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Abstract 44 

Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) 45 

is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-46 

19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. 47 

Viral sequencing data provides additional information regarding potential transmission clusters, 48 

but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic 49 

methods difficult. 50 

 51 

Methods: We developed a novel statistical method and sequence reporting tool (SRT) that 52 

combines epidemiological and sequence data in order to provide a rapid assessment of the 53 

probability of HCAI among HOCI cases (defined as first positive test >48 hours following 54 

admission) and to identify infections that could plausibly constitute outbreak events. The method 55 

is designed for prospective use, but was validated using retrospective datasets from hospitals in 56 

Glasgow and Sheffield collected February-May 2020. 57 

 58 

Results: We analysed data from 326 HOCIs. Among HOCIs with time-from-admission ≥8 days 59 

the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) 60 

and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, 61 

resulting in high estimated probabilities of within-ward and within-hospital transmission. For 62 

HOCIs with time-from-admission 3-7 days, the SRT probability of healthcare acquisition was 63 

>0.5 in 33/82 (40.2%). 64 

 65 

Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be 66 

useful for infection prevention and control teams, and warrants further prospective evaluation. 67 

The integration of epidemiological and sequence data is important given the low mutation rate of 68 

SARS-CoV-2 and its variable incubation period. 69 

 70 
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Introduction 81 

Nosocomial transmission of SARS-CoV-2 presents a significant health risk to both vulnerable 82 

patients and to healthcare workers (HCWs)[1-5]. There is a variable incubation period, extending 83 

up to day 14 from exposure to the virus in symptomatic cases[6]. It is also known that transmission 84 

is possible from asymptomatic or presymptomatic carriers[7-10], complicating identification of 85 

hospital-acquisition among hospital onset COVID-19 infections (HOCIs) and tracing of likely 86 

sources of infection.  87 

  88 

There is now substantial evidence from retrospective studies that genome sequencing of 89 

epidemic viruses, together with standard infection prevention and control (IPC) practice, better 90 

excludes nosocomial transmissions and better identifies routes of transmission than IPC 91 

investigation alone[11-13]. The development of rapid sequencing methods capable of  generating 92 

pathogen genomes within 24-48 hours has recently created the potential for clinical IPC decisions 93 

to be informed by genetic data in near-real-time[14]. Although SARS-CoV-2 has a low mutation 94 

rate[15], sufficient viral diversity exists for viral sequences to provide information regarding potential 95 

transmission clusters[16]. However, phylogenetic methods alone cannot reliably identify linked 96 

infections, and the need for clinical teams to gather additional patient data presents challenges to 97 

the timely interpretation of SARS-CoV-2 sequence data. 98 

 99 

To overcome these barriers, we have developed a sequence reporting tool (SRT) that integrates 100 

genomic and epidemiological data from HOCIs to rapidly identify closely matched sequences 101 

within the hospital and assign a probability estimate for nosocomial infection. The output report is 102 

designed for prospective use to reduce the delay from sequencing to impact on IPC practice. The 103 

work was conducted as part of the COVID-19 Genomics (COG) UK initiative, which sequences 104 

large numbers of SARS-CoV-2 viruses from hospitals and the community across the UK[17]. Here 105 

we describe the performance of the SRT using COG-UK sequence data for HOCI cases collected 106 

from Glasgow and Sheffield between February and May 2020 and explore how it may have 107 

provided additional useful information for IPC investigations. 108 

  109 
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Methods 110 

The SRT methodology is applied to HOCI cases, defined here as inpatients with first positive 111 

SARS-CoV-2 test or symptom onset >48 hours after admission, without suspicion of COVID-19 112 

at admission. The SRT algorithm returns an estimate of the probability that each HOCI acquired 113 

their infection post-admission within the hospital, with information provided on closely matching 114 

viral sequences from the ward location at sampling and wider hospital. Results for individual 115 

HOCIs are evaluated in relation to the IPC classification system recommended by Public Health 116 

England (PHE), based on interval from admission to positive test: 3-7 days post admission = 117 

indeterminate healthcare-associated infection (HCAI); 8-14 days post admission = probable 118 

HCAI; >14 days post admission = definite HCAI[18]. We also applied the PHE definition of 119 

healthcare-associated COVID-19 outbreaks[18] (i.e. ≥2 cases associated with specific ward, with 120 

at least one being a probable or definite HCAI) to ward-level data, and for each outbreak 121 

evaluated whether there was one or more distinct genetic cluster. This was determined by 122 

consecutive linkage of each HOCI into clusters using a 2 SNP threshold (with HOCIs assigned 123 

to a genetic cluster if a sequence match to any member). Sequences with <90% genomic 124 

coverage were excluded from all analyses. 125 

 126 

Research Ethics 127 

Research Ethics for COG-UK Consortium and research undertaken under its auspices was 128 
granted by the PHE Research Ethics and Governance group as part of the emergency response 129 
to COVID-19 (24 April 2020, REF: R&D NR0195) and by the relevant Scottish biorepository 130 
authorities (16/WS/0207NHS and 10/S1402/33). This was a retrospective analysis on fully 131 
anonymized data, the collection of which did not involve any active research intervention. 132 
Consent therefore was neither required nor requested from individual patients. 133 
 134 

 135 

Data collection and processing 136 

 137 

Glasgow 138 

During the first wave of SARS-CoV-2, the MRC-University of Glasgow Centre for Virus 139 

Research collected residual clinical samples from SARS-CoV-2 infected individuals following 140 

diagnosis at the West of Scotland Specialist Virology Centre. Samples were triaged for rapid 141 

sequencing using Oxford Nanopore Technologies (ONT) for suspected healthcare related 142 

infections or Illumina sequencing in all other cases (details in Appendix). 143 

 144 

Sheffield 145 

Residual clinical samples from SARS-CoV-2 positive cases diagnosed at Sheffield Teaching 146 

Hospitals NHS Foundation Trust were sequenced at the University of Sheffield using ARTIC 147 

network protocol[19] and ONT. Throughout the epidemic, members of the IPC team were notified 148 

by the laboratory and by clinical teams of positive results and reviewed relevant areas to ensure 149 

optimisation of practice and appropriate management of patients. Electronic reports were 150 

created contemporaneously, including an assessment as to whether suspected linked cases 151 

were present based on ward level epidemiology. As part of SRT validation, these reports were 152 

accessed retrospectively by a study team member blind to the sequencing data and each 153 
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included HOCI case was defined as being thought unlinked to other cases, a presumed index 154 

case in an outbreak or a presumed secondary case. 155 

 156 

 157 

HOCI classification algorithm 158 

The sequence matching and probability score algorithm is run separately for each ‘focus 159 

sequence’ corresponding to a HOCI. We use associated metadata to assign other previously 160 

collected sequences to categories representing where the individual may be part of a SARS-161 

COV-2 transmission network: 162 

● Unit reference set: individual could be involved with transmission on same unit 163 

(ward/ICU etc) as focus sequence (look-back interval: 3 weeks) 164 

● Institution reference set: individual could be involved with transmission in same 165 

institution/hospital as focus sequence (look-back interval: 3 weeks) 166 

● Community reference set: individual could be involved with transmission outside of focus 167 

sequence institution (look-back interval: 6 weeks). 168 

It is possible for samples to be members of multiple reference sets. For example an outpatient 169 

may be involved in SARS-CoV-2 transmission at the institution they attended and/or in 170 

community transmission.  171 

 172 

For each run of the algorithm, pairwise comparisons are conducted between the focus 173 

sequence and each sequence within the unit reference set, institution reference set and 174 

community reference set. A reference set sequence is considered a close match to the focus 175 

sequence if there is a maximum of two SNP differences between them. This choice was based 176 

on reported healthcare-associated outbreak events[14, 20] and the overall mutation rate of SARS-177 

CoV-2 (details in Appendix). 178 

 179 

Probability calculations 180 

We use an expression of Bayes theorem to estimate probabilities for post-admission infection of 181 

each focus case divided by exposure on the unit, within the rest of the institution and from 182 

visitors (if allowed). An estimate of the prior probability (Pprior) of post-admission infection for 183 

each focus case is modified to a posterior probability according to information provided by the 184 

sequence data. The algorithm is based on sound statistical principles, but involves heuristic 185 

approximations. 186 

 187 

In symptomatic focus cases we base Pprior on the time interval (t) from admission to date of 188 

symptom onset or first positive test (if date of symptom onset not recorded). We calculate Pprior= 189 

