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A new Lagrangian framework has recently been proposed to describe interactions between relativistic
perfect fluids and scalar fields. In this paper we investigate the Einstein static universe in this new class of
theories, which have been named scalar-fluid theories. The stability of the static solutions to both
homogeneous and inhomogeneous perturbations is analyzed deriving the relevant cosmological perturba-
tion equations at the linear order. We can find several configurations corresponding to an Einstein static
universes which are stable against inhomogeneous perturbations, but unstable against homogeneous
perturbations. This shows the possible applications of scalar-fluid theories to the inflationary emergent
universe scenario.
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I. INTRODUCTION

Scalar fields have a prominent role in present cosmology
not only since they provide simple inflationary solutions for
the early universe, but also for their applications to late-time
cosmology. In fact simple scalar field models have been
employed to characterize both the inflaton, a hypothetical
field introduced to drive the primordial inflationary phase,
and dark energy, the entity made responsible for the late-time
cosmological acceleration. In general it is believed that
further degrees of freedom, beyond the ones of general
relativity and standard model particles, are needed in order to
account for the observations at both early and late times. A
scalar field represents thus the simplest way to add just one
dynamical degree of freedom into the cosmological frame-
work, and moreover it is usually enough to describe the
large-scale effects of high-energy or modified gravity
theories, at least at an effective level.
Scalar fields beyond the standard model are however

expected to possess non-negligible interactions with the
known matter particles [1], and thus to provide a fifth force
deviation from the geodesic motion of freely falling bodies.
Because of this fifth force, experiments within the Solar
System set stringent constraints on any scalar field model,
unless a screening mechanism, such as the well-known
chameleon mechanism [2], is introduced. The interaction
between the scalar field and the remaining matter sources is
commonly characterized by the use of conformal (some-
times disformal) transformations, the case of scalar-tensor
theories being the most popular. In a recent series of
contributions a new framework for coupling a scalar field to
matter, including as a subclass the conformal coupling, has

been developed [3–5]. This new paradigm uses Brown’s
Lagrangian formulation of relativistic fluids [6] to describe
the matter sources at a Lagrangian level, providing in such a
way new possibilities for coupling the scalar field to the
matter sector (see Sec. II). For this reason, and in analogy
with scalar-tensor theories, the resulting new class of
theories has been dubbed scalar-fluid theories [5].
The scope of the present paper is to find static cosmo-

logical solutions, known as Einstein universes, within the
framework of scalar-fluid theories and to analyze their
perturbations. This constitutes a simple application of
cosmological linear perturbation theory for this newly
introduced class of theories, which so far has only been
considered for models of interacting dark energy [3–5,7],
but in practice it can be applied to other situations, for
example primordial inflation. In fact the connection
between the Einstein static solution and early universe
inflationary theories has been made explicit in the so-called
emergent universe scenario [8], where the initial-time
singularity, namely the big bang, is replaced by a past
asymptotic Einstein universe.
When considering homogeneous and isotropic solutions of

the Einstein field equations, one finds that a generic solution
will either correspond to an expanding or a contracting
universe, the Einstein static universe being the limiting case
where the universe does not evolve. However, for this
solution to exist in general relativity, one must introduce
the cosmological constant, without it static solutions cannot
be found. Following this line of thought, we would expect to
find static solutions which are in general unstable with
respect to small perturbations which favor a dynamically
evolving universe, in agreement with observations.
The emergent universe paradigm has then stimulated the

studies of Einstein static solutions, and their stability under
inhomogeneous perturbations, not only in general relativity
[9], but also in modified gravity theories representing viable
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alternatives to single field inflation. In particular
the Einstein static universes have been analyzed in fðRÞ
theories of gravity [10–12], fðTÞ gravity [13], Brans-Dicke
theory [14], modified Gauss-Bonnet fðGÞ theories of gravity
[15], hybrid metric Palatini gravity [16], Einstein-Cartan
theory [17] and nonconstant pressure models [18].
Additionally they have also been investigated in loop
quantum cosmology [19], Horava-Lifshitz gravity [20], IR
modified Horava gravity [21] and nonminimal kinetic
coupled gravity [22]. It is thus interesting to investigate this
particular type of solution within the framework of scalar-
fluid theories which might constitute alternative models of
dark energy and inflation as well.
The paper is organized as follows. In Sec. II the action of

scalar-fluid theories will be presented reviewing the main
details of the formulation and deriving the relativistic field
equations. In Sec. III models with an algebraic coupling
between the scalar field and the matter sector will be
considered. The cosmological equations will be computed
at both background and perturbation levels, while Einstein
static solutions will be found for some specific models and
their stability will be investigated. In Sec. IV the same
analysis will be applied to Scalar-Fluid models with a
derivative coupling between the scalar field and the matter
sources. Finally in Sec. V the results obtained in the
preceding sections will be discussed and the conclusions
will be drawn.
Throughout the paper the ð−;þ;þ;þÞ convention for

the signature of the spacetime metric will be used, the speed
of light will be set to one c ¼ 1, and κ2 ¼ 8πG.

