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Abstract

Aims

To examine the strengths and limitations of a novel United Kingdom (UK) criti-

cal care data resource that repurposes routinely collected physiological data for re-

search. Exemplar clinical research studies will be developed to explore the unique

longitudinal nature of the resource.

Objectives

• To evaluate the suitability of the National Institute for Health Research

(NIHR) Critical Care theme of the Health Informatics Collaborative (CC-

HIC) data model as a representation of the Electronic Health Record (EHR)

for secondary research use.

• To conduct a data quality evaluation of data stored within the CC-HIC re-

search database.

• To use the CC-HIC research database to conduct two clinical research studies

that make use of the longitudinal data supported by the CC-HIC:

– The association between cumulative exposure to excess oxygen and out-

comes in the critically ill.

– The association between different morphologies of longitudinal

physiology—in particular organ dysfunction—and outcomes in sepsis.
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The CC-HIC

The EHR is now routinely used for the delivery of patient care throughout the

United Kingdom (UK). This has presented the opportunity to learn from a large

volume of routinely collected data. The CC-HIC data model represents 255 dis-

tinct clinical concepts including demographics, outcomes and granular longitudinal

physiology. This model is used to harmonise EHR data of 12 contributing Intensive

Care Units (ICUs). This thesis evaluates the suitability of the CC-HIC data model

in this role and the quality of data within. While representing an important first step

in this field, the CC-HIC data model lacks the necessary normalisation and semantic

expressivity to excel in this role. The quality of the CC-HIC research database was

variable between contributing sites. High levels of missing data, missing meta-data,

non-standardised units and temporal drop out of submitted data are amongst the

most challenging features to tackle. It is the principal finding of this thesis that the

CC-HIC should transition towards implementing internationally agreed standards

for interoperability.

Exemplar Clinical Studies

Two exemplar studies are presented, each designed to make use of the longitudinal

data made available by the CC-HIC and address domains that are both contempora-

neous and of importance to the critical care community.

Exposure to Excess Oxygen

Longitudinal data from the CC-HIC cohort were used to explore the association

between the cumulative exposure to excess oxygen and outcomes in the critically ill.

A small (likely less than 1% absolute risk reduction) dose-independent association

was found between exposure to excess oxygen and mortality. The lack of dose-

dependency challenges a causal interpretation of these findings.

Physiological Morphologies in Sepsis

The joint modelling paradigm was applied to explore the different longitudinal pro-

files of organ failure in sepsis, while accounting for informative censoring from pa-

tient death. The rate of change of organ failure was found to play a more significant
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role in outcomes than the absolute value of organ failure at a given moment. This

has important implications for how the critical care community views the evolution

of physiology in sepsis.

DECOVID

The Decoding COVID-19 (DECOVID) project is presented as future work.

DECOVID is a collaborative data sharing project that pools clinical data from

two large NHS trusts in England. Many of the lessons learnt from the prior work

with the CC-HIC fed into the development of the DECOVID data model and its

quality evaluation.
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This thesis conducts a thorough investigation into the CC-HIC, which is one of

the first attempts to share granular EHR data for research between multiple NHS

trusts in the UK. The NHS is ideally placed to repurpose a vast network of rou-

tinely collected patient data making it available for secondary use research. This

is now a strategic priority for the UK government, who have placed digitising the

NHS, sharing of data and interoperability as tent poles of their healthcare policy [3].

The importance of data sharing has been brought into sharp focus by the COVID-

19 pandemic, where the scale of the problem highlighted the benefits of extracting

data from the EHR where possible, instead of using conventional data collection

by hand. The findings in this thesis will be invaluable in supporting both ongoing

research within the CC-HIC and other initiatives as these become more common.

Having been fully characterised by this thesis, research within the CC-HIC will be

catalysed, since studies can now responsibly be conducted against this important

resource. The software contributions in particular are now part of the embedded

workflow of clinician scientists working with the CC-HIC. This software helps re-

move commonly error prone parts of the data science process whilst also drawing

attention to areas of concern so that they can be explicitly addressed. The next

generation of the CC-HIC data resource is currently under development and fol-

lows directly from the findings and recommendations of this thesis. The DECOVID

data resource has been the direct beneficiary of the learning from this thesis. The

DECOVID data resource was developed de novo as a modularised instance of the

OHDSI data model. This approach encourages the transfer of high quality data by

focusing on close feedback between contributing sites and a cautious growth of the
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research database over time. The DECOVID platform has the potential to help us

understand numerous facets of COVID-19, including important questions relating

to ventilation strategy in severe COVID-19 pneumonia, which are now ongoing.

This rapid platform development was only possible in light of the deep understand-

ing of this process that was afforded by the pioneering work at the CC-HIC.

Oxygen is a routine treatment used throughout global healthcare. The life sav-

ing properties of oxygen are well documented, though the potential harms of excess

oxygen administration are in question. The findings from the clinical aspects of this

thesis highlight this potential harm and have been disseminated into the critical care

community through publication [4] and were presented at the Intensive Care Soci-

ety State of the Art meeting in 2020. If these associations are ultimately proven to

be causal through future experimental work, the proposed effect size could translate

to a substantial reduction in overall mortality, given the ubiquity of oxygen adminis-

tration in healthcare. Major randomised controlled trials are currently underway to

test this theory. Interestingly, given their size, these studies will rely on automated

data capture from the EHR to deliver findings in a cost effective manner.

Sepsis is commonly encountered in the ICU, resulting in both high mortality

and morbidity. As a heterogeneous syndrome, it has been notoriously difficult to

find successful therapies in sepsis. The findings presenting in this thesis provide

deeper insights into the dynamics of physiology that have undergone limited prior

investigation. These findings could influence how patients are recruited into clinical

trials in sepsis. The findings support that future trial enrolment should be enriched

under dynamic recruitment criteria. This is an exciting and novel area that could

stem directly from this research.

This thesis makes the following direct research contributions:

• Appraisal of the CC-HIC data model (Chapter 3)

• Data quality evaluation of the CC-HIC research database (Chapter 4)

• Investigation into the association between the cumulative exposure to excess

oxygenation and outcomes in critical care (Chapter 5 and publication [4])

• The association between different longitudinal morphologies of organ dys-
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function and outcomes in sepsis (Chapter 6)

This thesis makes the following software contributions (Chapter 4):

• The wranglEHR [5] package for R; Standardised data extraction from the

CC-HIC research database.

• The inspectEHR [6] package for R; Standardised data quality evaluation of

the CC-HIC research database.
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episode A continuous period of level 2/3 care, within a single physical location.

This is the base unit of the CC-HIC database.
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Chapter 1

Introduction

Modernising digital policies of the past 10 years within the United Kingdom (UK)

has led to widespread adoption of the Electronic Health Record (EHR). Coupled

with increasing levels of clinical device integration, routinely collected healthcare

data now include a wide gamut of physiological and treatment variables from across

the patient journey. The availability of these high resolution longitudinal data re-

sources presents new opportunities for research in areas that would have only re-

cently been impossible.

The UK National Institute for Health Research (NIHR) Critical Care theme

of the Health Informatics Collaborative (CC-HIC) has taken some early steps in

the UK into sharing routinely collected granular and identifiable physiological data

from secondary care. The CC-HIC is the result of a call from the NIHR to oper-

ationalise routinely collected healthcare care data for research purposes. The CC-

HIC has already overcome the first, and arguably most challenging element of such

an endeavour; sharing granular and identifiable clinical data. The CC-HIC pools

critical care data from hospitals within five UK Biomedical Research Centres. The

Electronic Health Records (EHRs) contributing to the CC-HIC store and represent

clinical data in diverse ways. A major technical challenge in building the research

data pipeline has therefore been the harmonisation of healthcare data, semantic in-

teroperability and clinical data modelling, while operating under the restrictions of

a security hardened research environment. These challenges—and their respective

solutions as applied to the CC-HIC—are reviewed in Chapter 3 (page 87).
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As a previously untested resource, this thesis formally evaluates the quality of

data stored in the CC-HIC research database. This evaluation, alongside its software

implementation, is presented in Chapter 4 (page 107). This evaluation provides a

roadmap for the inferences that follow, allowing the navigation of potential defi-

ciencies, so that clinical research can proceed safely.

The granular longitudinal data offered by the CC-HIC is a unique feature in

the UK. Research in this field has generally been limited to summary physiology

from the first 24 hours of critical illness. Two exemplar studies were designed and

conducted that were able to take full advantage of this unique longitudinal data: the

impact of cumulative exposure to oxygen in critical illness, and the role of phys-

iological morphologies in sepsis. These topics were chosen because they are of

current importance to the critical care community and require longitudinal data to

be addressed.

1.1 Cumulative Exposure to Excess Oxygen
Oxygen is an ubiquitous treatment for hypoxaemia in critical care. This ubiquity—

and a perception of safety—means that patients are often exposed to quantities of

oxygen far in excess of their physiological requirements for long periods of time.

The harms of high levels of oxygen exposure are well described in mammalian mod-

els and are not in question. It is currently unknown as to whether or not the lower

levels of exposure to oxygen that are commonly seen in clinical practice are harm-

ful. In general, lower boundaries of oxygenation are targeted in intensive care. This

results in a tendency towards over, rather than under, oxygenation. Several small

randomised controlled trials have failed to provide a definitive answer to the ques-

tion of potential oxygen toxicity, and much larger randomised controlled trials are

now ongoing. There remains an opportunity to use the large cohort of longitudinal

data available in the CC-HIC to help contribute to knowledge in this field. Chapter

5 (page 157) presents this exemplar study, focusing on the cumulative exposure of

oxygen and its potential association with outcomes in critical care.



1.2. Physiological Morphologies in Sepsis 37

1.2 Physiological Morphologies in Sepsis
Sepsis—infection complicated by life-threatening organ dysfunction—is a global

health concern. In England, Wales and Northern Ireland alone there are approx-

imately 40,000 admissions per year for presumed sepsis to Intensive Care Units

(ICUs), representing around a third of all ICU throughput. Sepsis is a highly het-

erogeneous syndrome, and as such has presented a challenge to find efficacious

therapies. Identifying biological subgroups of this disease, so called “phenotypes”

has thus been highlighted as a key research priority.

Treatment for sepsis is often framed in terms of timing; “early” treatment is

considered better, while “late” treatment is potentially deleterious. However, as a

prevalent—as opposed to incident—disease, “early” and “late” are terms rooted in

the administrative time frames of healthcare delivery, rather than the biology of the

underlying disease. Since we rarely know the true onset time of sepsis, it is impor-

tant to consider the question, “early relative to what?” Despite the widespread use

and acceptance of these terms, they may poorly explain the physiological hetero-

geneity of sepsis. In lieu of a biomarker that reliably describes sepsis on the biolog-

ical time-scale, reconsidering the problem as different parameterisations of disease

physiology—so called disease “morphologies”—may provide actionable insights.

Is the patient improving or deteriorating? At what rate? And how does this in-

fluence survival? What is the cumulative exposure to organ dysfunction? And at

what point (if any) does a patient’s acute physiology stop being predictive of their

outcome? Intuitively, clinicians apply many of these concepts at the bedside ev-

eryday. No blood test or physiological response is viewed in isolation, but always

contextualised to the results that came before. A rigorous investigation connecting

candidate biomarker morphologies to patient outcomes is currently lacking. Estab-

lishing this link is a required step if we are to consider patterns of acute patient

physiology as being representative of different disease states. Chapter 6 (page 195)

presents this exemplar study, focussing on different morphological representations

of longitudinal physiology and their potential association with patient outcomes.
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1.3 Methodological Challenges
A particular methodological challenge to overcome when modelling both excess

oxygen and sepsis physiology is the endemic presence of informatively missing

data in critical care. For inferences to be valid and generalisable, methods must be

able to address bias encountered when analysing these cohorts. Data can be consid-

ered informatively missing when an unmeasured property of the patient gives rise

to missing data. In critical illness these informatively missing data patterns occur

when patients die, removing them from the analysis. This pattern of missing data

can introduce biases to inferences made over physiological data, yet it is uncommon

for this problem to be taken into account. To address this issue the joint modelling

paradigm has been applied. This principled modelling approach is well suited to ad-

dressing the aforementioned bias. A recent number of methodological contributions

to the field of joint models has enabled their use in the applied context in which the

present research resides.

1.4 Learning Lessons
The experience of this research has directly contributed to a formal set of recom-

mendations that have facilitated a second generation UK data sharing platform; De-

coding COVID-19 (DECOVID). The DECOVID platform is discussed in Chapter

7 (page 237) as ongoing and future work. DECOVID is infused with lessons learnt

from CC-HIC, removing many of the limitations that may restrict the scope of re-

search questions that can currently be answered by the CC-HIC.



Chapter 2

Background

This thesis finds itself within the nexus of critical care medicine, healthcare data

engineering and applied statistics. This chapter provides an overview of salient top-

ics to provide the background and motivation for the data engineering and clinical

research questions that follow. Sections 2.1 to 2.3 introduce clinical data models,

controlled clinical terminologies and the data transfer processes of the CC-HIC.

Section 2.4 introduces a nomenclature for the description of longitudinal biomarker

morphologies. Section 2.5 provides the scientific background for the potentially

deleterious effects of exposure to excess oxygen. Section 2.6 provides this back-

ground for sepsis and discusses the relevance of differential treatment effects. Sec-

tions 2.7 to 2.11 provide an overview of the statistical methods used in this thesis.