F(t), where F() is the cumulative distribution function of incubation times[6] (derivation in 190 

Appendix). 191 

 192 

In theory, it would be optimal to use all of the information in the exact sequences observed. 193 

However, with the goal of constructing a computationally simple algorithm, we base our 194 

calculations on the probability of observing a similar sequence (within 2 SNPs) to that actually 195 

observed for each focus case conditional on each potential infection source/location: infection in 196 

the community, current unit/ward or elsewhere in the hospital/institution, or from a visitor. For 197 
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the unit and hospital, we estimate this probability using the observed sequence match 198 

proportion (on pairwise comparison to the focus sequence) in the unit reference set and 199 

institution reference set, respectively. For community- or visitor-acquired infection we use a 200 

weighted proportion of matching sequences in the community reference set, with weightings 201 

determined by a calibration model that describes geographic clustering of similar sequences 202 

among community-acquired infections (described in Appendix). The geographic weighting 203 

model was fitted separately for each study site using sequences strongly thought to represent 204 

community-acquired infection: all community-sampled sequences and patients presenting to the 205 

Emergency Department with COVID-19, excluding those recorded as being healthcare workers. 206 

 207 

Software 208 

The analysis was conducted in R (v. 4.0.2, R Foundation, Vienna), using sequence processing 209 

and comparison functions from ape (v5.4) and geospatial functions in the PostcodesioR (v0.1.1) 210 

and gmt packages (v2,0). R code to run the algorithm is available[21], and it has also been 211 

implemented as a standalone SRT for prospective use[22] within COV-GLUE[23]. 212 

 213 

 214 

  215 
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Results 216 

Study populations 217 

 218 

Glasgow 219 

The Glasgow dataset included 1199 viral sequences (available as of 23rd June 2020): 426 were 220 

derived from community sampling sites, 351 from patients presenting to Emergency Department 221 

or acute medical units, 398 from hospital inpatients and 24 from outpatients. Limited data were 222 

available regarding the total number of HCWs testing positive and their identification among 223 

community samples, but 15 sequences were recorded as being from HCWs. First positive test 224 

dates ranged from 3rd March to 27th May 2020. All consensus sequences had genomic 225 

coverage >90%. 226 

 227 

We applied the SRT algorithm to data from three hospitals with required metadata available, for 228 

which 128/246 inpatient cases with sequences were HOCIs. Two of these patients had been 229 

transferred from another hospital within 14 days prior to their positive test and were not 230 

processed as focus sequences. One inpatient without recorded sampling location was excluded, 231 

leaving 125 HOCIs for analysis. Population sequencing coverage was 536/1578 (34.0%) overall 232 

for patients at the three hospitals and 128/328 (39.0%) for HOCIs specifically (Appendix-figure 233 

1). 234 

 235 

 236 

Sheffield 237 

The Sheffield dataset included 1630 viral sequences with accompanying metadata (available as 238 

of 10th October 2020): 714 were from inpatients, 117 were from outpatients and 799 were from 239 

HCWs. For this retrospective evaluation, 447/714 inpatient samples taken on date of admission 240 

were assumed to represent community-onset cases and used to calibrate the model. First 241 

positive test dates ranged from 23rd February to 30th May 2020. One sequence with genome 242 

coverage <90% was dropped from further analysis (an inpatient on date of admission). 201 of 243 

the inpatients were HOCIs. Population sequencing coverage was 714/977 (73.1%) overall for 244 

inpatients, 201/261 (77.0%) for HOCIs specifically and 799/962 (83.1%) for HCWs. 245 

 246 

Comparison to standard PHE classification 247 

SRT algorithm results in comparison to standard PHE classifications are summarised in Figure 248 

1 and Table 1. The majority of HOCI cases in Glasgow (78/125, 62.4%) and over a third in 249 

Sheffield (71/201, 35.3%) met the definition of a definite HCAI and so are known to have 250 

acquired the virus post-admission irrespective of sequencing results. The probable HCAI cases 251 

formed the next largest group at each site. Overall, the SRT algorithm identified close sequence 252 

matches from the same ward for 66.4% of definite and 64.2% of probable HCAIs, indicating 253 

likely within-ward transmission (examples in Case Studies). When one or more close sequence 254 

match was identified on the focus sequence’s ward, the SRT probability of infection on the ward 255 

was >0.5 in 185/189 cases (Figure 2). For indeterminate HCAIs the SRT probability of HCAI 256 

was >0.5 in 33/82 (40.2%), and in 27/33 (81.8%) a close sequence match on the ward was 257 

present. Overall, 14/125 (11.2%) HOCIs in Glasgow and 175/201 (87.1%) in Sheffield had at 258 
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least one close sequence match to a HCW sample, reflecting the much greater availability of 259 

sequences from HCWs in the Sheffield dataset. 260 

 261 

In 16/244 (6.6%) cases that met the probable or definite HCAI definitions, there was no 262 

sequence match within the hospital; this is likely due to incomplete sequence data from SARS-263 

CoV-2 hospitalised cases and staff (with population sequencing coverage <40% patients and 264 

very limited for staff from Glasgow and ≈75% of patients and staff in Sheffield) and the presence 265 

of asymptomatic and/or undiagnosed carriers. To reflect this the SRT will report “This is a 266 

probable/definite HCAI based on admission date, but we have not found genetic evidence of 267 

transmission within the hospital” in such situations. There were 26 HOCIs in the Sheffield 268 

dataset for whom it was recorded that visitors were allowed on the ward at time of sampling. In 269 

three of these the estimated probability of infection from a visitor was between 0.4 and 0.5 (all 270 

had ≥18 days from admission and no ward close sequence matches).  271 

 272 

Within the Sheffield dataset we identified six wards with two genetically distinct outbreak 273 

clusters (of two or more patients) and three wards with three distinct outbreaks (see Case Study 274 

2). Standard IPC assessment had classified each as a single outbreak. We also identified 10 275 

and 44 HOCIs in the Glasgow and Sheffield datasets, respectively, with no apparent genetic 276 

linkage to other HOCI cases on the ward but who met the PHE definition of inclusion within an 277 

outbreak event (Table 2). 278 
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 279 

Comparison to local IPC conclusions in Sheffield 280 

Contemporaneous notes by IPC teams in Sheffield classified 18/201 HOCIs as the index case 281 

in outbreaks. IPC staff defined an index case as the first detected in an environment regardless 282 

of prior inpatient stay and, correspondingly, of these 14/18 were the first sequence on their ward 283 

and one was the second (the first 1 day earlier from a different bay on the ward was also 284 

recorded as an index case, and IPC staff deemed a ward outbreak with unclear index or 285 

possibly 2 index cases). Of the 18 index cases 11 showed at least one subsequent close 286 

sequence match on the same ward (the 2 index cases on a single ward were not genetically 287 

similar, and for 1/18 there were no subsequent sequences from the ward). The median SRT 288 

probability of HCAI was 0.70 (IQR 0.22-1.00, range 0.04-1, >0.5 in 12/18).  289 

 290 

A further 144/201 HOCIs were classified as being part of local outbreaks, and among these the 291 

median SRT probability of HCAI was 0.98 (IQR 0.89-1.00; range 0.02-1.00; >0.5 in 129/144) 292 

with one or more close sequence match on the same ward in 104/144. The remaining 39/201 293 

HOCIs, including 10 that were not recorded as HOCIs at the time, were classified by the IPC 294 

teams as not being part of local outbreaks. Among these the median SRT probability of HCAI 295 

was 0.74 (IQR 0.23-0.99, range 0.02-1.00; >0.5 in 23/39), with one or more close sequence 296 

matches on the same ward in 7/39. 297 

 298 

Case Study 1 299 

Figure 3 shows a phylogenetic tree of eight HOCIs within a single ward at a Glasgow hospital 300 

(Hospital 5, Unit 93), alongside associated meta-data and SRT probability outputs. The first 301 

HOCI detected (UID0032) was transferred from another hospital within the previous 2 weeks 302 

and so SRT output was not generated. All subsequent HOCIs return close sequence matches to 303 

at least one prior case on the ward, leading to SRT probability estimates of ward-acquired 304 

infection >0.9, even for UID0017 (an indeterminate HCAI). The phylogenetic tree indicates 305 

