype quality (GQ) of greater than 150. These 

datasets comprise 1,562,384 (lcWGS), 46,136 (SNP array) and 18,415 (RAD-seq) sites, with 1,593,073 

total variants when combining across datasets (combined; information on inter-marker distance for each 

dataset in Supplementary Figure S1 and on frequency distribution in Supplementary Figure S2). Note 

that the total number of SNP array and RAD-seq sites genotyped in Yellow is slightly lower than for the 

set of ten individuals, as some SNP sites did not meet the base quality threshold in the reference male.  

Finally, a “whole genome” dataset was constructed with 904,228,112 sites, providing sufficient resolution 

to estimate the “true” inbreeding value for this reference individual. To do so, we extracted genotype 

calls from the assembly where possible (where homozygous calls GQ>100 and heterozygous calls 

GQ>150) and assumed all other sites reaching a base quality of >100 and depth threshold of ten were 

homozygous. Sites were excluded if they were annotated as repeats or fell in regions with >2 SNPs in 

a 100bp window (assessed from the combined SNP dataset). To acquire additional datasets of different 

SNP densities, the combined dataset of 1,593,073 SNPs was then randomly down-sampled to subsets 

of SNPs representing 1/2 (i.e., 796,537 SNPs), 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 and 1/256 (i.e., 6,223 

SNPs) of the total, with ten replicates for each. In addition, ten replicate datasets sampling the number 

of SNP array and RAD-seq SNPs at random from the combined dataset were also generated.  
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Runs of homozygosity  

ROH were first examined with the sliding windows approach in PLINK using the --homozyg function. 

Given the differences in the density of SNPs across the genome for each dataset, we followed the 

suggestion by Kardos et al. (2015) to tailor the settings for the ROH analysis with the aim to detect runs 

in a consistent manner across the SNP datasets. In particular, we adjusted the minimum average density 

of SNPs, the maximum gap length between adjacent SNPs, the size of the sliding window and the 

minimum number of variants needed to be able to detect a ROH to reflect the average SNP density of 

each dataset (Supplementary Methods; Supplementary Table S2). We allowed for one (for the SNP 

array and RAD-seq datasets) or two (for the higher density datasets) heterozygous and one missing site 

per window, to account for possible genotyping errors. In order to report comparable total lengths of 

homozygous segments across datasets, we set the required minimum length for ROH to 300kb, 

ensuring that short ROH deriving from linkage disequilibrium are excluded (Meyermans et al., 2020). 

These adjusted PLINK settings were applied to infer runs of homozygosity for both the reference 

genome individual (Yellow) and for the additional ten birds (Hihi_01 - Hihi_10). Detailed explanations 

about how the chosen settings were optimised can be found in the Supplementary Methods. We 

calculated the genome coverage parameter (the maximal ROH length the analysis can discover) of our 

SNP datasets by converting all SNPs in the different datasets to homozygous, determining the total 

inferred size of homozygous regions >300kb, and dividing this number by the total assembled genome 

size of 1,046.4 Mb (Meyermans et al., 2020).  

For Yellow, we assessed the concordance between the full genome and each of the other datasets by 

subsampling the full genome to the SNPs shared with the focal dataset and calculating (i) the proportion 

of SNPs called within a ROH in the full genome that were also called within a ROH in the focal dataset 

and (ii) the proportion of SNPs called outside a ROH in the full genome that were also called outside a 

ROH in the focal dataset. 

Inbreeding coefficients and multi-locus heterozygosity 
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Individual inbreeding coefficients based on detected runs of homozygosity (FROH) were estimated by 

summing the length of all ROH greater than 300kb and 500kb and dividing the sum by the assembly 

size of contigs >300kb (1.04 Gb) and >500kb (1.035 Gb). 

Furthermore, for the ten individuals for the lcWGS, SNP array and RAD-seq datasets, genomic 

inbreeding coefficients FG were calculated using PLINK. PLINK implements the --ibc function from the 

software GCTA (Yang et al., 2011) to report three measures of FG, we here report method III, which is 

based on the correlation between uniting gametes (FIBC). PLINK’s --het function was also used to 

calculate FG based on observed autosomal homozygous genotype counts for each individual (FHET).  

