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We consider an original variational approach for building new models of quintessence interacting with
dark or baryonic matter. The coupling is introduced at the Lagrangian level using a variational formulation
for relativistic fluids, where the interacting term generally depends on both the dynamical degrees of
freedom of the theory and their spacetime derivatives. After deriving the field equations from the action, we
consider applications in the context of cosmology. Two simple models are studied using dynamical system
techniques showing the interesting phenomenology arising in this framework. We find that these models
contain dark energy dominated late-time attractors with early-time matter dominated epochs and also
obtain a possible dynamical crossing of the phantom barrier. The formulation and results presented here
complete and expand the analysis exposed in the first part of this work, where only algebraic couplings,
without spacetime derivatives, were considered.
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I. INTRODUCTION

The aim of the present work is to expand and complete
the analysis performed in Ref. [1], which hereafter will be
referred to as Part I of this study. In Part I new models of
interacting dark energy have been introduced starting from a
variational approach. Defining a consistent variational setup
for interacting dark energy models is an important issue not
only for exploring new physical models in late-time cosmol-
ogy but also for producing new theoretical mechanisms
responsible for the phenomenology of such interactions.
From the observational perspective, a coupling between dark
energy and dark matter might give rise to some effects which
could be detected in forthcoming surveys. In fact, although
noninteracting dark energymodels can still accommodate the
observations [2], such interaction is mildly favored by the
data [3] and can even alleviate some tensions present in
the comparison of different data sets [4]. For these reasons the
theoretical development of interacting dark energy models
should proceed to both drive future observations toward
possible detectable features and to justify all the phenom-
enological models considered so far in the literature; see e.g.
Ref. [5] and references therein.
The particular advantage arising from a variational

formulation consists of generating fully covariant equations
of motion, which can then be applied to cosmology at both
the background and the perturbation level. It is awell-known
problem to understand how to promote the phenomeno-
logical background equations of interacting dark energy to

their covariant counterparts, and a satisfactory solution is
still missing [6]. In fact, it will always be possible to
construct two covariant theories which are equivalent at
the background level but will have different perturbations.
This is due to the nonlinearity of the Einstein field equations
in general. Hence, there is a strong motivation to construct
models at the level of the action.
A variational approach, such as the one advanced in

Part I, permits solving this problem by automatically
producing the desired field equations. In Part I a canonical
scalar field describing dark energy, namely quintessence,
has been coupled to a barotropic fluid at the Lagrangian
level; see also Ref. [7] for similar ideas. The Lagrangian
description of a relativistic fluid that has been used in Part I,
and which will also be employed here, is the one outlined
by Brown in Ref. [8]. In what follows we will not review
the features of this formulation but refer the reader to Part I.
All details and the thermodynamics are thoroughly dis-
cussed in Brown’s original paper.
The main issue developed and studied in this Part II is

the possibility of directly coupling the 4-velocity Uμ of a
relativistic matter fluid to a scalar field ϕ. The simplest way
of mixing Uμ and ϕ in an interacting Lagrangian is through
the scalar Uμ∂μϕ which inevitably involves the use of a
spacetime derivative. In Part I we considered only alge-
braic couplings between the scalar field and the fluid’s
degrees of freedom where no spacetime derivatives are
allowed. This in particular implies that the coupling Uμ∂μϕ
falls beyond the interacting quintessence models intro-
duced and investigated there. The scope of this Part II
is exactly to complete the analysis of Part I by studying
derivative couplings, i.e. couplings where spacetime
derivatives are allowed.
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The paper is organized as follows. In Sec. II we will
introduce the Lagrangian of a scalar field interacting
with a relativistic perfect fluid through a derivative
coupling. Brown’s formulation will be employed to
define and treat the coupling terms which will be
assumed to depend on as few spacetime derivatives
as possible in alignment with the effective field theory
approach. In Sec. III we will then focus on cosmological
applications, finding first the relevant equations gov-
erning the evolution of the Universe at large scales and
then analyzing them with dynamical systems techniques.
Finally in Sec. IV we will discuss the results obtained,
highlighting the differences between the algebraic cou-
plings of Part I and the derivative couplings of Part II.
In Sec. IV we will also draw conclusions and speculate
on possible future works.
Unless otherwise specified we will assume standard

general relativistic notation with the metric convention
ð−1; 1; 1; 1Þ and Greek indices running from 0 to 3.
Sometimes the comma notation for partial derivatives
will be used: for example ϕ;μ ¼ ∂μϕ. Units where c ¼
ℏ ¼ 1 will be employed together with the definitions
κ2 ¼ M−2

P ¼ 8πG.

II. RELATIVISTIC FLUID INTERACTING WITH
A SCALAR FIELD: DERIVATIVE COUPLING

In this section we generalize the algebraic couplings
considered in the first part of this work [1] by allowing also
terms depending on the scalar field’s first derivative ∂μϕ to
interact with the fluid’s degrees of freedom. In analogy to
the effective field theory approach, we will only consider
couplings with as few spacetime derivatives as possible.
Moreover, we will not consider noncanonical couplings to
the scalar field’s kinetic term as this is beyond the scope of
the present work. However, it would be a possible further
extension of the variational approach to also discuss such
models.

A. Lagrangian formulation and field equations

The total action of our interacting dark energy system
is [1]

S ¼
Z

d4xðLgrav þ LM þ Lϕ þ LintÞ; ð1Þ

where the gravitational sector Lgrav is given by the standard
Einstein–Hilbert Lagrangian

Lgrav ¼
ffiffiffiffiffiffi−gp

2κ2
R; ð2Þ

with R being the curvature scalar with respect to the metric
gμν and g its determinant. The Lagrangian of the scalar field
is assumed to be in the canonical form

Lϕ ¼ −
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð3Þ

where V is an arbitrary potential depending on ϕ. Using
Brown’s formulation [1,8] the Lagrangian for the relativ-
istic fluid LM can be written as

LM ¼ −
ffiffiffiffiffiffi
−g

p
ρðn; sÞ þ Jμðφ;μ þ sθ;μ þ βAα

A
;μÞ; ð4Þ

where ρ is the energy density of the fluid prescribed as
a function of n, the particle number density, and s, the
entropy density per particle. The fields φ, θ, and βA are all
Lagrange multipliers with A taking the values 1,2,3, and αA
are the Lagrangian coordinates of the fluid. The vector-
density particle number flux Jμ is related to n as

Jμ ¼ ffiffiffiffiffiffi
−g

p
nUμ; jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνJμJν
p

; n ¼ jJjffiffiffiffiffiffi−gp ;

