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Abstract—The use of WiFi signals for human sensing has
gained significant interest over the past decade. Such tech-
niques provide affordable and reliable solutions for healthcare-
focused event detection such as prevention of falls and long-
term monitoring of chronic diseases. Currently, there are two
major approaches for WiFi sensing: Passive WiFi Radar (PWR)
which uses well established approaches from bistatic radar, and
Channel State Information (CSI) which comes from the WiFi
communication system. However, to our knowledge there has
not been a comprehensive study to understand and compare
both approaches in terms of their robustness and limitations for
monitoring the movements of people. In this paper, we describe
the fundamentals of both the CSI and PWR systems and the
associated signal processing methodologies. To facilitate a direct-
comparison between CSI and PWR, we have implemented a
monitoring system for simultaneously measuring human activity
using both techniques in comparable conditions. Experimental
results show that CSI system works better in line-of-sight
condition, whereas PWR system works better in non-line-of-sight
condition. CSI system is more sensitive to the small activities,
while PWR system provides meaningful Doppler spectrograms.
It is therefore recommended that a real-world future WiFi system
should leverage the fusion of the two approaches.

Index Terms—Passive WiFi Radar, Channel State Information,
Doppler, Wireless Sensing

I. INTRODUCTION

With a fast growing global ageing population, there are
increasing concerns that health conditions such as cardiovas-
cular diseases, mental health issues and diabetes will become
more prevalent and increase the burden on national healthcare
services. Hence there is a greater need than ever to provide
efficient technologies solutions for ambient assisted living and
e-healthcare services [1]. Daily activity and behavior sensing
in residential areas and care homes can provide invaluable
information for both long-term and short-term tasks such as
monitoring the daily routine of a user and identifying any
discrepancy in their everyday behavior which may be due to
illness or any other serious health conditions. Such systems are
extremely helpful for improving quality of life and preventing
health risks where early interventions are critical. Compared
to other technologies used in healthcare monitoring such as
cameras and wearable sensors, WiFi based sensing technology
is considered as an ideal solution because it does not produce
images or identify people being monitored thus alleviates pri-
vacy concerns. Furthermore, it performs uncooperative sensing

so does not requires the use of wearable technology which
has a low compliance rate, especially amongst the elderly,
and may be uncomfortable and unsuitable for some users
(e.g. those with skin conditions). Nowadays, WiFi devices are
readily available in almost all indoor environments, whether
residential or commercial, and they have become a poten-
tial candidate for wireless sensing mainly due to their non-
intrusive nature and they require no additional infrastructure.
For indoor sensing applications, WiFi based approaches have
been used for activity and gait recognition [2], fall detection
[3], gesture recognition [4], and intrusion detection [5].

The main concept behind WiFi sensing is that a moving
person will affect the communication channel of a WiFi signal
in terms of frequency shift, propagation paths and signal
attenuation. As a result, the characteristics of communication
channel becomes time-varying with the human activity and
hence can be exploited for monitoring purposes.

Device-free sensing may be categorized into radar-based
(Doppler), Received Signal Strength (RSS) and Channel State
Information (CSI). The latter provides both amplitude and
phase information. The phase can be used to obtain the Angle
of Arrival (AoA), Time of Flight (ToF) and Time Difference
of Arrival (TDoA). The purposes of these information are
varied. For example, RSS has been widely used for indoor
localization using the Finger-Printing (FP) method [6], where
the RSS Indicator (RSSI) is compared to an offline pre-
computed radio map (database). However, any changes in the
environment will require a re-calibration to the database which
is a time-consuming and complex process, and limits real-
world applications. AoA is another useful information which
is obtained by calculating the phase difference of the signals
arriving at multiple antennas [7]. However, the AoA technique
cannot be directly used in WiFi passive sensing applications,
as it is based on the direction of arrival of the signal from
the transmitter to the receiver (WiFi AP). Therefore, the user
should usually be equipped with a transmitting WiFi device for
the receiver to detect his/her position. ToF gives the relative
distance between the transmitter and receiver by calculating
the arrival time of the direct wave [8]. In a WiFi system, using
ToF information only for localisation is quite challenging since
it is influenced by the bandwidth. For instance, with the low
sampling rates of the 20 and 40 MHz channel bandwidths



(50 ns and 25 ns time resolution, respectively), the direct
signal may arrive between sampled intervals, giving rise to
distance estimation errors in the order of several meters. Our
previous work [9] shows the potential of PWR to detect
small movements of the chest wall in signs-of-life detection.
Moreover, our prototype system has been further extended for
micro-Doppler based activity event classification [10]. WiFi
CSI, which can be retrieved from a few IEEE 802.11n NIC,
represents how wireless signals propagate from the transmitter
to the receiver at a given carrier frequency across multiple
paths [5]. CSI has been used in many applications like activity
recognition [11], finger gesture recognition [12] and people
counting [13].

In this paper, we focus on the two major approaches for
activity recognition, the PWR system which outputs target
Doppler information and the CSI system which provides data
relating to the characteristics of the channel. Two systems
have been implemented to demonstrate the feasibility of each
approach. Experimental data has been collected simultane-
ously and timestamped using Network Time Protocol (NTP)
Servers for synchronization. We demonstrate the detection
results from both systems using six different activities per-
formed by five people. After, we briefly discuss the difference
between the two systems in terms of geometrical consider-
ations, application potential and resilience to environmental
changes. Although both the CSI and PWR systems can provide
meaningful results for human activity recognition, there are
still many challenges that need to be solved before real-world
deployment. Compared to previous WiFi CSI [4], [5], [19] and
passive WiFi radar [9], [17], [18] studies, this work makes the
following contributions:
• To the best of the authors’ knowledge, this is the first

work to demonstrate the difference between CSI and
PWR systems where experimental data is collected from
a real-world scenario.

• We have setup two systems for WiFi CSI and passive
WiFi radar to facilitate a direct comparison. Experimental
results evaluate the difference between the two systems,
and identify the layout and coverage sensitivities.

• We have discussed CSI and PWR in terms of their
advantages and limitations in system development and
deployment. We have also assessed potential future im-
provements for WiFi sensing.

This paper is organized as follow: Related works are pre-
sented in Section II; An overview of the WiFi signal is given
in Section III; The signal processing for the CSI system is
described in Section IV; The signal processing for the PWR
system is explained in Section V; The system design and
evaluation are presented in Section VI; Section VII discusses
the feasibility and limitations of the two approaches; Finally,
conclusions are drawn in Section VIII.

II. RELATED WORK

In this section, we compare the previous works for both
the PWR and CSI systems. Generally, Doppler information
can be obtained from the PWR data. However, the way the

two systems extract this information is vastly different. A
comparison of these works is shown in Table I.

