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Sources and triggers of oxidative damage in neurodegeneration 

Plamena R. Angelova 

UCL Queen Square Institute of Neurology 

Highlights 

 Misfolded and aggregated proteins in neurodegenerative diseases increase 

mitochondrial and cytosolic ROS production in neurons  

 Transition metal dyshomeostasis leads to an increased ROS generation, 

ferroptosis and neurodegeneration 

 Strong reduction in the function of redox defence systems in brain cells leads 

to oxidative stress and neurodegeneration 

 

Abstract 

Neurodegeneration describes a group of more than 300 neurological diseases, 

characterised by neuronal loss and intra- or extracellular protein depositions, as key 

neuropathological features. Multiple factors play role in the pathogenesis of these 

group of disorders: mitochondrial dysfunction, membrane damage, calcium 

dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a 

few.  All these factors, without exceptions, have in common the involvement of 

immensely increased generation of free radicals and occurrence of oxidative stress, 

and as a result - exhaustion of the scavenging potency of the cellular redox defence 1 

mechanisms. Besides genetic predisposition and environmental exposure to toxins, 

the main risk factor for developing neurodegeneration is age. And although the “Free 

radical theory of ageing” was declared dead, it is undisputable that accumulation of 

damage occurs with age, especially in systems that are regulated by free radical 
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messengers and those that oppose oxidative stress, protein oxidation and the 

accuracy in protein synthesis and degradation machinery has difficulties to be 

maintained. 

This brief review provides a comprehensive summary on the main sources of free 

radical damage, occurring in the setting of neurodegeneration. 

 

1.Introduction  

The term “neurodegenerative diseases” represents a large group of various diseases 

of the nervous system with heterogenous clinical manifestation and diverse 

histopathological presentation. While the mechanism, despite many technology 

breakthroughs in the recent decades, is still largely unknown, neurodegenerative 

diseases have one in common: a progressive loss of neuronal structure and function, 

resulting in loss of neuronal viability. Despite that etiopathology of 

neurodegenerative diseases is still not well understood, there is sufficient body of 

literature that confirms the implication of multiple factors and therefore 

neurodegenerative diseases are accepted to be “multifactorial “disorders. Among 

others it is almost always the case when the following are observed 

histopathologicaly: altered protein folding and formation of insoluble aggregates, 

mitochondrial dysfunction, calcium dyshomeostasis, oxidative stress, transition 

metal accumulation, organelle quality control and protein degradation defects, 

neuroinflammation, and as a result of all these defects: neuronal cell death. 

The relative short lifetime and the tight coupling to metabolic processes renders 

ROS/RNS, as well as the low levels of lipid peroxidation, well-fitted to exert various 

physiological signalling functions in the cell 1. Thus, the dysbalance in production 
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/scavenging of ROS/RNS would represent not only oxidative stress per se, but also 

the disruption of physiological signalling to add another facete to the multifactorial 

face of ND. 

The raison d'être of this review is to elucidate the interlinking role of ROS to the 

etiopathology of neurodegeneration, connecting the processes of lipid peroxidation, 

metal dyshomeostasis, mitochondrial dysfunction, exhaustion of redox defence 

systems, ultimately signalling to initiate programmed cell death cascades. 

 

 

2.Sources of oxidative stress in neurodegeneration 

2.1 Mitochondria 

Deficits in cell bioenergetics are a common in most neurodegenerative diseases as 

well as in aging. Alzheimer's disease, Parkinson's disease, Friedrich ataxia, among 

others, also share some aspects of impairment of glucose homeostasis and insulin 
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resistance 2. Mitochondria are well-known to be affected in ND, and mitochondrial 

dysfunction has been long ago accepted as a potential generic deleterious mechanism 

in neurodegeneration; this is not surprising as mitochondria perform central 

functions in cell life. Mitochondria are both producers and highly vulnerable targets 

for the various types of ROS. This is especially true for the brain-an organ with very 

high turnover, oxygen consumption, end point differentiation. Therefore, cell death, 

although adult neurogenesis has been confirmed, is terminal. 

2.1.1 ETC and matrix ROS production 

The value of the mitochondrial membrane potential is controlled by the rate of the 

electron flux along the electron transport chain. Interestingly, ΔΨm does not 

necessarily directly correlate with the ATP and ROS production levels. Commonly 

observed in ND is the reduction in ΔΨm, but also is the hyperpolarisation of 

mitochondria3, the latter being a compensatory mechanism, aiming at stabilisation of 

the mitochondrial membrane potential, as its drop signals apoptotic signalling 

cascade initiation, ultimately leading to neuronal loss. In this case ΔΨm depends on 

the reversal of the function of the ATP synthase which, back-flushes protons while 

consuming ATP.    Although reduction of Complex I activity has been reported for 

most of the genetic models of PD, it is now accepted that ATP levels reduction is not 

the main reason for development of pathology, but rather it is the increased electron 

leak and consequent increase in superoxide production and oxidative stress. Indeed, 

higher ROS production, originating as a dysfunction of the electron transport chain 

has been reported for PD, AD, ALS, PSP. 