UID0032 has a SNP lacked by most of the cases identified on the ward, and therefore did not 306 

seed all of the cases in the outbreak cluster. Also shown is a single HOCI from a different ward 307 

in the same hospital (UID0025); this individual was an indeterminate HCAI, but a higher 308 

proportion of similar viral sequences within the hospital in comparison to their local community 309 

led to a SRT result of probable hospital-acquired infection. 310 

 311 

Case Study 2 312 

Figure 4 shows phylogenetic trees relating to three distinct viral lineages identified on a single 313 

ward in the Sheffield dataset (classified by contemporaneous IPC investigation as a single 314 

outbreak). Two of these lineages also include sequences from inpatients sampled from other 315 

wards within the same hospital. Detailed ward movement data highlighted additional possible 316 

links between patients in the B.2.1 cluster. Both UID0149 and UID0157 were present at 317 

LOC0111 prior to their sample dates.  318 
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Discussion 319 

We have developed a novel approach for identification and investigation of hospital-acquired 320 

SARS-CoV-2 infections combining epidemiological and sequencing data, designed to provide 321 

rapid and concise feedback to IPC teams working to prevent nosocomial transmission. Through 322 

retrospective application to clinical datasets, we have demonstrated that the methodology is 323 

able to provide confirmatory evidence for most PHE-defined definite and probable HCAIs and 324 

provide further information regarding indeterminate HCAIs. Thus the SRT may allow IPC teams 325 

to optimise their use of resources on areas with likely nosocomial acquisition events.  326 

 327 

While the SRT is not likely to change IPC conclusions in cases meeting the definition of ‘definite’ 328 

or ‘probable’ HCAI based on interval from admission to symptom onset, in 91% of cases it did 329 

identify patients in the same ward or elsewhere in the hospital who could plausibly be linked to 330 

the HOCI within a single outbreak event. Those definite and probable HOCIs without close 331 

sequence matches are likely to reflect transmission from sources within the hospital that have 332 

either not been diagnosed or who were diagnosed without viral sequencing. In such cases it is 333 

impossible to calculate a probability of transmission and the SRT will simply state that no 334 

sequence matches were found within the hospital. 335 

 336 

For cases meeting the definition of ‘indeterminate healthcare associated’, the probability scores 337 

returned would be useful for IPC teams. These probabilities are dependent on comparison to 338 

sequences from cases of community-acquired infection obtained either from direct community 339 

sampling or from patients sampled at admission. The Sheffield dataset was lacking the former 340 

data source, but the SRT nonetheless classified a similar proportion of ‘indeterminate 341 

healthcare associated’ HOCIs as community-acquired infections to that found in the Glasgow 342 

dataset (approximately 60%). 343 

 344 

Current PHE guidelines define healthcare-associated COVID-19 outbreaks as two or more 345 

cases associated with a specific setting (e.g. ward), with at least one case having illness onset 346 

after 8 days of admission[18]. However, the guidelines note that “investigations of healthcare 347 

associated SARS-CoV-2 infection should also take into account COVID-19 cases categorised 348 

as ‘indeterminate healthcare associated’” (i.e. onset 3-7 days after admission), for which our 349 

SRT output would be useful. In most HOCIs meeting this definition of inclusion within an 350 

outbreak event, we found evidence of clusters of similar viral sequences located on the ward 351 

concerned, and the SRT results were in line with available local IPC classifications in the 352 

majority of cases. However, a substantial minority (54/279) of HOCIs although assumed to be 353 

part of a ward outbreak, were, in fact, isolated cases for which the sequencing data refuted 354 

genetic linkage to other sequences from the ward. The SRT also provided evidence of wards 355 

where IPC-defined outbreak events comprised two or three clearly distinct viral lineages. 356 

 357 

The retrospective datasets analysed in this study represent the first few months of the COVID-358 

19 epidemic in the UK, and nosocomial transmission of the virus in the UK during this period 359 

has previously been reported at multiple sites[14, 24, 25]. HCWs were at increased risk of infection 360 

and adverse health outcomes[1, 2, 4, 5, 26] and could have been important drivers of nosocomial 361 

transmission[8]. Data were limited for Glasgow but the Sheffield dataset contained a large 362 
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number of sequences obtained from HCWs, with population sequencing coverage for this group 363 

>80%, and there was a close sequence match to at least one HCW observed for 87% of HOCIs. 364 

Our analysis has not evaluated direction of transmission to or from HCWs, but they were clearly 365 

linked into transmission networks within the hospital. A limitation of the current SRT approach 366 

and of the retrospective data available is that they do not include detailed information regarding 367 

work locations for HCWs. However, prospective use of the SRT would allow IPC teams to 368 

investigate linkage from a HOCI to any HCWs flagged as having a close sequence match. 369 

 370 

While a phylogenetic approach is useful in excluding direct transmission between cases, it can 371 

be more problematic to confirm transmission source[27]. Phylogenetic models can evaluate the 372 

full genetic information provided by viral sequence data, but there are challenges in 373 

incorporating and summarising associated patient meta-data in a timely fashion[28]. The 374 

challenge of timely collection and standardisation of patient meta-data is also relevant for use of 375 

the SRT that we have developed, but it is possible to automate such processes through 376 

electronic patient record systems. There have been advances in recent years in the 377 

computational efficiency and workflow standardisation possible for phylogenetic analyses that 378 

have made it easier to use these methods for real-time investigation of outbreaks, for example 379 

through the development of the Nextstrain project[29, 30]. However, there does not currently exist 380 

phylogenetic software for SARS-CoV-2 that produces reports or other outputs designed for 381 

direct and immediate use by IPC professionals. There will be cases in which phylogenetic 382 

analysis would provide information beyond that returned by the SRT, and the two approaches 383 

may be complementary to one another for outbreak investigation. 384 

 385 

Comparison of SRT output to phylogenetic trees in a number of test cases suggested that some 386 

clusters of genetically similar cases identified within a specific ward likely represented more than 387 

one transmission event onto the ward from similar viral lineages circulating within the healthcare 388 

system. Whilst monophyletic clusters associated with a single location are easier to interpret, we 389 

consider the presence of viruses within a ward or hospital that are genetically similar to a HOCI 390 

as evidence for nosocomial infection even when they are not plausible transmission sources 391 

themselves, given the potential for asymptomatic transmission[7-10] and complex transmission 392 

networks[14]. 393 

 394 

The SRT uses a number of heuristic approximations in order to provide an integrated summary 395 

of epidemiological and sequence data. However, this choice is associated with the limitation that 396 

it does not provide a full probabilistic model of potential transmission networks. Further 397 

development of the SRT would also aim to more fully incorporate patient movement data and 398 

shift locations for HCWs. 399 

 400 

We believe that collaboration between methodologists, virologists, IPC clinicians and software 401 

engineers is essential in order to create workflows and reporting systems that will enable the 402 

routine use of pathogen sequence data for IPC. The SRT represents such a collaboration, and it 403 

has been designed to enable automation of the linkage and processing of viral sequence and 404 

patient meta-data and subsequent feedback of relevant information to IPC staff. The automated 405 

feedback provided by the SRT is nonetheless dependent on timely sequencing of a high 406 
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proportion of viral samples from cases within the hospital concerned, ideally in combination with 407 

sequences also available from community-sampled cases. In the UK this has been possible 408 

through the national COG-UK project[17]. Denmark has also implemented high population-409 

coverage sequencing of SARS-CoV-2[31], but this is not the case for most countries. The 410 

emergence and rapid dominance of lineage B.1.1.7 in the UK[32] has provided a case study for 411 

the impact of national-level genomic surveillance, but further evidence is required to determine 412 

whether rapid sequencing is worth the necessary investment for routine use within IPC practice. 413 

This judgement would also be dependent on the available health infrastructure and resources at 414 

both the local and national levels. 415 

 416 

Prospective evaluation of the SRT is currently underway within a multicentre study in the UK[33]. 417 

This study and its accompanying research program will evaluate the impact of routine viral 418 

sequencing and use of the SRT on IPC knowledge, actions and outcomes, and will include 419 

quantitative, qualitative[34] and health economic analyses to help guide the future development 420 

of pathogen genomics for IPC. 421 

 422 

Our novel approach to the investigation of HOCIs has shown promising characteristics on 423 

retrospective application to two clinical datasets. The SRT described allows rapid feedback on 424 

HOCIs that integrates epidemiological and sequencing data to generate a simplified report at 425 

the time that sequence data become available. Prospective evaluation is required in order to 426 

recommend use of the SRT in clinical practice, and this work is ongoing. The methodology has 427 

been developed for hospital inpatients, but the principles may also be applicable to other 428 

settings. 429 

 430 
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data. Requests for access to the data can be made by submission of a research proposal to the 453 