A. WiFi CSI System

For a WiFI system with MIMO-OFDM capability, its CSI is
obtained as a 3D matrix, consisting of complex values which
can be broken down into amplitude and phase information [5].
CSI measurements in the time domain capture the changes
in the wireless signal due to the latter’s interaction with
surrounding objects or human activities and the observed
patterns can be used for various purposes. Different WiFi
sensing applications have specific requirements in terms of
their signal processing techniques and classification/estimation
algorithms.

For example, [6] presents a compressive sensing based FP
for indoor localization by using the RSS information. How-
ever, the radio map is very time consuming to build and needs
calibration when the environment changes, which limits its
potential application in a residential environment. The authors
in [12] employ CSI for fine-grained finger gesture recognition
by using the principal component as the feature and dynamic
time warping (DTW) as the classifier. They claim to achieve
an accuracy of 95% on 8 finger gestures compared to 76%
using RSS information. The idea of [12] is that subcarriers in
OFDM signal are highly sensitive to the small movements in
the physical environment which result in changes in the CSI.
The latter has also been used in device-free activity recognition
[2], [14]. For example, [14] proposes a CSI-speed model to
quantify the relationship between CSI dynamics and human
movement speed. The frequency component is extracted from
the CSI using Discrete Wavelet Transform (DWT) and Hidden
Markov Model (HMM) is used to build the CSI-activity model
to classify human activities. Another work [2] uses the Short-
Time Fourier Transform (STFT) technique to transform the
CSI measurements into spectrograms. The torso speed and
cycle time of each gait are calculated and used as features
in a SVM classifier, achieving an accuracy of 92% for a
human walking at a distance of 14 m. Fall detection is another
important area in WiFi sensing. For instance, [3] proposed a
system that is able to detect human falls automatically and
these falls can be segmented from other different activities.
CSI has also been used in breathing detection [15] with the
understanding of the Fresnel Zone between transmitter and
receiver.

One of the major challenge for a CSI system is the changes
in the surrounding environment which can significantly affect
the communication channel. Several approaches have been
used to eliminate the training phase in each new environment.
For example, [19] computes different metrics from the CSI
measurements such as mean, standard deviation, etc., for peo-
ple counting applications which requires only requires training
within that specific environment. [4] uses the RSS information
for gesture recognition by extracting the frequency component
with wavelet transform, and no calibration is required. Simi-
larly, [14] converts the CSI into Doppler spectrograms using
STFT, thus avoiding any calibration. A common approach in



TABLE I: Overview of some Recent WiFi Sensing Works

Reference System Signal Processing Machine Learning Application Performance
[6] Distributed

WiFi AP
FP, compressive sensing, clus-
ter

N/A indoor localization 90% error of 2.7 mover 26
APs

[12] CSI Wavelet-based denoising, mul-
tipath mitigation

PCI, subcarrier selec-
tion, DTW

finger gesture recog-
nition

93% accuracy over 8 fin-
ger gestures

[14] CSI PCA, thresholding DWT, HMM activity recognition 96.5% accuracy over 9 ac-
tivities

[2] CSI STFT, spectrogram superim-
position

SVM (Radial Basis
Function (RBF) ker-
nel)

activity recognition average false acceptance
rate and false rejection
rate of 8.05% and 9.54%

[3] CSI interpolation, segmentation 8 empirical features,
SVM

fall detection 91% of sensitivity and
92% of specificity

[15] CSI chest motion modeled as Fres-
nel zone

N/A breathing detection show ability in 1 m from
different orientations

[16] PWR CAF, CLEAN N/A long distance detec-
tion

detect a moving person at
17 m away and TTW

[17] PWR ECA, CAF N/A outdoor detection detect a running person
and a moving car

[18] PWR CAF, CLEAN N/A finger gesture and ac-
tivity recognition

feasibility demonstration

[9] PWR CAF, CLEAN, micro Doppler
extraction

N/A breathing detection detection range up to 1 m
at different orientations

[10] PWR CAF, CLEAN HMM, K-means clus-
tering

activity recognition 80% accuracy with unsu-
pervised learning over 6
activities

the studies mentioned above is that they convert the RSS/CSI
into the form of Doppler information to avoid calibration in
the dynamic environment.

B. Passive WiFi Radar

Aside from the CSI systems, passive radar has been ex-
tended to exploit WiFi access points as illuminators of oppor-
tunity. Passive radar has a long history in airborne tracking and
detection, but only over the last decade has it been used for
personnel detection [16]. The underlying concept of passive
radar is to exploit the signals from third-party transmitters,
to measure the time difference between the signal arriving
directly to a reference receiver and the signal arriving via
reflection from the object through a synchronised surveillnace
channel.

Signal processing for passive WiFi radar is more straight-
forward than CSI. It uses a Cross Ambiguity Function (CAF)
to generate range (relative distance) and Doppler (relative
velocity) information. However, due to the limited bandwidth
of WiFi systems (20-40 MHz), the Doppler information is
mainly used for indoor scenarios. The advantage of Doppler
information, as discussed above, is that no calibration for
the surrounding environment is required. An early attempt of
the passive WiFi radar in [16] shows the feasibility of using
WiFi signal to detect personnel at a stand-off distance un-
der Through-The-Wall (TTW) condition. [17] investigates the
passive WiFi radar for an outdoor scenario, and successfully
detects both range and Doppler information for a moving car
and a running human. [18] built a prototype based on the
Software-Defined-Radio (SDR) platform with real-time ability,
and showed potential for several applications such as activity
and finger gesture recognition. Passive WiFi radar has also
been used for breathing detection. For instance, in [9] we
demonstrate that micro-Doppler information can be obtained

from the chest motion. The performance of activity recognition
and breathing detection is affected by the geometry of the
transmitter and receivers. Passive WiFi radar for indoor local-
ization is achieved by tracking the Doppler due to a moving
object from at least two separated channels [20]. However, the
localization accuracy only depends on the Doppler information
which will accumulate error over time [20].

The strong direct signal from a WiFi AP is a major
source of interference for a PWR system. Both physical (e.g.
angular antenna nulling), and post-processing techniques such
as adaptive filtering can be used to remove the direct signal
interference (DSI). Colone et al [17] propose the Extensive
Cancellation Algorithm (ECA) which subtracts the direct
signal from the reflected signals based on the least square
technique. However ECA has high computational load making
real-time processing infeasible. Another work [16] uses a
modified ’CLEAN’ algorithm to suppress the dominant peak
due to the direct signal with a self-ambiguity function which is
calculated by the reference channel and this algorithm shares
a similar structure to CAF.