This includes linear mixed effects models, survival models and joint models.

2.1 Clinical Data Models
Healthcare data are complex, messy and challenging to work with [7, 8, 9]. EHRs

have developed organically over many years to accommodate this complexity [10].

This has resulted in competing platforms from private, public and open source

origins providing varied solutions to the problem. Healthcare data—particularly

across organisations—are therefore stored in myriad formats and unique database

schemas. Under such conditions, collaboratively bringing data together is a chal-

lenge. A number of solutions have been proposed to allow these different systems to

communicate and share data. These range from the humble disease registry to fully
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fledged clinical EHR. Somewhere along this spectrum is the clinical data model, or

“common data model” (CDM). The CDM is a blueprint that describes how clinical

data should be standardised and represented. A number of CDMs have gained pop-

ularity to support multi-site comparative effectiveness research. Examples include:

• Intensive Care Unit (ICU) specific data models:

– Intensive Care National Audit and Research Centre (ICNARC) [11].

– The Medical Information Mart for Intensive Care (MIMIC) III and IV

[12, 13].

– CC-HIC [14].

• General purpose data models:

– Integrating Biology and the Bedside (i2b2) [15, 16].

– The Observational Health Data Sciences and Informatics (OHDSI) (pro-

nounced “Odyssey”) [17, 18]1.

– Sentinel [19, 20].

– Patient Centred Outcomes Research Network (PCORnet) [21].

– The generalized data model for clinical research [22].

A CDM provides the blueprint for representing healthcare data, however when

populated with data, the data model can still lack universal semantic meaning. Con-

trolled clinical terminologies fulfil this role.

2.2 Controlled Clinical Terminologies
Controlled clinical terminologies are designed to provide the semantics necessary to

define clinical concepts without ambiguity. By analogy, if the CDM is a blueprint,

then a controlled clinical terminology is the language it is communicated in. Both

builder and architect must understand the same language if the blueprint is to be

correctly implemented. It is a recipe for failure if the architect writes in English

and feet, and the builder reads in French and is accustomed to metres. Examples of

commonly used terminologies are provided in table 2.1.
1This data model is known more commonly as the “OMOP” (Observational Medical Outcomes

Partnership) data model which was the name given to an earlier version.
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Vocabulary Usage Example code Example description Special features

SNOMED-CT all healthcare concepts 53084003 bacterial pneumonia (disorder) networked, allows “post co-
ordination” modifier codes
for very specific representa-
tions

LOINC primarily laboratory findings LA7465-3 pneumonia

ICD-10 medical diagnosis J15.9 bacterial pneumonia, unspecified

ICNARC intensive care diagnosis 2.1.4.27.1 bacterial pneumonia hierarchical system

Read primary care diagnosis H22z.00 bacterial pneumonia NOS

Dm+d medicines (UK) 372687004 amoxicillin

RxNorm medicines (USA) 723 amoxicillin

UCUM units of measure mg milligram

Athena compendium of vocabularies - - contains all above codes
with unique ”Athena codes”.
Connects different termi-
nologies.

Table 2.1: Commonly used vocabularies are listed with examples for pneumonia (diagnosis), amoxicillin (drug) and milligrams (units) depending on
the primary role of the vocabulary.
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2.3 Critical Care Health Informatics Collaborative
The NIHR Health Informatics Collaborative (HIC) is a project that brings together

National Health Service (NHS) trusts and partner universities to share routinely

collected patient data for secondary use for research. Five clinical areas formed the

founding themes of the HIC, each with a host organisation to provide leadership

(table 2.2). The express aims of the HIC are:

1. “to support the establishment and maintenance of catalogued, comparable,

comprehensive flows of patient data at each trust.”

2. “to create a governance framework for data sharing and re-use across the

trusts and partner organisations . . . ”

3. to conduct “a number of exemplar research studies, one in each of the estab-

lished therapeutic areas.” [23]

Theme subject Host organisation

Critical care University College London
Cardiovascular medicine Imperial College London
Ovarian cancer Cambridge University
Renal transplantation King’s Health Partners
Viral hepatitis University of Oxford

Table 2.2: Founding themes of the NIHR Health Informatics Collaborative.

The CC-HIC [14], is a multi-centre research project, pooling static and time

series data on critical care patients from the 12 intensive care units (ICUs) within

hospitals partnered to the five biomedical research centres listed in table 2.2. The

CC-HIC contains up-to hourly data on bedside monitoring, and retains identifiable

data for the explicit purpose of linkage to other external data resources. 255 distinct

data concepts comprise the base data model2. Illustrative examples include:

• patient characteristics on admission to an ICU:

– date of birth.

– sex.
2A full list of this specification with accompanying metadata is provided in appendix table A.1.
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– Acute Physiology And Chronic Health Evaluation II (APACHE II)

score3.

– admitting diagnosis.

• longitudinal physiology (up to hourly):

– vital signs.

– biochemistry.

• longitudinal treatments:

– antimicrobials (pharmacological).

– vasoactive infusions (pharmacological).

– respiratory support (non-pharmacological).

• patient outcomes:

– survival at the end of an ICU episode.

– survival at hospital discharge.

A useful UK comparison can be made with the Intensive Care National Audit

and Research Centre (ICNARC) case mix programme [24]. Spanning more than 25

years, ICNARC collects a comprehensive summary of outcomes, demographics and

physiological data from the first 24 hours of each admission to an ICU [25, 26, 27,

28, 29]. The ICNARC data collection is vast, covering almost all NHS adult ICUs in

the UK bar Scotland. The ICNARC data collection is unequivocally of high quality,

however this does come at a potentially considerable expense. Most data must be

(at least partially) hand curated prior to submission, necessitating the presence of

ICNARC clerks in most ICUs in the UK. This places natural restrictions on the

expansion of ICNARC to cover the rich longitudinal physiology that is available

within the EHR for many critically unwell patients. As a result, there is a need for

a dedicated set of automated data extraction methods, and an accompanying CDM

and research platform that can support the analysis of such data. The CC-HIC has

taken significant steps to this end.

3The APACHE II score is an ICU risk scoring system that calculates the risk of death based upon
physiology and chronic health status observed form the first 24 hours of an admission to the ICU.
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2.3.1 The CC-HIC Data Pipeline

Data are extracted from each local site EHR, in many cases supplemented with

data from local ICNARC files, and transformed to be represented in Extensible

Markup Language (XML) format, aligning to the CC-HIC data model. XML is a

mature language that underpins much of the data transfer processes that occur on the

internet. XML excels at representing complex and nested data without ambiguity,

and so is a natural fit for representing complex clinical data. An XML Schema

Definition (XSD) provides an exacting specification to facilitate the writing of an

XML document to ensure that it contains the right information, and presents it in

the right way, so that it can be machine readable. These XML files are uploaded to

the University College London (UCL) identifiable data safehaven (DSH). The DSH

is a security hardened “walled garden” research environment that is compliant with

both ISO27001:20131 certification [30] and the NHS Data Security and Protection

Toolkit [31].

The version 1 pipeline4 is illustrated in figure 2.1. This pipeline implemented

the cleanEHR package for R [14]. cleanEHR served to extract data from submitted

XML files and store them in a custom data object known as “ccData”. Structurally,

the ccData object was similar to the CC-HIC data model, and can largely be thought

of as a representation of that data model in a format native to the R statistical pro-

gramming language. The primary means through which analysts interacted with

research data was to load the ccData object into working memory, and use the tools

available as part of the cleanEHR package to reconfigure data into a rectangular

format suitable for further analysis.

This approach to working with the CC-HIC data became obsolete as the size of

the necessary data objects exceeded the working memory capacity that is typically

available to an end user. A new XML parser and database were developed5 to

replace the cleanEHR [14] dependency, as illustrated in figure 2.2.

The new CC-HIC research database was developed in an episode centric for-

4This phase of the project was completed prior to my involvement and is discussed for complete-
ness.

5This development phase coincided with my arrival to the CC-HIC project.



2.3. Critical Care Health Informatics Collaborative 45

ccData

EHRS XML interchange

BRC Hospitals UCL Data Safe Haven

ICUs

cleanEHR

Data exportsAnonymisation

Analysis Research output

Public Domain

Supplementary data
e.g. ICNARC

Figure 2.1: Version 1 data pipeline. Data flows from contributing sites and is warehoused in
the UCL Data Safe Haven. Data flow into the analytic pipeline is via cleanEHR.

CC-HIC Research 
database
(EAV) wranglEHR

EHRS XML interchange

BRC Hospitals UCL Data Safe Haven

ICUs

Data exports

Analysis Research output

Public Domain

Supplementary data
e.g. ICNARC

inspectEHR

Site feedback

Figure 2.2: Version 2 data pipeline. Data flows from contributing sites and is warehoused in
the UCL Data Safe Haven in the CC-HIC research database. Data flow into the
analytic pipeline is optionally via wrangleEHR (standardised cohort extraction)
which flexibly converts data from the EAV storage format to a rectangular for-
mat. Standardised data quality evaluation is performed by inspectEHR, which
embeds quality metadata in the EAV database and provides feedback to each
contributing site.
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Figure 2.3: UML diagram of the CC-HIC database schema. PK = primary key.

mat, in order to accommodate the strong semantic representation of “episode” in

the CC-HIC data model. This research database was designed as an Entity At-

tribute Value (EAV) style, as depicted in the Unified Modeling Language (UML)

diagram in figure 2.3.

The hallmark of the EAV structure is a long central fact table. In the CC-HIC

database this exists in the form of the “events” table. The events table accommo-

dates the majority of the data concepts related to each episode. The transition to this

research database came with many new advantages:

• analysts were free to use any general purpose approach for data extraction

with which they are accustomed, without being reliant on a specific R package

(or even the R language itself).

• the addition of new data concepts (although not easily supported by the un-

derlying CC-HIC data model) would be trivial to implement at the database

level.

• data best practices were promoted, as data type consistency was intrinsically

enforced by database constraints.

• typical working memory limitations were removed. The database could be

queried for the required cohort, rather than needing to store the entire dataset

in working memory.
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2.3.2 Legal & Ethical Basis for Use

A legal basis for transferring data was provided under section 251 of the

National Health Service Act 2006 (Confidentiality Advisory Group reference

14/CAG/1001); this process sets aside the common duty of confidentiality in

the UK. Ethics approval was granted by a Health Research Authority Research

Ethics Committee (14/LO/1031). Legitimate Interest and substantial public interest

provided the lawful basis for data processing under General Data Protection Reg-

ulations. The approvals listed above permit the CC-HIC to share identifiable data

for the specific purpose of linkage to other data resources. This would include,

for example, Hospital Episode Statistics (HES) [32]. The research agenda for this

thesis was registered and approved by the CC-HIC scientific advisory group.

2.3.3 Patient & Public Involvement

A patient and public involvement session was conducted in April 2018, early in the

course of the present research agenda. In this session key areas that were felt to be

of particular concern or interest to patients were discussed, including:

• the principle of assumed consent.

• sharing of identifiable data.

• policies surrounding remuneration for access to data.

This session featured a video commissioned by the CC-HIC to help better inform

the public on the goals and strategy behind the project [33].

An interesting outcome from the session was that many of the participants had

assumed that data sharing of this nature was already taking place. On the whole,

they felt that it would be important to conduct this type of data sharing. The main

concerns were that data should be used responsibly to improve patient outcomes

and experience. In general participants were happy for commercial and academic

partners to have access to data, providing this was done securely as described during

the session. It was emphasised that they would expect commercial partners to pay

a commensurate fee for data access, the proceeds of which could go directly to

patient care or back into the project itself to facilitate self sufficiency. Notable and
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unambiguous concerns about the possibility of insurance companies gaining access

to these data were raised.

2.3.4 Scientific Advisory Group

The ethics approvals that support the CC-HIC are designed to facilitate the CC-HIC

as a research platform. As such, internal research applications do not, on the whole,

require separate research ethics to be completed. This is supported by the Scientific

Advisory Group (SAG). The role of the SAG is to evaluate research proposals with

respect to:

• patient benefit.

• scientific value.

• appropriateness of methodology.

• information governance requirements.

• feasibility and workload of the CC-HIC data scientists.

The SAG comprises: one nominated person from each founding NHS Trust, one lay

representative and one information governance representative. A minimum level of

information governance training is required—typically NHS Data Security Aware-

ness Level 1—for researchers to interact with the CC-HIC research database.
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2.4 Longitudinal Exposures
In longitudinal studies, we may wish to understand the relationship between certain

time-varying patient features and outcome. These features include those that are

internal to the patient, for example a biomarker, or external, for example exposure

to treatment. In both instances, analysis of the relationship is complicated by the

necessity of a period of observation during which the intensity of the longitudinal

feature can vary [34]. In order to provide a connection between exposure to treat-

ment or patient biomarker, it is appropriate to construct a summary representation of

both exposure duration and intensity. These summary representations are referred

to as biomarker “morphologies”.

2.4.1 A Nomenclature of Morphologies

In order to identify and discuss specific patterns of interest within longitudinal phys-

iology, I shall introduce and explain key terms that define different morphologies of

longitudinal patient data. These definitions are supported by figure 2.4 in which a

hypothetical patient’s biomarker is sampled over a 10 day period. The terms with

reference to longitudinal patient physiology: severity, velocity, trajectory, cumula-

tive exposure and weighted cumulative exposure are introduced.