II. SCALAR-FLUID THEORIES: ACTION
AND FIELD EQUATIONS

In this section we review the variational approach to
interacting dark energy that was formulated in [3,4].
The total action of our interacting dark energy system is

S ¼
Z

ðLgrav þ LM þ Lϕ þ LintÞd4x; ð1Þ

where the gravitational sector Lgrav is given by the standard
Einstein-Hilbert Lagrangian density

Lgrav ¼
ffiffiffiffiffiffi−gp

2κ2
R; ð2Þ

with R being the Ricci scalar with respect to the metric gμν,
and g denotes its determinant. The Lagrangian density of the
scalar field is taken to be of the canonical (quintessence) type

Lϕ ¼ −
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð3Þ

where V is the scalar field potential depending only on ϕ.
The Lagrangian for the relativistic fluid is described using
Brown’s formulation for LM given by [3,6]

LM ¼ −
ffiffiffiffiffiffi
−g

p
ρðn; sÞ þ Jμðφ;μ þ sθ;μ þ βAα

A
;μÞ; ð4Þ

where ρ is the energy density of the fluid prescribed as a
function of n, the particle number density, and s, the entropy
density per particle. The fields φ, θ and βA are all Lagrange
multipliers with A taking the values 1, 2, 3 and αA are the
Lagrangian coordinates of the fluid. The vector-density
particle number flux Jμ is related to n as

Jμ ¼ ffiffiffiffiffiffi
−g

p
nUμ; jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνJμJν
p

; n¼ jJjffiffiffiffiffiffi−gp ; ð5Þ

where Uμ is the fluid 4-velocity obeying the relation
UμUμ ¼ −1.
This just leaves us to determine the interaction

Lagrangian Lint. We will consider two distinct types of
couplings. In [3] an algebraic coupling between matter and
the scalar field was considered. There the interaction
Lagrangian took the form

Lint ¼ −
ffiffiffiffiffiffi
−g

p
fðn; s;ϕÞ; ð6Þ

where fðn; s;ϕÞ is an arbitrary function which will specify
the particular model. In this paper we will consider only
one specific type of coupling and take only couplings of
the form

fðn; s;ϕÞ ¼ fðρ;ϕÞ: ð7Þ

This means we will not consider models where the
interaction can depend on the entropy density per particle.
Moreover, we only consider an implicit dependence on the
particle number n through the density ρ. Despite these
restrictions, this framework is substantial.
In [4] a different interaction Lagrangian was considered;

a coupling between the matter sector and first derivatives of
the scalar field were considered. This time the interacting
Lagrangian was given by

Lint ¼ fðn; s;ϕÞJμ∂μϕ; ð8Þ

where f is again an arbitrary function of the three physical
fields. This is the most general coupling term where only
one spacetime derivative of the scalar field appears. As with
the algebraic coupling, we restrict ourselves to entropy
independent interactions and implicit particle number
dependence.
Variation of the total Lagrangian with respect to the

metric gives the following Einstein Equations

Gμν ¼ κ2ðTμν þ TðϕÞ
μν þ TðintÞ

μν Þ; ð9Þ

where the different energy momentum tensors are
defined as
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Tμν ¼ pgμν þ ðρþ pÞUμUν; ð10Þ

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð11Þ

TðintÞ
μν ¼ pintgμν þ ðpint þ ρintÞUμUν: ð12Þ

Here the fluid pressure is defined as

p ¼ n
∂ρ
∂n − ρ: ð13Þ

In the case of an algebraic coupling, the interacting pressure
and energy density are defined as

ρint ¼ fðn;ϕÞ and pint ¼ n
∂fðn;ϕÞ

∂n − fðn;ϕÞ; ð14Þ

whereas in the case of the derivative coupling they are
defined as

ρint ¼ 0 and pint ¼ −n2
∂f
∂nU

λ∂λϕ: ð15Þ

In what follows we will investigate the Einstein static
universe in both of these scenarios.

III. ALGEBRAIC COUPLING

In this section we will consider the Einstein static universe
where we assume that the coupling between matter and the
scalar field is purely algebraic. This means that the interact-
ing pressure can now be written in terms of f as

pint ¼ ðρþ pÞ ∂f∂ρ − f: ð16Þ

The cosmological applications for a few particular choices of
such an f have been considered in [3]. These models can
exhibit a range of interesting cosmological phenomena. Dark
energy dominated late time attractors with a dynamical
crossing of the phantom barrier have been found, along with
scaling solutions, early time matter dominated epochs and a
possible inflationary origin.

A. Background equations

To begin with we will consider the background cosmol-
ogy equations of such models to show that Einstein static
universe solutions to the field equations do indeed exist. Let
us consider the standard Friedmann-Robertson-Walker
(FRW) line element given by

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð17Þ

where aðtÞ is the cosmological scale factor and k ¼ −1, 0,
1 according to the spatial openness, flatness or closeness of
the constant time hypersurfaces, respectively. Inputting this
into the Einstein field equations (9) we derive the following
two Friedmann equations

3
k
a2

þ 3H2 ¼ κ2
�
ρþ 1

2
_ϕ2 þ V þ f

�
; ð18Þ

k
a2

þ 2 _H þ 3H2 ¼ −κ2
�
pþ 1

2
_ϕ2 − V þ pint

�
: ð19Þ

The Klein-Gordon or scalar field equation reduces to

ϕ̈þ 3H _ϕþ ∂V
∂ϕ þ ∂ρint

∂ϕ ¼ 0: ð20Þ

Wewill now look for an Einstein static universe solution.
We set the scale factor aðtÞ ¼ a0 ¼ const, which implies
that H ¼ _H ¼ 0. We will also set our scalar field to be a
constant: ϕ ¼ ϕ0, and assume that the perfect fluid obeys
a simple linear equation of state p ¼ wρ where w is a
constant lying in the range −1 < w < 1 which is called the
equation of state (EoS) parameter. Inputting these assump-
tions into the two Friedmann equations (18) and (19) yields