Reduction of the activity of complex I maybe a result of substrate availability 

shortage, especially for complex I (NADH), where NADH might be dragged away to 

the pentose phosphate pathway, as a reducing equivalent, replenishing the GSH pool.  
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Another possibility might be that the structural and assembly defects of the 

enzymatic complex underlie the reduced activity of complex I. In agreement with the 

latter, complex I of the electron transport chain (ETC) has been reported to be one of 

the most often affected mitochondrial enzymatic complexes in ND, both in the 

genetic as well as in the sporadic forms of the disease in PD 4, 5, 6, 7, 8, AD 9, as well as 

Leigh syndrome 10, 11, 12, MELAS syndrome 13, 14, MERRF syndrome 15, 16, Leber 

hereditary optic neuropathy 17, 6. In support of this fact, inhibitors of ETC complexes 

I and III have been used earlier to develop chemical models of ND, e.g. rotenone and 

MPTP for PD  18, 19, 5. 

To assist with oxygen and metabolic conversion and signalling many ROS-producing 

and converting enzymes exist in the matrix of mitochondria: α-ketoglutarate 

dehydrogenase (KGDHC), pyruvate dehydrogenase complexes (PDHC), aconitase, to 

name a few, and mutations and reduced activity of these enzymes have been reported 

for many types of neurodegenerative diseases 20, 21, 22. 

Beta-oxidation is the intermediate step of the catabolic pathway for lipid degradation 

and utilisation. Through beta-oxidation turnover the free fatty acids (FFA) become 

suitable for utilisation in the TCA in the form of Acetyl-CoA.  Indeed, higher FFA 

levels critically increase the probability of ROS production and lipid peroxidation, 

that may lead to lipotoxicity through increased levels of calcium deregulation, 

mitochondrial dysfunction and cell death-features that are very similar in, and 

possibly linking ND and diabetes type 2 23, 24. 

Indeed, severe defects in beta-oxidation have been associated with ROS generation 

and the subsequent development of neurodegenerative diseases 25, 26. On the other 

hand, defects in mitochondrial fatty acid synthesis and lipoic acid in particular, lead 

to deficiency in functional iron-sulphur clusters in the mitochondria and to the 
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development of CoPAN, PKAN, MEPAN syndromes (types of Neurodegeneration 

with Brain Iron Accumulation; NBIA) 27, 26. 

2.1.2 Mitochondrial ROS-producing enzymes 

Monoamine oxidases types A and B (MAO A/MAO B) and (COMT) are key enzymes 

in the catabolism of biogenic monoamine neurotransmitters (dopamine, serotonin, 

norepinephrine, epinephrine, etc.) and xenobiotic amines, which produce hydrogen 

peroxide (H2O2) as a by-product. They play an important role in physiological 

signalling cascades, e.g. epinephrine (adrenaline) and dopamine, both activate 

directly MAO B to induce calcium signal through the production of H2O2, lipid 

peroxidation and consequent phospholipases activation in astrocytes 28, which in the 

case of adrenaline further leads to vasoconstriction of the nearby situated blood 

vessels29,. Both overproduction and reduced production of dopamine and higher 

generation rates of H2O2 would have essential part in the development of 

neurodegenerative diseases. In agreement with this, it has been reported that 

increase in dopamine turnover inhibits the electron flow via the ETC (mitochondrial 

respiration) possibly through the generation of H2O2 and hydroxyl radical (HO.-) 30, 

by the activation of MAO 28 and/or by the thiol redox state of plethora of  

mitochondrial enzymes (e.g. complexes I, II, III, V, isocitrate dehydrogenase, alpha-

KG, aconitase, glycerol-3-phosphate dehydrogenase (GPDH); dihydroorotate 

dehydrogenase (DHOH) and cytochrome b5 reductase (B5R) or mARC 31, 32, 33. 

Given the fact that the tricarboxylic acid cycle (TCA)/PPP and the ETC/OxPHOS are 

tightly coordinated directly through the succinate dehydrogenase (complex II) and 

through enzymatic substrates that are at the same time reducing equivalents in many 

redox reactions (NADH, FADH2, NADPH), it is not surprising that TCA/ETC are 

also tightly redox coupled and vulnerable to transposing oxidative damage to each 
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other. While it is known that MAO-B levels increase with ageing 34, and in the cases 

with AD while MAO-A decreases 35, the situation in PD is still controversial. In PD 

the most susceptible to cell loss are the striatal dopaminergic neurons, where the 

burden of oxidation is very high: on one side constant exposure to exogenous 

dopamine, which could also autooxidise to produce superoxide; and on the other 

dopaminergic neurons are exposed to H2O2 produced by MAO while metabolising 

dopamine. 

Interestingly MAO-A inhibitors (selegiline, rasagiline) not only inhibit degradation of 

dopamine and H2O2 formation , but also stimulate the expression of neurotrophic 

factors-NTFs (BDNF, GDNF, MANF, CDNF) in vivo and in vitro which in long term 

account for the recovery of nerve tissue 36, 37. 

 Gene polymorphism has been reported for MAO A/MAO B and COMT in PD and AD 

patients, and whether genetic or stress-induced, there is a great potential for this 

variation to alter gene regulation and consequently to impact function 38. Catechol-

O-Methyltransferase (COMT) is another enzyme that catalyses the conversion of 

active catecholamines (dopamine, epinephrine, norepinephrine, estrogens) into 

inactive metabolites and thus facilitates their excretion, while mitochondrial 

aldehyde dehydrogenase (ALDH2) catalyses the metabolism of catecholaminergic 

metabolites (DOPAL and DOPEGAL) and the major products of lipid peroxidation – 

4-hydroxynonenal (4-HNE), malondialdehyde, acrolein and acetaldehyde 39. 

Reduced activity of both COMT and aldehyde dehydrogenase 2 (ALDH2), conferred 

by genetic polymorphism provide an insight into the interactions between enzymes 

metabolizing biogenic monoamines in the pathogenesis of PD and AD 40, 41, 42, 43, 44. 