The severity of disease is an instantaneous measure of the magnitude of dis-

ease. Severity is commonly what is actually measured on a patient to be stored in the

EHR. The velocity of disease is the rate of change of disease severity; the “slope”

or “gradient” of disease severity with respect to time. The velocity of disease is the

rate at which a patient is getting better, or worse. This is unlikely to be measured

directly for a given patient, but is easily determined from data. The trajectory of

disease is the path of severity at a given moment. The trajectory represents the com-

bination of severity and velocity. In much the same way as the trajectory of a ball

being thrown through the air can be defined by a vector representing its position

and direction of travel, so is the trajectory of disease. The cumulative exposure to

disease is the area under disease severity when plotted against time. The cumulative

exposure to disease includes the history of exposure up to and including the point

of interest. It is a useful means to capture the full history of a biomarker, rather than
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Figure 2.4: Prototypical morphologies of disease biomarkers. An illustrated patient is ob-
served over 10 days with an evaluation on day 2. Severity: The severity of
disease is represented by the blue observed point on day 2. Velocity: The ve-
locity of disease (rate of change of disease severity) is represented by dashed
line capturing the gradient of the biomarker on day 2. Trajectory: The disease
trajectory is shown as a dashed blue line and point representing the simultane-
ous measure of disease severity and velocity on day 2. Cumulative effect: The
cumulative effect of disease (area under disease severity) is represented by the
blue area under the biomarker from day 0 up to day 2. Weighted cumulative
effect: The weighted cumulative effect of disease (area under disease severity)
is represented by the shaded blue area of varying intensity under the biomarker
from day 0 up to day 2.
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its current state. The weighted cumulative exposure to disease is the weighted area

under disease severity when plotted against time. This is a useful morphology to

consider if it is not reasonable to assume that recent exposure should carry the same

weight as more distant exposure.
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2.5 Exposure to Excess Oxygen
Supplementary oxygen is an ubiquitous treatment for hypoxaemia (low oxygen lev-

els). Oxygen is so commonly used in healthcare that modern hospitals have oxygen

physically piped through the building as if it were running water. Oxygen is neces-

sary for the machinery of life to function, and so the lifesaving properties of oxygen

are readily apparent. The familiarity and ease with which oxygen can be provided to

a patient has led to readily apparent liberal oxygen use in critical care and healthcare

in general [35, 36].

2.5.1 Historical Context

The potential harms from oxygen have long been recognised. As far back as

230 years ago, Lavoisier, while experimenting with oxygen on mammals, exposed

guinea pigs to “l’air vital” (pure oxygen). He observed a high mortality in these

animals that primarily arose from “une fièvre ardente” (high grade fever) and “mal-

adie inflammatoire” (inflammatory disease) [37]. Moving two centuries forward,

Haldane corroborated this finding, identifying that high levels of inspired oxygen

often proved fatal [38]. Haldane recommended that we administer the lowest possi-

ble percentage of oxygen, and that its use be monitored to allow for titration to the

patient’s requirements [38]. The observation that high inspired fractions of oxygen

lead to a profound inflammation of the lungs—so called Acute Respiratory Distress

Syndrome (ARDS)—is universal in mammals [39]. In 1970, Barber and Hamil-

ton, alternately assigned adult humans who had experienced brain death to either

sustained 100% oxygen or normal air (21% oxygen)6 [40]. Within a few days,

the classical picture of ARDS arose in all those who received pure oxygen [40].

In healthy subjects, exposure to high inspired oxygen concentrations has shown to

cause disruption to the alveolus (the functional anatomical unit of the lung) and

release of biochemical mediators that are responsible for developing lung fibrosis

[41].
6This study pre-dated the widespread use of randomisation as a means to identify causal mecha-

nisms in medical science.
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2.5.2 Potential Harms and Benefits of Oxygen Supplementation

The potentially harmful effects of oxygen are widespread, and include effects both

systemic and localised to the lungs:

• local effects:

– absorption atelectasis [42].

– acute lung injury, ARDS and lung fibrosis [40].

– inflammatory cytokine production.

• systemic effects:

– central nervous system toxicity.

– cerebral and coronary vasoconstriction [35].

– haemodynamic changes [43, 44]:

* vasoconstriction [45, 46].

* increased peripheral vascular resistance. [47, 48, 49]

* reduced cardiac output.

– inflammatory changes, including the generation of reactive oxygen

species [50].

Some of these potentially deleterious effects may impart benefit in the right

circumstances. Vasoplegia (low blood pressure caused by a relaxation of the arterial

blood vessels) predominates the clinical picture in sepsis. Vasoconstriction and

increased peripheral vascular resistance have thus been speculated as mechanisms

whereby high fractions of inspired oxygen may impart benefit [51].

The HYPER2S study explored this hypothesis by randomising patients with

septic shock to receive either 100% inspired oxygen for a period of 24 hours or

routine care [51]. This study was stopped early under the recommendation of the

trial safety monitoring committee due to a larger than expected number of deaths

in the high oxygen arm. While the difference in trial arms did not reach the clas-

sical boundary for statistical significance, there was a large enough discrepancy to

warrant early stopping of the trial.
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The ICU-ROX study investigated conservative versus liberal oxygen strategies

in critical care [52]. A subsequent subgroup analysis of septic patients in this study

was unable to detect a difference between the two groups [53]. These findings are

unsurprising, since this randomised controlled trial (RCT) was relatively small, and

applied oxygen levels in the “liberal” oxygen arm that are much lower than that

used in HYPER2S and more consistent with those seen in the normal practice of

critical care. In the ICU-ROX sepsis subgroup analysis, the “liberal” oxygen arm

performed numerically better than the conservative arm, fuelling more speculation

over this topic.

A meta-analysis of over 16,000 patients found overall evidence for harm from

the use of excessive oxygen administration: “Patients treated liberally with oxygen

had a dose-dependent increased risk of short-term and long-term mortality” [35].

Despite concerns raised, except for patients with type II respiratory failure7,

oxygen use remains largely unregulated in clinical practice. Prospective random-

ized controlled trials of oxygen therapy in patients suffering from myocardial infarc-

tion have reported either harm [54, 55] or no effect [56]. An increase in mortality

risk has been suggested in patients receiving higher inspired oxygen concentrations

[57, 58, 59, 60, 61, 62] in conditions such as cardiac arrest [63, 64, 65] and septic

shock [51, 66, 67], and also in general critically ill populations [61, 68]. However,

most of these studies lack a delineation between harm from appropriately high lev-

els of inspired oxygen used to maintain normoxaemia, and excessive concentrations

resulting in hyperoxaemia [69]. Similarly, analyses of critical care databases vari-

ably report an association [70, 71], or lack thereof [72], between hyperoxaemia and

negative outcomes in the critically ill.

The varied findings between studies may be due in part to a lack of standardis-

ation in what constitutes “excess” oxygenation criteria. Many prior approaches are

limited by data availability. Often only a single measure of oxygenation is available

to represent an entire healthcare encounter. There is no feasible mechanism through

which such a short exposure to high oxygen levels could impart harm, and so these

7respiratory failure characterised by elevated arterial CO2 levels.
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findings should be met with justifiable scepticism, since they are likely to be con-

founded by treatment indication. This confounding has been long recognised. Osler

remarked in 1898: “It is doubtful whether inhalation of oxygen in pneumonia is re-

ally beneficial. Personally, when called to consult on a case, if I see the oxygen

cylinder at the bedside I feel the prognosis to be extremely grave.” [73]

The proposed evolutionary rationale for the harms of excess oxygen is straight-

forward. Mammalian life has been exposed to 21% oxygen for millions of years,

whereas exposure to higher levels is a uniquely modern phenomenon. There has

been ample time to develop evolutionary adaptations to low oxygen environments.

Examples of such exposure include the in-utero development of the mammalian

foetus, human communities who live at altitude, and the survivors of polytrauma

and pneumonia [74].
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2.6 Sepsis
Sepsis—infection complicated by life threatening organ dysfunction—is commonly

encountered in critical care. The mortality of sepsis is in excess of 30% and sur-

vivors often have long-term health issues [75, 76]. Recent estimates suggest that

in 2017 alone, sepsis was responsible for 11 million deaths globally [77]. Sepsis

undoubtedly confers a high humanitarian and economic cost to society [78].

2.6.1 The Pathobiology of Sepsis

Over many thousands of generations, evolutionary pressures have forged a complex

interaction between humans and microorganisms. The result is a tightly intercon-

nected network of host defences, designed to mount a proportionate response to

infection, so as to render it harmless [79]. Human life is maintained by a delicate

balance in the activation of this cascade. So, perhaps, it should not be any surprise

that this balance is occasionally perturbed [80].

Microorganisms, having circumvented the skin or mucosa, are immedi-

ately recognised by local actors of the innate immune system; granulocytes,

macrophages, dendritic cells and complement proteins. These cells and proteins

are activated by non-specific structural molecules expressed within the microor-

ganism, known as Pathogen-Associated Molecular Patterns (PAMPs) [81, 82]. Lo-

cal tissue damage caused by the infection triggers the release of host cellular con-

tents, referred to in this context as Danger-Associated Molecular Patterns (DAMPs)

[83, 84, 85], to which the immune system is primed to detect and respond via pattern

recognition receptors. DAMPs and PAMPs activate the complement cascade, while

release of chemotaxic cytokines (chemical messengers) facilitates recruitment of

white blood cells and other actors of the innate and adaptive immune system to the

site of infection. This is a highly conserved pathway across mammalian life, and is

essential for the normal functioning of life [86, 79].

PAMPs and DAMPs are detected by leukocytes, macrophages and endothelial

cells which, in turn, activate genes responsible for promoting inflammation. This

is the primary means through which infection is arrested. For reasons that are un-

clear, in some cases, this process becomes dysregulated, undergoing positive feed-
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back that results in massive amplification of the inflammatory pathways. Excessive

complement activation triggers the coagulation (clot forming) and fibrinolytic (clot

breakdown) pathways, leading to microvascular clot formation and an alteration in

microvascular blood flow [87, 88]. This disrupts blood flow, impairing oxygen and

nutrient delivery to body tissues.

While the specific causative pathways are unclear, the prevailing scientific con-

sensus is that the energy dependent pathways governed by mitochondria temporar-

ily shut down in a process known as bioenergetic failure [86, 89, 90, 91]. This

results most notably in cardiac dysfunction, circulatory collapse and multi-organ

failure [92].

This maladaptive response to infection is known as sepsis. Clinical hallmarks

of sepsis are a derangement of the vital signs, in particular low blood pressure

caused by a relaxation of smooth muscle found throughout the circulatory system

(vasoplegia). The definition of sepsis underwent its third revision in 2016 [93, 94],

emphasizing the presence of organ dysfunction as being central to the syndrome.

“Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated

host response to infection”

— Singer et al [93, 94]

Sepsis is not one single disease, but rather a collection of disease states caused

by a wide range of infectious organisms targeting different host organs. Pneumo-

coccal pneumonia is inarguably a very different disease to surgical peritonitis, but

both are still called sepsis. While united by the syndromic presentation of organ

dysfunction caused by infection, there is necessarily heterogeneity in the clinical

presentation [79].

Sepsis is often treated in the ICU, since the primary role of the ICU is to pro-

vide organ support to failing organs. This helps to keep patients alive while targeted

therapies—or the passage of time—can reverse the organ dysfunction.
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2.6.2 Identifying Markers of Organ Dysfunction

Table 2.3 highlights a number of examples of common derangements observed for

each organ system routinely monitored in the ICU during sepsis, and how those per-

turbations might be recorded in an electronic health record (EHR) as part of routine

care. One important feature of note is that, with the exception of routinely sampled

daily blood tests, most patient sampling occurs as a direct result of physiological

status; sicker patients are sampled more frequently.

The sequential organ failure assessment (SOFA) score (shown in table 2.4)

was developed to allow day-to-day tracking of organ dysfunction in the intensive

care unit [95]. Developed by expert consensus, SOFA is an ordinal scale of organ

dysfunction from 0 to 24. A higher score corresponding to a greater degree of organ

dysfunction. Each of the six individual organ components are scored between 0 and

4 points and are summed to provide a notion of overall organ dysfunction. For the

cardiovascular and respiratory systems, SOFA encapsulates treatment-physiology

Organ system Sampling patterns Observations Treatments

Respiratory ↑ ABG sampling

↑ FIO2
↓ SpO2
↓ PaO2/FIO2
↑ respiratory rate

supplementary oxygen
ventilation
blood transfusion

Cardiovascular ↑ CO monitoring
↑ inotropes/vasopressors
↓ blood pressure

intravenous fluid
inotropes
vasopressors

Renal
↑ creatinine/urea
↓ urine output

intravenous fluid
renal replacement therapy

Clotting ↓ platelets platelet transfusion

Liver ↑ bilirubin
cause-specific
no general purpose treatments

Neurological ↑ evaluations ↓ GCS tracheal intubation and ven-
tilation

Table 2.3: Examples of electronic health record representations of organ dysfunction, as
defined in sequential organ failure assessment (SOFA). Abbreviations: arterial
blood gas (ABG), cardiac output (CO), Glasgow Coma Score (GCS), peripheral
oxygen saturation (SpO2), fraction of inspired O2 (FIO2), partial pressure of
arterial oxygen (PaO2).
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Organ system Biomarker (units) 0 1 2 3 4

Respiratory PaO2/FIO2 (kPa) ≥ 52.6 < 52.6 < 39.4 < 26.3 + RS < 13.1 + RS

Cardiovascular
MAP (mmHg)
drug dose (mcg.kg−1.min−1) ≥ 70 < 70

Dopamine ≤ 5
Dobutamine (any)

Dopamine (5-15]
Noradrenaline ≤ 0.1
Adrenaline ≤ 0.1

Dopamine > 15
Noradrenaline > 0.1
Adrenaline > 0.1

CNS GCS (points) 15 [14-13] [10-12] [6-9] < 6

Hepatobiliary Bilirubin (µmol.L−1) < 20 (20-32) (33-101) (102-204) (204)

Coagulation Platelets (103.mm−3) > 150 < 150 < 100 < 50 < 20

Renal
Creatinine (Cr) (µmol.L−1)
Urine output (UO) (mL.day−1)

Cr < 110 Cr [110-170] Cr [171-299]
Cr [300-440] or
UO < 500 mL/day

Cr >440 or
UO < 200 mL/day

Table 2.4: The SOFA (sequential organ failure assessment) score. MAP: mean arterial pressure, RS: respiratory support, CNS: central nervous system.
GCS: Glasgow Coma Scale.
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interactions. For example, a patient with “normal” blood pressure supported by

drugs designed to augment the cardiovascular system would score more highly (two

points) than a patient with low blood pressure but without this support (one point).