III. OVERVIEW OF WIFI SENSING

A. Signal Model

OFDM symbol is widely used in many WiFi standards such
as IEEE 802.11 a/g/n/ac. In an OFDM system, the band-
width is shared among multiple overlapping but orthogonal
subcarriers and due to the small bandwidth, each subcarrier
experiences only flat fading in a frequency-selective fading
wireless channel. Let the transmitted OFDM signal be defined
as:

x(t) =
1√
N

N−1∑
n=0

ane
j 2π
T nt (1)
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Fig. 1: Block diagram overview of CSI and PWR systems

where T is the OFDM symbol period, N is the number of
subcarriers and an is the nth symbol in the constellation
symbol sequence such as QPSK or QAM. The received signal
y(t) consists of both direct signal and multipath reflections.
These reflections from a stationary object or a moving person
can be represented as a summation of the delayed and phase
shifted transmitted signal. The received signal can be written
as:

y(t) =
∑
p

Ape
j2πfdtx(t− τ) + n(t), (2)

where p is the number of reflected paths, and Ap, τ , fd are
the attenuation factor, delay, Doppler shift for p-th path respec-
tively, n(t) is the Additive White Gaussian Noise (AWGN).

In the frequency domain, the transmitted signal X(fc, t) and
received signal Y (fc, t), with carrier frequency fc are related
through the expression Y (fc, t) = H(fc, t)×X(fc, t), where
H(fc, t) represents the Channel Frequency Response (CFR)
at carrier frequency fc, measured at time t. H(fc, t) can be
expressed as:

H(fc, t) = ej2π∆fct
∑
p

Ap(fc, t)e
j2πfd(t−τ), (3)

where ej2πfd(t−τ) is the phase shift with fd being the Doppler
frequency and τ the propagation delay. ej2π∆fct is the phase
difference between transmitter and receiver due to the Sam-
pling Frequency Offset (SFO) and Sampling Time Offset
(STO). Although the mechanism of CSI and PWR system
is different, however, the key idea of both systems is to
detect the changes in the communication channel caused by
moving targets and at the same time remove interference from
surrounding objects as well as the geometry of transmitter and
target reflection.

B. System Model

In this section, we describe of the signal processing for both
the PWR and CSI systems for human sensing. This is also
summarised by the block diagram in Fig 1. The CSI system
is based around communication techniques where information
is exchanged between a transmitter and receiver, and PWR
system is based on the radar technique which compares
the difference between transmitted and reflected signal. For
the CSI system, the raw physical layer CSI measurement is
obtained from a commercial Network Interference Card (NIC)
and stored for off-line processing. Conversely, the raw WiFi
signal in the PWR system is measured from a USRP platform,
and is down-converted and digitised for real-time processing
in a PC.

In order for the receiver to decode the correct transmitted
signal in a wireless medium, the propagation characteristics of
the channel must be known. In this regard, a training sequence
that is known by both the transmitter and receiver is sent in
each packet to obtain the channel estimate. This process is
often referred to as channel sounding. The channel estimate
is known as CSI and for a MIMO-OFDM system, it is a
matrix consisting of complex values for each subcarrier. The
equalizer uses the CSI to reverse the effects of the channel
on the transmitted information such as multipath propagation,
attenuation, phase shift, etc. In the IEEE 802.11n standard, the
training sequences are known as high throughput long training
fields (HT-LTF) and they are sent as part of the preamble
for the receiver to obtain the CSI [21]. On the other hand,
the PWR system (with the radar technique) correlates the
transmitted signal x(t) and received signal y(t) [22] to detect
the Doppler shift fd and propagation delay τ . PWR follows the
structure of passive radar system, it has a ’reference channel’
to recover the transmitted signal, and several ’surveillance
channels’ to capture the reflected signal from different angle
to provide spatial information.

There are two stages for the classification process in a CSI
system. Firstly, the processed CSI measurement, after median
filtering, can be directly fed to a neural network. However,
this approach is computationally intensive [23], considering
the size of the CSI data. Another approach [19], [24] convert
the processed CSI data into spectrograms using STFT. Due
to the nature of the Doppler information, this approach does
not require any calibration process as it is insensitive to static
objects. Classification in a PWR system is more straightfor-
ward as it directly outputs the Doppler spectrogram which
can be used for distinguishing users’ activity. This saves a
transformation process when compared to the CSI system.

In this work, we focus on the Doppler spectrogram obtained
from both systems to train a deep neural network and obtain
the classification accuracy for each system. More details on
the signal processing of each system are given in sections IV
and V.

C. Mechanism

The mechanisms of the CSI and PWR systems in time
and frequency domains are illustrated in Fig. 2 and Fig. 3,
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respectively. CSI characterizes how wireless signals propagate
from the transmitter to receiver based on the preamble in a
WiFi packet. The pre-defined sequence is used to generate
the corresponding CSI measurement. The CSI system ignores
the data signal and hence does not take full advantage of a
whole WiFi packet. In comparison, the PWR system does
not require details of the preamble or data in a WiFi packet.
To ensure Doppler sensitivity and ensure signal cotent, PWR
records signals for a longer duration than CSI. The advantage
of PWR system is that it can use both the preamble and data
signal, whereas it considers the time gap between two packets
to be redundant noise. The activity detection performance of
both the CSI and PWR systems depends on the frequency of
the received WiFi packets, where the typical default setting of
a commercial WiFi AP (10 beacon frames per second) is not
sufficient for sensing.

CSI systems make estimates about the communication chan-
nel at each subcarrier (in frequency domain). These measure-
ments can provide fine-grained features but they normally have
a considerable size. On the other hand, PWR system does
not process the OFDM signal on a subcarrier basis but treats
each OFDM symbol as one signal. For this reason, the PWR
system cannot access the information within each subcarrier.
The bandwidth of the PWR system is adjustable from the full
WiFi spectrum to a single tone. It is true that the channel
information from each subcarrier provides better resolution
than the PWR system which processes the Doppler shift from
the whole signal instead of individual subcarriers. However,
the variations across all subcarriers may not be vastly different.

CSI and PWR have different working principles as shown in
Figure 4. The major difference is that the PWR system has an
additional channel (reference channel) compared to the CSI
system. The function of this reference channel is similar to
the preamble signal in the CSI system which aims to recover
the original transmitted signal from the WiFi AP. However,
the reference channel is unstable in reality since it may not
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Fig. 4: Layout: (a) CSI system and (b) PWR system

perfectly recreate the signal due to the moving object reflection
and imbalanced RSS level from antenna, although it could
be solved by directly tap-off the signal. In comparison, the
preamble signal is more reliable than the reference channel
to generate the CSI measurement which also simplifies the
system to a single channel.