In addition, catecholestrogens could undergo redox cycling to further produce ROS, 

generate electrophilic ortho-quinone intermediates, and to damage surrounding 
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biomolecules and to further reduce thiols. There is an emerging body of evidence that 

incomplete metabolism and consequent detoxification of the products of catabolism 

of monoamine neurotransmitters might contribute to the mechanism of 

neurodegeneration. Interestingly, selegeline (Deprenyl), a selective MAO-B inhibitor 

that is widely prescribed to PD patients, has been shown to directly and very potently 

attenuates oxidative stress in cellular models of PD 45.  

Superoxide dismutases, in particular the Mn-SOD (SOD2) and to a lesser extent the 

Cu-Zn SOD (SOD1) are essential transition metal-containing superoxide-detoxifying 

mechanisms with mitochondrial localisation 46. Mutation of SOD1 has been found to 

have a direct link to amyotrophic lateral sclerosis (ALS) pathology 47; 48; 49, and low 

expression levels and activity in AD 50.  

Mitochondrial amidoxime-reducing component (mARC1/2) are a molybdenum-

containing enzymes involved in the regulation of nitric oxide synthesis 51, where  

electrons are transferred from NADH to cytochrome b5 reductase and via 

cytochrome b5 to mARC. ROS production of mitochondria can also be modulated by 

NO by signalling through reversible binding to Cytochrome C oxidase (complex IV), 

and subsequent inhibition of the electron transfer and generation of superoxide. NO 

might be either diffusing to mitochondria from eNOS (endothelial nitric oxide 

synthase), produced by direct nitrate reduction or generated on cite by mitochondrial 

isozyme 52,53 . Nitric oxide may then interact with iron-sulphur clusters of the 

electron transport chain. Further, nitric oxide could react with superoxide to form 

peroxynitrite ONOO-, which is a potent oxidant and a major endogenous neurotoxin. 

2.1.3 Calcium buffering capacity of mitochondria as regulator of ROS 

production 
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Mitochondria are also important calcium buffering organelles, that modulate the 

cytosolic calcium concentration, together with other mechanisms, to avoid cytotoxic 

long-term elevated levels.  Mitochondrial calcium buffering capacity is controlled by 

the mitochondrial membrane potential, on one side, and by the proper functionality 

of mitochondrial calcium uniporter (MCU) and the mitochondrial sodium calcium 

exchanger (NCLX), that control calcium uptake and release, on the other 54, 55. 

Defects in calcium homeostasis and subsequent ability of mitochondria to buffer 

increased cytosolic calcium have been described in the literature for many types of 

ND 56, 57, 58. 

2.1.4. Mitophagy/autophagy 

Mitophagy is a mechanism for organelle quality control responsible for the 

degradation of damaged/depolarised mitochondria. It is known to be triggered by 

mild oxidative stress and as this process becomes defective with advancement of age 

it is thought to be one of the causal mechanisms for ageing and the development of 

age-related neurodegenerative diseases. Mitophagy plays an essential role in 

reducing the mitochondrial ROS production by maintaining mitochondrial quantity 

and quality 59. Moreover, mitophagy is the mitochondrial population correcting 

process that removes the excessive-ROS-producing mitochondria 60. Mutations of 

PINK1, PARK2 (which encodes parkin) or PARL genes, tightly involved in mitophagy 

are connected to the development of early onset PD or Leigh-like syndrome 61. 

Defective mitophagy/autophagy have been shown also for AD, HD, and ALS 62-64. 

2.1.5 PTP opening and cell death  

Mitochondria appear to be directly or indirectly linked to all postulated mechanisms 

of toxicity associated with ND. When the mitochondria membrane potential, as a 
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direct sensor for the integrity and functionality of the coupling of ETC with 

OXPHOS, had no chances to be stabilised within a very narrow range, together with 

accumulation of mitochondrial calcium and higher rates of lipid peroxidation, it 

triggers the opening of the mitochondrial permeability transition pore (mPTP). 

Although the exact molecular constituents of this high conductance “mega-channel” 

are still highly disputable, it is well accepted that the mPTP opening is the point-of-

no-return, beyond which the cell undergoes programmed cell death. As almost all ND 

diseases have in common mitochondrial dysfunction, calcium dyshomeostasis and 

higher rates of ROS production it is also accepted as a rule of a thumb that mPTP 

opening is part of the mechanism of ND. Indeed, mPTP opening has been reported 

for many models of ND 65, 66. Earlier studies by Lemaster et al.  have proposed the 

opening of the mPTP to be also a trigger for the initiation of mitophagy/autophagy  

67, 68, but this subject remains still highly debatable. 

 

2.2 Cytosolic ROS producing/converting enzymatic and non-enzymatic 

systems 

2.2.1 NADPH Oxidase 

NOXs/DUOXs (NADPH oxidases) are enzymatic super complexes, situated on the 

plasma membrane that serve as a local source of superoxide 69. They transfer 

electrons across the plasma membrane and are coupling these to molecular oxygen. 

Thus, they may serve as an oxygen sensor 70, and play various signalling roles in the 

regulation of the innate immunity, gene expression 71, 72, signal transduction 73, 

cellular proliferation, differentiation and growth 74, 75, and further to the initiation of 

cell death 76, 77, 78. ROS can regulate ion channels of the plasma and organelle 
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membranes 79, 80, 81, 82. NOXs/DUOXs can be activated through a calcium signal. 