MLH was inferred with the lcWGS8 dataset using the InbreedR (Stoffel et al., 2016) package in R (R 

Core Team, 2013). Correlation coefficients between MLH and all genomic inbreeding estimates for the 

ten hihi were calculated using Pearson statistics in R. 

In addition, we scanned the datasets for the ten hihi (Hihi_01 - Hihi_10) for homozygous-by-descent 

(HBD) segments (Druet & Gautier, 2017) using the R package RZooRoH (Bertrand et al., 2019). 

RZooRoH implements a hidden Markov model to identify HBD segments and allows for the estimation 

of an inbreeding coefficient FRZooRoH. The genotyping error rate was set to 0.25% (Ferenčaković et al., 

2013). The analysis was performed using a mixKR model, with K = 4, 8 and 13 as the number of age-

related HBD classes. Following advice from an RZooRoH author, inbreeding over all classes for K = 4 

(Tom Druet, pers comm) was summed and correlated with PLINK ROH-based inbreeding estimates 

across all ten hihi individuals (as seen in Meyermans et al., 2020). 

All summary statistics, correlations, and plots were generated in R using the R packages ggplot2, dplyr, 

ggpubr, data.table and the bird colour-based package Manu. 

3. Results 

Runs of homozygosity: Yellow, assembly bird  

The number and length of runs of homozygosity found across the Yellow genome were relatively 

consistent across the different genotype datasets. The full genome dataset detected 270 ROH of >300 
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kb with a total length of 210,000 kb and an average length of 750 kb, and a realised FROH (≥ 500 kb) of 

0.15. Comparing these “true” estimates to the number and length of ROHs and the inbreeding values 

from the other datasets suggests that the SNP array data is slightly overestimating individual inbreeding, 

while the lower genotype density RAD-seq panel yields slightly lower values than expected (Table 1; 

Supplementary Table S3). The genome coverage parameter for the different datasets ranged from 54% 

for the RAD-seq data, to 93% for SNP array data, to 98% for the WGS and combined genome data.  

Table 1: Output from the ROH analysis in PLINK for the assembly male Yellow. Each dataset has been scanned 
for runs of homozygosity ≥300kb using custom parameters depending on SNP density. Displayed are: the total 
number of genotyped sites, the genome coverage parameter, the number of these sites detected within an ROH, 
the percentage of SNPs that are also in a run when scanning the full genome, the percentage of SNPs that are also 
outside a ROH when scanning the full genome, the total number of ROH found, the total length of all ROH in kb, 
inbreeding (FROH) estimated as the total length of detected runs divided by the sum of contigs larger than the 
minimum ROH size of 300kb andFROH when considering ROHs of ≥500kb. Detailed PLINK ROH settings in 
Supplementary Methods and Supplementary Tables S2 and S3.  

 Full genome Combined WGS SNP array RAD-seq 

Genotyped 

sites 

904,228,112 1,593,073 1,562,384 46,136 18,415 

Genome 

coverage 

parameter 

 98.3% 98.3% 93.4% 54.2% 

#sites in 

ROH                 

% agreement 

with full 

genome on 

ROH exclusion  

% agreement 

with full 

genome on 

ROH inclusion 

176,447,917 263,068 

96.0% 

 

95.9% 

290,384 

97.1% 

 

95.4% 

11,421 

81.0% 

 

88.1% 

6,021 

62.7% 

 

72.5% 

Total # of 

ROH 

270 290 300 223 285    

Total length 

(kb) 

201,000 199,335 207,481 236,390 186,613   

FROH (≥ 300kb) 0.202 0.192 0.199 0.227 0.179 
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FROH (≥ 500kb) 0.149 0.138 0.144 0.224 0.130 

When subsetting the full genome SNPs to only those SNPs found in the smaller datasets, 96% of the 

SNPs within a ROH for the full genome are also in a run for the combined dataset, and 97% for the 

WGS dataset (Table 1). Despite a relatively low SNP density, the SNP array data successfully called 

81% of true ROH, and correctly identified 88% of regions that did not contain a ROH. While performing 

similarly overall in terms of the true number and length of ROHs, the RAD-seq data showed less overlap 

of ROH (63%) and non-ROH regions (73%). Lower density datasets may miss, underestimate or 

overestimate the length of ROHs (Figure 1). 