3
k
a20

¼ κ2ðρ0 þ Vðϕ0Þ þ fÞ ð21Þ

k
a20

¼ −κ2ðp0 − Vðϕ0Þ þ pintÞ; ð22Þ

with the Klein-Gordon equation (20) reducing to

V 0ðϕ0Þ þ
∂f
∂ϕ
����
ϕ¼ϕ0

¼ 0: ð23Þ

Combining (21) and (22) gives us the simple relation

ρ0ð1þ 3wÞ þ f þ 3pint ¼ 2Vðϕ0Þ ð24Þ

between the potential and the energy and pressure of both
the fluid and the interacting fluid. The above equations give
three algebraic equations for the three unknowns ρ0, a0 and
ϕ0, and thus, as long as k ≠ 0, we can find an Einstein static
universe solution. If k ¼ 0, we note that a0 is undeter-
mined. Note that Eq. (23) implies that the static configu-
rations of the scalar field lie in the minima of the effective
potential VðϕÞ þ fðρ;ϕÞ. Finding an explicit solution will
depend on the particular functional form of f. We see that,
unlike in general relativity, potentially there is also the
possibility of a static open universe with k ¼ −1 if the
function f, determining the interacting energy density, is
sufficiently negative.
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B. Perturbation equations

We now wish to explore whether the Einstein static
universe solutions found above are stable under small
perturbations. The perturbed equations for scalar-fluid
theories of this type were first derived in [5], using a
slightly different notation. Here we will review these
equations, using our particular functional form for the
interacting function f.
We will work with the metric in the Newtonian gauge,

also called the longitudinal gauge, which is given by the
line element

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞaðtÞ2
½1þ 1

4
kðx2 þ y2 þ z2Þ�2

× ðdx2 þ dy2 þ dz2Þ; ð25Þ

where both Ψ and Φ are functions of all the coordinates.
Our matter sources can be considered as perfect fluids and
so we expect no anisotropic stresses to appear. Hence we
may consider the off-diagonal ij-components of the
Einstein field equations, which indeed read

∂i∂j

��
1þ 1

4
kðx2 þ y2 þ z2Þ

�
ðΨ − ΦÞ

�
¼ 0: ð26Þ

From this equation we immediately find that

Φ ¼ Ψ; ð27Þ

as expected since no anisotropies are present in the system.
In what follows thus we will simplify all of the equations
considering that Ψ equals Φ. This statement is independent
of the coupling function f and hence valid for all models in
this class.
We also must determine how the matter variables are

perturbed. We perturb the quantities ρ, ϕ, p and Uμ

according to

ϕþ δϕ; ρþ δρ; pþ δp; Uμ þ δUμ; ð28Þ

where ϕ, ρ, p and Uμ are the background quantities and the
perturbation of the four velocity reads

δUμ ¼ ð−Ψ; ∂ivÞ: ð29Þ

Here v is the scalar perturbation of the matter fluid’s
velocity.
We are now in a position to derive the perturbed Einstein

equations. We will give the equations directly in Fourier
space, so that we write the Laplacian as∇2↦ − q2, where q
is the wave number of the fluctuation. For the spatially
closed case k ¼ 1 we have that this wave number must
equal q ¼ nðnþ 2Þ for positive integer n ¼ 0; 1; 2;…,

whereas for the spatially open case k ¼ −1 we simply
have that q is any real number such that q > 1.
Inserting the perturbed metric into the Einstein equa-

tion (9), the 00-component reads

6k
a2

Ψ −
q2

a2
Ψ − 4π

�
1þ ∂f

∂ρ
�
δρ − 4π

�∂f
∂ϕþ V 0

�
δϕ

− 8πðρþ V þ fÞΨ − 3H _Ψ − 4π _ϕ _δϕ ¼ 0; ð30Þ

where dots denote differentiation with respect to t. After
integrating over dxi, the 0i-components are

8πðpþ ρÞ
�
1þ ∂f

∂ρ
�
v − 8π _ϕδϕþ 2 _Ψþ 2HΨ ¼ 0; ð31Þ

which as usual gives the velocity perturbation v in terms of
the other perturbed variables. The ii-components become,
after a simplification using the background equations,

4πðρþ pÞ ∂
2f

∂ρ2 δρþ 4π

�
1þ ∂f

∂ρ
�
δp

þ 4π

�
ðρþ pÞ ∂2f

∂ρ∂ϕ −
∂f
∂ϕ − V 0

�
δϕ

þ 4π _ϕ _δϕþ
�
k
a2

− 4π _ϕ2 − 2 _H − 3H2

�
Ψ − 4H _Ψ − Ψ̈

¼ 0: ð32Þ

And finally the perturbation of the scalar field equation (20) is

δ̈ϕþ 3H _δϕþ
�
q2

a2
þ ∂2f
∂ϕ2

þ V 00
�
δϕþ ∂2f

∂ρ∂ϕ δρ

− 2ðϕ̈þ 3H _ϕÞΨ − 4 _ϕ _Ψ ¼ 0: ð33Þ

From equation (30) one can solve for δρ and substitute it into
the equations (32) and (33), which will then provide two
dynamical equations for the variables Ψ and δϕ.
We will now insert our background Einstein static

universe solution into the perturbed equations above. We
will assume adiabatic perturbations, so that the pressure
perturbation obeys the same equation of state as the
background pressure, δp ¼ wδρ. Inserting the static sol-
ution into (30), we find

3k
a20

Ψ −
q2

a20
Ψ − 4π

�
1þ ∂f

∂ρ
�
δρ ¼ 0: ð34Þ

The other diagonal equation (32) simplifies to

4πðwþ 1Þρ0
∂2f
∂ρ2 δρþ 4π

�
1þ ∂f

∂ρ
�
wδρ

þ 4πρ0ðwþ 1Þ ∂2f
∂ρ∂ϕ δϕþ k

a20
Ψ − Ψ̈ ¼ 0; ð35Þ
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and the Klein-Gordon equation (33) becomes