This avoids the mistaken conclusion that the latter patient has a greater degree

of organ dysfunction simply because their blood pressure is lower. Addressing this

treatment-physiology interaction is particularly important; if we were to base an

analysis upon patient physiology alone, then the story would be incomplete.

In the ICU, physiology is manipulated by drugs and equipment. To track and

understand changes in organ dysfunction, this system as a whole must be interro-

gated; physiology, drugs and equipment.

The respiratory system is represented in SOFA by the use of the PaO2/FIO2

ratio and ventilation status. The renal system is represented by creatinine and urine

output. This is an imperfect representation of treatment-physiology interaction and

is notably lacking the use of renal replacement therapy (RRT). With regards to RRT,

one could conclude that, in most cases, urine output is a reasonable proxy for the re-

nal system treatment-physiology interaction, since the patient is unlikely to be liber-

ated from RRT without passing urine. The other organs systems in SOFA (clotting,

hepatobiliary, and neurological) isolate specific biomarkers8: platelets, bilirubin

and the Glasgow Coma Score (GCS) respectively. None of these systems are able

to represent treatment-physiology interactions, and are potentially confounded by

interventions aimed at correction of organ dysfunction. A mitigating argument as

to why they do not capture a treatment-physiology interaction, is that perhaps there

are not many therapeutics available and in wide-spread use for these organ systems.

There are no general purpose therapeutics that would improve GCS or lower biliru-

bin. Platelets are often given to patients with severe platelet deficiency. The use of

platelets is somewhat conservative, and it would not be a UK practice to correct to

a value above 150 ×cells9/L (the starting threshold to define impairment).

The main utility of SOFA in critical care research, is therefore its ability to

8though there are several features of the patient that are not biomarkers in the conventional sense,
I use the term “biomarker” to refer to any measurable asset of the patient, which may include clinical
markers or physiology
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account for the treatment-physiology interactions—particularly cardiorespiratory—

that are common in this setting.

Other scoring systems exist to achieve similar goals. The logistic organ dys-

function score (LODS), for example, is similar to SOFA, and was developed using

a data-driven approach [96]. The present research will focus on SOFA, since this

metric is in widespread use in UK critical care research, forms part of the clinical

criteria underpinning the sepsis definition itself [93], and the raw values that go into

the calculation are readily available in the CC-HIC data model.

2.6.3 An Operational Definition of Sepsis

An operational definition of sepsis is an increase of the SOFA score by two or more

points from baseline in the presence of suspected or confirmed infection. Most

patients will have a pre-morbid SOFA score of zero [94], and so an initial SOFA

score of two is synonymous with an increase in two points from the baseline, should

there be no prior information.

It is of interest to highlight that this definition already encodes an intrinsic

notion of disease trajectory; a patient must demonstrate an increase in organ dys-

function to meet the sepsis definition.

SOFA is designed to monitor acute organ dysfunction. If a patient has prior

evidence of organ dysfunction (for example, being a recipient of kidney dialysis)

then the affected organ is typically excluded from the calculation [97].

Most episodes of sepsis begin outside the ICU as the patient deteriorates either

at home or in a hospital ward. A convenient method to identify sepsis is to seek ev-

idence of infection within the ICU admission diagnosis [98], and evidence of organ

dysfunction via the maximum SOFA score achieved in the first 24 hours following

admission. This is the same approach as implemented by ICNARC [97].

2.6.4 Sepsis Heterogeneity

Despite a thriving research community, and an abundance of promising therapeutic

discoveries, no targeted therapies for sepsis have entered routine use [99], while

others have been harmful [100]. Thus, the mainstay of treatment for sepsis includes
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source control of the infection, antimicrobials, and organ support. A key barrier to

treatment discovery is the heterogeneous nature of sepsis. Robust descriptions of

sepsis heterogeneity have thus been highlighted as a key research priority [101, 102,

103].

When studying sepsis in animal models, many conditions can be meticulously

controlled [91, 104]. Animals are generally of similar weight, age and sex. The

breeding stock is controlled, limiting genetic diversity. The infectious inoculation

is standardised, and treatment is given at a fixed time point, referenced to this in-

sult. These experimental conditions unveil the natural history of sepsis on the time-

scale of the disease, often referred to as disease time. The fraction of mortality

attributable to sepsis (the so-called “attributable fraction”, or the proportion of sub-

jects that died of sepsis, rather than with sepsis) can be guaranteed to be close

to 100%. Under these enriched experimental conditions, statistical power is max-

imised to discover effective interventions, should they exist.

Compare this to the typical presentation of sepsis in humans. Patients are in-

fected, often without reference to a discrete insult. The early symptoms of sepsis

are non-specific and indolent, appearing over hours or days [105]. A broad range

of microorganisms can inoculate many different host tissues causing subtle varia-

tions in the way in which organ dysfunction manifests. People themselves are het-

erogeneous in terms of age, sex, genetic background, co-morbidities and access to

healthcare. After a variable amount of time, a patient deteriorates and travels to hos-

pital. Patients are now no longer referenced to disease time, and become grounded

in administrative time-frames: hours since admission. Complicating matters, not

all patients will die of sepsis, but rather with sepsis. The attributable fraction of

mortality in sepsis has been estimated at a surprisingly low 15% [106]9. The net ef-

fect of these features conspires to generate a noisy signal, where effective treatment

signals may be lost as they were delivered too late, or to those patients who could

never have derived benefit in the first place.

To this end, many promising research avenues to explore this heterogeneity

9This surprisingly low figure may reflect the increased diagnostic rate for sepsis in the UK [107].
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have emerged. This area of research is known as “phenotyping”. A phenotype

refers to “a clinical entity defined by observable characteristics that are produced

by interactions of the genotype and the environment.” [103] Phenotype discoveries

in sepsis have been found from such diverse research methods as transcriptomics

[108, 109], metabolomics and proteiomics [110]. Other approaches have targeted

features present within directly observable patient physiology [111, 112, 113, 114,

115, 116, 117, 118].

It remains to be seen how these newly discovered sepsis phenotypes relate to

underlying biological mechanisms of sepsis or how they could be operationalised

for treatment purposes.

Heterogeneity of Treatment Effect

The modification of a treatment effect across patients is formally known as hetero-

geneity of treatment effect (HTE) [119]. The manifestation of HTE is a reduction

in statistical power to detect a true population average treatment effect. The impact

of HTE has been repeatedly demonstrated via simulation studies, which suggest

that important therapeutic options now in use for known subtypes of sepsis—in

particular the ARDS—might not have been discovered had those patients not been

specifically isolated [120]. This argument has been extended to conclude that either

the sepsis syndrome is not amenable to study under the RCT paradigm, or that mor-

tality is not a suitable endpoint to study [120]. While I disagree that sepsis should

not be studied with RCTs, this position must be taken with serious consideration. At

best, it suggests that critical care trials in sepsis are systemically underpowered, and

that simply increasing the size of the trial is unlikely to be a successful strategy. In

view of this HTE has long been at the core of discussions of sepsis research [101].

In order to fully understand HTE, it must be broken down into two key princi-

ples: risk magnification (RM) and differential treatment effect (DTE).

Risk Magnification

RM is a mathematical artefact that occurs when considering the risk reduction of a

treatment on an absolute scale [121]. This follows necessarily from the nature of

risk (the probability of an event) being confined on a scale from zero to one. In the
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Figure 2.5: Left panel: Expected survival benefit in absolute risk reduction across the full
range of baseline risk death. The odds ratio is set at 0.8. Counter-intuitively,
there is an optimal point of maximum absolute risk reduction near 0.53; the
effect is not symmetric around 0.5. The absolute benefit conferred decreases
predictably toward both extremes of risk. Right panel: Effect of consistent
improvement in survival benefit acting across the whole cohort mapped from
the probability scale (x axis) to the logit scale (y axis).

extreme case, if the risk for death is 1 (absolute certainty of death) then there is no

scope for a treatment to improve the prognosis. Similarly, if the risk for death is 0

(absolute certainty of life) then there is equally no scope for a treatment to improve

the prognosis; it is already guaranteed. There lies an optimal point on this spectrum

of risk, where an effective treatment results in the maximum absolute risk reduction

in the probability of death.

Figure 2.5 illustrates this concept for a theoretical treatment that confers the

same relative risk reduction—defined as an odds ratio for death of 0.8—across the

target population. At the extremes of risk, the patient benefits from a minuscule

absolute risk reduction. With low risk of a poor outcome, it takes relatively little

harm (which is common in healthcare [122]) to overwhelm the signal of benefit;

patients at low risk of an adverse outcome might be better served by not having the

treatment.

Risk magnification itself could never confer harm directly to low risk patients.

However, if there are complications that arise from treatment that are fixed across

all patients10 then low risk patients, who are equally likely to suffer complications

10Estimates as high as 1% have been found for life threatening complications related to placing



2.6. Sepsis 65

as high risk individuals, may ultimately come to more harm than if they had not re-

ceived treatment. This effect has been elucidated in simulation, where a therapy was

shown to be ineffective overall, despite being highly effective in high risk groups,

whilst neutral or harmful in low risk groups [124]. Examples of this phenomenon

exist in other medical fields such as neurology, cardiology and vascular medicine

[125, 126].

Risk magnification does not isolate a particular mechanistic or biological pro-

cess. Patients who are at higher risk of death from any cause—advanced age, frailty,

or any other comorbidity—will stand to benefit from a treatment that confers the

same relative risk reduction to all.

Differential Treatment Effect

A treatment can afford a truly differential effect across biological characteristics.

This component of HTE is known as differential treatment effect (DTE).

To illustrate, as previously introduced, ARDS is a pulmonary syndrome that

can manifest as a distinct subtype of sepsis. The clinical presentation of ARDS

is characterised by profound hypoxaemia due to an increase in extra-vascular lung

water, poor lung compliance and impaired gas exchange. COVID-19 and influenza

are both viral causes of ARDS. Steroids have been shown to be effective in the

treatment of COVID-19 ARDS [127], yet harmful in the treatment of influenza

ARDS [128]. This is a contemporaneous example of differential treatment effect

in action; patients with the same syndrome, responding differently to a treatment,

driven by underlying biological differences.

In 2000, the ARDSnet trial—a landmark trial in critical care—demonstrated

that a so-called “lung protective” ventilation strategy improved mortality in the

management of ARDS [129]. Recently, Girbes et al have suggested [120], that

had the ARDSnet trial not enriched their cohort by selecting for the distinct ARDS

phenotype, then the discovery that low tidal volumes were beneficial might well

have gone unnoticed.

a patient onto mechanical ventilation during an emergency [123]. This is a common critical care
intervention in sepsis.
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Heterogenious Patient Morphologies

Typical models in critical care rely on static notions of disease severity, asking “How

sick is this patient upon arrival to intensive care?”. It is common for heterogeneity to

be explored through subgroups that are defined at the point of admission. Examples

include:

• sex.

• age.

• severity at presentation.

• “early” vs. “late” disease.

A hitherto unexplored part of patient heterogeneity is the morphology of longitudi-

nal physiology observed during the course of critical care. Clinical intuition tells us

that longitudinal information is important. For example, when treating a patient, it

is not enough to know only todays biomarkers. One must know yesterdays results

to contextualise the findings. A patient with severe disease, who is improving, may

well have a better prognosis than a patient with mild disease who is deteriorating.

This kind of determination requires the interrogation of longitudinal patient data.

Quantification of the relationship between longitudinal disease morphologies

and patient outcomes in critical care is non-trivial and has so far remained elusive

[130].

2.6.5 Prior Evidence for Disease Morphology

Notable examples of investigating longitudinal organ dysfunction in sepsis include

those by Toma et al [131, 132], Holder et al [133], Badawi et al [134] and, using a

joint modelling approach, Deslandes and Chevret [135] and Musoro et al [136].

The Toma et al approach relies on aligning commonly observed daily temporal

patterns of SOFA. In order to improve the computational properties of the approach,

they categorise SOFA into: “low”, “medium” and “high” [131]. They weighted

more recent events are being more important in the model, and found that certain

recurrent patterns of organ dysfunction were more commonly associated with a poor

outcome.
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Holder et al investigated the incremental improvement to model fit with the

sequential addition of each new day of SOFA [133]. They found that the addition

of SOFA beyond the fifth day of treatment on an ICU did not significantly improve

model discrimination for death.