COG-UK Steering Committee (contact@cogconsortium.uk). 454 

 455 

  456 

mailto:contact@cogconsortium.uk
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.cogconsortium.uk%2Fdata%2F&data=04%7C01%7C%7Cb04893028a3f4b53499508d910b7af8a%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C637559203368181887%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=SZSGcfkLh1YYwe5z6Wf2NwLkLLXJMdmUa10zDr59z48%3D&reserved=0
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Tables 552 

Table 1 Summary of sequence reporting tool outputs for the Glasgow and Sheffield datasets, 553 

according to standard infection prevention and control (IPC) definitions recommended by Public 554 

Health England regarding likelihood of healthcare-associated infection (HCAI) 555 

 Glasgow data Sheffield data 

  IPC classification IPC classification 

  Indeterminate 

HCAI 

Probable 

HCAI 

Definite 

HCAI 

Indeterminate 

HCAI 

Probable 

HCAI 

Definite 

HCAI 

n HOCI cases  20  27  78 62 68 71 

Time from admission to 

sample*, days 

 4.5 (3-6)  11 (9-13)  48 (26-83) 5 (4-6) 9 (8-13) 22 (17-31) 

Summary of sequence matches returned for each HOCI case 

Close sequence match on 

ward 

 5 (25.0)  15 (55.6)  53 (68.0) 24 (38.7) 46 (67.6) 46 (64.8) 

No close sequence match 

on ward, but match within 

hospital 

 8 (40.0)  7 (25.9)  19 (24.4) 34 (54.8) 21 (30.9) 21 (29.6) 

No close sequence match 

anywhere within hospital 

 7 (35.0)  5 (18.5)  6 (7.7) 4 (6.5) 1 (1.5) 4 (5.6) 

Close sequence match to 

one or more HCW 

 1 (5.0)  0 (0)  13 (16.7) 55 (88.7) 61 (89.7) 59 (83.1) 

No close sequence match 

anywhere within dataset 

 2 (10.0)  1 (3.7)  4 (5.1) 4 (6.5) 1 (1.5) 4 (5.6) 

Probability calculations 

Prior probability of HCAI†   0.39 (0.11-

0.66) 

 0.97 (0.92-

0.99) 

 1.00 

(1.00-1.00) 

0.49 (0.29-

0.66) 

0.92 (0.86-

0.99) 

 1.00 (1.00-

1.00) 

Posterior probability of 

HCAI‡ 

 0.33 (0.02-

0.67) 

 0.98 (0.96-

1.00) 

 1.00 

(1.00-1.00)  

0.40 (0.11-

0.80) 

0.98 (0.93-

1.00) 

1.00 (0.99-

1.00) 

Posterior probability of 

HCAI* category 

      

    Low (<30%) 10 (50.0) 4 (14.8) 2 (2.6) 25 (40.3) 0 (0) 0 (0) 

    Moderately low (≥30% 

& <50%) 

2 (10.0) 0 (0) 0 (0) 12 (19.4) 0 (0) 0 (0) 

    Medium (≥50% & 

<70%) 

4 (20.0) 0 (0) 0 (0) 4 (6.5) 5 (7.4) 3 (4.2) 

    High (≥70% & <85%) 3 (15.0) 0 (0) 0 (0) 8 (12.9) 7 (10.3) 2 (2.8) 

    Very high (≥85%) 1 (5.0) 23 (85.2) 76 (97.4) 13 (21.0) 56 (82.4) 66 (93.0) 

Data shown as median (interquartile range) or n (%). *or first +ve test where known. †Based on 556 

time from admission. ‡From source on ward or within hospital. HOCI, hospital onset COVID-19 557 

infection; HCW, healthcare worker.  558 
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Table 2 Summary of distinct outbreak events for the Glasgow and Sheffield datasets, according 559 

to standard Public Health England (PHE) definition and with the addition of sequence data 560 

 Glasgow data Sheffield data 

n HOCI cases 125 201 

n ward locations 44 38 

   

Sequence matches per HOCI case   

n sequence matches from same ward, 

median (IQR, range) 

1 (0-5, 0-12) 1 (0-4, 0-18) 

n sequence matches from rest of hospital, 

median (IQR, range) 

3 (1-8, 0-52) 27 (5-52, 0-150) 

   

Standard PHE definition of outbreak event    

HOCI cases part of ward outbreak event, n 

(%) 

95 (76.0) 184 (91.5) 

n ward outbreak events 17 24 

n HOCI cases per ward outbreak event, 

median (IQR, range) 

4 (2-8, 2-17) 5 (3.5-10.5, 2-28) 

Days from first to last case in outbreak, 

median (IQR, range) 

8 (6-15, 0-31) 18 (13-34, 3-68) 

n wards with more than one distinct outbreak 

event 

0 0 

   

Outbreak events with sequence linkage    

HOCI cases part of ward outbreak event, n 

(%) 

85 (68.0) 140* (69.7) 

n ward outbreak events 16 33 

n HOCI cases per ward outbreak event, 

median (IQR, range) 

3.5 (2-8, 2-16) 3 (2-4, 1-19) 

Days from first to last case in outbreak, 

median (IQR, range) 

6 (4-9, 0-15) 4 (2-8, 0-17) 

n wards with more than one distinct outbreak 

event 

0 9† 

*Includes two HOCIs which each showed a close sequence match to another case on the same 561 

ward with interval from admission to sample date ≤2 days. †In three wards there were three 562 

genetically distinct outbreak events. HOCI, hospital onset COVID-19 infection; IQR, interquartile 563 

range.  564 
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Figures 565 

Figure 1 Plot of the posterior probability of healthcare-associated infection (HCAI) for (a) 566 

Glasgow and (b) Sheffield hospital onset COVID-19 infection cases from the sequence reporting 567 

tool algorithm against the prior probability of HCAI based only on time from admission to 568 

diagnosis, grouped by standard infection prevention and control classification recommended by  569 

Public Health England. Marginal histograms are displayed with bin-widths of 0.05. 570 

 571 

 572 

Figure 2 Plot of the posterior probabilities of healthcare-associated infection (HCAI) estimated 573 

using the sequence reporting tool algorithm from a source on the current ward versus a source 574 

elsewhere in the hospital for (a) Glasgow and (b) Sheffield hospital onset COVID-19 infection 575 

cases grouped by standard Public Health England classification. In cases where there are no 576 

close sequence matches in the dataset (including among community cases), the results 577 

returned are based solely on the priors and the metadata; this explains the fact that there are 578 

some cases with estimated posterior probability of infection on the ward greater than 0.5 for 579 

whom there were no sequence matches on the ward. 580 

 581 

 582 

Figure 3. Maximum-likelihood phylogeny of the sequences found in Hospital 5 Unit 93 and Unit 583 

92 up until the 16th of May of the Glasgow dataset. The black lines represent the time from 584 

admission to sampling. The values below the line are the posterior probability for unit infection + 585 

the posterior probability of hospital infection from the sequence reporting tool. The tip nodes are 586 

coloured according to the local authority area of the community surveillance sequences (circles) 587 

or of the patients (crosses).  588 

 589 

 590 

Figure 4. Maximum-likelihood phylogeny of the sequences found in Location ‘0111’ in the 591 

Sheffield dataset, also including patients at several other ward locations. The tree tip nodes are 592 

coloured according to ward locations. The black lines represent the time from admission to 593 

sampling. The values below the line are the posterior probability for unit infection + the posterior 594 

probability of hospital infection from the sequence reporting tool. The circle containing a number 595 

represents community sequences that are identical and at the base of this lineage (n=36).  596 

 597 
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Appendix 1 

Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and 2 

sequencing data, by Oliver T Stirrup, Joseph Hughes, Matthew Parker, David G Partridge, 3 

James G Shepherd, James Blackstone, Francesc Coll, Alexander J Keeley, Benjamin B 4 

Lindsey, Aleksandra Marek, Christine Peters, Joshua B Singer, The COVID-19 Genomics 5 

UK (COG-UK) consortium, Asif Tamuri, Thushan I de Silva, Emma C Thomson, Judith 6 

Breuer 7 

 8 

 9 

Methods 10 

 11 

Details of sequencing protocols 12 

 13 

Glasgow 14 

Sequencing with ONT followed the protocols developed by the ARTIC network (v1 and v2) 15 

https://artic.network/ncov-2019. The reads were aligned to the reference strain (MN908947) 16 

using minimap2 (https://doi.org/10.1093/bioinformatics/bty191) and denoised using nanopolish 17 