δ̈ϕþ
�
q2

a20
þ ∂2f
∂ϕ2

þ V 00
�
δϕþ ∂2f

∂ρ∂ϕ δρ ¼ 0: ð36Þ

The off-diagonal equation will not be needed to analyze the
stability of the perturbations since the velocity perturbation
does not appear in the other equations.
We can solve (34) for δρ and insert this back into (35)

and (36). We can then write the resulting equations as a
coupled two dimensional linear system of second order
ordinary differential equations

�
Ψ̈

δ̈ϕ

�
¼ M

�
Ψ

δϕ

�
; ð37Þ

where M is a 2 × 2 matrix with constant coefficients
involving the background quantities.
The matrix M has the following components

M ¼
�
M11 M12

M21 M22

�
ð38Þ

where the components of this matrix are given by

M11 ¼
�ðwþ 1Þρ0 ∂2f

∂ρ2
1þ ∂f

∂ρ
þ w

��
3k − q2

a20

�
þ k
a20

; ð39Þ

M12 ¼ 4πρ0ðwþ 1Þ ∂2f
∂ρ∂ϕ ; ð40Þ

M21 ¼ −
1

4πð1þ ∂f
∂ρÞ

∂2f
∂ρ∂ϕ

�
3k − q2

a20

�
; ð41Þ

M22 ¼ −
�
q2

a20
þ ∂2f
∂ϕ2

þ V 00
�
: ð42Þ

Since the terms in the matrix are quite involved, there is
little hope making a generic statement about stability and
instability for general f.

C. Stability of perturbations

The linear system of equations described by (37) is a
coupled second order system of differential equations.
Therefore it will have four linearly independent solutions
as a result of the two eigenvalues of M. Let us denote the
eigenvalues of M by λ1 and λ2. The solution to the system
will involve the frequencies� ffiffiffiffiffi

λ1
p

and � ffiffiffiffiffi
λ2

p
, and hence in

order for the perturbations to be stable we require the
following conditions

ℜλi < 0; ℑλi ¼ 0; i ¼ 1; 2: ð43Þ

Now the components of the matrix M are too complicated
to say anything general about the stability of the Einstein
static universe for a generic coupling function f. One could
attempt using Sylvester’s criterion instead of working with
the eigenvalues directly, however, the resulting equations
are still too involved. Thus we will examine a few specific
models corresponding to different functional forms of f.

D. Models

We will consider three separate models assuming differ-
ent forms for our interaction function f. Two of the models
were first considered in [3] where the background cosmo-
logical dynamics were analyzed. The standard chameleon
model [2] can be derived from this interacting Lagrangian
approach with algebraic coupling by making the choice for
the coupling function f ¼ −ρþ ρeβκϕ, and thus we are also
able to discuss the stability of the Einstein static universe in
this model within this framework. The models we will
consider are outlined in the table below

f pint

Model I γρα expð−βκϕÞ ½αðwþ 1Þ − 1�f
Model II γκϕρ wf
Chameleon field −ρþ ρeβκϕ wf

1. Model I

We first consider model I where we take the interacting
function f to be a coupling of a power law of the energy
density and an exponential in the scalar field, and the
potential V to be a standard cosmological exponential
potential

fðρ;ϕÞ ¼ γραe−βκϕ; VðϕÞ ¼ V0e−λκϕ: ð44Þ

The background cosmology of this model was analyzed in
[3] for the particular cases of α ¼ 1 and α ¼ 3. These
models have a range of interesting phenomenology. Late
time accelerating attractor solutions were shown to exist for a
wide choice of parameters, which can describe dark energy.
Scaling solutions were found which may be useful for
solving the cosmic coincidence problem, along with sol-
utions undergoing transient inflationary epochs at early
times.
Now let us solve the background equations (21)–(23) for

an Einstein static universe in this model. The Klein Gordon
equation gives us the condition

ρα0 ¼ −
λV0

βγ
eðβ−λÞκϕ0 : ð45Þ

and thus for a positive energy density we require the
condition that βγ < 0. The Friedmann equations then admit
the solution
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a20 ¼
kβð1þ 3wÞ

κ2ð1þ wÞðβ þ λðα − 1ÞÞVðϕ0Þ
ð46Þ

where ϕ0 is given implicitly by solving

ϕ0 ¼
1

βκ

�
log

�
κβγ

V 0ðϕ0Þ
�

− α log

�
κβð1þ 3wÞ

2βκVðϕ0Þ þ 2 − 3ð1þ wÞαV 0ðϕ0Þ
��

:

ð47Þ

Now assuming that both λ, β ≥ 0, requiring that the scale
factor is real tells us we will only have a static solution in a
closed universe k ¼ 1 when the EoS paramater lies in the
range w > −1=3. For the case of an open universe with
k ¼ −1, the opposite situation arises, with w now lying in
the range −1 < w < −1=3.
Let us first consider a closed universe, so that we require

w > −1=3. For the choice of exponents α ¼ 1, 2, 3, 4, 5, it
has been checked numerically that the regions of stability of
the homogeneous perturbations (corresponding to q ¼ 0)
and the n ¼ 2 perturbation (corresponding to q ¼ ffiffiffi

8
p

) do
not coincide for any w in the range −1=3 < w < 1. We can
therefore conclude that the Einstein static universe is not
stable for these choices of exponent α in this model. We
show an example plot of the stability regions of the n ¼ 0
and n ¼ 2 perturbations in Fig. 1 when the matter EoS
w ¼ 1=3. The grey region indicates the region where the
homogeneous perturbations are stable, the grey represents
the n ¼ 2 inhomogeneous perturbation, which overlap
nowhere in parameter space. A similar result is found for
all values of w in the allowed range.
Now considering the case of an open universe k ¼ −1,

we find that for q close to 1 there are regions of stability.
However as we increase q these regions shrink and
disappear. This can be seen by noting that for large q it
is the case that one of the eigenvalues must be positive.