Badawi et al investigated the use of SOFA, APACHE II and the Discharge

Readiness Score (DRS) to explore trajectories within the ICU [134]. Patients were

stratified into cohorts of one, three and seven days’ stay inside the ICU, with clear

differences observed in the trajectories between survivors and non-survivors.

Deslandes and Chevret found, perhaps unsurprisingly, that increased SOFA

severity was associated with death [135]. What is unique about their approach was

the implementation of joint models to meticulously model the entire longitudinal

history of SOFA and come to this conclusion in a principled manner. This finding

was corroborated by Musoro et al using similar methods [136].

Acute physiological trajectories have previously been explored in the

(SPOT)light study [130]. This study investigated the changes in physiological

measurements made in the 24 hours before and after admission to an ICU. When

using the post-ICU admission values as the reference group, pre-ICU trajectory

of systolic blood pressure, was the only physiological marker associated with 28

day mortality. By contrast, when using the pre-ICU assessment as the reference,

and looking at added value for physiological values projected into the future, many

physiological markers were associated with 28 day mortality. It was therefore

suggested that these patients were demonstrating the Markov property, in that the

present state of the patients did not depend upon their history.



68 Chapter 2. Background

2.7 Simulated Critical Care Cohort
A simulated dataset is presented containing 200 patients in whom the daily SOFA

score is recorded in the “ICU” from day 0 (the first 24 hours) up to day 30. This

cohort was created with the simjm package for R [137] developed by Brilleman

[138]. This dataset provides the basis from which particular features likely to fea-

ture in real data can be discussed. Three individual cases from the cohort have been

selected and assigned names for ease of reference: Athena, Hermes and Zeus. The

longitudinal data for these simulated patients are shown in figure 2.6:

• Zeus deteriorates, seeing an increase in his SOFA score, and dies shortly be-

fore the 10th day of being inside the ICU, removing him from the cohort.

• Hermes remains stable, and remains in the cohort alive on the 30th day of

observation.

• Athena shows improvements with a reduction in her SOFA score. She is

discharged alive on the 18th day of being inside the ICU and so stops con-

tributing any further data to the study.
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Figure 2.6: Simulated cohort to illustrate key statistical concepts. The daily SOFA scores
of 200 simulated patients are displayed. Three patients have been highlighted
and named to draw out specific features of the data.
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2.8 Longitudinal Data Analysis
A motivation for exploring longitudinal patient biomarkers is to understand how

a biomarker changes over time, as part of the natural history of a disease, or in

response to a treatment or patient characteristics. The statistical hallmark of such

biomarkers is that, in general and for a given patient, they are autocorrelated; i.e.

where the latest result is correlated with previous results. If this were not true, and

repeated samples from each patient were independent of one another, then there

would never be any physiological trajectory information arising from the patient to

explore. This pattern is clearly demonstrated in figure 2.6, where each patient can be

seen to follow their own patient specific trajectory. The linear mixed effects model

is particularly well suited to answering questions in the context of longitudinal data,

and so has become virtually synonymous with such an analysis [139]11.

2.8.1 Linear Mixed Effects Model

The linear mixed effects model (equation 2.1) has three main components: fixed

effects, random effects, and stochastic error.

yi = X iβ +Zibi + εi (2.1)

bi = N ∼ (0,D)

εi = N ∼ (0,σ2Ini)

The “fixed” effects—represented by X iβ in equation 2.1—capture the popu-

lation average trajectory of a biomarker. This is demonstrated in figure 2.7 where

the population average trajectory has been overlaid onto individual patient trajecto-

ries. The fixed effects therefore explain all that is commonly shared in a biomarker

between patients.

The “random” effects—represented by Zibi in equation 2.1—capture devia-

tions from the population average trajectory necessary to describe the specific indi-

vidual trajectory of each patient. Conceptually, it is helpful to think of the random

effects as a “nudge” that pushes the average trajectory of the population as a whole

11Other names include multi-level or hierarchical model.
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Figure 2.7: The “fixed effects” for the simulated cohort are shown as the dashed black line.
In this example, this shows a gradual reduction in the biomarker over time.
This is the average biomarker trajectory. The underlying individual biomarker
trajectories are shown in grey behind.
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Figure 2.8: The “random effects” for the patient identified as “Zeus” are highlighted as
a nudge (the arrow) transforming the population average trajectory of the
biomarker (“fixed effects”) into the individual specific biomarker trajectory for
the patient.
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Figure 2.9: Classical implementations of the linear mixed effects model. Left: Random in-
tercept model only model, permitting parallel individual biomarker trajectories.
Right: Random intercept plus slope model, permitting non-parallel individual
biomarker trajectories.

to individual patients (figure 2.8). The random effects can more broadly be thought

of as latent biological and environmental factors that may explain variation between

patients, but are not directly measured as specific characteristics of the patient. A

direct implication is that the whole cohort shares the same fixed effects (hence the

term “fixed”), but each patient has their own random effects.

After the fixed and random effects in the model have been applied—the deter-

ministic components of the model—any discrepancy between the model prediction

of a patient’s biomarker, and what is actually observed is known as the residual er-

ror (εi). When defining the linear mixed effects model, there is often a balance to be

struck between how much variance of the biomarker can be captured by the fixed

and random effects, and how much should be allocated to the residual error.

Figure 2.9 highlights two common implementations of the linear mixed effects

model: random intercept, and random intercept plus slope.

In the random intercept model, the individual fitted trajectory of each patient is

permitted to change only by shifting along the y axis, while keeping the trajectories

parallel. In this particular example, this has resulted in a poor model fit. In contrast,
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Figure 2.10: Multivariate normal distribution of random effects. Each patient’s random
effects are plotted demonstrating a multivariate normal distribution with lit-
tle correlation between the intercept and slope. The highlighted patients are
shown in this cloud.

the random intercept plus slope model permits the intercept to also vary, allowing

for a much better model fit in this particular instance.

The random effects are typically defined in terms of a multivariate normal dis-

tribution with mean vector zero and covariance matrix D to be estimated from the

data. This formulation suggests that more patients will more commonly act sim-

ilarly to the population average trajectory, rather than take their own outlying tra-

jectory. This multivariate normal distribution can be shown by plotting the random

effects in a scatter plot (figure 2.10).

2.9 Survival Analysis
When investigating the time to survival for a patient, there are two common features

of the data that must be addressed. First, as the distribution of survival times are

strictly positive (events are in the future), we can expect this target distribution to

be positively skewed. Second, censoring of death is common. Censoring occurs

because a study has a finite follow-up time and there will usually be patients who

are still alive at the end of the study period, who have yet to experience the event
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Figure 2.11: Censoring of outcomes as a common feauture of survival analysis

under investigation.

Figure 2.11 depicts the three exemplar patients from the synthetic cohort. Here,

their time to outcome is displayed. All patients arrive in the ICU at time zero and

are “enrolled” into the study. Zeus dies inside the ICU on day 10 (closed circle).

Hermes is alive and inside the ICU on day 30. Athena is discharged alive from the

ICU on day 20. Both Hermes and Athena have unknown outcomes, but in both

cases it is known that they survived at least a certain amount of time.

Survival models are optimised to address this censoring as despite not experi-

encing the survival time explicitly, it remains useful to know that a patient did not

experience an event up to a particular time point.

The distribution of event times can be re-expressed as the survival, the hazard

and the cumulative hazard functions (figure 2.12). These functions are used in the

modelling of event times, and important to understand the implications of survival

modelling.

The survival function (equation 2.2) describes the probability of surviving to

some time (T ), conditional on having survived till now (t). As such the survival

function is the compliment of the Cumulative Distribution Function (CDF) of the

event times.

S(t) = Pr{T > t}= 1−F(t) (2.2)

The survival function can be reformulated as the hazard function (equation 2.3)
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Figure 2.12: Three functions of time-to-event type data are shown. Left panel: The sur-
vival function. This shows the probability of survival from the start of the
study to a given time into the future, it is the compliment of the Cumulative
Distribution Function (CDF). This plot is anchored at 1 at time 0 since all pa-
tients are (typically) event free at the beginning of the study. Middle panel:
The hazard function. This shows the instantaneous rate of events at a given
time, conditional on having survived to that time. Right panel: The cumu-
lative hazard function. This shows the integral of the instantaneous hazard
function, and as such represents the cumulative risk for the event.

to express the hazard of an event at an instantaneous moment in time. The hazard

function considers the risk of the event over some very small interval of time (dt).

As this interval approaches zero, the solution for the instantaneous hazard at time

t can be found. The hazard function is particularly useful in the communication of

risk, since it is a conditional probability based on survival to the time of interest.

λ (t) = lim
dt→0

p(t ≤ T < t +dt) | T ≥ t
dt

, t > 0 (2.3)

The instantaneous hazard function can be re-expressed as the cumulative haz-

ard function by integrating from time zero to the time of interest (equation 2.4).

H(t) =
∫ t

t=0
λ (x)dx (2.4)

All three functions are connected, and any one can be used to derive the other

two.
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2.9.1 Cox’s Proportional Hazard Model

Cox’s semi-parametric proportional hazard model, or its parametric cousin the

Weibull survival model, are both commonly employed in this task of survival mod-

elling [140, 141]. The general formulation of Cox’s proportional hazard model

(equation 2.5) is given in terms of the instantaneous hazard function.

λ (t|X i) = λ (t)exp(X iβ ) (2.5)

Just as in the linear mixed effects model, Cox’s model contains fixed effects

(X iβ ) which in this context are the population level modifiers of the baseline hazard

function (λ (t)). Cox’s model is semi-parametric in that the baseline hazard func-

tion does not need to be specified. This is contrasted with the weibul model, where

the baseline hazard function is parametrised by the weibul distribution. Differing

from the linear mixed effects model, the fixed effects of Cox’s model act multiplica-

tively (rather than additively) on the baseline hazard, owing to their position in the

exponent of the baseline hazard function.

Cox’s model is orientated toward the analysis of how measures taken at

baseline—such as patient characteristics upon arrival to the ICU—affect survival.

While there are extensions of Cox’s model to include time varying data, their im-

plementation has been shown to introduce bias secondary to the implicit assump-

tion that biomarkers are static between samples; which is often an unreasonable

assumption in critical care when patients are by definition physiologically unstable.

Further, the time varying extension to Cox’s model is only valid when biomarkers

are of an exogenous nature (i.e. they are not generated by the patient themselves).

In this instance, the biomarkers of interest are endogenous; they are created by the

patient and cease to exist after patient death. When the desire is to investigate spe-

cific morphologies of biomarkers, a different modelling approach will be required.

Joint models are such an approach, and these will be the focus of the remaining dis-

cussion. It will first be useful to discuss the different patterns of missing data that

are likely to be encountered, as these are central to the application of joint models.
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2.10 Patterns of Missing Data
For any given observation window, patient data can be missing from the electronic

health record. It is generally true that patients seek treatment at times of ill-health,

and so in the first instance the electronic health record is a sampling of patients

during these times. As a result, there will be an over representation of patients who

are acutely unwell.

The most striking missing data pattern, which can be clearly seen in the simu-

lated dataset (figure 2.6 on page 68), is that patients who experience more extreme

physiology are more likely to die and be removed from the cohort. Patients who die

no longer produce any physiological data, and so this can be regarded as a form of

missing data.

In order to formalise this intuition of missing healthcare data it has proven use-

ful to categorise missing data as missing completely at random (MCAR), missing at

random (MAR) and missing not at random (MNAR) [142]. Each pattern of missing

data can be visualised with the aid of the causal diagrams (also known as a Directed

Acyclic Graph) shown in figure 2.13 [143, 144]. Three scenarios are presented to

support the discussion of missing data patterns. In each scenario, we are interested

in the effect of any particular patient characteristic (Pt Chr) on their longitudinal

outcome (Y), as indicated by the blue arrows in figure 2.13. This could be any

biomarker, but to help make the scenarios concrete, we shall take Y to be the daily

SOFA score. In each scenario we are only able to observe the subset of Y that does

not contain any missing data; YO.

2.10.1 Missing Completely at Random (MCAR)

In the first scenario (left most panel of figure 2.13) corruption of the EHR database

has led to the random loss of some patient data (Error). As such, we do not know

the SOFA score for every patient at every time point, and instead have a random

subsample of these data (Yo). The mechanism causing the missing data to occur

is a random process with respect to the patient and biomarker, and so we can say

that Yo is a random sample of Y and thus any inferences we wish to make over

the pathway of interest will remain valid and unbiased if we choose to study the
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Figure 2.13: Classification of missing data. Left: missing completely at random (MCAR).
Middle: missing at random (MAR). Right: missing not at random (MNAR).
A full description of the causal diagrams are provided in the accompanying
text.

available data (Yo). This corresponds to the MCAR data pattern. Formally, MCAR

corresponds to a missing data distribution that is independent of both observed and

missing data. The consequence of such missingness is a reduction in statistical

power to detect an effect, but estimates of the effect should remain consistent and

unbiased on the whole.