However, the opposite is also true and the superoxide, released by NOX could release 

calcium from internal stores 83, 84. Inhibition of NOX have been reported to be useful 

for reducing oxidative stress and improving cognitive function in ND 85, 86,87, 88, 89, 

90, 91.  

2.2.2 Xanthine Oxidases 

Xanthine Oxidase/Xanthine dehydrogenase (XDH) are isozymes of xanthine 

oxidoreductase that are involved in the reactions of purine catabolism, converting 

hypoxanthine to uric acid through xanthine 92. Although XO is a serious producer of 

superoxide, especially in the time of mild hypoxia 92, not much information is 

available for its role in ND. Most information about XO involvement in the 

neurodegenerative cascades were derived from inhibitor analysis where XO 

inhibitors, allopurinol and oxypurinol, have been able to attenuate the ROS 

generation in HD, and furthermore protect from neuronal cell death in cellular 

models of PD and AD 93, 94.  Further to that, overexpression of XO has been reported 

for various ND, including AD 93. 

2.2.3 Nitric oxide synthase 

Nitric oxide is a key signalling molecule in the brain; it works both intra- and 

extracellularly to regulate the vascular tone, neuronal signalling, and response to 

infection. Inducible NOS plays a well-described role in neurotoxicity in ND 95, 96, 97, 

98. Disease-involved proteins can also stimulate the release of NO 99. Further, excess 

NO can S-nitrosylate various proteins that play key role in ND, namely parkin, 

complex I from the ETC, drp-1, protein disulphide isomerase, etc. 100.  
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2.3 Cytosolic calcium as a trigger of oxidative stress 

Intracellular calcium concentration has to be kept low in order to enable cell calcium 

signalling. Several calcium transport mechanisms are involved in the 

compartmentalisation of intracellular calcium and maintenance of calcium 

gradients:  Na+/Ca2+ exchanger (NCX) and Ca2+-ATPase (PMCA) situated on the 

plasma membrane  and the Sarcoendoplasmic Reticulum Ca2+-ATPase (SERCA) 

from the ER work together with the mitochondrial calcium transport mechanisms 

described earlier and with the calcium-binding protein family (parvalbumin, 

calbindin, calretinin, calmodulin), which all work together to keep intracellular 

calcium levels low. 

Defects in all mechanisms, controlling for adequate calcium concentrations in the 

neurons have been reported for many ND 101, 102, 103, but especially is this true for 

oxidative damage of this proteins 104, 105, 106. 

Higher cytosolic calcium activates the NADPH Oxidase, a massive production of 

superoxide, that is rapidly turned into H2O2 or molecular oxygen by the superoxide 

dismutase (SOD). In ND it is often reported dysfunction in the described transport 

mechanisms or pore-forming properties of misfolded proteins that lead to increased 

cytosolic calcium levels and ROS production rates and subsequent activation of 

mPTP opening, ultimately resulting in neuronal cell death 1, 107, 108. 

2.4 Lipid peroxidation 

Superoxide produced in NOX is a very short-lived type of ROS (10-9 s), and because 

of its high reactivity, it is either converted enzymatically to H2O2 or by interacting 

with nearby situated molecules it forms large variety of toxic moieties including 

peroxides and carbonyls to damage protein or nucleic acids. 
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The brain is an organ enriched in polyunsaturated fatty acids (PUFA). The PUFA 

content enables the fluidity of brain cell membranes and allows for exertion of 

various signalling processes. PUFA are especially prone to oxidation due to the 

presence of bis-allylic hydrogen atoms, that are easily abstracted, both enzymatically 

and through auto-oxidation, converted to lipid radicals with signalling function 

through dramatic activation of phospholipases PLA2, PLC, PLD 109,110. Lipid 

peroxidation is a physiological process that enables signalling functions of the cell. 

For example, breathing frequency is regulated through lipid peroxidation while 

mitochondria serve as an oxygen partial pressure sensor 111. However, excessive rates 

of lipid peroxidation are sign of oxidative stress and are seen in all types of 

neurodegenerative disorders, e.g. PD, AD, NBIAs -PANK2 and PLA2G6-associated, 

FTDP-17 or ALS 3, 112, 113 114. 

Major products of enzymatically-mediated lipid peroxidation are the lipid 

hydroperoxides of arachidonic acid- 15-hydroperoxy-AA-PE (HOO-AA-PE) that have 

recently been found to be the signalling trigger for initiation of ferroptosis -specific 

type of iron and lipid peroxidation-dependent programmed cell death 115, 116. Indeed, 

15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE) have 

been found in PLA2G6-associated neurodegeneration 117. 

Elevated levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), acrolein 

and increased rates of lipid peroxidation (LPO), as well as reduced glutathione 

content, all can serve as  sensitive markers for oxidative stress and have been largely 

reported for brain tissues of ND patients 118, 119. Increased rates of lipid peroxidation 

have been involved in almost every cell model of ND, for example PD, Friedrich’s 

ataxia, FTD, ALS, PSP 120 121 122. Moreover, it is known that misfolded and aggregated 
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alpha-synuclein leads to ferroptosis via activation in lipid peroxidation in the 

presence of transition metal ions, including iron 123. 