 

Figure 1: Two example contigs (#275 and #347) showing the detection of runs of homozygosity for the genome 
individual Yellow using different marker densities. Positions in light blue were not involved in a ROH, while positions 
in dark red (#275) and dark blue (#347) were. For each contig, (A) denotes full genome sequence, (B) denotes the 
combined SNP dataset based on heterozygote calls in the dataset, and inferred genotypes at lcWGS, SNP-array 
and RAD-seq positions, (C) denotes inferred SNP-array genotypes, (D) denotes inferred RAD-seq genotypes. 
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Down-sampling the combined Yellow dataset revealed that the RAD-seq and SNP array data behave 

somewhat differently from a dataset with the same number of SNPs sampled randomly across the 

genome (Figure 2), which may reflect a non-random distribution of these datasets across the genome 

and differences in the SNP minor allele frequency distributions for the different datasets (Supplementary 

Figure S1, S2). For Yellow, all down-sampled datasets with more than 100,000 variants yielded a total 

number and length of ROH, and hence an inbreeding value FROH, close to the full genome inbreeding 

level, while also maintaining high levels of concordance in terms of regions detected as inside or outside 

a ROH (Figure 1, Figure 2). The lower-density data also performed reasonably well compared to our 

gold standard full genome sequence, although datasets of <25,000 SNPs showed considerable declines 

in the number and accuracy of ROH calls (Figure 2).  
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Figure 2: The number and total length of ROH found, the percentage of SNPs that are also in a run when scanning 
the combined dataset (% agreement on inclusion) and the percentage of SNPs that are also outside a ROH when 
scanning the combined dataset (% agreement on exclusion), when randomly down-sampling the combined dataset 
that was generated for the male hihi. The number of variants are displayed on a log scale. The array and RAD-seq 
densities were i) generated via random down-sampling to the same total number (grey dots) but also ii) displayed 
with real RAD-seq and SNP array positions (the latter labelled in red). Note that the high % agreement on exclusion 
for the two smallest datasets are due to these datasets detecting very few ROHs; these failures to detect ROHs are 
reflected in the low % agreement on inclusion. The trend line was plotted with the geom_smooth(method = "loess") 
function in ggplot2 in R. Detailed PLINK ROH settings in Supplementary Material and Supplementary Tables S2-
S5.  

 

Runs of homozygosity: ten sampled hihi 

For the ten hihi, the level of per-bird genotype missingness of the resequencing and the RAD-seq 

datasets was a major determinant of the ability to detect ROHs using PLINK. The number of ROH 

detected and the total length of ROH were negatively correlated with the initial missingness in all lcWGS 

datasets, although the relationship was relatively weak when correlating initial missingness against the 
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number and total length of ROHs for the lcWGS9 dataset (R = 0.275 and -0.304 respectively, 

Supplementary Tables S5 and S6). The RAD-seq ROH numbers and lengths were strongly negatively 

correlated with SNP missingness (R of -0.982 and -0.984 respectively) and were poorly correlated with 

all other ROH measures from the SNP array and lcWGS datasets (Supplementary Table S6). Excluding 

the two individuals with the lowest number of RAD-seq reads (<4 million) reduced the correlation with 

missingness somewhat, but negative correlations were still strong (R of -0.773 and -0.805 for ROH 

number and length respectively).  

The total length of ROH detected from the high-confidence lcWGS9 dataset ranged from 173,564 to 

255,175 kb, with a similar range of total ROH lengths in the SNP array dataset and in the lcWGS8 

dataset once the two lowest coverage individuals were excluded. Total ROH lengths were similar to the 

lcWGS7 and lcWGS6 datasets when the three lowest coverage individuals were excluded, and in the 

lcWGS dataset when the four lowest coverage individuals were excluded (Supplementary Table S5). 

The inconsistency of ROH lengths in the lowest coverage individuals suggests that the PLINK ROH 

parameters based on average SNP density across individuals are unlikely to be optimal for individuals 

with high levels of missing data. A similar pattern is evident for the RZooRoH method, where the data 

with higher genotype missingness (RAD-seq) seems to overestimate the proportion of homozygous 

segments belonging to higher HBD classes (Supplementary Table S9). 