ð5Þ

whereUμ is the fluid 4-velocity satisfyingUμUμ ¼ −1. For
further details regarding Brown’s Lagrangian formalism for
relativistic fluids, we refer to Ref. [8].
Considering the dynamical degrees of freedom of the

above Lagrangian, we note that the only two possible scalar
coupling terms (up to total derivatives) that can be con-
structed containing only first-order derivatives of the scalar
field ϕ are ∂ϕ2 ¼ gμν∂μϕ∂νϕ and Jμ∂μϕ. The first pos-
sibility is nothing but the usual kinetic term for the scalar
field, while the second one is a new coupling term that can
only be considered within the fluid Lagrangian formalism
treated in this work. In particular we will only study a linear
coupling to Jμ∂μϕ leaving higher-order couplings aside at
present. Note that within an effective field theory frame-
work such higher-order terms would naturally be neglected
at first order. Therefore, the coupling term we will study in
what follows is

Lint ¼ fðn; s;ϕÞJμ∂μϕ; ð6Þ

where f is an arbitrary function. This is the most general
coupling term where only one spacetime derivative
appears.
The variations of (1) with respect to the Lagrange

multipliers φ, θ, βA and Lagrangian coordinates of the
fluid αA give the equations

φ∶ Jμ;μ ¼ 0; ð7Þ

θ∶ ðsJμÞ;μ ¼ 0; ð8Þ

βA∶ JμαA;μ ¼ 0; ð9Þ

αA∶ ðJμβAÞ;μ ¼ 0; ð10Þ
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which are not modified by the coupling with the scalar
field; see Refs. [1,8]. Equations (7) and (8) stand for the
particle number conservation constraint and the entropy
exchange constraint, respectively. These can be rewritten as

∇μðnUμÞ ¼ 0 and ∇μðsnUμÞ ¼ 0; ð11Þ

where ∇μ is the covariant derivative with respect to
gμν. Equations (9) and (10) determine the dynamics of
the Lagrange multipliers but are not needed for our
scopes and will not be considered further in what follows;
see Ref. [8] for more information about their physical
meaning. The variations with respect to Jμ and s yield,
respectively,

μUμ þ φ;μ þ sθ;μ þ βAα
A
;μ ¼

�
n
∂f
∂nUμUν − fδνμ

�
ϕ;ν;

ð12Þ

T ¼ Uμ

�
θ;μ þ

∂f
∂s ϕ;μ

�
; ð13Þ

where the chemical potential μ and temperature T are
defined by

μ ¼ ∂ρ
∂n and T ¼ 1

n
∂ρ
∂n : ð14Þ

Equations (12) and (13) show how the 4-velocity fluid
decomposition and the temperature of the fluid depend also
on the scalar field ϕ due to the nonvanishing interaction.
Similar equations are found also for the algebraic couplings
considered in Part I. They modify the thermodynamics
properties of the fluid reflecting the fact that an interaction
with the scalar fields is now at play.
Variation of (1) with respect to gμν gives the Einstein

field equations

1

κ2
Gμν ¼ Tμν þ TðϕÞ

μν þ TðintÞ
μν ; ð15Þ

where

Tμν ¼ pgμν þ ðρþ pÞUμUν; ð16Þ

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð17Þ

TðintÞ
μν ¼ −n2

∂f
∂nU

λ∂λϕðgμν þUμUνÞ; ð18Þ

with the fluid pressure defined as

p ¼ n
∂ρ
∂n − ρ: ð19Þ

Interestingly, now the energy-momentum tensor of the

interaction is orthogonal to the fluid flow, UμTðintÞ
μν ¼ 0,

and it can be rewritten in a perfect fluid form,

TðintÞ
μν ¼ pintgμν þ ðpint þ ρintÞUμUν; ð20Þ

with vanishing energy density and pressure given by

ρint ¼ 0 and pint ¼ −n2
∂f
∂nU

λ∂λϕ: ð21Þ

The scalar field equation, obtained from the variation of (1)
with respect to ϕ, is

□ϕ − V 0 þ n2
∂f
∂n∇μUμ ¼ 0: ð22Þ

Note that whenever f does not depend on the particle
number density n the interaction term does not give any

contribution to the equations of motion since TðintÞ
μν vanishes

and Eq. (22) reduces to the uncoupled Klein–Gordon
equation. This is expected since in this case conditions
(7) and (8) would constrain the interacting term (6) to
become a total derivative and thus a boundary term. Note
also that the interaction contributes always in the form
n2∂f=∂n which does not depend on n if one chooses
f ∝ 1=n. This case is particularly interesting since such a
coupling would correspond to Lint ¼ ffiffiffiffiffiffi−gp

WðϕÞUμ∂μϕ
with WðϕÞ being a general function of ϕ (ignoring the
dependence on s). Its cosmological consequences will be
studied in detail in Sec. III.
Intuitively, this result is not surprising. Our coupling is

based on the idea of allowing an exchange of energy
between the scalar field and the matter via the particle
number density n of that matter. Removing this dependence
from the interaction Lagrangian corresponds to closing this
channel of energy transfer, which, given that the fluid
4-velocity is conserved, is precisely why (6) becomes a
boundary term in that case.
The original gravitational field equations that have been

derived in this section, namely Eqs. (15) and (22), represent
a completely new way to couple a relativistic perfect fluid
to a scalar field. Even when compared to the interacting
equations obtained in Ref. [1], one can realize that these
equations not only take into account the coupling between
ϕ, n, and s but heavily depend also on the fluid 4-velocity.
These equations can be used to build new models of
interacting quintessence (and coupled inflation) possibly
leading to unexplored phenomenological and theoretical
issues.

B. Conservation equations

In the following we will briefly discuss how our
formalism compares with the standard approach of intro-
ducing couplings at the level of the field equations (see
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Ref. [9] for a general discussion on this issue). One can
rewrite the coupled field equations above in the more
familiar form

Gμν ¼ κ2ðTðAÞ
μν þ TðBÞ

μν Þ;
∇μTðAÞ

μν ¼ Qν; and ∇μTðBÞ
μν ¼ −Qν; ð23Þ

which is commonly used to couple two matter components
in general relativity. For this purpose we define a new
energy-momentum tensor for the fluid as ~Tμν¼TμνþTðintÞ

μν

with the energy density ~ρ ¼ ρþ ρint and pressure
~p ¼ pþ pint. The Einstein field equations (15) then
become

Gμν ¼ κ2ð ~Tμν þ TðϕÞ
μν Þ; ð24Þ

resembling the first of Eqs. (23). Using the Klein–Gordon
equation (22) and the energy-momentum tensor (17), the
conservation equation for the scalar field can be written as

∇μTðϕÞ
μν ¼ −n2

∂f
∂n∇λUλ∇νϕ ¼ Qν; ð25Þ

which shows that the scalar field is not conserved due to the
interaction with the fluid.
To prove that also the fluid energy momentum is not

conserved, it is better to split its conservation equation into
the parallel and perpendicular components to the fluid flow,