2.5 Arachidonic acid second messenger system 

Another potential source of ROS is the arachidonic acid second messenger system 

that converts the calcium-dependent signal with the help of PLA2, 5-lipoxygenase (5-

LOX), cyclooxygenase COX and cytochrome P450 (CytP450) into 

neuroinflammatory signal in the form of leukotrienes, hydroxyeicosatetraenoic acids, 

epoxyeicosatrienoic acids, hydroperoxyeicosatetraenoic acids, prostaglandins, 

thromboxanes and lipoxins 124, 125, 126. In this type of signalling reactions 

phospholipases trigger phospholipid signalling cascade that regulate inflammatory 

response with final reduction of these radical signalling intermediates by GSH or 

GSH-S-transferase 127, that could lead to reducing equivalent pool depletion in ND. 

Indeed, in ND, lipid peroxidation, depletion of endogenous thiols and 

neuroinflammation are part of the greater picture. AA also directly activates NADPH 

oxidase to produce superoxide, independent of eicosanoid biosynthesis 128. 

Arachidonic acid can also regulate the activity of ion channels through oxidation of 

the protein thiol switches 129. On the other hand, phospholipases are membrane lipid 

turnover regulating enzymes that use only oxidised lipids as substrates 110. And least, 

but not last, NOX plays an instrumental role in the erastin -induced neuronal death, 

which has been termed ferroptosis 130. Erastin is an inhibitor of cystine/glutamate 

antiporter (xCT) and thus glutathione synthesis, and an activator of VDAC (voltage-

dependent anion channels in mitochondria). Ferroptosis is a unique type of non-

apoptotic programmed cell death, that is dependent on the presence of three factors:  

lipid peroxidation, iron involvement and defect in the redox status. 

2.6 Transition metals dyshomeostasis  
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Transition metal homeostasis is severely perturbed in neurodegeneration. Metal 

trafficking defects, resulting in inappropriate distribution underlies the metal 

hypothesis of ND. Metal ion depositions could be one of the diagnostic criteria for 

brain tissue from ND patients, while widely variable, there are some, i.e. iron 

depositions in substantia nigra PD, PSP, MSA 131 or in the globus pallidus for NBIA 

and neuroferritinopathy 132. Copper levels have been reported to be reduced in PD 

and PSP, but elevated in HD and AD, and zinc ions increased in PD 131.  

The implication of defect metallostasis in ND has been reported widely. Additionally, 

transition metal chelators have been shown extensively to reverse pathology in ND 

animal  models 133, 134, 135 and in cellular models of ND 136. Further, targeting 

transition metal interactions with misfolded proteins by metal chelators have also 

been shown to reverse aggregation in tissue from ND patients 137, 138.  

Metal-induced aggregation of critical proteins has been well documented. For 

example Cu and Zn induce aggregation of β-amyloid 139, 140, while iron is 

instrumental in the aggregation of alpha-synuclein 141 , β-amyloid 142 and tau 143. 

Further to that, it has been shown that misfolded alpha-synuclein forms soluble 

aggregates by adopting a beta-sheet conformation to facilitate ROS production in a 

cell-free environment 65, 144. One of the possible explanations to this phenomenon is 

the presence of trace transition metal ions in the buffer. 

 There is a separate classification of neurological diseases where iron accumulation in 

the basal ganglia and extrapyramidal symptoms are the main classification criteria – 

this group of diseases is termed Neurodegeneration with Brain Iron Accumulation 

(NBIA) 145.  Ten NBIA forms are widely accepted to be caused by mutations in the 

following genes: (PANK2), (PLA2G6), (WDR45),(C19ORF12), (FA2H), (ATP13A2), 

COASY, FTL1, CP, and DCAF17 146. However, NBIA share common features with the 
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rest of the neurodegenerative disorders, either genetically predisposed or sporadic: 

defect iron transport and redistribution mechanisms, protein aggregates, lipid 

peroxidation, mitochondrial dysfunction and disturbed dynamics, and defect 

mitophagy/autophagy 146, 112, 147, 145.  

Iron, copper, zinc, and manganese ions are cofactors of metalloenzymes and 

metalloproteins from the mitochondria. These include the mitochondrial enzymes 

and Fe/S clusters of the ETC, mitoferrin 1/2, voltage-dependent anion channel 

(VDAC1), aconitase, sterol carrier protein 2, mitochondrial NAD-dependent 

deacetylase sirtuin-3 (SIRT3), FXN, cysteine desulfurase (NFS1), mitochondrial 

ferritin (FtMt) 148. 

Thus, when metal co-factors are misplaced or metal ion transport hindered, 

transition metal ion–catalysed reactions involving iron, copper, etc. (i.e. Fenton or 

Haber-Weiss reactions) become major producers of ROS/RNS in ND. Fenton 

reaction is a type of iron-catalysed chemical conversion of H2O2 into highly reactive 

free radicals that further attack lipids, proteins and DNA. In the “conventional” 

Fenton reaction the most “toxic” and highly-reactive radical, the hydroxyl radical, 

and a hydroxide ion are produced from hydrogen peroxide in the presence of 

catalytic divalent transition metal ions (iron or copper).  In the Haber-Weiss 

reaction, also called superoxide-driven Fenton reaction, the conversion of hydrogen 

peroxide is being coupled to a reduction of superoxide radical to molecular oxygen.  

Defect metallostasis has been described to have direct amyloidogenic consequences 

on disease-related proteins like alpha-syn, beta-amyloid, tau, presenilin, and 

oxidative stress have been shown to have a pivotal role in development of ND 118. 

Finally, iron is a key factor in a recently described form of neuronal cell death, causal 

for neurodegeneration- ferroptosis 123.  