The detailed display of contig 436 (Figure 3, Supplementary Figure S3) demonstrates that while PLINK 

analysis of RAD-seq data, SNP array data and lcWGS data is able to detect runs of homozygosity across 

individuals, these runs may not be consistent. On the figure, higher peaks indicate that this region is 

shared as a ROH across a larger proportion of individuals. Regions that are homozygous across many 

individuals appear in the centre of the runs, while as segments move closer to the edge of a ROH, fewer 

individuals are involved in it (i.e., an A-shape). For this contig, no SNP is present within a ROH for all 

individuals in any of the datasets.  

Whether the ROH patterns and lengths agree with each other, however, is dependent on whether the 

initial dataset SNP density is high enough for that specific contig and for each individual. Generally, the 

lcWGS datasets perform similarly with the higher quality (higher average mean coverage) data showing 

more pronounced and comparable ROH patterns than the raw, unfiltered lcWGS dataset 
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(Supplementary Figure S3). For contig 436, the SNP array data generally agrees with the lcWGS8 

landscape, but peaks are broader. The RAD-seq data also detects runs, but partly in areas were the 

other datasets are clearly heterozygous, and appears to miss ROHs due to particularly low SNP density 

in some regions, in agreement with results from down-sampling the whole genome individual Yellow 

(Table 1, Figure 1). Inference of ROHs using RZooRoH shows similar inconsistencies across different 

datasets (Supplementary Figure S4). 

 

 

Figure 3: Location of runs of homozygosity (ROH) for one example contig (#436) that had ROH detected across all 
seven datasets, with ROH landscapes shown for the RAD-seq, SNP array and lcWGS8 datasets. Displayed are the 
percentage of the ten birds (y-axis) that have this SNP (x-axis) involved in a run of homozygosity. The more 
individuals share the ROH, the higher the SNP is located in the plot. Red dots at the bottom of the plot mean that 
those SNPs were not involved in a ROH in any bird. ROH for the other datasets shown in Supplementary Figure 
S3, SNPs in HBD segments according to RZooRoH shown in Supplementary Figure S4. 
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For these ten hihi, the landscape of PLINK runs of homozygosity differed between contigs, with some 

contigs portraying a similar picture across datasets, while others yielded completely different numbers 

and lengths of ROH (contig sizes and the number and length of ROHs detected for each individual are 

shown in Supplementary Table S7). Similarly, RZooRoH homozygosity landscapes for the different 

datasets had little concordance with each other, as highlighted in an example contig (Supplementary 

Figure S4). As noted, given that inter-marker distances differ along the genome, ROHs in certain regions 

are likely to be undetectable in some of the datasets (Meyermans et al., 2020), as is apparent for the 

RAD-seq data for the majority of contigs. The number of contigs that were consistently involved in at 

least one run of homozygosity across all datasets was 87, with an additional 102 across all datasets 

excluding the RAD-seq output. 

 

Inbreeding coefficients and MLH 

With our chosen parameter settings in PLINK, we detected comparable levels of inbreeding FROH in 

Yellow and the ten additional hihi. Similar to the ROH analyses, the ROH-based individual inbreeding 

estimates for the ten hihi were sensitive to the amount of missing data in the lcWGS and RAD-seq 

datasets: individuals with high rates of missing data yielded much lower whole-genome inbreeding 

estimates. After excluding low-coverage individuals, the SNP array and RAD-seq datasets show good 

agreement with the lcWGS datasets results for FROH (Supplementary Table S8). Based on FROH from 

lcWGS data, individuals Hihi_05 and Hihi_09 appear most inbred in the dataset and we detect slightly 

higher average inbreeding levels in Tiritiri Matangi birds than in Te-Hauturu-o-Toi individuals (0.16 vs 

0.11; using lcWGS8 data). 