∇μ ~Tμν ¼ hλν∇μ ~Tμλ − UνUλ∇μ ~Tμλ; ð26Þ

where hμν is defined by

hμν ¼ gμν þUμUν: ð27Þ

Then using Eqs. (7)–(10) and Eq. (12), one can show that
(see the next subsection)

hνμ∇λ ~Tλν ¼ hνμn2
∂f
∂n∇λUλ∇νϕ and

Uν∇μ
~Tμν ¼ Uνn2

∂f
∂n∇λUλ∇νϕ; ð28Þ

which inserted back into Eq. (26) gives

∇μ ~Tμν ¼ n2
∂f
∂n∇λUλ∂νϕ ¼ −Qν: ð29Þ

This shows that the interacting approach developed in the
present paper can be mapped back into the standard
relativistic coupling between two matter components as
given by Eqs. (23) with an exchange vector Qμ defined in
Eqs. (25) and (29). Note, however, that the pressure of the
coupled fluid ~p now differs from the uncoupled matter
pressure p inasmuch as it depends also on the scalar field

through the interacting term. For example, for a pressure-
less fluid, where p ¼ 0, in general ~p ≠ 0. Note also that for
the derivative coupling considered here the energy density
of the coupled and uncoupled matter fluids coincide,
namely ρ ¼ ~ρ since ρint ¼ 0.
For the covariant conservations of the “bare” Tμν, one

instead finds

Uν∇μTμν ¼ 0 and

hνμ∇λTνλ ¼ 2nUλ∇½λ

��
n
∂f
∂nUμ�Uν − fδνμ�

�
∇νϕ

�
; ð30Þ

where square brackets denote antisymmetrization. This
implies in particular that the bare matter energy-momentum
tensor is not conserved in the presence of the coupling with
the scalar field

∇μTμν ≠ 0: ð31Þ

This is not unexpected since the Einstein field equations
imply the conservation of the total energy-momentum
tensor only. Any additional conservation equations need
to be imposed separately.

C. Derivation of the conservation equations

The derivations of Eqs. (28) and (30) are slightly
involved, and we show some details here. These calcu-
lations are similar to the ones appearing in the Appendix of
Ref. [1]. Recalling that Uμ∇νUμ ¼ 0 and using Eqs. (11),
we have

Uλ∇μ ~Tμν

¼ Uλ∇μ

�
pgμλ þ ðρþ pÞUμUλ − n2

∂f
∂nU

α∂αϕhμλ

�

ð32Þ

¼ −Uμ∇μρ − ðρþ pÞ∇μUμ − n2
∂f
∂nU

α∂αϕUλ∇μhμλ

ð33Þ

¼−
∂ρ
∂nUμ∇μn−n

∂ρ
∂n∇

μUμ−n2
∂f
∂nU

α∂αϕUλ∇μðUλUμÞ
ð34Þ

¼ −
∂ρ
∂n∇

μðUμnÞ þ n2
∂f
∂nU

α∇αϕ∇μUμ ð35Þ

¼ Uλ

�
n2

∂ρ
∂n∇

μUμ

�
∇λϕ; ð36Þ

in agreement with the first of Eqs. (28). Note that if we
consider Tμν instead of ~Tμν in the passages above we obtain
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Uλ∇μTμν ¼ 0; ð37Þ

proving the first of Eqs. (30). For the second of Eqs. (28),
we have

hνμ∇λ ~Tνλ ¼ hνμ∇λTνλ − hνμ∇λ

�
n2

∂f
∂nU

α∂αϕhλν

�
: ð38Þ

For the first term, we can use the relation (see the Appendix
of Ref. [1])

hμν∇λTνλ ¼ 2nUλ∇½λðμUμ�Þ; ð39Þ

which gives

hνμ∇λ ~Tνλ ¼ 2nUλ∇½λðμUμ�Þ − hνμ∇λ

�
n2

∂f
∂nU

α∂αϕhλν

�
:

ð40Þ

Then making use of Eq. (12), we obtain

hνμ∇λ ~Tνλ ¼ −2nUλ½∇½λ∇μ�φþ s∇½λ∇μ�θ þ∇½λðβA∇μ�αAÞ�

þ 2nUλ∇½λ

��
n
∂f
∂nUμ�Uν − fδνμ�

�
∇νϕ

�

− hνμ∇λ

�
n2

∂f
∂nU

α∂αϕhλν

�
ð41Þ

¼ nUλ∇λ

��
n
∂f
∂nUμUν − fδνμ

�
∇νϕ

�

− nUλ∇μ

��
n
∂f
∂nUλUν − fδνλ

�
∇νϕ

�

− hνμ∇λ

�
n2

∂f
∂nU

α∂αϕhλν

�
ð42Þ

¼ n2
∂f
∂n∇λUλð∇μϕþ UνUμ∇νϕÞ ð43Þ

¼ hνμ

�
n2

∂f
∂n∇λUλ

�
∇νϕ; ð44Þ

where to go from line (41) to (42) we used the fact that
covariant derivatives commute on any scalar and we
applied Eqs. (7)–(10); while the passage from line (42)
to (43) requires long but standard algebraic manipulations
together with the use of Eqs. (11). This proves the second of
Eqs. (28). Note that if the same calculations (38)–(41) are
applied to Tμν, one immediately finds

hνμ∇λTνλ ¼ 2nUλ∇½λ

��
n
∂f
∂nUμ�Uν − fδνμ�

�
∇νϕ

�
; ð45Þ

in agreement with the second of Eqs. (30).

III. COSMOLOGY

In this section we study cosmological applications of the
theoretical framework outlined in the previous section. We
will first derive the background equations and then rewrite
them in the form of a dynamical system. Subsequently,
employing dynamical systems techniques, we will study
the Universe evolution given by two particular interacting
models defined within our approach.

A. Cosmological equations

We will now assume a flat Friedmann–Robertson–
Walker (FRW) metric,

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð46Þ

where aðtÞ is the cosmological scale factor and ðt; x; y; zÞ
are comoving Cartesian coordinates. We will also assume
that all the dynamical quantities are homogeneous; i.e. they
depend only on the cosmological time t. In particular we
will have that ϕ, ρ, n, s will be functions of t only.
Moreover taking into account comoving coordinates, the
perfect fluid 4-velocity becomes simply Uμ ¼ ð−1; 0; 0; 0Þ.
We can then derive the cosmological equations from the

Einstein equations (15),

3H2

κ2
¼ ρþ 1

2
_ϕ2 þ V; ð47Þ

−
1

κ2
ð2 _H þ 3H2Þ ¼ pþ 1

2
_ϕ2 − V − n2

∂f
∂n _ϕ; ð48Þ

where H ¼ _a=a is the Hubble rate and the overdot denotes
differentiation with respect to t. The scalar field equation is
instead