The working principle of the CSI system is that it cap-
tures the variation in the communication channel between the
transmitter and receiver due to motion. It works best, i.e., it
is most sensitive to the variations caused by a human activity
when there is a LoS path between the transmitter and receiver.
This geometry is also known as the forward scatter, where the
angle between transmitter-target and target-receiver is around
180 degrees [25]. However, this geometry is not ideal for a
PWR system since the Doppler information is lost at LoS
[26], which therefore reduces the system’s sensitivity As a
passive radar system, PWR performs better in a monostatic
geometry, where the the angle between transmitter-target and
target-receiver is smaller than 90 degrees [25]. Since the two
systems work best in different physical geometries, they have
different coverage areas and their Doppler spectrograms will
differ for the same geometry.

IV. SIGNAL PROCESSING FOR CSI SYSTEM

This section presents the signal processing techniques used
in the CSI system including phase calibration for SFO and
STO, noise removal, signal compression and signal transform.

A. SFO and STO Removal (Phase Calibration)

In practical WiFi systems, the raw CSI measurements are
affected by phase offsets as the hardware and software are
not ideal. STO and SFO are caused by non-synchronized
sampling clocks and frequencies between the transmitter and
receiver, respectively. Phase shifts in the spatial domain and
frequency domain provide useful information such as ToF
and AoA which can be used for localization and tracking
purposes [5]. Since in this work we focus on human activity
sensing, the time-domain CSI amplitude variations are enough
for this purpose as they exhibit different patterns for different
activities. Nonetheless, the phase is calibrated as in [27] where
a linear transformation is applied to the raw phase data to
eliminate the phase offset. The measured phase φ̂i of the ith
subcarrier be expressed as:

φ̂i = φi − 2π
ki
N
δt+ β + Z, (4)



where φ is the true phase, β is the phase offset due to carrier
frequency offset, δt is the timing offset between the transmitter
and receiver, ki is the index of the ith subcarrier and Z is the
measured noise. In the Intel 5300 CSI tool [28], i ∈ {1, 30}
and N is the FFT size. For example, N = 64 for a 20 MHz
WiFi channel in IEEE 802.11 a/g/n. The terms δt, β and Z
make it difficult to obtain the true phase from WiFi NICs. The
phase obtained from the raw CSI measurements is corrected
by first unwinding it and then applying a linear transformation.
The main idea is to remove the terms δt and β by considering
the phase across the whole frequency band [27].

B. Noise Reduction

Since raw CSI data is noisy in nature, we adopt the
Discrete Wavelet Transform (DWT) technique to filter out
in-band noise and preserve the high frequency components,
thereby introducing less distortion to the signal. DWT-based
noise filtering consists of transforming the signal into the
wavelet domain whereby the signal is divided into several
frequency levels called wavelets that consist of the detail and
approximation coefficients [29]. These can be mathematically
represented as [5]:

y1,low[n] =↓ Q

[ ∞∑
k=−∞

x[k]g[n− k]

]
, (5)

y1,high[n] =↓ Q

[ ∞∑
k=−∞

x[k]h[n− k]

]
, (6)

where y1,low[n] and y1,high[n] are the approximation and detail
coefficients, respectively, k denotes the frequency index, x[k]
is the input signal, ↓ Q[·] represents a downsampling filter,
g[n] is a low-pass filter and h[n] is a high-pass filter. The
highest wavelet level is considered as noise. For each level, the
noise and threshold for that level are estimated. The threshold
is adapted for lower wavelets and the noise is removed in
all levels without introducing significant distortion to the
signal. In addition to DWT denoising, 1-D median filtering is
also applied to the signal to remove any unwanted transients
or spikes in the signal, especially when no activities were
performed and the signal should be stable in this case.

C. Data Reduction

The raw CSI measurements were collected on a device
equipped with the Intel 5300 NIC with three receiving an-
tennas. For each pair of transmitting antenna and receiving
antenna, we obtain CSI values from 30 OFDM subcarriers
using the Linux CSI tool [28]. Therefore, if we have one
transmit and three receive antennas, we obtain 1×3×30 = 90
complex CSI values for each packet. The packet sampling
rate was set at 1 kHz and hence in one second, we obtain
1000 packets each of size 90. This results in a large amount
of data that needs to be processed and fed to a learning
algorithm for classification. Therefore, dimension reduction is
necessary in a CSI system. In this work, the widely used PCA
dimensionality reduction and denoising technique has been
adopted. PCA is used to identify the time-varying correlations

between CSI streams which are then optimally combined to
extract components that represent the variation caused by
human activities.

The number of PCs, R, is empirically selected to achieve a
good trade-off between classification performance and compu-
tational complexity [11]. Following DWT denoising, the first
two or three PCs are sufficient to capture most of the variance
in the CSI data stream [29]. Similar to [11], in the CSI system
we extract the first six PCs. However, the first one is safely
discarded since it contains a lot of noise and will not result
in any loss of information [2], [11], [30]. Therefore, only the
next five PCs are retained for further processing.

D. Doppler Spectrogram Generation

CSI measurement is highly sensitive to the surrounding
environment and radio-frequency reflections from the human
body exhibit different frequencies when performing different
activities. These frequencies can be distinguished in the time-
frequency domain (spectrogram) by applying STFT to the
PCA-denoised signal. Basically, the STFT applies a sliding
window to obtain equally-sized segments of the signal and
then performs FFT on the samples in each segment. The STFT
of a time-domain input signal, x[n], is given as:

X(t, k) =

∞∑
n=−∞

x[n]w[n− t]e−jkn, (7)

where t and k denote time and frequency indices, respec-
tively, and w[n] represents a window function (e.g., Hamming
window). The spectrogram has three dimensions, namely,
time, frequency, and FFT amplitude. The Doppler spectrogram
from STFT identifies the change of frequencies over time.
The window size for FFT determines the trade-offs between
frequency and time resolution. For instance, a larger window
size results in a higher frequency resolution but lower time
resolution. The spectrograms are generated from the five PCs
which are then averaged to obtain the final spectrogram.
Unlike Doppler radar, the CSI spectrogram does not associate
negative frequencies and hence the direction information is not
available.

V. SIGNAL PROCESSING FOR PWR SYSTEM

PWR is a special-case of biststic radar [26] which has
its origins in airborne surveillance. This section outlines the
details in the signal processing for the PWR system including
the cross-ambiguity function (CAF), CLEAN algorithm and
CFAR for noise reduction.