In addition to FROH, the inbreeding measures FRZooRoH, FIBC and FHET were calculated for the ten hihi 

(Supplementary Table S8/S9). FRZooRoH estimates for the ten hihi were more consistent across all WGS 

coverage levels than FROH measures, but equally sensitive to the high levels of genotype missingness 

in the RAD-seq datasets. While the model-based RZooRoH approach yielded higher inbreeding values 

than PLINK (as seen in Meyermans et al., 2020) the inbreeding values per individual were highly 

correlated for almost all datasets between the two approaches (R = 0.80-0.94; Supplementary Table 

S9; Supplementary Figure S5).  
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After excluding the low coverage individuals, the high confidence lcWGS8 dataset showed very strong 

(R > 0.94) correlations between FROH and FRZooRoH, and between FIBC and FHET. FIBC and FHET were also 

strongly correlated with MLH. The ROH- based inbreeding estimates were also well correlated (R = 0.58 

- 0.72) with the marker-based genomic estimates FIBC and FHET and with MLH. Detailed correlations 

across datasets and methods can be found in Supplementary Tables S8, S9, S11 and S12 and 

Supplementary Figures S5 and S6. The lcWGS datasets with a mean per-site depth of eight and nine 

show the highest correlation and the most robust results across individuals and methods to calculate F 

from ROH-based inbreeding estimates. 

 

4. Discussion 

Here we incorporate RAD-seq, SNP array and whole-genome resequencing data of different resolutions 

into a population genomics study to evaluate the methods for estimating inbreeding in an animal species 

of conservation concern. We find that low density datasets may miss ROH due to large gaps between 

called sites, but can also combine two shorter homozygous regions together and inflate ROH length. In 

addition, we find that very low-coverage resequencing data (4-6x) may be unreliable and these low 

depth sites (potentially incorrectly called as homozygous) should be removed from the dataset prior to 

any analysis. Our results suggest a trade-off in low coverage data, where the landscape of ROH in any 

individual is dependent on the balance between SNP density and genotype call quality. 

Estimates of ROH and inbreeding in hihi - which method works best? 

For our whole-genome hihi from Te Hauturu-o-Toi, the ROH inbreeding analysis based on segments 

larger than 500 kb yielded a similar inbreeding coefficient across all datasets of various marker densities, 

suggesting a relatively high genomic inbreeding level of 0.15. Inbreeding levels of the additional ten hihi 

individuals are concordant with this measure, with FROH values ranging from 0.12 to 0.20 based on the 

lcWGS9 data, slightly higher than previous microsatellite-based hihi inbreeding measures (Brekke et al., 

2010). Our hihi inbreeding levels are higher than FROH in the more abundant collared flycatchers (Kardos 

et al., 2017) but similar to estimates for low-population size species such as the critically endangered 

helmeted honeyeater Lichenostomus melanops cassidix (Harrisson et al., 2019) or the crested ibis 
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(Nipponia nippon; 0.19-0.32, Li et al., 2014). Similar to hihi, the ibis also underwent a recent bottleneck, 

but we note that PLINK’s ROH-based inbreeding estimates are sensitive to the parameter settings 

chosen and hence comparing inbreeding values across species warrants caution. 

For hihi, we find that conclusions from a model-based approach implemented by RZooRoH are 

concordant with rule-based approach in PLINK, namely that the number and total size of ROH are 

sensitive to genotype missingness, the density of genotyped SNPs and the software parameter choices. 

Compared to PLINK, RZooRoH results appeared slightly more robust to low resequencing coverage.  

After excluding individuals with low coverage, our inbreeding measures FROH and FRZooRoH were strongly 

correlated with each other, a finding similar to an evaluation on different livestock and pet species 

(Meyermans et al., 2020), and FROH and FIBC were strongly correlated for the SNP array data. The slight 

differences in these estimates capture different aspects of inbreeding – for example, by giving greater 

weight to rare alleles, FIBC is generally seen as one of the more accurate estimators of inbreeding (Keller 

et al., 2011; Chen et al., 2016). It is also likely to capture more distant inbreeding events than FROH, as 

FROH excludes short ROH (Pryce et al., 2014; Kardos et al., 2018b). However, within the context of 

conservation management, where inbreeding depression is of primary concern, FROH may offer the most 

appropriate measure (Kardos et al., 2018b). This is because in small populations with ongoing high 

levels of mating between relatives, it might be expected that purging has removed all but the most recent 

deleterious rare alleles (Caballero et al., 2017). The priority in these species of conservation concern is 

therefore to identify and assess individuals who are highly inbred due to very recent consanguinity, as 

these individuals are more likely to harbour two copies of recent deleterious rare alleles that have not 

yet been exposed to selection (Grossen et al., 2020; Stoffel et al., in press). 