ϕ̈þ 3H _ϕþ V 0 − n2
∂f
∂n 3H ¼ 0 ð49Þ

and is obtained from (22). We will work with the standard
exponential potential V ¼ V0 expð−λκϕÞ, leaving the
analysis for different potentials to future work. We can
immediately notice that the Friedmann equation (47) is not
modified by the interacting term. This happens because the
time-time component of (18) vanishes for the background

FRW metric, or equivalently because TðintÞ
μν is orthogonal to

the fluid flow as pointed out for Eq. (18).
In a cosmological framework, we will always have that

Eqs. (11) give the constraints

_nþ 3Hn ¼ 0 and _s ¼ 0: ð50Þ

These equations tells us that the entropy density per particle
is conserved through the Universe’s evolution, while the
particle density decays according to

INTERACTING … . II. DERIVATIVE COUPLINGS PHYSICAL REVIEW D 91, 123003 (2015)

123003-5



n ∝ a−3; ð51Þ

which is expected from geometrical considerations.
The two dynamical quantities ultimately appearing in
Eqs. (47)–(49) are thus ϕðtÞ and aðtÞ only.

B. Cosmological dynamics

In this sectionwewill examine the dynamics of a universe
described by the cosmological equations (47)–(49) using
dynamical systems techniques. We begin by introducing the
canonical dimensionless variables [10,11]

σ ¼ κ
ffiffiffi
ρ

p
ffiffiffi
3

p
H
; x ¼ κ _ϕffiffiffi

6
p

H
; y ¼ κ

ffiffiffiffi
V

p
ffiffiffi
3

p
H
; ð52Þ

which give us the Friedmann constraint

1 ¼ σ2 þ x2 þ y2: ð53Þ

Using these we can rewrite the cosmological equations as
the dynamical system

x0 ¼ −
1

2
ð3xððw − 1Þx2 þ ðwþ 1Þy2 þ 1 − wÞ

−
ffiffiffi
6

p
ðAðx2 − 1Þ þ λy2ÞÞ; ð54Þ

y0 ¼ −
1

2
yð3ððw − 1Þx2 þ ðwþ 1Þðy2 − 1ÞÞ

þ
ffiffiffi
6

p
xðλ − AÞÞ: ð55Þ

The quantity A is defined by

A ¼ −
κ

H
n2

∂f
∂n : ð56Þ

Hence, the dynamical system is not closed until one
specifies the form of the function f. For particular
choices of f, we can rewrite A as a function of the
two dimensionless variables x and y. These special
models do not increase the dimensions of the dynamical
system which remains two dimensional. In general,
however, if A cannot be written in terms of x and y
only, the dimension of the phase space will increase. This
does not hinder the use of dynamical system techniques;
however, visualizing the phase space might become more
involved. An example is a coupling of the form f ¼
−f0 expðγκϕÞ=n with γ a dimensionless constant. In this
case A ¼ −κf0 expðγκϕÞ=H which cannot be expressed
in terms of x and y only.
In the following we will consider one two-dimensional

and one three-dimensional model, with two choices for f as
displayed in Table I, where α, γ, and ξ are dimensionless
constants, with γ algebraically related to ξ by

γ ¼ ξ

ð1
2
− αÞðwþ 1Þ − 1

: ð57Þ

These models are studied using the standard approach of
dynamical systems analysis. The critical points of the
respective models will be found, their corresponding
eigenvalues will be computed, and these results will be
interpreted within the context of cosmology. When possible
the phase space of the dynamical system will be drawn
together with few trajectories numerically computed for
particular choices of the model parameters.

1. Model A: 2D dynamical system

In this subsection we analyze model A of the dynamical
system (54), (55). This corresponds to choosing the
function f to be

f ∝
ρ1=2−αVαffiffiffi

3
p

n
: ð58Þ

In this case the dynamical system remains two dimensional,
as A can be written in terms of x and y as

A ¼ ξy2αð1 − x2 − y2Þ1=2−α ð59Þ

with ξ a constant parameter. The Friedmann equations can
be rewritten to give the acceleration equation

_H
H2

¼ 3

2

�
−ð1þ wÞ þ ðw − 1Þx2 þ ð1þ wÞy2

−
ffiffiffi
2

3

r
ξxy2αð1 − x2 − y2Þ12−α

�
; ð60Þ

which means we can define the effective equation of state
(EoS)

weff ¼ x2 − y2 þ wð1 − x2 − y2Þ

þ
ffiffiffi
2

3

r
ξxy2αð1 − x2 − y2Þ12−α: ð61Þ

Critical points correspond to solving the system

x0 ¼ 0; y0 ¼ 0: ð62Þ

TABLE I. Choices of the interacting function for the dynamical
systems analysis.

f A

Model A −γρ1=2−αVα=
ffiffiffi
3

p
n ξy2αð1 − x2 − y2Þ1=2−α

Model B ξH0

κn ξ H0

H
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For general values of α, finding critical points is difficult,
and the system becomes singular unless α lies in the range
0 ≤ α ≤ 1=2, so in the following we will examine some
specific choices of α lying in this range. The simplest
such choice is α ¼ 1=2. This corresponds to choosing
f ¼ ξ

ffiffiffiffi
V

p
=ð3nÞ, meaning A ¼ ξy. The background dynam-

ics of this model corresponds to the one of a particular
k-essence scalar field analyzed in Ref. [11]. The phenom-
enology at cosmological distances is quite interesting
and includes late-time phantom dominated solutions with
dynamical crossing of the phantom barrier. Moreover while
the model considered in Ref. [11] always exhibits insta-
bilities at the level of cosmological perturbations, the one
constructed with the formalism of this work could be stable
since the dynamics at the level of perturbations will be
completely different. A more in-depth discussion on such a
model, namely for the choice f ¼ ξ

ffiffiffiffi
V

p
=ð3nÞ, will be given

in Sec. IV.
In the remainder of this section, we will examine the case

α ¼ 0. We set w ¼ 0 for simplicity, since other values of w
are not relevant for dark matter interacting models. The
critical points of the dynamical system are displayed in
Table II.
Properties of these critical points, including the existence

and stability can be found in Table III. The system has
potentially up to four critical points depending on the
values of the parameters λ and ξ:

(i) Point A�: These two points exist for all λ and ξ. They
are the standard solutions dominated by the scalar
field kinetic energy, with the effective equation of
state of a stiff fluid weff ¼ 1. These points are either

unstable or saddle points depending on whether the
absolute value of λ is less than

ffiffiffi
6

p
.

(ii) Point C: This point corresponds to a universe
completely dominated by a scalar field. It exists
only for λ2 < 6. It is stable when ξ2 < 2ð3 − λ2Þ and
a saddle node otherwise. The point describes an
accelerating universe when the scalar potential is
sufficiently flat, requiring λ2 < 2.