A. Cross Ambiguity Function

The PWR system consists of two synchronised receiver
channels; a surveillance channel Ssur(t) which measures tar-
gets signals from the monitoring area, and a reference channel
Sref (t) which records the signal from the WiFi access point.
CAF is processing is employed to obtain the range τ and
Doppler fd information by taking the Fast Fourier Transform
(FFT) of the cross-correlated signals from surveillance and
reference channels. Due to the limited bandwidth in WiFi,



the range resolution is not sufficient for indoor applications.
Doppler resolution is defined by the integration of time Ti
as: ∆fd = 1/Ti. This allows the Doppler resolution to be
adjusted for detecting human activities. The CAF equation can
be written as:

CAF (τ, fd) =

∫ Ti

0

x(t)y ∗ (t− τ)ej2πfdtdt (8)

where ∗ denotes a complex conjugate operation. Equation (8)
requires a high computational load due to the long FFT which
is not suitable for real-time processing in our system. Thus, the
batch processing [18] has been used for complexity reduction.
This is achieved by dividing a long sequence into several short
batches so that the cross-correlation and FFT processes are
faster. The CAF with batch processing can be expressed as:

CAF (τ, fd) =

Nb−1∑
n=0

∫ Tb

0

xn(t)y∗n(t− τ)ej2πfdtdt (9)

where Nb is the number of batches, Tb is the batch length
and n is the index of the beacon. In order to obtain better
performance, the reference channel was poiniting towards the
WiFi AP in our experiments to make it free from interference
due to human activities.

B. Direct Signal Cancellation

Note that the PWR system does not need to remove the
SFO/STO as in the CSI system since both the surveillance
and reference channels are synchronized through the USRP
platform and hence they share the same clock source.

A major drawback associated with PWR arises from the
direct signal interference (DSI) component which undergoes
perfect correlation with the reference signal, producing large
range and Doppler sidelobes that can mask the weaker target
echoes. Furthermore, the DSI increases the dynamic range
requirement of the system. However, angular nulling with
the antenna and interference cancellation techniques in the
receiver [5] can be used to suppress the unwanted effects
and improve system performance. A modified version of
the CLEAN algorithm proposed in [16] is therefore adopted
to suppress the DSI in our CAF processing. This CLEAN
algorithm shares a similar structure to the CAF process but
generates the self-ambiguity surface from the reference chan-
nel. This self-ambiguity surface is then used as an estimation
of the direct signal.

CAF k(τ̂ , f̂d) = CAF k(τ, fd)− αkCAFself (τ − Tk, fd)
(10)

where CAF k(τ̂ , f̂d) is the cleaned surface at the k iteration,
CAFself is the self ambiguity surface, αk and Tk are the
amplitude and phase shift of maximum peak in the kth CAF
surface. The CLEAN algorithm is implemented in the same
way as the CAF process due to their similar structure.

C. Noise Reduction

After the CLEAN algorithm, we can still observe some
noise in the CAF surface. One of the main reasons is that the

TABLE II: System Implementation

System CSI PWR
WiFi Signal 2.4 GHz (channel 1) 2.4 GHz (channel 6)
Hardware Intel 5300 WiFi [28] NI USRP-2921 [31]
Subcarrier/bandwidth 30 (out of 56) subcar-

riers
1 MHz (out of 20
MHz)

Antenna Omni-directional (6
dBi)

Directional (13 dBi)

Packet Rate 1000 per second 1000 per second
Measurement Rate 1000 Hz (same as

packet rate)
10 Hz

Real-time Processing No Yes
Output Data Size per
Second

90k: 1(tx) × 3(rx)
× 30(sub carriers) ×
1000(packets)

30k: 100(Doppler
bin)×30(range bin)
× 10(sliding window)

CAF process over the time gap shown in Fig. 2 may introduce
some noise. Furthermore, the CAF may be incorrectly pro-
cessed due to strong interfering WiFi signals from other APs
or weak received signal from the desired AP. One common
solution is to apply CFAR to estimate the background noise
distributions as follows:

Λ =
1

Nτ ·Nfd

Rτ∑
i=1

Rfd∑
j=1

CAF (τi, fdj) (11)

where Λ is the threshold mapping for CAF. i and j are the
indices for range and Doppler bin, respectively, Nτ and Nfd
are the training length in range and Doppler bin, respectively.
This threshold mapping is then used for normalizing the power
and remove the noise as P (i, j) = |CAF (i, j)|2/Λ. P (i, j) <
1 implies no motion and the corresponding point in CAF is
replaced with zeros. Otherwise, it is inferred that an activity
has occurred.

VI. SYSTEM IMPLEMENTATION & EXPERIMENT

A. System Implementation

To enable a fair comparison between the CSI and PWR
systems, we implemented both systems with almost the same
settings in terms of hardware as well as the firmware config-
urations in the WiFi AP. Details of both systems are provided
in Table II. The widely used network card, Intel 5300 [28],
has been used in our CSI system. The PWR system was
built based on our previous work [10]. The front-end RF
hardware includes two NI USRP-2921 [31] for wireless signal
acquisition and the measured data is transferred to a computing
unit (a laptop in this work) through a Gigabyte Ethernet port.
Recall that the Intel 5300 Linux CSI tool extracts the CSI
measurements from 30 out of 56 subcarriers for each transmit-
receive antenna pair, which were stored on a computing unit
for off-line processing. The CAF process in the PWR system
does not require the entire WiFi spectrum. A bandwidth of
1 MHz was found to be a trade-off between the PWR’s
system performance and stability. Signal processing for the
PWR system was implemented within LabVIEW, with a low-
complexity design for CAF processing and CLEAN algorithm.
The two systems were synchronized to an external NTP time
server to provide timestamped measurements.
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Fig. 5: Experiment layout

Both systems were running in the 2.4 GHz but on different
channels to avoid interference. This is because the CSI system
continuously pinged the transmitter (AP) to obtain the CSI
packets. This two-way communication interferes with the
PWR system unless they operate on different channels. The
packet rate was set at 1000 per second for both systems to
ensure the best activity detection performance can be achieved
in both systems. Measurement rate represents the number of
system output per second. The measurement rate for the CSI
system is based on the number of received packets per second,
which is 1000 Hz. However, for the PWR system, it is limited
by the amount of baseband signal that can be processed by the
computing unit. The measurement rate of the PWR system was
set at 10 Hz.