(https://www.nature.com/articles/nmeth.3444) prior to primer trimming and consensus calling 18 

with iVar  using a minimum depth of 20 reads (https://doi.org/10.1186/s13059-018-1618-7). 19 

Sequencing with Illumina also used the ARTIC network protocol for amplicon generation but 20 

was followed by a DNA KAPA library preparation kit (Roche) and indexing with NEBNext 21 

multiplex oligos (NEB) using 7 PCR cycles. Libraries were pooled and loaded on a MiSeqV2 22 

cartridge. Illumina reads were processed with the PrimalAlign pipeline 23 

(https://github.com/rjorton/PrimalAlign). Briefly, reads were trimmed using trim_galore 24 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) aligned to the reference using 25 

BWA (10.1093/bioinformatics/btp698). Then, amplicon primers were removed and the 26 

consensus called with a read depth of 10 using iVar (https://doi.org/10.1186/s13059-018-1618-27 

7). Metadata associated with each sample was collated in a redcap database  28 

(https://www.project-redcap.org/). 29 

 30 

Sheffield 31 

Sequencing with ONT followed the protocols developed by the ARTIC network (v1 and v2) 32 

https://artic.network/ncov-2019. Following base calling, data were demultiplexed using ONT 33 

Guppy using a high accuracy model. Reads were filtered based on quality and length (400 to 34 

700bp), then mapped to the Wuhan reference genome and primer sites trimmed. Reads were 35 

then downsampled to 200x coverage in each direction. Variants were called using nanopolish 36 

(https://github.com/jts/nanopolish) and used to determine changes from the reference. 37 

Consensus sequences were constructed using reference and variants called. 38 

 39 

 40 

https://www.project-redcap.org/about/
https://artic.network/ncov-2019
https://github.com/rjorton/PrimalAlign
https://doi.org/10.1186/s13059-018-1618-7
https://github.com/jts/nanopolish
https://artic.network/ncov-2019
https://doi.org/10.1186/s13059-018-1618-7
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Further details of reference set definitions 41 

 42 

Data sources for algorithm 43 

There are two potential sources of data for the HOCI classification algorithm. Firstly, there are 44 

institution-sampled sequences: these include all viral sequences from samples obtained within 45 

the institution/hospital. These sequences are linked to meta-data providing basic information 46 

regarding the patient concerned and details of the sample from which the sequence was 47 

obtained. Secondly, there are community-sampled sequences: these include all relevant 48 

sequences obtained from samples from testing within the local community. These sequences 49 

are associated with a more limited set of linked meta-data describing date of sample, residential 50 

outer postcode of subject and place of work if they are recorded as being a HCW. 51 

Unit reference set 52 

This data set comprises all institution sequences sampled on or ≤3 weeks prior to (or ≤2 days 53 

after for the prospective version of the SRT) the sample date of the focus sequence and for 54 

which both the institution and the unit is the same as that for the focus sequence. 55 

 56 

Institution reference set 57 

This data set comprises firstly all institution-sampled sequences from HCWs, outpatients and 58 

inpatients diagnosed >48 h after admission for which the institution matches that of the focus 59 

sequence sampled on or ≤3 weeks prior to (or ≤2 days after for the prospective version of the 60 

SRT) the sample date of the focus sequence and for which the unit is either not the same as 61 

that for the focus sequence or is missing. Secondly, the data set includes all institution-sampled 62 

sequences from A&E patients or inpatients diagnosed ≤2 days after admission for which the 63 

institutionID matches that of the focus sequence sampled between (inclusively) 3 weeks and 3 64 

days prior to the sample date of the focus sequence and for which the unit is either not the 65 

same as that for the focus sequence or is missing. Thirdly, this data set also includes the subset 66 

of community-sampled sequences of healthcare workers at the same institution as the focus 67 

sequence. 68 

 69 

Community reference set 70 

This data set comprises firstly all community-sampled sequences sampled on or ≤6 weeks prior 71 

to (or ≤2 days after for the prospective version of the SRT) the sample date of the focus 72 

sequence. This data set also includes institution-sampled sequences sampled on or ≤6 weeks 73 

prior to (or ≤2 days after for the prospective version of the SRT) the sample date of the focus 74 

sequence from all non-inpatient samples, and those inpatients for whom sample date and 75 

symptom onset date (if recorded) are both ≤2 days after the admission date. 76 

 77 

 78 

Note that some institution-sampled sequences will contribute to both the community reference 79 

set and either the unit reference set or the institution reference set (e.g. outpatients sampled 80 

within 3 weeks prior to the focus sequence would be included in both the community reference 81 

set and the institution reference set). HCWs recorded among the community-sampled 82 

sequences within ≤3 weeks prior to the sample date of the focus sequence will also be included 83 
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in both the community reference set and the institution reference set if their workplace matches 84 

the institution of the focus sequence. 85 

 86 

Formulae for probability calculations 87 

Posterior of unit-acquired infection (UI) = 88 
𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑢 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑈𝐼)

𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑢 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑈𝐼)  +  𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑣 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑉𝐼) + 𝑃𝑝𝑟𝑖𝑜𝑟 ∗ (1 − 𝑃𝑢 − 𝑃𝑣) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐼𝐼) + (1 − 𝑃𝑝𝑟𝑖𝑜𝑟) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐶𝐼)
 

 89 
Posterior of institution-acquired infection (II) =   90 

𝑃𝑝𝑟𝑖𝑜𝑟 ∗ (1 − 𝑃𝑢 − 𝑃𝑣) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐼𝐼)

𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑢 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑈𝐼)  +  𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑣 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑉𝐼) + 𝑃𝑝𝑟𝑖𝑜𝑟 ∗ (1 − 𝑃𝑢 − 𝑃𝑣) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐼𝐼) + (1 − 𝑃𝑝𝑟𝑖𝑜𝑟) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐶𝐼)
 

 91 

Posterior of visitor-acquired infection (VI) =  92 
𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑣 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑉𝐼)

𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑢 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑈𝐼)  +  𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑣 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑉𝐼) + 𝑃𝑝𝑟𝑖𝑜𝑟 ∗ (1 − 𝑃𝑢 − 𝑃𝑣) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐼𝐼) + (1 − 𝑃𝑝𝑟𝑖𝑜𝑟) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐶𝐼)
 

 93 

Posterior of community-acquired infection (CI) =  94 
(1 − 𝑃𝑝𝑟𝑖𝑜𝑟) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐶𝐼)

𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑢 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑈𝐼)  +  𝑃𝑝𝑟𝑖𝑜𝑟 ∗ 𝑃𝑣 ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑉𝐼) + 𝑃𝑝𝑟𝑖𝑜𝑟 ∗ (1 − 𝑃𝑢 − 𝑃𝑣) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐼𝐼) + (1 − 𝑃𝑝𝑟𝑖𝑜𝑟) ∗ 𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝐶𝐼)
 

 95 

 96 

With terms defined as follows, 97 

𝑃𝑝𝑟𝑖𝑜𝑟 : prior probability of post-admission infection for each focus case, based on time interval 98 

from admission to date of symptom onset or first positive test 99 

𝑃𝑢 : prior probability of UI given post-admission infection (set based on expert opinion) 100 

𝑃𝑣 : prior probability of VI given post-admission infection (set based on expert opinion) 101 

𝑃(𝑠𝑒𝑞 ± 2𝑆𝑁𝑃𝑠|𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑜𝑢𝑟𝑐𝑒/𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) : probability of observing a similar sequence (within 2 SNPs) to 102 

that actually observed for each focus case conditional on each potential infection 103 

source/location (estimated from sequence reference sets) 104 

 105 

When there is a close sequence match found in any of the defined reference sets, the posterior 106 

probability estimates for UI, II, VI and CI will always sum to 1. However, when there is no close 107 

sequence match in any of the reference sets the posterior probability calculations are not valid 108 

and the algorithm will return the prior probabilities for each potential source/location of infection. 109 

 110 

Further details regarding sequence matching process 111 

The ±2 SNP threshold for a close sequence match was initially based on reports of healthcare-112 

associated outbreak events for which this was the maximum pairwise difference within clusters 113 

(Meredith: DOI:10.1101/2020.05.08.20095687 & Rockett: DOI: 10.1101/2020.04.19.048751). 114 