(iii) Point D: In the limit ξ → 0, this point reduces to the
origin. The energy density of this point is dominated
both by the matter and the kinetic energy of the
scalar field, with no scalar field potential energy
density contribution. It is the stable late-time attrac-

tor only for negative ξ satisfying λξ < − 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2

3

q
.

The effective EoS is weff ¼ 0, the same as a matter
dominated solution; however, it should be noted that
for general w it is not a scaling solution, and
generally weff ¼ 3w=ð3þ 2ξ2Þ.

The phase space for this two-dimensional model is
simply the upper-half unit disc. We show the phase space
diagrams with example trajectories in Figs. 1, 2, and 3. The
region of acceleration is indicated by the gray region. The
shape of this region of acceleration is dependent only on ξ
and is independent of the parameter λ. In Fig. 1 we make the
parameter choice λ ¼ 4 and ξ ¼ −1. Trajectories begin at
the stiff matter point A−. Many trajectories then undergo a
short transient accelerating phase, before decelerating, with
some trajectories being drawn toward the saddle point Aþ.
Finally the late-time attractor D is reached, which has a
matter equation of state.
In Fig. 2 we choose λ ¼ 2 and ξ ¼ þ1. Trajectories

now start at either of the stiff matter points Aþ or A−.
Trajectories are then drawn toward the saddle matter
dominated point D. Trajectories are then attracted upward,
passing through the region of acceleration. They are then
finally attracted toward the global attractor C, which is not
accelerating for this choice of parameter values.
In Fig. 3 the parameter values λ ¼ 1 and ξ ¼ −3=2 are

chosen. Again trajectories begin at the stiff matter points
Aþ and A− before passing through the matter dominated

TABLE II. Critical points of Model A with w ¼ 0 and α ¼ 0.

Point x y

A� �1 0
C λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
D −

ffiffi
2

p
ξffiffiffiffiffiffiffiffiffi

3þ2ξ2
p 0

TABLE III. Stability of critical points of Model A with w ¼ 0 and α ¼ 0.

Point Existence weff Acceleration Stability

A− ∀λ; ξ 1 No Unstable node: λ > −
ffiffiffi
6

p
Saddle node: otherwise

Aþ ∀λ; ξ 1 No Unstable node: λ <
ffiffiffi
6

p
Saddle node: otherwise

C λ2 < 6 λ2−3
3

λ2 < 2 Stable node: ξ2 < 2ð3 − λ2Þ
Saddle point: ξ2 > 2ð3 − λ2Þ

D ∀λ; ξ 0 No Stable node: λξ < − 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2

3

q
Saddle node: otherwise
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saddle point D. Trajectories then enter the region of
acceleration and end at the late-time global attractor C,
which in this case is accelerating as the scalar potential is
sufficiently flat.
These models are able to accurately describe late-time

universe phenomenology, and there are many parameter
choices which result in a global accelerating attractor. They
can also describe universes undergoing transient periods of
acceleration. However, as is typical in these models, this
model breaks down at early times, as the trajectories begin
at the stiff matter point A−, of which the effective EoS
weff ¼ 1 is not physically viable.
There are a few key differences with these models if

compared to the canonical scalar field case, which we
recover by taking the limit ξ → 0. There is no longer a
scaling solution in this model; however, the origin O is
deformed into the point D which behaves as though the
universe is matter dominated. Moreover, unlike the origin
O, this point D can be stable for a variety of parameter
choices.

2. Model B: 3D dynamical system

In this section we consider model B of the dynamical
system (54), (55) where we take the coupling function f to

simply be proportional to 1=n, as outlined in Table I. In
particular we take

f ¼ ξH0

κn
; ð63Þ

where ξ is a constant and H0 is the Hubble parameter at an
arbitrary fixed time. The function A is now simply

A ¼ ξ
H0

H
: ð64Þ

The resulting dynamical system is no longer two dimen-
sional, in which case we need to introduce a third variable;
see for instance Ref. [12]. We take this to be

z ¼ H0

H0 þH
; ð65Þ

which is compact and lies in the range 0 ≤ z < 1. The
resulting dynamical system is given by

x0 ¼ −
1

2ðz − 1Þ ½3xðz − 1Þ(1 − wþ ðw − 1Þx2

þ ð1þ wÞy2)þ
ffiffiffi
6

p
(ξzð1 − x2Þ − λðz − 1Þy2)�

ð66Þ

y0 ¼ −
y

2ðz − 1Þ ½3ðz − 1Þ(ð1þ wÞðy2 − 1Þ

þ ðw − 1Þx2)þ
ffiffiffi
6

p
x(ðz − 1Þλþ zξ)� ð67Þ

z0 ¼ 1

2
z½3ðz − 1Þ(ð1þ wÞðy2 − 1Þ þ ðw − 1Þx2)

þ
ffiffiffi
6

p
zξx�: ð68Þ

The Friedman equations can again be rearranged to give the
acceleration equation in terms of these new variables x; y,
and z. This time for the acceleration equation, we find

FIG. 1. Phase space for the dynamical system when ξ ¼ −1 and
λ ¼ 4. The shaded region indicates where acceleration is present.

FIG. 2. Phase space for the dynamical system when ξ ¼ 1 and
λ ¼ 2. The shaded region indicates where acceleration is present.

FIG. 3. Phase space for the dynamical system when ξ ¼ −1.5
and λ ¼ 1. The shaded region indicates where acceleration is
present.
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_H
H2

¼ 3

2

�
−ð1þ wÞ − ð1 − wÞx2 þ ð1þ wÞy2 − 2ξffiffiffi

6
p zx

1 − z

�
:

ð69Þ
Hence, in this model weff is given by

weff ¼ wþ ð1 − wÞx2 − ðwþ 1Þy2 þ 2ξffiffiffi
6

p zx
1 − z

: ð70Þ

The variable z was chosen so that the phase space of the
system is compact, and this time the phase space will be a
semicylinder of unit height. The dynamical system has a
singularity on the plane z ¼ 1, which corresponds to the
Hubble parameter H → 0, i.e. when a → ∞, usually
happening at t → ∞ . However, none of the critical points
of the system lie on this plane. We display the critical points
for the system in Table IV.
The stability of the critical points is shown in Table V.

The system has at most seven critical points at any one
time. The pointsO, A�, B, and C lie on the z ¼ 0 plane and
have exactly the same coordinates as the canonical scalar
field [10]. Moreover, the existence and acceleration proper-
ties of these points remain the same as the canonical case.
This happens exactly because the contribution of the

interaction vanishes for z ¼ 0, as can be realized looking
at Eqs. (66)–(70). However, none of these points can now
be stable, the z ¼ 0 plane is unstable in general, and
trajectories starting on this plane will not stay there. There
are three new critical points in this model, given by:

(i) Point D: This point exists only for ξ > 0. At this
point the energy density of the universe is dominated
by the scalar field potential energy, with zero matter
and scalar field kinetic energy contributions. When
this point exists, it is always the late-time global
attractor. Moreover it has an effective EoS
weff ¼ −1; hence, acceleration is present, and the
behavior of the cosmological constant is mimicked.