B. Experiment Layout

All measurements were carried out within an office area and
the experiment layouts are illustrated in Fig 5. The monitoring
area was approximately 8m x 6m with computers and office
furniture in the surroundings. To compare the detection per-
formance of the two systems with different geometries, the
location of receive antenna remained the same throughout,
whereas the WiFi transmitter was moved in each layout as per
Fig. 5. Layout 1 refers to the scenario whereby the transmitter-
object-receiver alignment is around 180 degrees. This forms
a forward scatter geometry which is also known as the line-
of-sight. Layout 2 is when the transmitter-object-receiver is
around 90 degrees and this forms a bistatic geometry. Layout
3 is when the transmitter-object-receiver is less than 45 degrees
and this is known as a monostatic geometry. Five testing
positions were used during the experiments and they were
separated by 1.5 m from each other. These points are used
to evaluate the effect of the system geometry on the activity
classification accuracy.

C. Dataset

In this pilot study, we conducted six basic activities, namely,
walking, standing from a chair, sitting on a chair, laying
down on the ground, standing from the ground and picking
up a small object from the ground. The descriptions of the
above activities are given in Table III. We applied a sliding
window to the Doppler spectrograms and extract 4 seconds of
Doppler data for each measurement, no matter the difference

TABLE III: Activity Description

Activity Description
(1) walking walking in the direction of 1-2-3, 2-3-4; this

represents a long, high-level body movement
(2) sitting sitting to a chair at position, 1,2,3,4,5; this rep-

resents a short, medium-level body movement
(3) standing standing from a chair at position, 1,2,3,4,5; this

represents a short medium-level body movement
(4) laying laying down to floor at position, 1,2,3,4,5; this

represents a long low-level body movement
(5) standing

from
floor

standing from floor at position, 1,2,3,4,5; this
represents a long, low-level body movement

(6) picking picking up small items at position, 1,2,3,4,5; this
represents a short, medium-level body move-
ment
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Fig. 6: Walking spectrogram obtained from (a) CSI system in
layout 1, (b) PWR system in layout 1, (c) CSI system in layout
2, (d) PWR system in layout 2, (e) CSI system in layout 3
and (f) PWR system in layout 3

in the activity duration. Five volunteers (four males and one
female) of different age groups (ranging from 22 to 30) were
involved in the experiments. Each activity was performed in a
random fashion with no particular orientation with respect to
the receiving antenna. This allows greater diversity in the data
collection, which is also representative of real-world day-to-
day activities. In this work, we have collected a total of 1,122
data samples from the six activities. Among these, layout 1
has 138 samples, layout 2 has 826 samples and layout 3 has
158 samples.

VII. EXPERIMENTAL RESULTS

In this section, the activity recognition performance of
both the CSI and PWR systems is presented. A simple 2D
Convolutional Neural Network (CNN) has been used as the
classifier. The CNN includes one convolutional layer, one max-
pooling layer and two fully connected layers. Since the input
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Fig. 7: Spectrogram obtained from layout 2 by CSI system: (a) sitting, (b) standing, (c) laying, (d) standing from floor, (e)
picking and from PWR system: (f) sitting, (g) standing, (h) laying, (i) standing from floor, (j) picking

data size is different for the two systems, some parameters are
different in the classifier.

A. Spectrogram Comparison

Firstly Fig 6 presents the difference in the walking spectro-
grams obtained from the CSI and PWR systems for all three
layouts. Test subjects walked along positions 2-5-8 repeatedly
at a constant speed. As can be seen from Fig 6, the subsequent
spectrograms have similar signatures in the CSI system with
a dominant high Doppler frequency which we attribute to
movement of the torso, and small frequencies which are related
to the movement of the limbs.

In comparison, Doppler signatures for walking in the PWR
system present a significantly different footprint in terms of
Doppler profile, shift and amplitude. The can be explained
as the PWR system is highly sensitive to the geometry of
the transmitter and receiver locations. The PWR spectrogram
in layout 1 (Fig 6(b)) shows very low Doppler shift since
the relative velocity between the transmitter-object and object-
receiver is almost zero when the PWR system operates in line-
of-sight. The spectrogram in layout 2 (Fig 6(d)) and layout 3
(Fig 6(f)) have clearer Doppler signatures and more significant
Doppler shifts.

In addition, the spectrogram from the CSI system does not
contain information regarding the walking direction, whereas
the sinusoidal wave in PWR system clearly indicate its velocity
and direction. This is because the CSI measurement represents
a short period of time (the duration of preamble signal) of
channel which gives the information about instant frequency
changes, thus no direction information. The PWR system
has an integration time of 1 second which is sufficient to
observe the direction of the object. However, the PWR system
is less sensitive to micro Doppler when capturing a large
movement, for example, the limbs’ Doppler during walking.
This is because the dominant Doppler pulse can easily mask
the micro Doppler pulses.

Fig 7 presents spectrograms for the other five activities
examined by the two systems. As it can be seen, the frequency
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Fig. 8: Classification matrices for activity recognition for
combined layouts 1,2,3 in (a) CSI system and (b) PWR system

shifts in the CSI’s spectrograms are lower than that in the
walking spectrogram as in Fig 6. Generally, all frequency shifts
or Doppler shifts in Fig 7 are lower than that in Fig 6 due
to the relatively slower body motion. There are some lower
frequency shifts in the CSI spectrogram which relate to part
body movement. For example, the short and weak frequency
shifts when standing from chair (Fig 7(a)), which has similar
shape to standing from floor (Fig 7(c)). While, the picking up
activity (Fig 7(e)) has the lowest frequency shift.

There are more patterns can be found in PWR’s spectro-
grams from certain activities. For example, sitting to a chair
(Fig 7(f)) and laying down to the floor (Fig 7(h)) both has
a negative Doppler shape, due to both activity contains a
downward body movement. This can be also observed from
the standing from chair (Fig 7(g)) and standing from floor (Fig
7(i)), where both contains a positive Doppler shape. Picking
up activity contains two part movements, bending over and
straightening up the body. As expected, we can see a negative
shape following with a positive shape (Fig 7(j)).



B. Classification Accuracy Versus Activity

We first conduct the classification results for all activities
in terms of different positions or layouts. 80% of the dataset
was chosen randomly and used for training, and the remaining
20% was used for testing. The overall accuracy for the CSI
system is 67.3% and the PWR system has almost similar
accuracy at 66.7%. These accuracies are lower than those
achieved in studies like [?], [2], [10], [32] (more than 90%
in accuracy). The reason for the low accuracy is because of
the mixture of forward scatter (LoS), bistatic and monostatic
(NLoS) layouts that result in different Doppler signatures as
presented in Fig 6. Also, the change of measurement position
means the variation in reflection power at the receiver side
would cause the strength of the Doppler signal to become
unstable. Nevertheless, this accuracy is still acceptable, it is
considered a benchmark when different physical layouts and
positions are mixed up together.