2.10.2 Missing at Random (MAR)

In the next scenario (middle panel of figure 2.13), patients are transferred to a spe-

cialist ICU when their respiratory function reaches a pre-defined threshold. In this

case, naive analysis of the observed SOFA (Yo) will produce biased estimates, as

patients with a certain degree of respiratory impairment will be absent from the co-

hort. Since we know the observable patient features that give rise to the missing

data, this can be controlled for. Formally, MAR corresponds to a missing data dis-

tribution that is independent of the missing data, conditional on the observed data.

Thus, by conditioning on the observed data, we can recover the true distribution of

complete data.

2.10.3 Missing Not at Random (MNAR)

In the final scenario (right panel of figure 2.13), a latent process (indicated by the

L with a dotted circle) is responsible for generating both the distribution of SOFA,

and its missingness. This latent process could be a combination of the environ-

mental and physiological factors that give rise to patient deterioration and death. In
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this instance, sicker patients produce higher SOFA scores, and are ultimately elim-

inated from the cohort as a direct result of their physiology. This pattern of missing

data is known as missing not at random (MNAR). Formally, MNAR corresponds

to a missing data distribution without the conditional dependences defined by the

MCAR or MAR patterns. That is, MNAR describes a missing data distribution that

is dependent on both observable and missing data.

Models that try to estimate a parameter from data that exhibits a MNAR pat-

tern can be biased. The intuition for this bias is that sicker patients die and stop

contributing data to the study. Those that are left, are inherently more stable, and so

the model has a bias toward these less severe patients.

This final scenario is realistically encountered in critical care, and is the type of

missingness that is endemic when interested in patterns of longitudinal physiology,

where mortality is prevalent. In these circumstances it is necessary to propose a

model for the missing data mechanism, and model this jointly with the distribution

for the biomarker under investigation. The joint modelling paradigm provides such

a framework through which unbiased estimates for longitudinal variables of interest

can be identified, in the presence of such missing data patterns. There are many

other merits to the joint modelling approach, and these will be discussed in the

following section.

2.11 Joint Analysis
The explanation that follows is influenced by the excellent introduction to the topic

of joint models by Rizopolous [145], including the academic training program on

joint models conducted at Erasmus University [146], on which a substantial portion

of the applied research in this thesis is based.

The standard joint model is a shared parameter model that simultaneously

models a biomarker (or other endogenously generated longitudinal outcome), and

an event time, such as death [147, 148, 145]. The standard joint model combines a

linear mixed effects sub-model for the longitudinal outcome and a proportional haz-

ards sub-model (such as Cox’s model) for the survival outcome. These sub-models
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are connected through their random effects—that is, latent patient characteristics—

that are calculated simultaneously for both sub-models. Equation 2.6 shows the

formulation for the standard joint model.

yi(t) = Xi(t)β +Zi(t)bi + εi(t)

mi(t) = Xi(t)β +Zi(t)bi

hi(t) = h0(t)exp
{

ωiγ +α{mi(t)}
}

(2.6)

without error

Where α is the association parameter that quantifies the connection between

the two sub models. The other parameters are as described previously for each

sub model. From the formulation in equation 2.6 we can see how the models are

connected through their random effects. Not only are the random effects used to

connect both sub models, but the error free component of the longitudinal submodel

(mi) is incorporated into the survival sub-model so as to account for the error prone

measurements in the longitudinal biomarker. The advantages of the joint modelling

paradigm include:

1. Improved statistical efficiency as survival and longitudinal outcomes are mod-

elled simultaneously, making full use of all information available.

2. Easy exploration of a number of morphological patterns that related the lon-

gitudinal biomarker to survival (as described in section 2.4.1 on page 49).

3. Parameter estimates are less prone to bias in the presence of informatively

(MNAR) missing data patterns.

4. Parameters estimates given an endogenous process of the longitudinal

biomarker are less biased.

5. An account is made for the fact that the longitudinal biomarker is often mea-

sured with error.

To offset these numerous advantages, there is a significant disadvantage that

joint models are computationally expensive. Simplifications of this approach have

been suggested that have generated computational improvements. For example, the

two-stage approach whereby one fits the linear mixed effects model first and then



80 Chapter 2. Background

uses this to provide fitted biomarker values to the event sub-model. This approach

has generally been shown to yield biased estimates and so is not presently recom-

mended. However, this remains an active area of development, with recent research

suggesting that certain implementations of the two stage approach, do have the po-

tential to yield unbiased estimates [149].

Owing to these properties, joint models have proven useful in branches of

medicine where biomarker trajectory plays a strong mechanistic role in death; i.e.

death represents an appropriate event to model the missing data process. Specific

examples include the trajectory of CD4 T-cell count in HIV [150], the rate of change

in aortic valve area in aortic stenosis, deterioration in renal function in renal trans-

plant [151] and the change in intraocular pressure in glaucoma [152]. Joint models

have only rarely been used in critical care research, with some notable recent ex-

ceptions [135, 136].

A major challenge of the joint modelling paradigm has been in developing

the applied software capability to build such models. Fortunately, a rich ecosys-

tem of software has now been developed that allows for the application of joint

models within the R [137] statistical computing language. These packages (non-

exhaustively) include JM [153], Merlin [154] and joineRML [155] with a frequen-

tist approach or JMBayes [156] and RStanarm [157, 158] with a bayesian approach.

2.11.1 Matching Model to Morphology: Association Structures

A number of reparameterisations of the association parameter have been described

to capture different kinds of biological mechanisms. These are aligned to the mor-

phologies described in section 2.4.1 on page 49. Common implementations in-

clude the value, value and slope, and cumulative effect parametrisations, which are

synonymous with severity, severity plus velocity (trajectory) and cumulative effect

morphologies as previously defined.

2.11.2 Severity (Value) Association

The severity (or value) association is the basis for the standard joint model as

demonstrated in equation 2.6. This formulation connects the longitudinal and sur-
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vival outcomes based upon the current value of the biomarker, measured without

error.

2.11.3 Severity (Value) and Velocity (Slope) Association

The severity and velocity association (or value and slope), which together repre-

sent disease trajectory, evaluates the relationship between the current value of a

biomarker and its slope, and the event outcome. This formulation is shown in equa-

tion 2.7.

yi(t) = Xi(t)β +Zi(t)bi + εi(t) (2.7)

mi(t) = Xi(t)β +Zi(t)bi

hi(t) = h0(t)exp
{

ωiγ +α1{mi(t)}+α2{m′i(t)}
}

α1 carries the same interpretation as for the value only formulation, with α2 be-

ing the association parameter for the slope of the biomarker represented by m′i(t).

Generally, the slope parameter is not used in isolation, as there is rarely a clinical

situation where the current value of the biomarker is irrelevant, with only the slope

being useful.

2.11.4 Cumulative Effect Association

The cumulative association evaluates the relationship between the integral of a

biomarker and the event outcome. Typically, this is implemented as the area un-

der the biomarker time curve, from time zero to the current time (equation 2.8).

This parametrisation is particularly useful to explore if the individual history of a

biomarker has an impact on the event outcome.

yi(t) = Xi(t)β +Zi(t)bi + εi(t) (2.8)

mi(t) = Xi(t)β +Zi(t)bi

hi(t) = h0(t)exp
{

ωiγ +α

∫ t

0
mi(s)ds

}
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2.11.5 Joint Models and Missing Not at Random

As previously defined, MNAR describes a missing data distribution that is depen-

dent on both observable and missing data. Under such circumstances is it necessary

to jointly model the missing data mechanism, and the longitudinal outcome, to at-

tain unbiased estimates for the latter [159, 145]. The intuition behind this is that

patients who experience more extreme deviations in their longitudinal biomarker

from the population average, will be more likely to die and thus be removed from

the cohort. If these deviations can be captured by the shared random effects, then it

is possible to remove or reduce bias that has been introduced by the death process.

This is governed by the conditional independence assumption, which stipulates that

conditional on the random effects, the longitudinal outcomes are independent of the

death process, and that repeated measures of the longitudinal outcome are indepen-

dent of each other. A further implication of this assumption is that the joint model

will necessarily make explicit assumptions about the full path of the longitudinal

biomarker, regardless of whether or not its observation is interrupted by death. In

practice, these are un-testable assumptions, and so we must rely on domain knowl-

edge of the subject to provide the evidence base to support this modelling approach.

To summarise, by modelling the survival process simultaneously with the lon-

gitudinal biomarker, an account can be made for the bias that is introduced by the

death process.

When interpreting the joint model, if the association parameter (α) is zero,

then it is implied that both sub-models are independent. If this is the case, one

could also reasonably use this to infer that since the models are independent, then

informative missingness is in fact not a feature of the data.

2.11.6 Evaulation of Joint Models

It will be necessary to compare joint models with different association structures

to seek evidence for which morphology is best representative of outcomes. As

with other statistical models, joint models can be compared in terms of Akaike

information criterion (AIC), Bayesian information criterion (BIC) and the Log-

Likelihood. Within a set of models, this provides a gauge as to which model per-
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forms best. Where models can be nested—as is the case with the severity and

trajectory models—the likelihood ratio can be used to provide a formal evaluation

of improved model fit.

Other performance measures are directed at evaluating model calibration and

discrimination, though these concepts will need extending to the longitudinal do-

main [160].

In static models, receiver operator characteristic (ROC) curves and the mean

square error (Brier score) can be used for determining discrimination and calibra-

tion respectively. The sensitivity and specificity of a biomarker are interrogated at

varying thresholds to draw the ROC curve. The ROC curve plots the sensitivity (true

positives) against 1 - specificity (1 - false positives) which are defined in equation

2.9.

T P(c) = Pr{yi > c|di = 1} (2.9)

1−FP(c) = Pr{yi ≤ c|di = 0}

Where yi is a biomarker of interest, c is the range of biomarker thresholds and di is

an indicator for the true underlying state of the patient; 1 if the patient has experi-

enced the event of interest, and 0 otherwise. The area under the receiver operating

characteristic (AUROC) curve, shown in equation 2.10, provides a measure of dis-

crimination over the full range of the biomarker.

AUROC = Pr{yi > y j|di = 1,d j = 0} (2.10)

Equation 2.10 reveals the direct intuition for the value of the AUROC. If one were to

compare any two randomly selected patients (patients i and j), the AUROC corre-

sponds to the probability that the biomarker would correctly order these patients in

terms of their probability of experiencing an event. This provides a value between

0 and 1, where 1 is perfect discrimination, and 0 is perfectly incorrect discrimina-

tion12. 0.5 corresponds to random chance discrimination, and would be if we were

12In reality the scale is from 0.5 to 1, since all one needs to do to have improved discrimination if
the AUROC is < 0.5 would be to reverse the labels
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to flip a coin independent of the biomarker to determine patient status.

These concepts can be extended into the time-series domain, by defining a

clinically meaningful time horizon (t, t +∆t] over which this evaluation will take

place. In particular, we are interested in the ability for a model to correctly rank

the mortality predictions over ∆t for all pairs of patients based upon their baseline

characteristics and their observed longitudinal biomarker up to the current moment

in time (t), as shown in equation 2.11.

T P∆t
t (c) = Pr{yi > c|Ti ≤ t} (2.11)

1−FP∆t
t (c) = Pr{yi ≤ c|Ti > t}

An important consideration for such discrimination measures is that they now de-

pend on the starting time of interest (t), since this will effect the number of patients

at risk of the event, and the time horizon of interest (∆t). So while it is possible

to collapse this measure into a single number of overall discrimination, as with

AUROC, it may be more useful to interrogate the model over a range of different

starting times and time horizons to understand the strengths and weaknesses of the

model over time.
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Chapter 3

Data Model Evaluation

A good clinical data model, or “common data model” (CDM) is vital to a success-

ful EHR driven data collaboration. In 2003 Moody and Shanks wrote their seminal

paper on an empirical evaluation framework for data models [161]. Their work

highlighted the large inefficiencies with which data models are most commonly

developed; often relegating any formal evaluations until after data have started to

flow between organisations. The Moody and Shanks framework was extended to

the comparative effectiveness research area by Kahn et al in 2012 [162] who devel-

oped an evaluation framework through which any CDM should be scrutinised. This

approach considers eight domains: completeness, integrity, flexibility, understand-

ability, correctness, simplicity, integration and implementation. These domains (de-

fined with specific examples in table 3.1) form the basis of the data model evaluation

undertaken in this chapter. The scope of this evaluation is intentionally limited to

the CC-HIC CDM itself, rather than data populated in the model, which is evaluated

in Chapter 4 (page 107).

In many respects, the CC-HIC data model can be thought of as an extension

to the third version of the ICNARC data model. The ICNARC data model fo-

cuses of storing demographic and physiological data at the point of admission to an

ICU. The CC-HIC data model extends these concepts into the longitudinal domain,

adding new concepts to cover the entire period under critical care. The CC-HIC

data model is specified in its entirety by an XML Schema Definition (XSD); the

blueprint against which Extensible Markup Language (XML) can be written.
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The CC-HIC data model is an episode centric model1, in that an episode has a

strong structural representation, while all other concepts are considered attributes of

an episode. In this way, a concept cannot exist in the CC-HIC data model, without

being a component of an episode. Concepts within the CC-HIC data model are

connected through a simple nested hierarchy; concepts are related via parent and

child relationships.

1here and throughout, when referring to “episode” this is always shorthand for “an ICU episode”;
a continuous period of critical care, within the same physical location.
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Term Description Example

Completeness Does the data model meet all research requirements? The data model can express all concepts required by a prototypical
study question

Integrity Does the data model enforce relationships and constraints so that the
original use of the data is represented without significant data loss?