(ii) Point E−: This point only exists for ξ > 0. The
energy density of the universe at this point is
dominated by the kinetic energy of the scalar field,
with no potential or matter contributions. When this
point exists, it is the unique late-time attractor. It also
has the effective EoS weff ¼ −1.

(iii) Point Eþ: This point is similar to E−, except it only
exists for ξ < 0. It is also dominated by the scalar
field kinetic energy and has effective EoS weff ¼ −1.
However, unlike E−, this point is always a saddle
point and is unstable in general.

The global dynamics of these models are particularly
simple to analyze. The late-time global attractor is eitherD,
in the case ξ > 0, or Eþ, in the case ξ < 0. Moreover both
of these late-time global attractors have effective EoS
weff ¼ −1. Trajectories begin on the z ¼ 0 plane, and
while they remain on this plane, the trajectories behave
as in the case of the canonical scalar field. This plane is
generically unstable, and the trajectories eventually leave
this plane and arrive at the late-time attractor.
Phase spaces for a couple of parameter choices with

example trajectories are plotted in Figs. 4 and 5. In Fig. 4
the parameter values λ ¼ 2, ξ ¼ −1 are chosen.
Trajectories start at the stiff matter points A�, before being

TABLE IV. Critical points of Model B.

Point x y z

O 0 0 0
A� �1 0 0
B

ffiffi
3
2

q
ð1þwÞ

λ

ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þwÞð1−wÞ

p
λ

0

C λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0

D 0 1 λ
λþξ

E� �1 0
ffiffi
6

pffiffi
6

p ∓ξ

TABLE V. Stability of critical points of Model B.

Point Existence weff Acceleration Stability

O ∀λ; ξ w No Saddle node

A− ∀λ; ξ 1 No Unstable node: λ > −
ffiffiffi
6

p
Saddle node: otherwise

Aþ ∀λ; ξ 1 No Unstable node: λ <
ffiffiffi
6

p
Saddle node: otherwise

B λ2 > 3ðwþ 1Þ w No Saddle point

C λ2 < 6 λ2−3
3

λ2 < 2 Saddle point

D ξ > 0 −1 Yes Stable node: λ2 < 3=2
Stable spiral: λ2 > 3=2

Eþ ξ < 0 −1 Yes Stable node

E− ξ > 0 −1 Yes Saddle point
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attracted toward one of the three saddles O, B, or C on the
z ¼ 0 plane. All trajectories then end at the late-time
accelerating global attractor Eþ. There is a particular
(heteroclinic) trajectory of interest that passes through
the matter dominated point O before ending at the accel-
erating point Eþ. Ignoring the theoretical issues at early
times, this trajectory would mirror the dynamics of a
universe with no scalar field potential but still with a
cosmological constant late-time behavior.
In Fig. 5 the parameter values are set to be λ ¼ 2 and

ξ ¼ þ1. Trajectories start at the stiff matter points A� and

are then attracted toward the saddle points on the plane
z ¼ 0. The trajectories then leave the plane, with some
attracted toward the saddle point E−. All trajectories end up
at the late-time accelerating attractor D.
These models are able to accurately describe late-

time universe phenomenology. All trajectories end at
accelerating critical points with effective equation of state
weff ¼ −1. In this scenario the dynamics of the universe
would mirror that of a universe with no scalar field but with
a cosmological constant, and thus these models could
represent a solution to the cosmological constant problem.

C. Glimpse at the perturbations

In this subsection we will briefly consider scalar per-
turbations of Model B in the linear approximation. Note
that, from the dynamical systems analysis of Sec. III B 2, it
is clear that the late-time attractor of this model is always
represented by a de Sitter solution, which is well suited to
describe dark energy domination. Moreover, this is the
simplest scalar-fluid coupling where the gradient of the
scalar field ϕ appears. It will thus be interesting to see how
the cosmological perturbation equations are modified in
presence of such a coupling. In what follows we will show
the perturbed equations in the Newtonian gauge and briefly
discuss their main features. A complete investigation of
the dynamics of cosmological perturbations is outside
the scope of the present work but will be delivered in
forthcoming studies [13].
We will study the behavior of scalar perturbations

assuming the metric in the Newtonian gauge using
Cartesian coordinates,

ds2 ¼ −ð1þ 2ΦÞdt2

þ ð1 − 2ΨÞa2
½1þ 1

4
kðx2 þ y2 þ z2Þ�2 ðdx

2 þ dy2 þ dz2Þ; ð71Þ

where k ¼ −1; 0; 1 and Ψ and Φ are functions of all the
coordinates. Since in both the explicit and implicit frames
all the matter sources can be written as perfect fluids, no
anisotropies appear in the scalar-fluid models considered
here. In fact, the off-diagonal spatial field equations
immediately imply that Φ ¼ Ψ, which will be used to
simplify the other perturbed equations. We will also give
the equations directly in the Fourier space, ∇2 ↦ −q2,
where ∇2 is the Laplace operator.
The covariant field equations to perturb are given by

Eqs. (15)–(22). As we mentioned, we will restrict the
equations to the particular coupling (63), and in order to
simplify the notation, we will also redefine the coupling
constant as ξ̂ ¼ ξH0=κ. Now, ρ, p, and ϕ will refer to
background quantities, while Ψ, δϕ, δρ, and δp will denote
small perturbations. Furthermore, the perturbed 4-velocity
of the fluid is

FIG. 4. Phase space of Model B of the dynamical system with
values w ¼ 0, λ ¼ 2, ξ ¼ −1.

FIG. 5. Phase space of Model B of the dynamical system with
values w ¼ 0, λ ¼ 2, ξ ¼ 1.
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δUμ ¼ ð−Ψ; ∂ivÞ; ð72Þ

with v being the scalar perturbation of the matter fluid
velocity. The time component of this relation, with Ψ,
follows from the constraint UμUμ ¼ −1.
At this point we are ready to state the equations for

the cosmological perturbations. The 00-component of the
perturbed Einstein field equations then reads

�
q2

a2
þ 8πρþ 8πV − 6

k
a2

�
Ψþ 3H _Ψþ 4πV 0δϕþ 4πδρ

þ 4π _ϕ _δϕ ¼ 0; ð73Þ

while the 0i-components are

4πðξ̂ _ϕþpþ ρÞv − 4π _ϕδϕþHΨþ _Ψ ¼ 0; ð74Þ

and the diagonal ij-components become

Ψ̈þ 4H _Ψþ
�
4πξ̂ _ϕþ2 _H þ 3H2 þ 4π _ϕ2 −

k
a2

�
Ψ

− 4πðξ̂þ _ϕÞ _δϕþ 4πV 0δϕ − 4πδp ¼ 0: ð75Þ

The perturbation of the scalar field equation is given by

δ̈ϕþ 3H _δϕþ
�
q2

a2
þ V 00

�
δϕ − ξ̂

q2

a2
vþ ð3Hξ̂þ 2V 0ÞΨ

− ð3ξ̂þ 4 _ϕÞ _Ψ ¼ 0: ð76Þ

Finally we also provide the perturbations of the matter
conservation equations: the time-component is