In addition to estimating inbreeding levels, RZooRoH is increasingly being used in order to investigate 

population history by adjusting K, with K-1 as the number of age-related HBD classes (Druet & Gautier, 

2017): smaller K means longer HBD segments that reflect recent autozygosity, i.e., a recent common 

ancestor. Both for RZooRoH and PLINK, higher density datasets offer the opportunity to detect smaller 

homozygous segments. In future, one could employ RZooRoH in order to calculate the physical lengths 

of the HBD segments found and compare their abundance to the size distribution of ROH runs estimated 
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in PLINK as well as perform more in-depth analyses of inbreeding levels across regions of the genome 

(Gorssen et al., 2020). 

 

On the role of marker density and the importance of sufficient per-site depth 

The main questions that motivated this paper were whether our conclusions about inbreeding in our 

eleven individuals would be different depending on the datasets employed, and whether the analysis 

strategy matters. The answers seem clear: the overall inbreeding values do not have to differ greatly if 

ROH settings are carefully chosen based on SNP density, but consistency in these overall inbreeding 

measures may hide differences in the ROH landscape between datasets.  

By tailoring ROH-detection parameters to the SNP density of each dataset, we recovered consistent 

FROH individual inbreeding estimates from RAD-seq, low-coverage sequencing data and subsampled 

whole-genome sequence data. For all individuals the SNP array data slightly overestimated inbreeding, 

likely because the array SNPs were distributed less randomly across the genome and differed in their 

allele frequency distribution compared to a random dataset of the same size. However, the relative 

inbreeding across individuals was very consistent across RAD-seq, SNP chip and low-coverage 

resequencing datasets. It is a promising insight that relative inbreeding between individuals can be 

reliably estimated from low to medium density datasets. For the ten hihi from Tiritiri Matangi and Te 

Hauturu-o-Toi, the low-coverage whole-genome sequence data performed most consistently for 

individuals with higher average per-site depth. At lower average depth, the chance of incorrectly calling 

a heterozygote individual as a homozygote increases substantially (from 0.39% at depth 9, to 3.13% at 

depth 6, to 25% at depth 3). While there is the argument that more population genetic information can 

be drawn from studies involving larger sample sizes instead of focussing on per-site sequencing depth 

(Buerkle & Gompert, 2013), our work supports the conclusion that accurate individual-level inbreeding 

measures do require some filtering to ensure adequate read depth to be able to confidently call 

heterozygote sites (Fuentes-Pardo & Ruzzante, 2017).  

Although overall inbreeding values are consistent, what is less clear for hihi is whether low-density 

marker sets are capturing the same runs, at the same locations, as would be captured by higher density 

data. For example, the relative consistency between RAD-seq and SNP array FROH with the full genome 

FROH appears to be partly due to the lower density datasets missing some ROHs completely and 



22 
 

overestimating the length of those that are detected. Indeed, only 63% of SNPs are called consistently 

as in a ROH when comparing full-genome and RAD-seq data, while the figure is 81% for SNP array 

data (Table 1). For species where a whole genome sequence assembly is available, we strongly 

encourage exploration of the detectability of true ROHs by subsampling SNP datasets to different levels, 

and reporting the concordance with the full genome, before designing a resequencing or genotyping 

strategy to estimate ROHs and overall inbreeding in a larger set of individuals. 

In addition to dataset density, it is clear from the ten hihi with low coverage whole-genome data that, 

similar to FROH, the number and length of ROHs detected were heavily dependent on call missingness 

and sequencing depth. The two most consistent datasets in terms of ROH number and total lengths 

across individuals were the low coverage whole genome sequencing datasets where an average depth 

of eight (lcWGS8) or nine (lcWGS9) reads was required. Our results strongly suggest that low coverage 

individuals and sites should be excluded in order to reduce the risk of miscalling poorly genotyped 

regions as ‘true’ ROHs.  