Thus we cannot find a stable static solution in an open
universe either.

2. Model II

Let us now consider the second model, where we choose
the interaction function to be a simple linear coupling
between matter and the scalar field

fðρ;ϕÞ ¼ γκϕρ: ð48Þ

The background dynamics of this model were also con-
sidered in [3], assuming a standard exponential potential.
The dynamics of this model was very similar to that of the
case of general relativity with a canonical scalar field, and
thus can in principle replicate the background dynamics of
a ΛCDM universe given a flat enough potential.
Let us solve the background equations for a static

solution. The Klein-Gordon equation (23) allows us to
solve for the energy density

ρ0 ¼ −
1

κ2γ
V 0ðϕ0Þ: ð49Þ

Inserting this into the constraint (24) yields the following
implicit equation for ϕ0

κϕ0 ¼ −
2κVðϕ0Þ

ð1þ 3wÞV 0ðϕ0Þ
−
1

γ
: ð50Þ

We can now easily solve one of the remaining Friedmann
equations for the scalar factor a0 to give

a20 ¼
1

κ2Vðϕ0Þ
kð1þ 3wÞ
1þ w

: ð51Þ

And thus positivity of this expression means we only have
an Einstein static universe for k ¼ 1 if w > −1=3, and k ¼
−1 if w < −1=3. To ensure a positive energy density, we
require that V 0ðϕ0Þ < 0 if γ > 0 and V 0ðϕ0Þ > 0 if γ < 0.

FIG. 1. Stability of the perturbations in β − λ parameter space when w ¼ 2=3. The left panel corresponds to the case α ¼ 1, the middle
panel corresponds to α ¼ 2. The black region represents the stability of n ¼ 0 perturbation, the grey region represents the n ¼ 2
perturbation.
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First we consider the case of a closed universe, k ¼ 1.
Looking at the homogeneous perturbations and the n ¼ 2,
(so that q ¼ ffiffiffi

8
p

), inhomogeneous perturbations, we find
that the regions of stability of these two overlap for a small
range of parameter values. We should note here that one
does not need to consider the n ¼ 1 perturbations, this is
simply a gauge degree of freedom. Now as the wave
number n increases, the area of stability grows in parameter
space, and thus the small region of stability will remain
stable to higher wave number perturbations. An example
plot showing this behavior is shown in Fig. 2 where the
n ¼ 0, 2, 3, 4 perturbations are considered and the EoS was
chosen to be w ¼ 3=4. This region of stability only appears
for sufficiently big w, for instance the n ¼ 2 inhomo-
geneous perturbations are always unstable for w < 1=5, a
result that matches the one obtained with a single sourcing
fluid [9]. According to Fig. 2 the region of stability of
inhomogeneous perturbations (n ≥ 2) is quite large in the
ðV; V 0Þ space. Although only in a small part of such region
also the homogeneous perturbations are stable, for the well-
known emergent universe scenario only the stability of
inhomogeneous perturbations is required in order to have a
viable alternative model of inflation [8,9]. Figure 2 thus
shows that model II can be applied consistently to early
universe phenomenology within the emergent universe
framework.
In the case of an open universe k ¼ −1, we are unable to

find solution which are stable to all perturbations. An
example plot is shown in Fig. 3, where regions of stability
for different values of q are shown for the case w ¼ −1=2.
It is found that increasing q stops the regions of stability
overlapping, and for large enough q the stable regions
disappear altogether.

3. Chameleon model

Now let us consider the third of our models. If we choose
the interaction function f and the potential V to be

f ¼ −ρþ ρeβκϕ; VðϕÞ ¼ M4þα

ϕα ; ð52Þ

then we recover the standard chameleon mechanism [2]
within this scalar-fluid framework. Here α and β are positive
constants and M is a mass scale. Such an interaction is of
great theoretical interest, since it masks the appearance of the
fifth force deviation from general relativity at solar system
length scales.
Now looking for static solutions within this model we

find the following solution

ρ0 ¼
2αþ1αMαþ4e−

1
2
αð1þ3wÞ

βκ

�
βκ

αð1þ 3wÞ
�

αþ1

; ð53Þ

a20 ¼
βk

2αM4þαακð1þ wÞ
�
αð1þ 3wÞ

βκ

�
αþ1

;

ϕ0 ¼
αð1þ 3wÞ

2βκ
: ð54Þ

Of course, this solution will only exist if a20 is positive.
Thus depending on the particular parameter choices, there
will either exist a k ¼ þ1 or k ¼ −1 static universe.
Typically α and β are both positive for this model to allow
for cosmic acceleration and the screening mechanism, and
thus for a closed k ¼ 1 static universe we require that
w > −1=3. There are no open universe solutions unless
w < −1 so this will not be considered here further.
If we analyze the stability matrix of this model, numeri-

cally we find that when α > 0 the homogeneous perturba-
tions are always unstable. This means one cannot achieve a
stable Einstein universe in these chameleon theories in the
context of scalar fluid theories. However, analyzing the
stability of the inhomogeneous perturbations, it is found
they are always stable for β sufficiently small, see for
example Fig. 4, where the regions of stability of the n ¼ 2,

FIG. 2. Parameter space plot of V 00ðϕ0Þ against V 0ðϕ0Þ showing
the regions of stability of the n ¼ 0, 2, 3, 4 perturbations in Model
II with the EoS given by w ¼ 3=4. There is a small region in
which all perturbations are stable. Increasing n increases the
region of stability.