The confusion matrices for the CSI system and PWR system
are shown in Fig 8(a) and Fig.8(b), respectively. As it can
be seen, both systems has the best classification result from
activity 1 (walking) that is more than 90%. This is because
the walking activity contains higher Doppler shifts than other
activities in any directions or layouts. The second best result
is observed from activity 6 (picking) which is more than
70%. Other four activities have relatively low accuracy. CSI
system has the worst performance from activity 3 (standing)
and activity 5 (standing from floor), whereas the PWR system
has the worst performance from activity 2 (sitting) and activity
4 (laying down). Moreover, the wrong predictions in the CSI
system mostly happen between the pair of activities like sitting
on a chair and standing from a chair, laying down and standing
from floor. The reason is because the CSI system measures
Doppler shift in a short time and is therefore more sensitive
to activities with different time duration. In comparison, most
incorrect predictions in the PWR system occur for the walking
activity. This is because the PWR system has longer integra-
tion time (1s in this work), so that long duration activities are
easier to distinguish. This accuracy could be easily improved
by choosing the appropriate layout for each system.

One of the major limitations is the geometry of transmission
and reception. Thus, it is interesting to evaluate the activity
recognition accuracy in different physical setups. To evaluate
such performance, both the training and testing data were used
within the same layout. The results are shown in Fig 9. As
expected, the CSI system has the best performance in layout
1 at 91% and worst performance in layout 3 at 62%, whereas
the PWR system has the best performance in layout 3 with
an accuracy of 91.1% and worst in layout 1 with an accuracy
of 60%. Both systems have almost similar accuracy in layout
2 around 70%, which is more than the accuracy in Fig 8.
As mentioned previously, the CSI and PWR systems have
different mechanisms in processing the WiFi signal. The CSI
system has better performance in the forward scatter (LoS)
layout while the PWR system has better performance in the
monostatic layout. These results demonstrate the coverage of

layout 1 layout 2 layout 3
0.5

0.6

0.7

0.8

0.9

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

CSI

PWR

Fig. 9: Classification versus three layouts

position 1 position 2 position 3 position 4 position 5
0.5

0.6

0.7

0.8

0.9

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

CSI

PWR

Fig. 10: Classification versus different positions

CSI 
data

Neural Network 
(NNc) Fu

sio
n on

 
p

ro
b

abilitiesPWR 
data

Neural Network 
(NNp)

O
u

tp
ut p

red
ict 

class

Fig. 11: Fusion framework for two systems

the two systems that can be used in real applications.
Afterwards, we calculate the accuracy over each position

as demonstrated in Fig 5. In this experiment, we tested the
data for a specific position and trained the data for all other
positions (excluding the walking activity which covers several
positions). The classification accuracy for each position is
shown in Fig 10. As it can be seen, there are some variation
in accuracy in each system. More specifically, the CSI system
has the worst performance at positions 2 and 5, where both
are below 60%. The CSI system works best at position 3
which is close to a LoS layout. In comparison, the PWR
system has a more balanced performance across all positions
since the bistatic angle is relative similar. The spectrograms in
positions 2 and 5 have relatively similar Doppler signatures.
These results show that CSI and PWR systems have slightly
different coverage, and therefore a fusion of the two systems
could improve the performance in weaker positions.

C. Combined Classification accuracy

So far, classification results are calculated separately for
the two systems. As discussed before, there are considerable
differences in classification accuracy in terms of system layout
and position. Here, we combine the results from both systems
to further improve the accuracy for WiFi sensing. Inspired by
the work in [33], a simple fusion framework has been used as
shown in Fig 11. Here we export the probabilities, Pc and Pp,
for each activity from the Neural Networks used for the CSI



TABLE IV: Combined Accuracy

Dataset Method CSI PWR Combined
layout 2 Addition 75.7% 72.8% 79.8%
layout 2 Multiplication 75.7% 72.8% 74.0%
layout 1,2,3 Addition 67.3% 66.7% 74.2%
layout 1,2,3 Multiplication 67.3% 66.7% 70.2%

and PWR systems, respectively. We set the two systems with
same weight, and use two methods to calculate the combined
probabilities, Pf ; the addition method where Pf = 1

2 (Pc+Pp)
and the multiplication method where Pf = Pc ∗ Pp.

The combined accuracy for layout 2 and layouts 1,2,3
are given in Table IV. We followed the same procedures as
discussed in Section VII-B. As it can be seen, there are some
improvements in the combined accuracy as compared to the
accuracy obtained from the CSI and PWR systems separately.
In layout 2, the combined accuracy using the addition method
is 79.8% which is 4.1% and 6.0% higher than the accuracy
of each individual system, whereas the multiplication method
results in a slightly lower combined accuracy. The combined
accuracy shows even better improvement in layout 1,2,3 which
achieves 74.2%. In addition, these improvements are generated
using a simple fusion framework based on the probabilities
from the two systems. It is envisioned that a more robust fusion
process using the CSI and PWR data could further improve
the classification accuracy.

For layout 1 and layout 3, the imbalanced performance
between the two systems makes the fusion process ineffective.
In some cases, the fusion process could lower the original
accuracy since we consider equal weights in this work.

VIII. DISCUSSION

This section presents the challenges that we faced during
the implementation and experimentation with both systems.
Future improvements to the in hardware setup for an integrated
measurement system, signal processing and machine learning
algorithms are also discussed.

A. Resilience to Environmental Changes

WiFi signals are very sensitive to various factors such as
the geometry of transmission and reception, environmental
conditions and operational parameters of the communication
network It is crucial to build a robust WiFi sensing system
that can be adapted for different environments and WiFi AP
settings (e.g. bandwidth, transmit power, MIMO capability,
etc) but this represents a challenge. For example, the direction
and orientation of the person with respect to the WiFi AP
and receiver can change continuously. The distance between
the person and WiFi AP could also be varied. In practical
scenarios, there may be multiple people or other moving
objects around that could block the reference channel as well
as the baseline (LoS) between the transmitter and receiver.
It is very challenging for WiFi sensing systems to have the
generalization ability to automatically adapt to new and unseen
data. In other words, a WiFi sensing system should also work

when the device is placed in a new environment, unknown
location and operate for new talents.

For a CSI system, it requires a process to understand
the surrounding environment during a static measurement.
However, this process may have high complexity and hard to
operate in a real-world application. One solution is to convert
the CSI measurement into Doppler spectrograms to calculate
the change in frequency. However, this does not entirely solve
the problem as CSI’s spectrogram does not show the direction
of motion. In comparison, the PWR system directly outputs
a Doppler spectrogram which is less sensitive to the static
objects and we can use a previously trained model for a new
environment. However, the PWR system needs to overcome
the challenge where two channels are required. The re-creation
of the transmitted signal should be improved through a robust
algorithm instead of using a physical channel.