In the genome individual Yellow, fewer ROH of longer overall length were detected from the SNP array 

compared to the other SNP datasets. In addition, for the 10 birds, the SNP array ROH landscape across 

contigs often differed from the patterns observed from the low coverage sequencing datasets. Although 

there is still some scepticism around the use of SNP array data for ROH detection (Gladstein, 2018) and 

usage is still rare in a conservation context, numerous studies are employing medium-density SNP array 

data to detect ROH, especially in livestock species (Purfield et al., 2017). For existing marker sets, such 

as commercial or custom-made SNP arrays, we recommend that studies should routinely assess and 

report the genome coverage parameter to determine the detectability of true ROH. This will be especially 

important for species where LD is much lower and overall heterozygosity much higher than for our 

threatened hihi. 

Accurate inference of ROH requires a marker dataset that is dense enough such that neighbouring 

markers are in LD with each other, and are informative about the unsampled sites between them (Karimi 

et al., 2020). Linkage disequilibrium is high in the species (Lee et al., in prep), perhaps unsurprising 

given the very low genetic diversity (de Villemereuil et al., 2019) and the known history of bottlenecks in 

hihi (Brekke et al. 2011). This suggests that fewer SNPs may be needed to accurately capture ROHs in 

hihi than for other, non-threatened species. In addition, our work has demonstrated that with appropriate 
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adjustments for marker density in the parameter settings when calling ROHs, datasets with as few as 

25,000 SNPs in species with high LD, which includes many agricultural species, are able to accurately 

estimate both the number and total length of ROHs (Figure 2). Despite this, our hihi data also suggests 

that some RAD-seq datasets will indeed be too sparse to accurately infer ROH. Given the increasing 

availability of genome assemblies of a focal species (or close relative), we therefore strongly recommend 

mapping RAD-seq reads to the genome to estimate (i) the genome coverage parameter and (ii) whether 

ROHs are likely to be accurately inferred. 

For population genomic studies dealing with a variety of dataset properties, we conclude that rather than 

imposing a minimum marker density, tailored ROH settings, adequate per-site depth and an 

understanding of the detectability of ROHs at different marker densities are the most important aspects 

required to draw meaningful conclusions about inbreeding levels based on ROH. 

 

Why choosing the correct PLINK settings matters 

PLINK is the most commonly used tool to find ROH, but there is little consensus on the optimal settings, 

even though most agree that the default is not suitable for most species (Gazal et al., 2014; Meyermans 

et al., 2020). We confirm this conclusion: when using default settings, the number and total size of ROHs 

detected decreased as the number of subsampled SNPs decreased (Supplementary Figure S7). While 

some manuscripts mention that adjusting most of the parameters is rather redundant (Hillestad et al., 

2017), others reason that SNP density should be considered when scanning the genome for ROH 

(Ferenčaković et al., 2013). Some authors recommend allowing a certain level of heterozygous calls 

within a sliding window in order to account for genotyping errors, while others claim that allowing these 

will increase the number of false positive ROHs (Hillestad et al., 2017); our own data was relatively 

insensitive to the number of heterozygotes allowed within a window. A recent study simulating datasets 

of different resolutions and investigating them with different PLINK setting combinations, showed that 

for the smallest marker density the tool failed to detect any ROH (Shafer et al., 2016), which is in 

accordance with our hihi findings: even when tailoring settings to adjust for SNP density, a dataset of 

less than 20,000 SNPs yields significantly lower F and number of ROH (Figure 2). Above a required 

density to capture LD between adjacent SNPs, our data strongly supports the importance of tailoring 

parameter settings to suit the SNP density, in particular the minimum density of SNPs to call a ROH, 
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maximum gap size between adjacent SNPs, minimum number of SNPs required to call a ROH, and the 

sliding window size. Our results also suggest that adjusting parameters for the local density of SNPs as 

the genome is parsed would be a helpful addition to the PLINK settings, as suggested by Meyermans 

(et al., 2020) and Ferenčaković (et al., 2013). 

The future of inbreeding estimation in conservation genomics 

There are a growing number of studies of wild populations that make use of whole-genome 

resequencing data (Zhao et al., 2013; Xue et al., 2015; van der Valk et al., 2019). The rapidly falling 

costs of sequencing have enabled a remarkable explosion in the number of genome assemblies, and, 

along with growth in bioinformatics capacity within the field of conservation genetics, mean that 

resequencing is likely to become the go-to-method in conservation in the future (Narum et al., 2013). 