The outbreak events described included sequences with up to around 3 weeks between first 115 

and last samples. This SNP threshold is also supported by calculations using the overall 116 

mutation rate of SARS-CoV-2. If we take the average mutation rate of the virus to be 24 117 

SNPs/year (Nextstrain value 24th June, https://nextstrain.org/ncov/global?l=clock), then 118 

assuming independent (Poisson distributed) mutation events, ignoring the chance of mutations 119 

occurring at the same position in the genome and using a fixed generation time of 5 days then 120 

there is an approximate: 121 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fnextstrain.org%2Fncov%2Fglobal%3Fl%3Dclock&data=02%7C01%7C%7Cb315eba0143e4fa659a708d8113d2114%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C637278301526139288&sdata=N8grdiSeYyMg1WR9AyTxqyliTNDNRYa%2FW1sGLh5nIlU%3D&reserved=0
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72% chance of no new SNPs per generation 122 

24% chance of 1 new SNP per generation 123 

4% chance of 2 new SNPs per generation 124 

0.4% chance of 3 new SNPs per generation 125 

 126 

A 2 SNP threshold would therefore be expected to identify close sequence matches between 127 

direct transmission pairs in a large majority of cases. Ambiguous nucleotide positions will be 128 

considered to match if there is an overlap in the possible values for the two sequences. ‘N’ 129 

values recorded in either the focus sequence or comparison sequence will be considered to be 130 

a match at that position. 131 

 132 

 133 

Further details of prior probability calculations for post-admission infection 134 

 135 

We calculate Pprior= F(t), where F() is the cumulative distribution function of a published log-136 

normal distribution for incubation times (Lauer et al: doi:10.7326/M20-0504; 137 

μ=1.621, σ=0.418). For symptomatic HOCI cases, the IPC classifications recommended by PHE 138 

translate into the following value ranges for Pprior: 139 

● indeterminate HCAI: 0.11 (onset 3 days post-admission) to 0.78 (onset 7 days 140 

post-admission) 141 

● probable HCAI: 0.86 (onset 8 days post-admission) to 0.99 (onset 14 days post-142 

admission) 143 

● definite HCAI: Pprior≥0.995 144 

 145 

For asymptomatic focus cases, we define our prior on the basis that some proportion of the 146 

cases detected will never become symptomatic (Pa) with the remainder going on to develop 147 

symptoms within the next few days (1-Pa). We then define our prior probability of post-admission 148 

infection in these cases as: 149 

 150 

𝑃𝑝𝑟𝑖𝑜𝑟  = (1 − 𝑃𝑎) ∗ 𝐹(𝑡 + 𝑐)  +  𝑃𝑎 ∗ 𝐹(𝑡)  

 151 

where t is the interval from admissionDate to sampleDate and c is a constant reflecting the 152 

average interval within which we expect symptoms to appear (among those cases in which they 153 

do). Pa is set at 0.4 based on the findings of a published review article (Oran and Topol: 154 

doi.org/10.7326/M20-3012), and c is set to 3 based on a combination of expert opinion of the 155 

study PIs, the known distribution of time from infection to symptom onset and expert experience 156 

of asymptomatic screening. 157 

 158 

Source given post-admission infection 159 

The model requires prior values for the probability of UI and VI given post-admission infection: 160 

Pu and Pv, respectively. However, in specifying the model we define Pu’ as the probability of UI 161 

given post-admission infection when there are no visitors allowed on the ward, in which case the 162 

probability of VI is zero and Pv’=0. If visitors are allowed on the ward for the focus case, then we 163 

set Pu= Pu’×(1-Pv). 164 
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 165 

Based on expert opinion of the clinical co-authors, Pu’ is set to different values according to the 166 

unit/ward type of the focus sequence with single bed wards having a lower prior probability of 167 

unit post-admission infection than bay wards: 0.5 for single bed wards and 0.7 for bay wards. 168 

We assumed a Pv of 0.2. The Pu values (when visitors are allowed) are therefore: 0.4 for single 169 

bed wards and 0.56 for bay wards. The largest of the three Glasgow hospitals included 170 

comprises single-room wards, whilst the other two and the Sheffield site comprise bay wards. 171 

 172 

Derivation of prior probability for post-admission infection 173 

If we assume a uniform individual-level hazard (λ) of infection from 1st February 2020 (t0), 174 

whether in hospital or not, then the probability density function (PDF) of infection at time tinf from 175 

this date is: λe^(-λtinf). The PDF of infection at time tinf conditional on this occurring at any point 176 

prior to the date of symptom onset (tonset) is: (λe^(-λtinf)) / (1-e^(-λtpos)), which is approximately 177 

1/tonset for small λ (taking the limit as λ->0). For HOCI cases, we are interested in whether tinf 178 

occurred before or after the time of admission to hospital (tadm). Also considering the evidence 179 

provided by the known incubation time of the disease (PDF f and CDF F), we integrate over the 180 

range of possible infection dates: 181 

𝑃(𝑡𝑎𝑑𝑚  ≤  𝑡𝑖𝑛𝑓 | 𝑡𝑖𝑛𝑓  ≤  𝑡𝑜𝑛𝑠𝑒𝑡 ,  𝑇𝑜𝑛𝑠𝑒𝑡 =  𝑡𝑜𝑛𝑠𝑒𝑡 ) = [∫ 𝑓(𝑡𝑜𝑛𝑠𝑒𝑡 − 𝑥)/𝑡𝑜𝑛𝑠𝑒𝑡
𝑡𝑜𝑛𝑠𝑒𝑡

𝑡𝑎𝑑𝑚
 . 𝑑𝑥 ] / [∫ 𝑓(𝑡𝑜𝑛𝑠𝑒𝑡 − 𝑥)/𝑡𝑜𝑛𝑠𝑒𝑡

𝑡𝑜𝑛𝑠𝑒𝑡

0
 . 𝑑𝑥] 182 

     ≈  [∫ 𝑓(𝑡𝑜𝑛𝑠𝑒𝑡 − 𝑥)/𝑡𝑜𝑛𝑠𝑒𝑡
𝑡𝑜𝑛𝑠𝑒𝑡

𝑡𝑎𝑑𝑚
 . 𝑑𝑥 ]/ [∫ 𝑓(𝑡𝑜𝑛𝑠𝑒𝑡 − 𝑥)/𝑡𝑜𝑛𝑠𝑒𝑡

𝑡𝑜𝑛𝑠𝑒𝑡

−∞
 . 𝑑𝑥] 183 

     = [∫ −𝑓(𝑢)/𝑡𝑜𝑛𝑠𝑒𝑡
0

𝑡𝑜𝑛𝑠𝑒𝑡−𝑡𝑎𝑑𝑚
 . 𝑑𝑢 ]/ (1/𝑡𝑜𝑛𝑠𝑒𝑡) 184 

     =  ∫ 𝑓(𝑢)
𝑡𝑜𝑛𝑠𝑒𝑡−𝑡𝑎𝑑𝑚

0
 . 𝑑𝑢 185 

     =  𝐹(𝑡𝑜𝑛𝑠𝑒𝑡 − 𝑡𝑎𝑑𝑚) 186 

 187 

 188 

Geographic weighting for community reference set 189 

Geographic weighting function 190 

The weight of each sequence within the community reference set is determined by geographic 191 

distance from the residential outer postcode of the focus case, using a function of the form: 192 

weight= (1-β)*exp(-τ*communityDistanceToIndex[i]) + β, 193 

where, β takes a value between 0 and 1, and τ>0. These parameters are set based on 194 

calibration to the available community reference set at each site. The rationale for this weighting 195 

is that there is likely to be geographic clustering of viral lineages, and so newly observed 196 

community transmissions of SARS-CoV-2 are more likely to show genetic similarity to past 197 

sequences from the local area of that individual’s home than to past sequences from regions 198 

that are further away. If postcode is missing for a case in the community reference set, then 199 

distance to the focus sequence is set to 100 km.  200 

 201 

 202 

Statistical model for derivation of geographic weighting parameters  203 

The statistical model for geographic weighting is fitted separately for each study site using 204 

sequences which are strongly thought to represent community-acquired infection: all 205 

community-sampled sequences and patients presenting to A&E with COVID-19, excluding 206 
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those who are recorded as being healthcare workers or who do not have an available valid 207 

outer postcode. We will refer to these sequences as the ‘calibration set’. 208 

 209 

A statistical model is constructed to find the optimal values of β and τ to maximise the estimated 210 

probability (Psim:i) of a newly observed community-acquired case having a similar sequence 211 