B. Efficiency in Spectrum Usage

The fundamental purpose of WiFi is for wireless commu-
nications. Sensing is a peripheral application which can either
be used to optimise the performance and quality of service
of the network, or secondary applications in healtcare, IoT,
security etc. The majority of previous studies which have
examined CSI based sensing systems [7], [11], [12], [24] use
a high packet rate to achieve good performance. However,
the high packet rates can be regarded as the exchange of
redundant information which occupy a considerable amount
of the already-limited WiFi spectrum. This in turn affects
the network performance, degrading the quality of service
for connected users. Moreover, sending unnecessary packets
for CSI measurements influences not only the measuring
device but also the nearby WiFi devices, since the packets
occupy WiFi resources in both time and frequency domains.
In contrast, the passive nature of the PWR system means that
no extra packets are transmitted for sensing purposes. This
minimizes the influence to communication systems, but the
PWR’s performance is highly dependent on the density of the
WiFi packages which might be a problem when the data traffic
through the AP is low.

In addition, the CSI system does not take full advantage of a
WiFi packet. Recall from Fig 2, the CSI system only uses the
preamble signal to obtain the desired CSI but does not have
information about the transmitted data signal. Despite that the
PWR system can capture the whole packets, however, it also
captures the time gap between packets which are redundant for
sensing but still has a computational processing overhead. To
enhance the detection performance, it is important to maximize
the usage of the WiFi package while filtering out the time gap
period. This is required for the data signal generation in the
PWR system using the reference channel method.

C. Beamforming

The latest IEEE 802.11ac standard use the beamforming
technique which could have an adverse impact on both CSI
and PWR sensing as it changes the amplitude and phase of the
WiFi signals. As a result, the CSI measurements may become



unstable and difficult to process if the beamforming matrix is
not available at the receiver side. The PWR system faces more
challenges due to the beamforming technique. Traditionally,
passive radar works with relatively low bandwidth and uses
a single carrier signal like FM radio and analog television.
Multiple antennas in the beamforming technique means the
aquisition of the PWR’s reference channel becomes even more
complicated. Acquiring the reference channel using a single
directional antenna from a MIMO AP will be challenging since
each received signal will have different amplitude and phase.
The variation in phase difference may generate erroneous
Doppler pulse in the CAF surface and cause similar side-
lobe problem in the PWR system. Nonetheless, beamforming
can be advantageous for WiFi sensing by providing spatial
information in addition to the Doppler and range information.
However, current CSI and PWR systems have not used this
new technique to generate joint spatial and Doppler data.

D. Challenges in Signal Processing

Using commercial NIC cards, the CSI system can obtain
fine-grained CSI measurements directly without any further
processing. However, the size of the CSI measurements
(shown in Table II) is proportional to the number of antennas
and packet rate. This means a huge computational power is
required to process such amount of data, although it is possible
to reduce the size of the data using techniques such as PCA,
which captures most of the variance among the subcarriers
over multiple antennas in only a few principal components.
On the other hand, the raw CSI measurement is too noisy to
be used directly for sensing purposes and hence the CSI signal
processing represents a very important engineering task. The
processing of CSI measurements to obtain meaningful infor-
mation such as Doppler, range, AoA, ToF, etc, is necessary
and it is worthwhile to develop algorithms which are useful
for joint activity recognition and localisation applications.

From the Doppler spectrograms, we realize that the tradi-
tional CAF process (Equation 8) in the PWR system could not
deliver sufficient range resolution for human sensing due to the
limited WiFi bandwidth. Also the integration time (one second
in this work) which defines the Doppler resolution, is too long
for activities consisting of hand gestures. It is believed that a
more efficient CAF processing with time synchronization (to
extract effective WiFi signal) could further improve the PWR
system in both range and Doppler resolutions. Moreover, the
CSI system has a low sensitivity to activities performed far
from the baseline while the PWR system has a low sensitivity
to activities performed close to the baseline. Thus, information
fusion from both systems could significantly improve the
coverage for WiFi sensing.

E. Challenges in Machine Learning Algorithms

Machine learning algorithms in WiFi sensing face several
challenges. Firstly, the training data available for some activ-
ities such as falling down (especially by elderly people) are
difficult collect and may be insufficient to train a model due
to under-fitting. This is a class imbalance problem [34], where

most standard classifier learning algorithms assume a relatively
balanced class distribution. Such a situation represents a
challenge in current WiFi sensing works [10], [11], [14] and
thus a different approach [34] is required for the imbalanced
activity classes.

Secondly, a large dataset is required to properly train a clas-
sifier, taking into account various factors like transmit/receive
geometry, abnormal activities and different height/weight of
people which could potentially change the Doppler pattern
for a given activity. This may not be feasible since the data
collection process will be time consuming and may incur
a high cost. However, two common solutions are available,
namely, model-based algorithms such as Finite Difference
Time Domain (FDTD) [35] which studies the physical theories
or statistical model of the target, and learning-based algorithms
such as Generative Adversarial Network (GAN) [36] which
generates new datasets based on a pre-trained network. Some
early works like [36], [37] have shown the potential of
using generated Doppler spectrum to improve the accuracy in
activity recognition. However, current works applying these
algorithms are still in the early stage and they focus on
simple activities performed mostly in a static environment
(very controlled experiments).

Another challenge is the cross-device/sensor in WiFi sens-
ing. Multiple WiFi devices can be combined together to
achieve a higher performance and efficiency. Due to the rapidly
increasing demand in wireless data, there will be more WiFi
devices available in different scenarios. These devices are
location separated which could provide extra information for
cross-device sensing. In addition to WiFi devices, many other
types of sensors such as cameras, mobile phones, laptops, IoT
devices, etc., can be used for cross-sensor sensing. The latter
can reduce human efforts for training machine learning algo-
rithms. For example, video cameras can be used to generate
automatic ground truth labels for the CSI and PWR systems.

IX. CONCLUSIONS

In this paper, we present and compare methods based on
communications (CSI) and radar (PWR) protocols for activity
sensing using WiFi transmissions. We contrast the difference
between these systems in terms of fundamental principles
and key challenges. We report on a range of human activity
data obtained from these two systems in realistic indoor
environments and compare the classification accuracy in terms
of system and surveillance area geometries The CSI and PWR
systems show the best performance in the line-of-sight and
monostatic layouts, respectively. Moreover, we have demon-
strated that a fusion process on both systems could easily
improve the accuracy for activity recognition. Future work
includes the development of a more robust system that can
combine the advantages of the CSI and PWR systems. Also,
the efficiency in spectrum usage and beamforming technique
are worth considering in WiFi sensing.
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