Jo
urn

al 
Pre-

pro
of



 

2.7 Misfolded proteins as a source of ROS 

The major histopathological hallmark of neurodegenerative disorders is the presence 

of misfolded and aggregated amyloidogenic protein deposits. However, the type of 

protein, as well as clinic and histology often overlap. Thus, dysfunctional alpha-

synuclein causes not only Parkinson’s Disease, but also Lewi Body Dementia and 

Multiple Systems Atrophy, that are termed synucleinopathies.  β-amyloid could be 

observed histochemically not only in Alzheimer’s Disease, but also in Lewi Body 

Dementia, Primary Progressive Aphasia, Frontotemporal Dementia. Neurofibrillary 

tangles of hyperphosphorilated tau are evident in AD, Progressive Supranuclear 

Palsy, Primary Progressive Aphasia, Frontotemporal Dementia, commonly termed 

tauopathies. Amyotrophic Lateral Sclerosis, Frontotemporal Dementia or the 

combined form ALS/FTD is characterised by cellular redistribution and therefore 

dysfunction of the FUS or the TDP-43 proteins. However, the TDP-43 could be also 

detected in brains not only of ALS and FTD patients, but also in AD and PPA. 

 The mutated protein huntingtin is linked to the development of Huntington’s 

disease (HD) that features polyQ (poly glutamine) repeat expansion of the Htt gene, 

and characterised by the massive striatal neuronal loss and Htt aggregate formation 

149, 150,151. However, PolyQ expansion is associated also with other neuromuscular 

degenerative diseases, such X-linked spinobulbar muscular atrophy (SBMA) and 

various spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 17) 152, 153. Thus, the majority of 

neurological and neurodegenerative diseases are also classified as proteinopathies 

154. The primary amyloid-forming proteins are in general proteins with amorphous 

structure that adopt an atypical highly ordered, insoluble, beta-sheet-rich structure, 
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which later in time forms fibrils and intractable amyloid depositions, associated with 

ND (amyloid plaques, Lewi bodies, NFT) 154.  

Indeed, the intermediate (soluble) aggregates of abnormal alpha-synuclein, tau, 

beta-amyloid, etc are highly neurotoxic 155, 156, 120, 157 through initiation of oxidative 

stress, mostly through activation of NOX and activation of cell death cascades 158, 108, 

159.  

Thus, protein misfolding and aggregation of proteins of otherwise physiological 

function 160 are more likely to lead not only to loss of physiological protein function, 

but additionally to a toxic gain-of-function: for example – alpha-syn, membrane 

channel-like activities that compromise plasma and organelle membrane integrity 

and lead to mitochondrial PTP opening 65. 

It has been known for a long time that overexpression of alpha-synuclein gene leads 

to overproduction of ROS in genetic models of ND 136. Recently we have found a 

physiological role for alpha-synuclein in the mitochondria 161, besides the proposed 

functions in the synapse. Thus, overexpression of the SNCA gene leads to a 

misfolding and aggregation of alpha-synuclein-which leads to mitochondrial 

dysfunction, ROS generation at the site of execution of physiological function 65. 

Similarly, mutant superoxide dismutase 1 forms aggregates in the brain 

mitochondrial matrix of amyotrophic lateral sclerosis mice 162, where it further 

causes mitochondrial abnormalities and neurotoxicity 163. It has been reported that 

in SOD1 mutant aggregation leads to higher rates of superoxide production in a VCP-

related human model of ALS 164, probably because of SOD 1 “loss-of-function”. 

 

2.8 Reduced cellular redox defence systems activity in ND  
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Importantly, many of these redox defence enzymes (e.g., catalase, GPX1, GPX4, 

PRX3, and PRX4) are physically localized to the place of higher oxygen turnover- 

mitochondrial matrix, where they oppose the constant production of ROS 165, 166, 167, 

168. However, every exhaustion of those antioxidant defence mechanisms renders 

mitochondria, and all aspects of their essential functions, extremely vulnerable to the 

action of ROS and leads to mitochondrial dysfunction. 

2.8.1 Endogenous antioxidant molecules 

The non-enzymatic antioxidant defence system includes various small molecules like 

GSH, urea, tocopherols, retinols, bilirubin and lipoic acid, capable of direct 

scavenging of free radicals or acting as co-factors on antioxidant or detoxifying 

enzymes. Low levels of endogenous antioxidant molecules were reported for many 

types of neurodegeneration. 

Glutathione (GSH) is the major thiol-containing small molecule with the essential 

role to scavenge any water-soluble ROS, both enzymatically and non-enzymatically, 

thus mediating the redox signalling between various cellular compartments 169, 170, 

171. GSH depletion therefore, results in a variety of pathological conditions and leads 

to degeneration 171, 172, 173, 174,  172.    Most neurodegenerative diseases are 

accompanied by severely decreased GSH levels in both neurons and astrocytes, 175, 

176, 177.  

2.8.2 Enzymatic redox defence systems 

Brain cells are equipped with various thiol-dependent redox systems, including the 

GSH-glutaredoxin (Grx) system, consisting of NADPH, glutathione reductase (GR), 

and glutathione (GSH) and the thioredoxin system which comprises of thioredoxin 

(Trx), thioredoxin reductase (TrxR), and NADPH 178. Because bioenergetics is tightly 
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coupled to ROS production, in neurodegeneration, due to a failure of energy supply 

to the highly energy-demanding brain tissues, the redox balance is shifted to 

oxidation, since reducing equivalents are dragged over to fill energy gaps.  