(±2SNPs) to that observed for each sequence in the calibration set. The estimated probability in 212 

each case within the calibration set is calculated as a weighted sum of ‘close match’ indicator 213 

variables for all other sequences in the calibration set sample from 6 weeks prior up until the 214 

sample date of that case, with the weighting function defined in terms of geographic distance 215 

between residential outer postcodes and the β and τ parameters as described for the 216 

community reference set. 217 

 218 

An overall log-likelihood function is defined using a Bernoulli distribution for each of the n 219 

sequences within the calibration set: 220 

ℓ = ∑ 𝑙𝑜𝑔(𝑃𝑠𝑖𝑚:𝑖)𝑛
𝑖=1 . 221 

The values of β and τ that maximise ℓ were obtained for each of the study sites using the 222 

‘bbmle’ package for R, with logit-parameterisation of β and log-parameterisation of τ. 223 

 224 

We assume that the probability of a sequence match conditional on infection from visitor on 225 

unit/ward can be calculated using the same weighting scheme as for the probability of a 226 

sequence match conditional on community-acquired infection (i.e.  P(seq±2 227 

SNPs|CI)==P(seq±2 SNPs|VI)). 228 

 229 

Additional matching on ward location history 230 

There is the potential for the algorithm described to return large numbers of close sequences 231 

matches with the hospital as a whole, which may make it difficult for IPC teams to use the 232 

output to direct their investigations when there are no potential sources of infection identified on 233 

the same ward as the focus case. We propose a location matching procedure in order to 234 

highlight the most relevant sequence matches for further investigation. This process does not 235 

currently form part of the statistical model, meaning that it can be treated as optional 236 

functionality for the SRT in the COG-UK HOCI study, and we have restricted the input data to a 237 

simplified format in order to minimise data management requirements. 238 

 239 

For each inpatient sample in the input meta-data for the algorithm, we specify a single string 240 

variable comprising the concatenated names of any ward locations in the ≤14 days prior to the 241 

sample date and a separate string variable with any ward locations in the ≤14 days after the 242 

sample date. For each focus case submitted to the algorithm, output is flagged if there is any 243 

match identified between the wards listed in each of these fields or the ward at time of sampling 244 

for a close sequence match in comparison to the prior and current ward locations for the focus 245 

sequence (excluding those cases were there is already matching ward location at time of 246 

sampling for each). 247 

 248 

 249 
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Details of phylogenetic methods 250 

Phylogenies were produced by the grapevine pipeline (https://github.com/COG-UK/grapevine) 251 

as part of the COG-UK Consortium (https://www.cogconsortium.uk). Briefly, sequences from 252 

GISAID and those produced as part of the COG-UK Consortium are independently quality 253 

controlled and aligned to the Wuhan reference using minimap2 254 

(https://doi.org/10.1093/bioinformatics/bty191). The two alignments are then combined, the 255 

homoplasy at site 11083 is masked and the tree is reconstructed using FastTreeMP 256 

(http://www.microbesonline.org/fasttree/). For each of the hospitals of interest, the tree is pruned 257 

to keep sequences from Scotland or Yorkshire (as relevant) and by date excluding sequences 258 

subsequent to the last “focus” patient sample date on the ward. 259 

 260 

  261 

https://github.com/COG-UK/grapevine
http://www.microbesonline.org/fasttree/
https://doi.org/10.1093/bioinformatics/bty191
https://www.cogconsortium.uk/
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Details of SRT report format 262 

The SRT system for prospective use needs to provide useful and appropriate feedback in both 263 

low incidence and high incidence settings for new HOCI cases. This is planned through the 264 

generation of a concise one-page PDF summary report for each focus sequence. This summary 265 

report contains key focus sequence meta-data, information regarding the estimated probabilities 266 

for infection source and details of up to ten close sequence matches identified within the same 267 

unit/ward and/or elsewhere in the hospital. 268 

 269 

Probability summary categories 270 

The sequence matching and probability score algorithm generates probability estimates for the 271 

source of infection for the focus patient being from the current unit/ward, from elsewhere in the 272 

hospital, from the community (pre-admission) or from a visitor. These probability estimates 273 

always sum to 1. In the summary report, probability estimates for each source of infection are 274 

categorised using the following levels: 275 

● 0-30%: low 276 

● 30-50%: moderately low 277 

● 50-70%: probable 278 

● 70-85%: high 279 

● 85-100%: very high 280 

 281 

For clarity of presentation and communication, probability categories will not always be 282 

displayed in the summary report for all four potential sources of infection (i.e. ward/unit, 283 

elsewhere in hospital, visitor, or community). Special handling rules for specific situations are 284 

described below. 285 

 286 

Close sequence matches within the same unit and/or hospital 287 

The maximum number of close sequence matches that can be listed on the one-page summary 288 

report is 10 (for the combined sum of unit-level and institution-level matches). If the number of 289 

ward-level matches is n>5 and the total number of close sequence matches is N>10, then the 290 

number of ward-level matches is truncated at 5+max((5-(N-n)),0). If there are over ten close 291 

sequence matches in total, then the following message is displayed "Over 10 close matches; 292 

see detailed report for further information". 293 

 294 

Within each set of unit-level and institution-level close sequence matches, ordering and priority 295 

for inclusion within the available slots is determined by the following set of criteria (in decreasing 296 

order of importance): 297 

1. Number of SNPs relative to Wuhan strain present in comparison sequence but absent in 298 

focus sequence (fewer = higher priority) 299 

2. Number of SNPs relative to Wuhan strain present in focus sequence but absent in 300 

comparison sequence (fewer = higher priority) 301 

3. Whether comparison sequence is from a HCW (HCWs listed first) 302 

4. HCAI status of comparison sequence (priority order: definite, probable, indeterminate, 303 

otherwise) 304 
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5. Samples from the past before samples in future 305 

6. Samples from within the two weeks prior to focus sequence sample date before others 306 

7. Number of units overlapping with focus sample's units 307 

 308 

 309 

Report messages for specific output combinations 310 

 311 

No close sequence matches on unit/ward 312 

If there are no close sequence matches to the focus sequence on their current unit/ward, then 313 

no probability category is reported for this potential infection source (the algorithm returns a zero 314 

probability in such cases, which could be misleading given uncertainty over screening and 315 

sequencing coverage). The message "No matches from within unit" is displayed. The probability 316 

score category for infection from elsewhere in the hospital is provided in such cases. 317 

 318 

No close sequence matches elsewhere in hospital 319 

If there are no close sequence matches to the focus sequence elsewhere in the hospital, then 320 

no probability category is reported for this potential infection source. The message "No matches 321 

elsewhere in hospital" is displayed. 322 

 323 

No evidence of transmission within unit or hospital for probable or definite HCAI 324 

If the estimated probability of community-acquired infection from the algorithm is >50%, but the 325 

interval from admission to symptom onset (if recorded) or sample date is ≥8 days, then the 326 

following message is displayed in place of the estimated probability of community-acquired 327 

infection "This is a probable/definite HCAI based on admission date, but we have not found 328 

genetic evidence of transmission within the hospital". 329 

 330 

Probable unit- or hospital-acquired infection with source unclear 331 

If the posterior probability of unit-acquired infection and the posterior probability of infection from 332 

a source elsewhere in the hospital are each estimated to be <50%, but the sum of these two 333 

posterior probabilities is ≥50%, then the following message is displayed "Overall, this is a 334 

probable unit- or institution-acquired infection with source unclear". 335 

 336 

Timeline graph 337 

The timeline graph provides a visual representation of available sequences from the same 338 

unit/ward and the same institution/hospital as the focus sequence in the period from 3 weeks 339 

prior to their sample date to 1 week after. The key indicates which sequences are close 340 

matches to the focus sequence, and the numbering corresponds to that in the tabular summary 341 

of most relevant close sequence matches. 342 

  343 
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Sequencing prioritisation for prospective use of the SRT 344 

The SRT algorithm was initially designed for use with comprehensive sequencing of all SARS-345 

CoV-2 cases within a hospital, in combination with representative sequencing of community-346 

sampled cases. However, it may be difficult to achieve high population sequencing coverage in 347 

some situations, such as if there is a sudden surge in new admissions to the hospital and/or in 348 

new HOCI cases. In such scenarios, we have recommended the following prioritisation of 349 

samples (from highest to lowest) for sequencing within the prospective HOCI study 350 