Our results suggest that, given appropriate choice of parameter combinations, and assessment of the 

marker density required to capture the linkage disequilibrium landscape, genomic estimates of 

inbreeding can offer considerable insight into the variation in individual inbreeding in a population. This 

will be of particular importance in addressing consequential conservation issues such as inbreeding 

depression (Kardos et al., 2016) and in assessing the genomic impact of management strategies such 

as captive breeding, reintroduction and assisted gene flow (Saremi et al., 2019). 
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Tables and Figures 

Table 2: Output from the ROH analysis in PLINK for the assembly male Yellow. Each dataset has been scanned 
for runs of homozygosity ≥300kb using custom parameters depending on SNP density. Displayed are: the total 
number of genotyped sites, the genome coverage parameter, the number of these sites detected within an ROH, 
the percentage of SNPs that are also in a run when scanning the full genome, the percentage of SNPs that are also 
outside a ROH when scanning the full genome, the total number of ROH found, the total length of all ROH in kb, 
inbreeding (FROH) estimated as the total length of detected runs divided by the sum of contigs larger than the 
minimum ROH size of 300kb and FROH when considering ROHs of ≥500kb. Detailed PLINK ROH settings in 
Supplementary Methods and Supplementary Tables S2 and S3. 

 Full genome Combined WGS SNP array RAD-seq 

Genotyped 

sites 

904,228,112 1,593,073 1,562,384 46,136 18,415 

Genome 

coverage 

parameter 

 98.3% 98.3% 93.4% 54.2% 

#sites in 

ROH                 

% agreement 

with full 

genome on 

ROH exclusion  

% agreement 

with full 

genome on 

ROH inclusion 

176,447,917 263,068 

96.0% 

 

95.9% 

290,384 

97.1% 

 

95.4% 

11,421 

81.0% 

 

88.1% 

6,021 

62.7% 

 

72.5% 

Total # of 

ROH 

270 290 300 223 285    

Total length 

(kb) 

201,000 199,335 207,481 236,390 186,613   

FROH (≥ 300kb) 0.202 0.192 0.199 0.227 0.179 

FROH (≥ 500kb) 0.149 0.138 0.144 0.224 0.130 

 
Figure 1: Two example contigs (#275 and #347) showing the detection of runs of homozygosity for the genome 
individual Yellow using different marker densities. Positions in light blue were not involved in a ROH, while positions 
in dark red (#275) and dark blue (#347) were. For each contig, (A) denotes full genome sequence, (B) denotes the 
combined SNP dataset based on heterozygote calls in the dataset, and inferred genotypes at lcWGS, SNP-array 
and RAD-seq positions, (C) denotes inferred SNP-array genotypes, (D) denotes inferred RAD-seq genotypes. 

Figure 2: The number and total length of ROH found, the percentage of SNPs that are also in a run when scanning 
the combined dataset (% agreement on inclusion) and the percentage of SNPs that are also outside a ROH when 
scanning the combined dataset (% agreement on exclusion), when randomly down-sampling the combined dataset 
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that was generated for the male hihi. The number of variants are displayed on a log scale. The array and RAD-seq 
densities were i) generated via random down-sampling to the same total number (grey dots) but also ii) displayed 
with real RAD-seq and SNP array positions (the latter labelled in red). Note that the high % agreement on exclusion 
for the two smallest datasets are due to these datasets detecting very few ROHs; these failures to detect ROHs are 
reflected in the low % agreement on inclusion. The trend line was plotted with the geom_smooth(method = "loess") 
function in ggplot2 in R. Detailed PLINK ROH settings in Supplementary Material and Supplementary Tables S2-
S5. 

Figure 3: Location of runs of homozygosity (ROH) for one example contig (#436) that had ROH detected across all 
seven datasets, with ROH landscapes shown for the RAD-seq, SNP array and lcWGS8 datasets. Displayed are the 
percentage of the ten birds (y-axis) that have this SNP (x-axis) involved in a run of homozygosity. The more 
individuals share the ROH, the higher the SNP is located in the plot. Red dots at the bottom of the plot mean that 
those SNPs were not involved in a ROH in any bird. ROH for the other datasets shown in Supplementary Figure 
S3, SNPs in HBD segments according to RZooRoH shown in Supplementary Figure S4. 