FIG. 3. Parameter space plot of V 00ðϕ0Þ against V 0ðϕ0Þ showing
the regions of stability of the q ¼ 1.01, 2, 3, 4 perturbations in
Model II with the EoS given by w ¼ −1=2. The regions do not all
overlap, and increasing q eventually makes the stability regions
vanish.
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3, 4, 5, 6 perturbations are plotted for w ¼ 1=3. With
increasing n the stability region grows, and for approx-
imately β < 1 all of the inhomogeneous perturbations are
stable. This means that the chameleon model is potentially
applicable to the emergent universe framework.

IV. DERIVATIVE COUPLING

In this section we will analyze the Einstein static
universe in the context of a derivative coupling between
the matter sector and the scalar field. Such a model was
considered in [4] in the context of dark energy interacting
with dark matter.

A. Background equations

First we will derive the equations governing the back-
ground cosmological evolution. As before we will assume
the Friedmann-Robertson-Walker metric (17). This time
the Friedmann equations read

3
k
a2

þ 3H2 ¼ κ2
�
ρþ 1

2
_ϕ2 þ V

�
; ð55Þ

k
a2

þ ð2 _H þ 3H2Þ ¼ −κ2
�
pþ 1

2
_ϕ2 − V

�
þ n2

∂f
∂n _ϕ;

ð56Þ

whereas the scalar field equation is modified to

ϕ̈þ 3H _ϕþ V 0 − n2
∂f
∂n 3H ¼ 0: ð57Þ

Now we look for an Einstein static universe solution in
this model, so we assume that our scale factor and all other
physical fields are independent of time. The Klein-Gordon

equation (57) contains time derivatives in every quantity
except the potential term, so this equation simply reduces to
the condition

V0ðϕ0Þ ¼ 0; ð58Þ

so that the scalar field of the static universe solution must
lie at an extremum of the potential. The static universe is
completely independent of the form of the coupling
function f at the background level, because the only place
at which f enters the field equations it is multiplied by a
factor of _ϕ. And hence the static solution will be the same
as a static solution in standard quintessence. However
despite this the equations at the level of the perturbations
are different, and so the stability of the static universe
should be investigated. The Friedmann equations can easily
be seen to reduce to the system

k
a20

¼ κ2Vðϕ0Þ
�
1þ w
1þ 3w

�
; ð59Þ

ρ0 ¼
2Vðϕ0Þ
1þ 3w

: ð60Þ

In order for the energy density to be positive we will require
that the EoS satisfies w > −1=3, and this in turn means that
for the scale factor to be real we only have a static solution
in the case of a closed universe k ¼ þ1.

B. Perturbations

We will now derive the general perturbation equations of
this derivative coupling model. As before will work in the
Newtonian gauge (25) and perturb our matter variables
according to (28). Following [4] we will also make an
additional assumption on the form of the coupling function
f, so that the equations are independent of the particle
number density n explicitly, with a dependence only
implicitly through ρ. This leads us to consider the following
form of f

fðn;ϕÞ ¼ Fðρ;ϕÞ
n

: ð61Þ

This means that the interaction energy momentum tensor is
given by

TðintÞ
μν ¼

�
F − ðρþ pÞ ∂F∂ρ

�
Uλ∂λϕðgμν þUμνÞ: ð62Þ

Once again looking at the off-diagonal ij-components of
the field equations immediately gives

Φ ¼ Ψ; ð63Þ
since once again no anisotropies are present. Thus as is the
algebraic coupling case, in what follows we will simplify

FIG. 4. Parameter space plot of α against β showing the regions
of stability of the n ¼ 2, 3, 4, 5, 6 perturbations in the chameleon
model with the EoS given by w ¼ 1=3. The stability regions grow
for increasing n, and there is a region in which all inhomogeneous
perturbations are stable.
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the equations considering that Φ equals Ψ and we
will give the equations directly in the Fourier
space: ∇2↦ − q2.
The 00-component of the Einstein field equations

reads

�
6k
a2

−
q2

a2
− κ2ðρþ VÞ

�
Ψ − 3H _Ψ

−
κ2

2
ðδρþ V 0δϕþ _ϕ _δϕÞ ¼ 0; ð64Þ

which is independent of the coupling function f, exactly as
in the background case. The 0i-component are (after
integrating over dxi)