Further redox defence enzymes include superoxide dismutase (SOD), catalase (CAT), 

GPx, and peroxiredoxin (Prx). Soluble superoxide dismutase (SOD)- Cu/Zn-SOD-

SOD1 and SOD3- can catalyse the conversion of superoxide to H2O2, a well-known 

signaling messenger. Several mutations of Cu, Zn-SOD gene have been reported to be 

associated with ALS 179. Additionally, oxidative modification and aggregation of the 

enzyme have been observed in PD and AD 180. 

Peroxisomes are small cellular organelles that play important role in cellular lipid 

metabolism and are redox and metabolic signalling hub between ER and 

Mitochondria 181.  They contain several essential antioxidant enzymes, e.g. catalase, 

super oxide dismutase 1 (SOD1), peroxiredoxin 5 (Prx5), and glutathione peroxidase 

(GPx), glutathione S-transferase kappa, 'microsomal' glutathione S-transferase, and 

epoxide hydrolase 2, Lon protease 2 (LonP2), which all balance out the excessive 

peroxisomal oxidase-generated ROS 182; 181, 183, 184. While congenital paroxysmal 

defects are molecular determinants of neurodegeneration-like phenotype 

development, e.g. X-linked adrenoleukodystrophy (X-ALD), declining function of the 

ageing peroxisomes could be one of the triggers of sporadic forms of 

neurodegenerative diseases. Thus, defect peroxisomal functions have been associated 

with ALS 185, AD 186, PD 187, Zellweger syndrome 188. 

2.8.3 Nrf-2 

An intrinsic master regulator of the constitutive antioxidant defence of the cell is Nrf-

2 (Nuclear factor erythroid 2‐related factor 2), which further regulates mitochondrial 
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bioenergetics (OxPhos and β-oxidation), superoxide production through NADPH 

Oxidase, glutathione-synthesizing or -regenerating enzymes and NADPH producing 

enzymes from the pentose phosphate pathway to stabilise GSH levels. As both 

mitochondrial defects and oxidative stress are characteristic of all neurodegenerative 

disorders, activation of Nrf-2 is a very promising mechanism for opposing the higher 

ROS production rate if ROS in ND and maintaining adequate redox status, in the 

neurons, which enables survival. Indeed, there have been shown various positive 

effects of Nrf-2 activators in animal models and cellular models of neurodegenerative 

diseases such as ALS/FTD, PD, AD, HD or FRDA 189, 190, 191, 192, 193. Nrf-2 activators 

are currently tested and show very promising results in clinical trials for FRDA, AD 

and HD 194, 195. Nrf-2 activation has been shown to restore redox homeostasis, 

mitochondrial bioenergetics and biogenesis, to enhance rates of autophagy and 

proteasomal degradation of misfolded proteins, while opposing neuroinflammation 

and oxidative damage 196, 197. 

2.8.4 PRDX  

PRDX is a protein superfamily of thiol-specific peroxidases, enzymes with 

antioxidant function that catalyse the reduction of hydrogen peroxide and organic 

hydroperoxides to water and alcohols. PRDX3, specifically localized to the 

mitochondria, is essential for maintaining the mitochondrial mass and mitochondrial 

membrane potential. Thus, Ebselen, a PRDX mimetic has been shown to improve in 

models of ND 198 

 

2.9 Plasma membrane redox system (PMRS) 
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PMRS is a system of enzymes and metabolites, featuring ubiquinone (CoQ) and 

alpha-tocopherol, that utilise the electrons pumped by the NAD(P)H and recover 

previously oxidized antioxidants back to their reduced states and thus protects 

against lipid peroxidation and apoptosis induced by oxidative injury. PMRS 

accomplishes it protective role by delivering more NAD+ for ATP production 

(through glycolysis) via the transfer of electrons from intracellular reducing 

equivalents to extracellular acceptors. The enzymes’ of the PMRS (cytochrome b5 

reductase (b5R), reduced form of coenzyme Q (CoQH2), NADH-quinone 

oxidoreductase (NQO1) proper functioning is affected by ageing and may well play 

role in the development or further progression of neurodegenerative diseases 199, 200.  

Indeed, PMRS components have been reported to be down-regulated in different 

models of ND. Lower NQO1 expression has been shown for 3 × transgenic mice 

harbouring presenilin 1 (M146V), a precursor of amyloid protein (Swe), and tau 

(P301L) mutations 201, 202. Also, long ago it has been known that CoQ and tocopherol 

are decreased in mitochondria from different tissues by up to 50% in aged patients 

and people with AD  203. 
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2.10 Activated microglia as a source of ROS 

Microglia are the major resident type of macrophage-like cells in the CNS and as 

such they account for the first line of active immune defence. Microglia are also 

playing essential role in synaptic organization, neuronal excitability, neuronal 

support, myelin turnover, debris removal as well as brain protection and repair 204. 

Indeed, neuronal debris can activate microglia, leading to the release of different 

inflammatory factors, such as, pro-inflammatory cytokines, chemokines, etc., along 

with ROS and reactive nitrogen species (RNS). Thus, neuroinflammatory response is 

considered a crucial factor in the progression of ND. Early evidence from post 

mortem analysis of patient’ tissues showed that activated microglia localise in the 

vicinity of neuritic plaques in AD 205 or in substantia nigra in PD 206 tissue. Several 

studies have shown that early alterations in protein aggregation and 

neuroinflammation are fact in FTLD, AD and ALS 207, 208, 209, 210. In chemical PD 

animal models, the toxins used ( 6-OHDA, MPTP, LPS), all evoke both microglial 

activation and neuronal death 211, 212, 213 In a vicious cycle, the overactivated 
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microglia release pro-inflammatory cytokines through activation of JAK/STATs and 

NFkB pathways, yielding TNF-α, IL-1β and iNOS, which in turn triggers further 

uncontrolled inflammatory response and neuronal cell death, and accelerate 

neurodegeneration.  