(https://clinicaltrials.gov/ct2/show/NCT04405934): 351 

1. HOCI cases 352 

2. SARS-CoV-2 +ve patients on wards where there is a HOCI case 353 

3. HCWs with known contact with HOCI cases 354 

4. Other HCWs 355 

5. SARS-CoV-2 +ve patients admitted to any other wards 356 

6. SARS-CoV-2 +ve patients attending for acute care (e.g. Accident and Emergency) but 357 

not admitted 358 

  359 

These prioritisation rules are guided by the following rationale: 360 

- Most probable and definite HCAIs (based on time from admission) show a close sequence 361 

match to at least one other case on the same ward, so sequencing of HOCI cases and any 362 

cases on the same ward would be enough to identify these links. 363 

- Links between ward outbreaks will be of particular importance to IPC investigations, and would 364 

be identified with sequencing focused on HOCI cases. 365 

- The probability calculations within the SRT are most important for indeterminate HCAIs, and 366 

where there is no sequence match on the same ward the estimated probability of nosocomial 367 

infection is <50% in the majority of such cases (36/38 for the Sheffield dataset). The probability 368 

estimates for indeterminate HCAIs should be interpreted with caution where overall sequencing 369 

coverage is poor, but SRT results are unlikely to lead to inappropriate changes to standard IPC 370 

actions if groups ‘1’, ‘2’ and ‘3’ have been sequenced. 371 

- Where there is a complete lack of close sequence matches within the hospital for probable or 372 

definite HCAIs, the SRT returns the message that there is a lack of available genetic evidence 373 

for linkage (but not that nosocomial infection is unlikely). 374 

 375 

Following from this reasoning, we feel that useful information would be returned by the SRT as 376 

long as high sequencing coverage is achieved for groups ‘1’, ‘2’ and ‘3’. High sequencing 377 

coverage of groups ‘4’, ‘5’ and ‘6’ would allow the SRT to identify potential links between cases 378 

that would likely be missed by standard IPC investigations. 379 

 380 

For indeterminate HCAIs with no close sequence matches on the same ward, an inaccurate 381 

‘zero’ posterior probability of post-admission infection will be returned if one or more similar 382 

sequence is found in the community reference set but no similar sequences are observed in the 383 

institution reference set with imperfect sequencing coverage. This is likely to be a more 384 

important issue in the setting of low SARS-CoV-2 incidence. 385 

 386 

https://clinicaltrials.gov/ct2/show/NCT04405934
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For example, if there are 40 cases that could be included in the institution reference set for a 387 

focus sequence and 2 of these (5%) would be a close sequence match, then we would need to 388 

sequence at least 31/40 (77.5%) in order to have ≥95% probability of observing at least one of 389 

the close sequence matches. However, if there are 200 cases that could be included in the 390 

institution reference set and 10 of these (5%) would be a close sequence match, then we would 391 

need to sequence at least 51/200 (25.5%) in order to have ≥95% probability of observing at 392 

least one of the close sequence matches. 393 

 394 

A similar relationship would also be observed if we consider a rarer sequence type. If there are 395 

40 cases that could be included in the institution reference set for a focus sequence and 1 of 396 

these (2.5%) would be a close sequence match, then we would need to sequence at least 38/40 397 

(95%) in order to have ≥95% probability of observing the one close sequence match. However, 398 

if there are 200 cases that could be included in the institution reference set and 5 of these 399 

(2.5%) would be a close sequence match, then we would need to sequence at least 90/200 400 

(45%) in order to have ≥95% probability of observing at least one of the close sequence 401 

matches. 402 

 403 

On this basis, we believe that the goal of close to 100% sequencing coverage should be 404 

pursued in the setting of low incidence of SARS-CoV-2, but that overall sequencing coverage of 405 

50% or more may be sufficient in the event that a high incidence of SARS-CoV-2 leads to too 406 

great a case load for available sequencing resources. 407 

 408 

  409 
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Results 410 

 411 

Sequencing coverage in Glasgow dataset 412 

 413 

Appendix-figure 1 Proportion of cases sequenced in Greater Glasgow and Clyde Health Board 414 

between 1 March and 27th May (with sequence available as of 23 June 2020) by location of test 415 

(A). Also displayed are the proportion of sequenced cases in the three focus hospitals 416 

subdivided by assessment and inpatient locations (B), and the proportion of HOCI cases 417 

sequenced at these hospitals (C). 418 

 419 

 420 

Home residence locations and geographic model parameters 421 

 422 

Appendix-figure 2 Home residence location of individuals in (a) the Glasgow dataset and (b) 423 

the Sheffield dataset, displayed by sample source (not including HCWs). Locations are 424 

analysed using only the outer postcode, and as such random jitter (within longitude and latitude 425 

of 0.05) has been added to allow display without overlap of points. Plot created using ggmap for 426 

R with map obtained from Stamen maps. For Glasgow 766 cases were included in the 427 

calibration set with estimates of τ=0.15 and β=0.0 for the geographic clustering model, whilst for 428 

Sheffield 446 cases were included in the calibration set with resulting estimates of τ=0.84 and 429 

β=0.16. 430 

 431 

 432 

SNP distance distributions 433 

For the Glasgow sequence dataset as a whole the median pairwise SNP difference among all 434 

sequences was 9, and there were 1.3%, 3.4%, 6.4% and 10.1% of pairwise comparisons with 0, 435 

≤1, ≤2 and ≤3 SNP differences, respectively. For the Sheffield dataset as a whole the median 436 

pairwise SNP difference among all sequences was 8, and there were 1.2%, 3.3%, 6.5% and 437 

10.8% of pairwise comparisons with 0, ≤1, ≤2 and ≤3 SNP differences, respectively. 438 

 439 

 440 

Appendix-figure 3  Frequency plot of all pairwise SNP differences among (a) all 1199 441 

sequences in the Glasgow dataset and (b) all 1629 analysed sequences in the Sheffield 442 

dataset. 443 

 444 

 445 

  446 
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Additional Case Study 447 

 448 

Appendix-figure 4 shows a phylogenetic tree indicating complex transmission networks across 449 

multiple hospitals in the Glasgow area (with SRT outputs for Hospitals 2 and 4). A monophyletic 450 

cluster of HOCIs can be seen in Hospital 2 Unit 48, with the first detected case identified by the 451 

SRT as a hospital-acquired and the rest unit-acquired infections. A paraphyletic group of HOCIs 452 

was detected in Hospital 4 Unit 69. Patient 1 (UID0042) was screened for COVID in Unit 69 on 453 

14.04.20 after developing a cough and oxygen requirement. The patient was moved from the 454 

nightingale area to a single room on the ward on 14.04.20 and was confirmed positive on 455 

15.04.20. 456 

  457 

On 20.04.20 a second patient on Unit 69 (not sequenced) was screened after developing a 458 

cough and pyrexia and confirmed positive on 21.04.2020. The patient was in a single room at 459 

the time of symptom onset, however they had been in the main nightingale ward opposite 460 

patient 1 for 5 days. At this point 13 asymptomatic contacts in Unit 69 were screened, and 8 461 

(UID0043, UID0073, UID0041, UID0095, UID0116, UID0094, UID0083, UID0121) were positive. 462 

These cases are all identified as hospital-acquired or unit-acquired infections and can be 463 

grouped into a genetically similar cluster with a maximum pairwise distance of 2 SNPs between 464 

each member and its nearest neighbour. However, this cluster clearly represents multiple 465 

introductions of SARS-CoV-2 onto the ward.  466 

 467 

 468 

Appendix-figure 4. Maximum-likelihood tree for sequences found in Hospital 2 Unit 48 and 469 

Hospital 4 Unit 69 of the Glasgow dataset up until the 21st of April (inclusive). The circles with 470 

numbers represent the number of community sequences that are identical and at the base of 471 

each lineage (n=5, n=35, n=4). Tree tips with black circles represent further community 472 

sequences. The black lines represent the time from admission to sampling. The values below 473 

the line are the posterior probability for unit infection + the posterior probability of hospital 474 

infection from the sequence reporting tool. 475 

 476 

 477 

Examples of SRT reports 478 

Appendix-figure 5. Example of sequence reporting tool output with estimated very highly 479 

probable infection within unit. 480 

 481 

Appendix-figure 6. Example of sequence reporting tool output with estimated probable 482 

infection within hospital. 483 

 484 

Sequence list for analysis 485 

Supplementary-file 1. Comma separated value file containing a list of the COG-UK 486 

identification codes for viral sequences included in the analysis. 487 

  488 
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