κ2
�
F _ϕþ ðpþ ρÞ

�
1 − _ϕ

∂F
∂ρ
��

v − κ2 _ϕδϕþ 2 _Ψþ 2HΨ

¼ 0: ð65Þ

The ii-components are, after a simplification using the
background equations

Ψ̈þ 4H _Ψþ
�
2 _H þ 3H2 −

k
a2

þ κ2

2

�
_ϕ2 þ F _ϕ − ðρþ pÞ ∂F∂ρ _ϕ

��
Ψþ κ2

2
ðρþ pÞ _ϕ ∂2F

∂ρ2 δρþ
κ2

2

�
_ϕ
∂F
∂ρ − 1

�
δp

þ κ2

2

�
ðρþ pÞ _ϕ ∂2F

∂ρ∂ϕ − _ϕ
∂F
∂ϕ þ V 0

�
δϕþ κ2

2

�
ðρþ pÞ ∂F∂ρ − F − _ϕ

�
_δϕ ¼ 0: ð66Þ

And finally the perturbation of the scalar field equation reads

�
3

�
F − ðρþ pÞ ∂F∂ρ

�
þ 4 _ϕ

�
_Ψþ

�
2ϕ̈þ 6H _ϕ − 3H

�
ðρþ pÞ ∂F∂ρ − F

��
Ψþ 3Hðρþ pÞ ∂

2F
∂ρ2 δρþ 3H

∂F
∂ρ δp

−
�
ðρþ pÞ ∂F∂ρ − F

�
q2

a2
vþ

�
−
q2

a2
þ 3H

�
ðρþ pÞ ∂2F

∂ρ∂ϕ −
∂F
∂ϕ
�
− V 00

�
δϕ − 3H _δϕ − δ̈ϕ ¼ 0: ð67Þ

C. Stability of the static universe

Now let us insert our Einstein static universe solution
into the perturbation equations. The 00 equation (64) now
becomes �

3k
a20

−
q2

a20

�
Ψ ¼ κ2

2
δρ: ð68Þ

The 0i-component (65) takes the particularly simple
form

κ2ρ0ð1þ wÞv ¼ −2 _Ψ; ð69Þ
which allows one to find the velocity perturbation easily in
terms of the metric perturbation. The ii components (66)
reduce to

κ2

2

�
−δpþ

�
ðρþ pÞ ∂F∂ρ − F

�
_δϕ

�
−

k
a20

Ψþ Ψ̈ ¼ 0;

ð70Þ
while the scalar field equation (67) becomes

δ̈ϕþ
�
q
a20

þ V 00
�
δϕþ 3

�
ðρþ pÞ ∂F∂ρ − F

�
_Ψ

−
�
F − ðρþ pÞ ∂F∂ρ

�
q2

a20
v ¼ 0: ð71Þ

Once again we will now assume an adiabatic perturba-
tion, so that δp ¼ wδρ. Substituting the density perturba-
tion from (68) into (70) and the velocity perturbation (69)
into (71) the system of equations reduce to the following
two dimensional system

κ2

2

�
ρ0ðwþ 1Þ ∂F∂ρ − F

�
_δϕþ

�
wq2

a20
−
ð3wþ 1Þk

a20

�
Ψ

þ Ψ̈ ¼ 0; ð72Þ

δ̈ϕþ
�
q
a20

þ V 00
�
δϕþ

�
3þ 2q2

κ2a20ð1þ wÞρ0

�

×

�
ρ0ðwþ 1Þ ∂F∂ρ − F

�
_Ψ ¼ 0: ð73Þ

Now let us introduce the following vector

X ¼
�

Ψ

δϕ

�
; ð74Þ

which means we can write the above system of equa-
tions (72), (73) as the following two dimensional matrix
equation

Ẍ þ A _X þ BX ¼ 0: ð75Þ
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Here the matrices A and B have been defined as

A ¼
 

0 κ2

2
P�

3þ 2q2

κ2a2
0
ð1þwÞρ0

	
P 0

!
;

B ¼
 wq2

a2
0

− ð3wþ1Þk
a2
0

0

0
�
q2

a2
0

þ V 00
	
!
; ð76Þ

where we have introduced the quantity P

P ¼ ρ0ðwþ 1Þ ∂F∂ρ − F: ð77Þ

Now to reduce the equation to a first order system, we
introduce the vector

Y ¼ _X; ð78Þ
so that the equation (75) can be written as the following first
order autonomous system�

_Y
_X

�
¼
�−A −B

I2 0

��
Y

X

�
; ð79Þ

where I2 denotes the 2 × 2 identity matrix. For the system
to be stable we simply require that the eigenvalues of the
above system are purely imaginary. Let us write

A ¼
�

0 a1
a2 0

�
; B ¼

�
b1 0

0 b2

�
: ð80Þ

Then the four eigenvalues of the system (79) in terms of ai
and bi are simply

λi¼� 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2−b1−b2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1þb2−a1a2Þ2−4b1b2

qr
:

ð81Þ

Now we immediately see from the definitions of a1 and
a2 that a1a2 ≥ 0. Thus requiring the eigenvalues (81) are
imaginary reduces to the following conditions

b1 > 0; b2 > 0; ð82Þ

a1 > 0; a2 > 0; a1a2 < b1 þ b2 − 2
ffiffiffiffiffiffiffiffiffiffi
b1b2

p
;

or a1 < 0; a2 < 0; a1a2 < b1 þ b2 þ 2
ffiffiffiffiffiffiffiffiffiffi
b1b2

p
:

ð83Þ

For the homogeneous perturbations we set q ¼ 0. Then
requiring b1 > 0 tells us we must have w < −1=3, and
b2 > 0 tells us the potential must lie at a minimum
V 00ðϕ0Þ > 0. However, we have already seen that the static
universe solution requires that w > −1=3, and hence the
homogeneous perturbation cannot be stable. And thus no

static universe will be homogeneously stable in these
derivative coupled models.
Now let us examine the stability against inhomogeneous

perturbations. b1 > 0 will be satisfied as long as q2 > 4 and
w > 1=ðq2 − 3Þ (so w > 1=5 for the n ¼ 2 perturbation
[9]). The first of these conditions is always satisfied since the
smallest inhomogeneous perturbation is the n ¼ 2 mode,
which corresponds to q2 ¼ 8. The condition b2 > 0 will be
satisfied as long as we are at a minimum of the potential:
V 00ðϕ0Þ > 0. We can simplify the quantity a2 ¼ ð3þ q2ÞP.
Therefore the condition for stability is