ðpþ ρÞ q
2

a2
v − 3Hδp − 3Hδρþ 3ðpþ ρÞ _Ψ − _δρ ¼ 0;

ð77Þ

while the spatial components are

½ξ̂ðϕ̈þ 3H _ϕÞ − 3Hc2sðpþ ρÞ�vþ _vðξ̂ _ϕþpþ ρÞ
þ 3ξ̂Hδϕþ ξ̂ _δϕþðpþ ρÞΨþ δp ¼ 0; ð78Þ

where c2s ¼ ∂p=∂ρ.
We should first notice that the coupling does not appear

in Eqs. (73) and (77). This is a general feature of these
derivative scalar-fluid models as will be shown in Ref. [13].
Mathematically this is due to the fact that the interacting
energy-momentum tensor is orthogonal to the fluid’s
4-velocity, namely UμTðintÞ

μν ¼ 0, as discussed after
Eq. (19). In fact, in a cosmological context, this implies
that the time component of both the Einstein and matter
conservation equations reduces to their uncoupled counter-
parts, as already noticed for the background equations.

The remaining perturbation equations are modified
by terms containing ξ̂, which is the only coupling para-
meter appearing in these models and thus fully character-
izes the interaction between dark energy and matter. In the
limit ξ̂ → 0, Eqs. (73)–(78) reduce to the uncoupled
correspondent perturbation equations. Note also how the
interacting terms mix the gradient of the scalar field and the
velocity of the fluid.
This is expected from the derivative coupling used in the

Lagrangian, which thus represents interesting new inter-
actions even at the level of perturbations. In Ref. [13] it will
be shown that the evolution of the perturbations governed
by Eqs. (73)–(78) are indistinguishable from the ΛCDM
dynamics at subhorizon scales (q ≫ H2a2), although
signatures of the interaction should arise at larger or
nonlinear scales.

IV. DISCUSSION AND CONCLUSION

Themainmotivation of this paper was the continuation of
the approach outlined in Part I by taking into account
derivative couplings between a scalar field and a barotropic
fluid based on a variational formulation. In particular, we
were interested in couplings linear in the first partial
derivatives of the scalar field. The general expression for
such a coupling can be written in the form fðn; s;ϕÞJμ∂μϕ
and can only be treated with the methods previously
developed in Part I. The presence of the term Jμ∂μϕ requires
a separate treatment from that in Part I since the effects given
by the appearance of the scalar field’s derivative will in
general produce a different phenomenology.
As an example we recall the fact that the energy-

momentum (18), arising from the interacting contribution,
is always orthogonal to the fluid 4-velocity, namely

UμTðintÞ
μν ¼ 0. Formally this happens because TðintÞ

μν ∝ hμν
which in turn is due to the fact that in the derivative
interacting term (6) the metric tensor gμν appears within n

only. As a consequence TðintÞ
μν vanishes whenever fðn; s;ϕÞ

does not depend on n, as one can easily realize looking at

Eq. (18). The property UμTðintÞ
μν ¼ 0 is particularly relevant

for cosmological applications since it implies that at the
background level the Friedmann equation is never modified
by the interaction between the fluid and the scalar field; see
Eq. (47). This is in contrast to the algebraic couplings
considered in Part I where this always happens. Note,
however, that both the acceleration equation (48) and scalar
field equation (49) do get modified by the interaction. This
implies that the background cosmological evolution can
actually differ from the corresponding noninteracting one,
though the Friedmann equation forces a matterlike evolu-
tion whenever the scalar field energy density becomes
negligible if compared to the matter energy density,
irrespectively of the strength of the interaction. The fact

that UμTðintÞ
μν ¼ 0 implies also that the perturbed Einstein
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equation (73) as well as the continuity equation (77) are not
modified by the interacting term, although in all the other
perturbed equations deviations due to the coupling appear.
In Sec. III we have studied some of the cosmological

consequences obtained from these models, employing in
particular dynamical systems techniques. One would
expect that a derivative coupling would complicate the
subsequent dynamical systems formulation. However, it
turns out that the derivative models studied here are
somewhat easier to handle than models based on the
algebraic coupling fðn; s;ϕÞ considered in Part I. In
particular we have considered two types of derivative
couplings, labelling them as Models A and B according
to Table I. The background cosmological evolution of
Model A has been characterized by a 2D dynamical system,
while the one of Model B required the analysis of a 3D
dynamical system. For both models we found late-time
accelerating attractors, capable of describing the present
dark energy dominated epoch and possible intermediate
phases of dark matter domination.
For Model A the specific case corresponding to the

parameter α ¼ 0 has been studied in depth. We found that a
dark matter to dark energy transition can be obtained for
some values of the model parameters and is always
described by the (heteroclinic) trajectories connecting
Point D to Point C as depicted in Fig. 3. Note that, as
mentioned before, PointD describes a scaling solution only
when w ¼ 0, i.e. when the fluid describes (dark) matter. For
a different matter EoS, one finds weff ≠ w, implying that
modifications to the standard cosmological evolution might
arise if radiation is added into the analysis.
Another simple case of Model A is achieved by the

choice α ¼ 1=2. As mentioned above, the resulting back-
ground cosmological equations corresponding to this
choice match the one arising from a particular k-essence
model studied in Ref. [11]. Since the dynamical analysis of
the α ¼ 1=2 case has already been performed in detail in
Ref. [11], it has not been considered in the present work.
However, we briefly recall here some of the features and
results derived in Ref. [11] which arise as well in the
background cosmological dynamics of Model A with
α ¼ 1=2. The phenomenology found in this case is highly
rich with different cosmological behaviors that cannot be
obtained with a noninteracting canonical scalar field. At
late times it is possible to obtain phantom domination
(weff < −1) with dynamical crossing of the phantom
barrier, while at early times superstiff (weff > 1) solutions
can be attained. Theoretical models predicting a dynamical
crossing of the phantom barrier are important to investigate
in the eventuality that future surveys will detect (with
statistical significance) a dark energy EoS within the
phantom regime. Models of such kind obtained within
the k-essence framework, such as the one considered in
Ref. [11], suffer from instabilities at the level of perturba-
tions [14]. Nevertheless, if the same phantom crossing