The data model can express the relationships that are common in
healthcare data without the need for excessive deduplication or de-
confliction of data. Examples include the relationship between: sam-
ples and results, patient and episodes, hospital locations and patients

Correctness Does the data model conform to good data modelling practices? The data model is normalised to a degree that facilitates high quality
research

Flexibility Can new concepts be added, old concepts removed, or data represen-
tations changed to meet ongoing needs?

a previously undefined concept (like COVID-19 status) can be in-
cluded without structural change to the data model, or significant
resource requirements

Understandability Is the data model and its contents understandable to an inclusive
range of stakeholders (clinicians, scientists, statisticians, data engi-
neers)?

Domain experts with training that is typical in the field can interpret
the data model, without requiring significant additional training

Simplicity Does the model add unnecessary complexity that could be removed? The data model can be interrogated and data extracted by an appro-
priately trained researcher

Integration Is the model consistent with the models employed by external col-
laborators or elsewhere in the organisation?

The data model consistent across HIC themes facilitating multi-
domain collaborations. The data model uses international standards
(such as OHDSI and SNOMED.)

Implementation Is the data model implementable with current resource restrictions?
Are there reasonable modifications of the model that would make it
more readily implemented under the available resources?

The data model is written in a language that is straightforward to use
in the secure restricted environment of the UCL DSH

Table 3.1: Summary definitions and examples from the data model evaluation framework developed by Kahn et al [162]
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3.1 Completeness
The CC-HIC data model can be considered “complete” if it meets all the require-

ments to support the proposed research use. Primary cohort statements for the sepsis

and hyperoxaemia studies are therefore provided against which the data model can

be evaluated for potential utility.

3.1.1 Cohort Definition: Sepsis

The proposed sepsis cohort includes all index episodes for adult patients within

the CC-HIC network with a diagnosis of sepsis within the first 24 hours following

admission. This cohort definition allows maximum exploration of biomarker mor-

phologies following the onset of sepsis. Patients with sepsis can be identified from

an EHR by the triangulation of a subset of the following elements of the CC-HIC

data model:

1. diagnostic codes indicating sepsis (or infection).

2. evidence for the onset of new organ dysfunction (which by definition requires

consideration to be made for patients with pre-existing organ dysfunction, for

example, recipients of dialysis).

3. treatment patterns suggesting deterioration in response to infection. For ex-

ample, starting or escalating antibiotics.

Microbiological evidence of infection could also be used in this respect, however

there are some flaws in how this concept is represented in the CC-HIC data model

that likely preclude its use. Discussion of this will appear in greater detail in Section

3.2 (page 97).

The CC-HIC model is episode centric, and each episode is tagged with an

attribute for the primary diagnostic code for the episode using ICNARC codes; a

controlled terminology. This is an established standard used by most ICUs in the

UK. These codes are specific to the ICNARC data submission process and are un-

likely to be persisted within any EHR. The use of ICNARC codes may therefore

incur an implementation penalty, as it seems likely that the CC-HIC data submis-

sion would require supplementation from an existing ICNARC data pipeline. Most
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UK hospitals collate diagnostic information aligned to SNOMED and ICD-10. The

CC-HIC data model could possibly have greater generalisability by using codes

from these ontologies in addition to (or instead of) the ICNARC codes. Reliance on

an ICNARC dependency may have the unintended consequence of restricting the

research scope of the CC-HIC data model.

In order to identify organ dysfunction, the query would require the co-

ordination of a number of concepts that are needed to calculate the SOFA score.

The CC-HIC data model expresses most of these concepts straightforwardly, with

the exception of ventilation which warrants further discussion. A number of con-

cepts that are helpful in accurately describing ventilation are notably absent from

the CC-HIC data model. This includes:

• the patient airway status, which is currently limited to the use of endotracheal

or tracheostomy tubes only.

• the method of oxygen delivery is missing in its entirety. Examples include:

facemasks, endotracheal tube, nasal cannulae etc.

• certain specific ventilator settings, most pertinently the different modes of

ventilation.

• end tidal CO2 monitoring, which is ubiquitous when delivering ventilation in

the UK.

• certain intermediary methods of oxygen delivery are missing, such as high

flow nasal cannulae. These are not strictly “ventilation” per se but form part

of the gamut of respiratory therapies that are used in co-ordination with ven-

tilation.

Further, concepts that are used to represent ventilation in the CC-HIC data model

may not exist verbatim in the source EHR. For example, “ventilation” itself is listed

as a concept within the CC-HIC data model with the permitted options: “invasive”

and “non-invasive”. Generally, ventilation is not documented in this way in a source

EHR. Patient documentation is typically based upon directly observed features of

the patient. It would have been preferable to have represented all these directly

observed raw concepts that are typically present in the source EHR, over which
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Episode 1 Patient: No 0001

Episode 2 Patient: No XXX

Episode 3 Patient: No 0003

Episode 1

Patient: No 0001

Episode 2

Patient: No 0002Episode 3

episode centric patient centric

Figure 3.1: Episode centric (left) vs patient centric (right) data model views. In the episode
centric approach, the patient becomes an attribute of each new episode, neces-
sitating duplication of this information across episodes. Should an error occur
in some data used for linking (for example, missing information as indicated by
“XXX”) the likelihood of a successful patient match is reduced. In the patient
centric view, patient level information is abstracted away from the episode, and
a direct relationship is instead maintained

a “ventilation phenotype” could be defined and validated against a subset of data.

As a result, some misclassification bias may be introduced into any analysis when

studying ventilation, as a base limitation to the CC-HIC data model.

Pre-existing organ dysfunction is well defined in the CC-HIC data model, and

is a required component of basic data capture on all intensive care patients in the

UK. Excluding the components of SOFA that show pre-existing organ dysfunction

is well supported by the CC-HIC data model and should be trivial.

To focus on index admissions, readmissions must be excluded. This is depen-

dent upon correctly identifying patients across repeat episodes. Since the patient

is an attribute of an episode, patient details are duplicated across readmissions, as

illustrated in figure 3.1. This increases the likelihood that redundant patient in-

formation would misalign between episodes. The patient specific attributes in the

CC-HIC data model against which linking is possible include: NHS number, date

of birth, hospital number and post code. All these elements are fallible as a method

of linking, because they could be incorrect or missing between episodes; problems

that are well known to feature in healthcare data [163, 164, 165, 166]. Patients may

move house, or be assigned a new NHS number or hospital number as part of stan-

dard administrative reconciliation. As a result, readmissions can be identified, but

the existing data model is susceptible to misalignments.
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3.1.2 Cohort Definition: Hyperoxaemia

The proposed hyperoxaemia cohort includes all index episodes for adult patients

within the CC-HIC network who can provide at least one arterial blood gas sample.

This cohort definition provides a pragmatic cohort for the exploration of the poten-

tial association between the cumulative exposure to hyperoxaemia and outcomes.

The CC-HIC data model represents the components of a blood gas sample

as separate (non-linking) concepts. Results from a single blood gas sample must

therefore be connected post-hoc based upon their sample times. For each blood

gas component, a meta-data label is used to assign the anatomical source as either

arterial or venous. This approach leads to the duplication of anatomical information

across many linked concepts, similar to the duplication of patient information across

multiple episodes seen previously. This is a missed opportunity, since concepts from

the same blood gas are invariably stored as a linked panel within the source EHR.

This data representation places a high burden of responsibility on each contributing

site to manually curate blood gas data. Downstream data quality evaluations will

be necessary to ensure data integrity prior to use. Restricting the use of anatomical

labels to only arterial or venous may also prove problematic, since capillary and

extra-corporeal2 sources are also common potential sources for these samples in

UK ICUs.

3.1.3 Time Cadence Specification

The CC-HIC data model provides an unenforced requirement3 that longitudinal data

concepts are delivered hourly. This may be problematic for concepts that are nat-

urally recorded at a higher frequency than hourly, for example, vital signs. This

forces data engineers to make a decision to either ignore the requirement, or to

down sample raw data to the hourly cadence. This encourages both divergence in

how data is to be represented, and data loss between the source EHR and the data

that analysts will see. There appears to be little advantage to this approach since

data storage limits are not a research restriction.

2A sample taken from blood that is circulating through a device external to the body.
3In that no specific XML validation has been implemented to enforce this requirement.
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3.1.4 Medicines Administration

The route and method of administration for a medication in the CC-HIC data model

are expressed via their schema hierarchy. For example, propofol, a drug given in-

travenously as a continuous infusion is encoded as follows:

1. drugs.

2. CNS.

3. sedatives continuous infusion.

4. induction agent.

5. propofol.

Since a short infusion is synonymous with a bolus drug administration, and units

are not specified in the data model, there is no way to identify if the numerical value

supplied refers to either of the following patterns:

1. a bolus of a drug, where the numeric value indicates the total dose adminis-

tered in mass of drug (e.g. micrograms).

2. an infusion of a drug over a defined period of time, where the numeric value

indicates either the total dose infused or the rate of drug administration over

a defined period.

This problem is illustrated in figure 3.2 where the same data is illustrated under

these two different interpretations. The lack of units within the data model renders

either interpretation challenging to implement in practice. In ICU, where many

drugs are given as continuous infusions, but for different reasons, this approach

renders the drug components of the CC-HIC data model at risk of misalignment

between contributing sites, and misinterpretation by analysts. A preferred approach

would be to reduce ambiguity by adding units and route of administration as explicit

attributes of each medication, allowing these concepts to be represented in the CC-

HIC data model without transformation or ambiguity. Additional scrutiny of drug

administrations will likely be required before an analysis uses these data.
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Figure 3.2: Theoretical example of drug infusion representation in the CC-HIC data model.
Propofol is used as a motivating example, since it can be given as both bolus
and continuous infusion. Top panel: values have been interpreted as a con-
tinuous infusion of drug, with each new value translating to a infusion rate
change. Middle panel: values have been interpreted as bolus administrations of
the drug. Bottom panel: original underlying data displaying a mix of adminis-
trations. In all cases, units remain unknown.

3.1.5 Representation of Missingness

One of the main challenges in EHR driven research is the presence of informatively

missing data patterns [167]. Data in EHRs can be missing because:

• patients are predominately sampled during hospitalisation, coinciding with a

period of acute ill health.

• sampling occurs more frequently in sicker patients.

• patients can move out of area, or seek treatment for a particular aspect of their

health at different institution, basing that decision to move partly or wholly

on their health.

• salient negatives are not typically captured in a structured way in an EHR.

Examples would include:

– past medical history conditions are recorded if they are present, not if

they are absent.

– a useful counter example is smoking status, which is routinely recorded
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if the patient is a non-smoker. This is atypical and occurs in this in-

stance because there are financial incentives available for UK hospitals

to document smoking cessation.

A key difference in requirement between a data model to support EHR driven

research, and a data model to support a disease registry is how missingness is repre-

sented. In a disease registry, where data is collected by hand, salient negatives like

“patient does not have asthma” can be collected and made explicit. When moving

to a data model to support larger scale EHR research, implicit missingness becomes

the norm, and one must generally assume that missing data is synonymous with a

negative. This approach can have deleterious consequences to inferences [9].

Regardless of the interpretation of missing data, it is preferable to have some

consistency within a data model as to how missing data should be handled. The

CC-HIC data model does not represent missingness in a consistent way. Some

comorbidities are listed explicitly, with both positive and negative assertions. It is

likely that in many cases, the negative assertions will not be possible to complete

(since they are not stored in the source EHR). This may cause confusion during

analysis over what constitutes a confirmed negative, and what constitutes missing

data.

3.1.6 Specificity to Intensive Care

The CC-HIC data model is tailored specifically to an application in intensive care.

Examples of this specificity include:

• the use of ICNARC diagnostic codes.

• key events are linked to the ICNARC temporal schema.

• comorbidities are limited to those of the ACPAHE-II score.

• the base unit of the data model is an ICU episode, with any other structural

hospital elements (like hospital admission time) expressed in relation to that

episode.

This is a side effect of the CC-HIC data model being developed as an exten-

sion to the ICNARC data model. This focus on the episode centric view limits the
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potential usefulness of the data model, including for intensive care research. In both

sepsis and hyperoxaemia studies to follow, it would have been useful to have seen

the hospital events that led up to ICU admission. If sepsis is the reason for admis-

sion to the ICU, then its onset will likely have physiological markers that exist prior

to admission to the ICU. Patients will likely receive a non-ignorable amount of oxy-

gen in the lead up to their ICU admission. At present, the CC-HIC data model is

aligned to the CC-HIC project governance, in that only data pertaining to intensive

care is to be collected. There would be numerous advantages to broadening the data

model in this respect, but we should acknowledge the non-trivial changes to project

governance and data sharing agreements that this would require.

3.2 Integrity & Correctness
Integrity and Correctness are reviewed jointly as they are overlapping terms as ap-

plied to the present scenario. Integrity reviews the relationships and constraints that

are enforced by the data model. Correctness reviews whether or not the data model

conforms to good data modelling practices including appropriate normalisation. Is

it possible for the data model to faithfully represent the natural biological relation-

ships that exist in the target data, without information loss?

3.2.1 Model Normality

The CC-HIC data model is an episode centric model that conforms to Boyce-Codd

unnormalised form (UNF) [168]. Data normalisation is a set of principles used to

improve the quality of data management. Specifically, the goals of data normalisa-

tion are to:

1. reduce data duplication.