κ2

2
ð3þ q2ÞP2 <

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

a20
þ V 00

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wq2 − ð3wþ 1Þ

p
a0

!2

if P > 0; ð84Þ

and

κ2

2
ð3þ q2ÞP2 <

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

a20
þ V 00

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wq2 − ð3wþ 1Þ

p
a0

!2

if P < 0: ð85Þ

These conditions can be satisfied for all inhomogeneous
perturbations. To show this we will derives some sufficient
conditions for these inequalities to be true. For positive P a
sufficient condition for (84) to be true is

κ2

2
ð3þ q2ÞP2 <

q2

a20
; ð86Þ

so we need

κ2

2
a20P

2 <
q2

3þ q2
; for all q >

ffiffiffi
8

p
; ð87Þ

which is satisfied if

κ2

2
a20P

2 <
8

11
; ð88Þ

which alternatively we can write as

�
1þ 3w
1þ w

�
P2

2Vðϕ0Þ
<

8

11
: ð89Þ

For P < 0 a sufficient condition for (85) to be true is for

κ2

2
ð3þ q2ÞP2 <

ð1 − ffiffiffiffi
w

p Þ2q2
a20

; ð90Þ

holding when 0 < w < 1. This can then be reduced to the
following condition which will ensure the stability for all
inhomogeneous perturbations
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�
1þ 3w

ð1þ wÞð1 − ffiffiffiffi
w

p Þ2
�

P2

2Vðϕ0Þ
<

8

11
: ð91Þ

This is a stricter condition than for positive P. Nonetheless it
can still easily be satisfied for sufficiently small P.
Let us examine the form of P for different choices of

coupling functions. IfF of the formF ¼ const orF ¼ FðϕÞ,
then we simply have P ¼ −F. If F is a constant then
the stability of inhomogeneous perturbations will depend not
only on the value of F, but also on Vðϕ0Þ according to
the conditions (89) and (91). An interesting case is
FðϕÞ ¼ ξ

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp

, whose background cosmology curiously
results to be equivalent to the one analyzed in [23] in the
context of k-essence, as shown in [4]. According to
the conditions (89) and (91), in this situation we find that
the stability of inhomogeneous perturbations will no longer
depend on the scalar field potential, but only on the constant
ξ. For example considering w ¼ 1=3, which is expected for
early universe applications, we will find stability approx-
imately if −0.416 < ξ < 0.985. A similar reduction applies
in the case F ¼ γ

ffiffiffi
ρ

p
, which has been studied in [4]. In this

case using the background equation (60) the conditions (89)
and (91) become again independent of the scalar field and
the stability of perturbations will be determined by the
constant γ. For early universe applications (w ¼ 1=3) one
finds stability of the inhomogeneous perturbations if approx-
imately −1.25 < γ < 9.80.
These last examples shows that scalar-fluid models with

derivative couplings can easily be used in the context of the
emergent universe scenario where the stability of inhomo-
geneous perturbations and the instability of the homo-
geneous perturbations are required for the viability of this
alternative model of inflation.

V. DISCUSSION

In this work we have analysed Einstein static universe
solutions in the newly proposed framework of scalar-fluid
models, where an interaction between an effective perfect
fluid and a scalar field is introduced directly at the level of
the action. We have shown that generically static solutions
exist and we have studied their stability against both
homogeneous and inhomogeneous perturbations, deriving
the relevant cosmological perturbation equations at the
linear level.

In the case of purely algebraic couplings, we are unable
to find simple analytic conditions to determine the stability
of our static solutions. The reason for this is the compli-
cated structure of the matrix whose eigenvalues determine
the stability properties of the perturbed solutions. We were
thus forced to consider individual models and numerically
explore the regions of stability. We have analysed three
particular models. The first of these, assuming a nonlinear
exponential coupling, was shown to be generically unsta-
ble, to both homogeneous and inhomogeneous perturba-
tions. However when a simple linear coupling is
considered, namely ρint ∝ ϕρ, it is found that there is a
small region of parameter space where the Einstein static
universe is stable to both homogeneous and inhomo-
geneous perturbations, while there is a large region in
parameter space where it is stable only against inhomo-
geneous perturbations. This last situation is exactly the one
required by the emergent universe paradigm, implying that
such model can be applied to early universe phenomenol-
ogy as an alternative inflationary scenario. Similar results
can be found with the third scalar-fluid coupling, which
reproduces the well-known chameleon mechanism. This
incidentally suggests possible applications of screening
models to the emergent universe scenario which could be
taken into account for future analyses.
On the other hand, when considering an arbitrary

coupling between the fluid’s four velocity and the deriva-
tive of the scalar field, we are able to make some generic
statements applicable to all models of this type. It is found
that homogeneous perturbations are always unstable, while
the stability of inhomogeneous perturbations is determined
by simple inequalities [see Eqs. (89) and (91)] depending
on the scalar field potential and the specific form of the
scalar-fluid derivative coupling. Particular models of this
kind, the ones admitting stable inhomogeneous perturba-
tions, are thus suitable for applications within the context of
the emergent universe scenario.
In general thus the results obtained in this work show

that scalar-fluid theories might well constitute new inter-
esting inflationary paradigms. Their broad applications to
early universe phenomenology, also as possible mecha-
nisms of reheating, deserves to be studied in future works.
It thus appears that these theories offer the possibility of
studying early time and late time phenomenology using a
single model based on a well-defined Lagrangian approach.
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