evolution is not realized by a k-essence model, as in the
case of Model A, then the cosmological perturbations
might be stable. This is because, although the background
equations coincide, one expects differences in the pertur-
bation equations between Model A with α ¼ 1=2 and the
model considered in Ref. [11]. These considerations
enforce the motivation for analyzing the dynamics of
cosmological perturbations arising from the quintessence
interacting models studied here and in Part I [13].
Considering Model B, it was found that a global accel-

erated attractor always appears in the phase space, irre-
spective of the values of the model parameters. This implies
that for this particular coupling late-time dark energy
domination is always attained. Interestingly one of these
attractors (Point Eþ), although mimicking a cosmological
constant behavior, is completely dominated by the scalar
field’s kinetic energy, showing thatwithinModelB late-time
acceleration can also be achieved without a self-interacting
(and thus massless) scalar field. Moreover for some choices
of the parameters, a scaling solution attracting all the early-
time trajectories (the ones on the z ¼ 0 plane) is present in
the phase space; see Point B in Fig. 5. This saddle point
forces the early Universe to reach matter domination before
switching to the late-time accelerated behavior. Thus, for all
physically possible initial conditions (for which z≃ 0, i.e.
H ≫ H0), a transition from dark energy to dark matter is
attained at late times, solving in this manner any fine-tuning
issue. Although the presence of a scalar field at early times is
expected to be strongly constrained by observations [15], the
results obtained within Model B are promising and should
merit further consideration. For this reason in Sec. III C we
presented and briefly discussed the scalar cosmological
perturbations for such model, although a more detailed
investigation will be presented in future works [13].
To better expose the dark matter to dark energy transition

at late times, we consider the behavior of the effective
equation of state for particular trajectories within the phase
space of Model B and compare its qualitative properties. For
this purpose, we look at the dynamical evolution of weff for
different choices of the parameters of Model B; see Fig. 6.
We see that in this model we always find physical trajectories
starting with the usual scalar field kinetic energy dominated
epoch and then evolving through a matter dominated phase,
after which they approach the late -time dark energy
dominated attractor. Note that in this case there is the
possibility of dynamically crossing the phantom barrier,
after which the effective equation of state approaches weff ¼
−1 from below; see the left panel of Fig. 6. However, this
behavior is parameter dependent. For instance, when choos-
ing ξ ¼ −1 the value weff ¼ −1 is approached from above.
Note also that a nonmonotonic transition from matter to dark
energy domination can be obtained, as shown again in the
left panel of Fig. 6. All this shows the interesting phenom-
enology present in Model B and suggests further inves-
tigations with other similar models.
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We might for example compare the coupling appearing
in Eqs. (25) and (29) with the one usually considered in the
dynamics of early Universe bubble nucleation arising from
first-order phase transitions; see e.g. Ref. [16]. In those
models the coupling vector Qμ between the scalar field
and the surrounding matter fluid is provided by
Qμ ∝ Uν∂νϕ∂μϕ, and it is motivated by thermodynamical
properties of electroweak physics, such as the temperature
dependence of the Higgs potential under renormalization at
two or more loops. This coupling vector is different from
the one arising in Eqs. (25) and (29) which assumes the
form Qμ ∝ ∇νUν∂μϕ (and also retains a quite general
dependence1 on the coupling function f). Unfortunately
it seems not easy to obtain the coupling Qμ ∝ Uν∂νϕ∂μϕ
from the scalar-fluid variational approach considered in this
work, even if higher-order operators such as ∂μϕ∂μϕ are
taken into account in the Lagrangian. Nevertheless, at a
more phenomenological level, the coupling vector Qμ ∝
∇νUν∂μϕ can be used to describe new dissipative inter-
actions between the expanding bubble and the surrounding
fluid, which might give rise to a different dynamics in the
early Universe and possibly to new observational signa-
tures of first-order phase transitions. These topics might
well represent future applications of the variational for-
malism developed here.
Finally we briefly comment on the appearance of a

“fifth” force fμ acting on the matter fluid due to the
interaction with the scalar field. From Eq. (44) [or equiv-
alently from Eq. (45)], it is possible to derive the geodesic
equation for the fluid which reads

dUμ

dτ
þΓμ

αβU
αUβ

¼ −
hμν

ρþpþpint

�
∂νpþ ∂νpint − n2

∂f
∂n∇λUλ∇νϕ

�
¼ fμ;

ð79Þ

where pint is defined in Eq. (21). Note that this fifth force is
orthogonal to the fluid flow, fμUμ ¼ 0, in agreement with
the relativistic definition of the 4-force. The presence of a
nonvanishing force on the right-hand side of the geodesic
equation, even for a dust fluid (p ¼ 0), implies that in
general the motion of matter particles will be nongeodesic
and that the equivalence principle will be violated. If the
scalar field interacts with baryonic matter, then Solar
System experiments set strong constraints on the magni-
tude of this fifth force [17], which must then be somehow
negligible at small scales. However, since it depends on
local quantities such as the scalar field, the particle number
density (or energy density), and the entropy density, a
screening mechanism, similar to the well-known chame-
leon mechanism [18], could be at play. The interesting and
original feature of the nongeodesic force (79) is that it also
depends on the fluid 4-velocity Uμ. This suggests the
possibility of finding new screening mechanisms for the
scalar field which hide its effects wherever the matter
velocities are relativistically small, such as in the Solar
System. Note that this cannot be achieved with the usual
chameleon theories nor with the algebraic couplings of Part
I, since in those cases the resulting fifth force does not
depend on the fluid 4-velocity. Unfortunately the resulting
analysis at small scales is complicated by this dependence
on the matter velocities and cannot be easily performed
following the original chameleon work, as it has been done
for the algebraic couplings in Part I. The study of these new
screening mechanisms depending on the matter fields
velocities, as well as their phenomenological effects, falls
well beyond the scope of the present paper and will be left
for future considerations.
In conclusion the variational approach outlined in this

work is very powerful because it always allows us to arrive
at covariant theories where the background and the per-
turbations can be studied consistently. It can also represent
the starting point for more radical interactions between a
scalar field and a matter fluid. For instance, one could
attempt to identity the scalar field ϕ with either of the two
Lagrange multipliers φ or θ. In particular the first one
would allow for fluid’s particle creation/annihilation, while
the second one would correspond to the scalar field

FIG. 6. weff of model B of the dynamical system. Left panel: w ¼ 0, λ ¼ 2, ξ ¼ 1. Right panel: w ¼ 0, λ ¼ 2, ξ ¼ −1.

1In Ref. [13] it will be shown that only models where f ∝ 1=n
are generally free from instabilities at the cosmological pertur-
bations level.
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affecting the entropy of the system. Clearly, there is a large
number of possible realizations of which the consequences
and applications could be studied in the future using
different techniques, such as dynamical systems and

perturbations. The investigation of cosmological perturba-
tions constitutes the next logical step for further under-
standing the physics of these models and to better compare
them against observations.
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