2.11 Excitotoxicity  

Excitotoxicity 214 is the overactivation of ionotropic glutamate receptors, i.e.  NMDA, 

AMPA and kainate receptors, followed by further activation of metabotropic 

glutamate receptors, activating VGCC and IP3 and DAG pathways, resulting in 

calcium overload, impairment of metabolism, and disrupted ionic gradients 215. High 

cytosolic calcium activates arachidonic acid second messenger system and NOX 

which leads to massive production of ROS.  Calcium further stimulates enzymatic 

degradation of DNA and proteins. In FTD for example, overproduction of 

mitochondrial ROS in neurons alters the trafficking of specific glutamate receptor 

subunits via redox regulation. Increased surface expression of AMPA and NMDA 

receptors leads to impaired glutamatergic signaling, calcium overload, and 

excitotoxicity216. Importantly, extracellularly applied 4R tau similar picture in 

healthy neurons 216. It has been long known in the case of ALS that SOD1 mutant 

motoneurons are more susceptible to excitotoxicity 217. In ALS, for example, among 

the multiple proposed mechanisms for motoneuron degeneration in the spinal cord, 

brain stem and cerebral cortex, the AMPA and NMDA receptor-mediated cell death 

and impairment of the glutamate-transport system have been suggested to play a 

central role 218. NMDA receptor-mediated mitochondrial Ca (2+) overload in acute 

excitotoxic motor neuron death is a mechanism distinct from chronic neurotoxicity 

after Ca2+ influx. 
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There are several possibilities for originating of excitotoxicity: 1) A damaged neuron, 

observed in the course of the development of ND, could well be per se the physical 

source of excitotoxicity. 2) High levels of glutamate meanwhile are well accepted to 

be a direct trigger of excitotoxicity. 3) Hypoxic-ischaemic conditions in the brain that 

result from inadequate or impaired blood flow, e.g. vascular dementia or stroke, 

inevitably lead as well to excitotoxicity 219, 220. 4) Mitochondrial toxins block ETC and 

seize the ATP production necessary for the reuptake of glutamate and restoring of 

plasma membrane ionic gradients.  

2.12 Synaptic disruption as a source of ROS 

Ageing is accepted to be the largest risk factor for developing ND 221: genomic 

instability, telomere shortening, epigenetic modifications, proteostasis deprivation, 

mitochondrial dysfunction, cellular senescence, defect nutrient sensing, stem cell 

depletion, all could lead to age-dependent synaptic modifications, such as reduced 

intensity and timing of transmitter release, and ultimately to altered intercellular 

communication. ROS, and mitochondrial ROS in particular, are redox regulators of 

physiological functions 109. Mitochondrial ROS regulate glutamatergic signaling in 

the brain and thus, whenever the neuron is brought out of redox balance in the 

course of ND, this will result in altered neuronal excitability, synaptic morphological 

changes, and neurotransmission deficiencies. ND could therefore also be considered 

synaptopathies.  Synaptic dysfunction and altered excitability have been well 

documented for ALS, PD, AD 222,223,224and pre- and postsynaptic proteins being 

recognized to have a potential to serve as early biomarkers of ND 225,226. 

H2O2 is the ROS with the longest lifespan and because of that and despite its limited 

membrane diffusion it can act as a signaling molecule. It has been found that H2O2 

at low micromolar concentrations is able to inhibit both, spontaneous and evoked 
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transmitter release and this effect was not associated with lipid peroxidation, 

suggesting a pure signaling role of H2O2 227.  Further, age-dependent effects on the 

protective capacity of several antioxidant enzymes: reduced activity of catalase and 

glutathione peroxidase, and increased activity of glutathione transferase have been 

documented 228. Age-dependent brain tissue susceptibility to ROS insult could be 

explained by the altered neuronal signalling processes and by the availability of 

antioxidant enzyme defence.   

 

3.0 Conclusions and perspectives 

Oxidative stress has been shown to be involved in all neurodegenerative disorders, 

therefore, despite previous negative outcomes of clinical trials with antioxidants, 

probably because of lack of specificity or low bioavailability of synthetic 

modifications, this is still one of the most promising therapeutic targets for ND. 

Potential therapeutic approaches, targeting oxidative stress, should include more 

modern strategies to target mitochondria, protein aggregation, lipid peroxidation, 

e.g., mitochondrially -targeted antioxidants, mitochondrial-membrane-release 

scavengers, mitochondrial substrates, targeted enzyme mimetics, lipid radical traps, 

latest-generation targeted metal chelators, gene therapy, etc. 

Besides that, stimulation of clearance mechanisms, i.e. autophagy/mitophagy 

induction, that in humans could be achieved through more natural processes like 

fasting or calorie restriction, exercise, and mild hypoxia (high altitude elevations) 

should occur in parallel. However, in the future, all multifactorial diseases and 

especially neurodegeneration, might need a more bespoke therapy approach, 

combining the personalised medicine with multitarget neuroprotective compounds, 
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aiming at scavenging free radicals, taming ROS-producing enzymes, activating the 

intrinsic redox defence forces, while chelating loose transition metals, all at once 229. 

Hence, one of the biggest challenges for the future therapeutic agents is to be able to 

distinguish between physiological and pathological levels of ROS; and target the 

excess ROS without interfering with cellular signalling. 
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