2. prevent data anomalies.

3. ensure referential integrity.

4. simplify data management.

The Boyce-Codd categorisation is used to define levels of normalisation from

UNF (unnormalised form) to level 6NF (6th normalised form). Each additional
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no duplicates of the primary key

no repeating groups

relational columns are atomic

no functional dependencies
on candidate keys

no transitive functional dependencies
on candidate keys

UNF 1NF 2NF 3NF

normality

attribute

missing

present

Figure 3.3: Boyce-Codd levels of normalisation. Each additional level of normalisation
adds a new attribute to faciliate the primary objectives of data normalisation.

level of data normalisation automatically includes the features of the previous level,

while adding additional requirements. 3NF is generally considered a robust grade of

implementation, and is the standard expressed by the OHDSI common data model

[17]. The attributes associated with each level of normalisation from unnormalised

to third normalised form are shown in figure 3.3. With respect to the cohort defi-

nitions previously provided, and the likely more general case uses of the CC-HIC

platform, the UNF representation of the CC-HIC data model is suboptimal.

In adopting UNF, the CC-HIC data model expresses some relationships that do

not exist, while lacking appropriate referential integrity for important relationships

that do. As an illustrative example, episodes contain the attribute of:

• an NHS number.

• a hospital death.

• a GP code.

• physical characteristics such as sex, height and weight.

Naturally, these concepts belong to a person and not an episode. When patients

are re-admitted, move between physical ICU locations, or transition between levels

of care (events that are all commonplace), duplication of information occurs, and

therefore data reconciliation must take place. A primary goal of data normalisation

is to make this form of reconciliation unnecessary.

Similarly, episodes are forced to carry semantic representations of systematic
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healthcare components. For example, the bed configuration of an ICU is attached

to each and every episode. In reality there is no meaningful representation of this

concept at the episode level, and so in practice it is left incomplete by contributing

sites.

In a best case scenario, UNF is an inefficient method to store these data. In

practice, it encourages conflicting data patterns, necessitating manual data reconcil-

iation often without enough local knowledge to make appropriate decisions.

Microbiology & Sample - Result relationships

A commonly encountered relationship in healthcare data is the “sample” to “result”

relationship. This occurs when a patient is sampled (blood, tissue, vital signs etc.)

and a time delayed result is reported back. The CC-HIC data model contains no

support for these common relationships, and so only a single time is afforded to any

time varying data concept.

This “sample” to “result” relationship is overtly problematic for a number of

areas. The problems associated with blood gas data have previously been discussed.

The problem is critical for microbiology data. A lag of several days commonly

exists between a microbiological sample being taken and the result being made

available. Other data models that do express the “sample” to “result” relationship

readily demonstrate the discrepancy in the timings of these events. This is shown

in figure 3.4 for a sub-sample of microbiological events from the MIMIC IV data

model.

Microbiological data concepts are expressed within the CC-HIC data model as

four elements, connected through a one-to-one relationship:

1. organism.

2. antimicrobial sensitivity.

3. anatomical site.

4. date and time of microbiology culture measurement.

Since the relationship between microbiological data concepts in HIC is one-to-

one, there is no reasonable way to represent the following characteristics of these
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Figure 3.4: Time difference between “sample” to “result” as found in the MIMIC IV
database. Time differences are from the “store time” and “chart time” for val-
ues which represent when concepts were first entered into the EHR, and then
subsequently clinically validated when cultures became available.4

data:

1. the difference between sampling time and reporting time.

2. organisms with multiple sensitivities to different antibiotics.

3. samples that have been sent but are yet to be reported.

4. samples that have been sent but have yielded negative results (which is typ-

ical). This final point is possible to represent, but encourages missing data

patterns, with an inability to distinguish the origins of the missing data.

This example in particular draws attention to the limitations of the CC-HIC model

for concepts that have non-trivial relationships; highlighting the challenges faced

when translating complex clinical data into a CDM.

3.2.2 Datetime attributes

The CC-HIC data model makes a semantic distinction between time varying and

time invariant data. For example, height and weight are given time invariant quali-

ties (they cannot change within the model). This is not directly problematic unless

an analysis is required in which these items are anticipated to change. Because these

elements have been hard coded into the data model, any changes to represent time

4With thanks to Lingyi Yang from the Oxford DataSig research group for identifying and con-
tributing this extract from MIMIC IV.
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invariant data concepts as time varying would require a modification to the schema,

likely leading to backward compatibility issues. An analysis that requires time in-

variant concepts to be captured in time series would not be able to proceed under

the current specification. The most likely candidate data element for which this is a

concern is patient weight, which will change dynamically depending upon the fluid

status of the patient. This is a routine measurement in many medical disciplines,

particularly where the prognosis of dialysis patients is understood to be worse in

patients who experience rapid changes to their weight between filtration sessions

[169].

3.2.3 Non-standard Data Representation

There are several areas in the CC-HIC data model where data concepts are given

non-standard representations. An example is the representation of binary concepts,

which are variously encoded with the character representation of “0, 1”, “N, Y” or

even “1, 2”. Table 3.2 tabulates the occurrence of binary representations within the

CC-HIC data model.

Binary representation Count

0, 1 31
Y, N 2
D, T 1
F, M 1
1, 2 2

Table 3.2: Binary representations implemented in the CC-HIC data model. The broad range
on offer imposes cognitive burden for all users of the data model, and potentially
increases the likelihood of errors during analysis.

The problems with the lack of standardisation are evidenced by the schema

violations that are common with respect to binary data in data submissions. Writing

queries against these data are cumbersome, as one must learn the exact representa-

tion of each and every concept in the data model.

3.3 Flexibility
Flexibility reviews whether new concepts be added, old concepts removed, or data

representations changed to meet continuing project needs.
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All data concepts in the CC-HIC data model are hard coded into the XSD.

As such, there is no capacity for the data model to represent a data concept that

has not been explicitly written into the data model. For brevity, I will refer to

this style of data specification as “strongly specified”. Strongly specified in this

context means a data model that requests a specific data concept, describes exactly

the representation it can take, and does not allow for any data concepts outside this

representation. This is counter to a “weakly specified” model, that may make a

more general request for “all patient physiology” so long as it is expressed in an

appropriate standard. A strong specification can be advantageous, especially when

it is important to represent missingness in an explicit manner. In the context of

secondary use research, this approach does not scale well for two important reasons.

First, as previously highlighted, EHRs do not generally record negative assertions

of clinical details in a structured way. Second, the potential pool of candidate data

concepts in a modern EHR number in the hundreds of thousands. Specifying each

one by hand is likely an impossible task, given even the most generous resources.

Adding new concepts to the CC-HIC data model has proven to be impossi-

ble with currently available resources. Any new data concepts would necessitate

a change to the XSD, and most likely require a re-write of the data pipeline from

each contributing site. During the COVID-19 pandemic, this issue was directly en-

countered. Since there was no means through which a new concept could be easily

added to the data model, there was no way to define which patients were infected

with SARS-CoV-25. Further, new temporary “surge” wards admitting level 2 care

and level 3 care patients were being created at the source hospitals in a dynamic

fashion. Anaesthetic recovery units, operating theatres, and wards were being con-

verted to provide higher level care to patients with COVID-19. Patients on level 1

care wards also started to receive therapies that would normally have been admin-

istered within a level 2 care or 3 unit. These structural elements could not be added

to the data model, and so a selection bias had therefore been introduced into data

contributed to the CC-HIC, through the exclusion of patients attending these new

5The ICNARC coding method does allow for suspected or confirmed “pandemic influenza”
which could have been co-opted for use.
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surge wards.

Ultimately, modification of the CC-HIC data model proved too great a chal-

lenge given the available resources, and no modifications were implemented. The

importance of considering the flexibility of a data model is brought sharply into

focus by these events. Although data sharing permissions for the CC-HIC were in

place at the time of the COVID-19 pandemic, the inflexibility of the data model

prevented any access to these data.

3.4 Understandibility
Understandability reviews whether the data model and its contents can be under-

stood by an inclusive range of stakeholders, for example clinicians, scientists, statis-

ticians and data engineers.

The XML representation of the CC-HIC data model is complex. In particu-

lar, there are many superfluous nested levels, while tightly connected concepts (for

example, a heart rate, and the time that the heart rate was measured) are stored in

logically discrete compartments. This makes reviewing the XML challenging, par-

ticularly within the UCL data safehaven (DSH) where specialist tools for reviewing

XML are not available. This presents a barrier to analysts and clinicians who typ-

ically have vastly more experience working with flat files or relational databases,

than with complex nested data structures. This barrier set the early project goal to

develop the cleanEHR package, the primary function of which was to remove data

from the XML data model so that it could be analysed.

3.5 Simplicity
Simplicity reviews whether the data model adds unnecessary complexity that could

be removed, or lacks complexity where it is necessary.

The previous arguments highlight the inherent lack of balance in simplicity for

the CC-HIC data model. In an ideal situation, a data model needs to be only as

complex as is strictly necessary to support the scope of research. Fundamentally,

the balance of complexity for the CC-HIC data model is not well calibrated to its

research goals. Examples of this mis-balance are highlighted in table 3.3
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Too simple Too complex

Unnormalised form Disaggregation of date time data concepts

No support for sample-results
Mixed representations of basic data elements
e.g. binary data representations
Bespoke non-standard data hierarchies

Table 3.3: The balance between design simplicity and complexity. For many important
aspects of the CC-HIC data model, the balance is suboptimal to support research.
Many areas are over engineered without any return for the researcher, while
important structural elements are missing.

3.6 Integration
Integration reviews the alignment of the data model to other models and domains

within the organisation.

3.6.1 Semantic Interoperability

Controlled clinical terminologies exist to help define healthcare concepts in precise

terms. The most widely implemented medical ontology is systematised nomen-

clature of medicine (SNOMED) [170, 171]. In healthcare research, alignment to

semantic standards or “semantic interoperability” is vital to ensure that two organ-

isations are referring to the same data concept when intending to do so. If ambigu-

ously specified, multiple sites may contribute a data concept in different ways and

systematic differences could be introduced to the data as a result.

To illustrate this issue, a common biomarker—C-reactive protein (CRP)—is

represented across four themes of the Health Informatics Collaborative in table 3.4.

Two themes do not contribute the data concept. The remaining two contribute the

data concept in very different ways. The differences are as follows:

• CRP is identified by a different code at each site.

• date time information is represented differently.

• units are defined for one site, and not for the other.

• lab reference ranges can be submitted for one and not for the other.

• one submits CRP as a numerical value, the other as a string.

• neither makes reference to an external controlled. terminology

The differences on display for a single common biomarker are extensive. Mul-
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CRP Attribute Critical Care Acute Coronary Syndrome
Reference Data Class Reference Data Class

Value NIHR HIC ICU 0557 Numeric NHIC ACS 91Crp Result String
Units - - NHIC ACS 91Crp Unit String
Date NIHR HIC ICU 0800 DataClass NHIC ACS 91Crp Collected date String
Time NIHR HIC ICU 0800 DataClass NHIC ACS 91Crp Collected time String

Other - -
Upper and lower bounds
of the test assay also recorded

Table 3.4: Examples of how CRP is representated across different themes of the HIC.

tiplied across the whole data model, this imposes excessive resource requirements

on each contributing site, as each data extract must be bespoke to every theme of

the HIC. Any collaboration between themes would require an extensive data map-

ping exercise, following which an agreed common data representation would still

be required for research to take place. This approach is quite distinct to the goals of

semantic interoperability.

3.7 Implementation
Implementation reviews if the data model is implementable with current resources,

or if any reasonable modifications could be made to facilitate implementation. Since

the Kahn evaluation was orientated toward a model appraisal prior to sharing data,

this section is perhaps less relevant after the fact.

Following implementation of the XML pipeline, many sites were unable to

provide continued support as errors were found. Instead, bespoke data patches as

CSV files were favoured that could be integrated into the CC-HIC research database

centrally. From a research provenance perspective this was not ideal, but was nec-

essary for the research goals to be viable. This highlights the high resource cost

associated with implementing the XML pathway within NHS organisations.

3.8 Conclusions
Overall, the CC-HIC data model evaluates suboptimally against the Kahn data

model evaluation framework. As a positive, the data model was developed with

reference to an existing gold standard data model (the ICNARC data model) that

itself has supported more than a decade of high quality research in intensive care. It
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would have been reasonable to expect that the CC-HIC data model—as a pragmatic

extension to the ICNARC model—would have evoked a more positive evaluation.

However, many of the features that made the ICNARC data model perform well,

have not translated to support the representation of a critical care EHR in a research

ready format. In particular, the CC-HIC data model was developed without refer-

ence to international standards in data modelling or controlled ontologies, both of

which were in widespread use at the time of its creation.

Owing to the constraints imposed by the data model, caution needs to be exer-

cised where clinical research is conducted with the CC-HIC data model. Rather than

enable or facilitate research, the CC-HIC data model could impede such endeavours

by failing to protect against erroneous data representations. A formal evaluation of

data quality is therefore essential, which follows in Chapter 4.

Implementation of the CC-HIC data model in XML was a laudable goal. In

practice, this created more problems for implementation than it has solved. XML

adds a layer of complexity, and lacks familiarity amongst the NHS data engineers

who are required to support the data pipeline. This layer of complexity is difficult to

justify, since many of the special features of XML (for example, complex validation

rules) have not been implemented.

In view of the changes that have been observed to the delivery of critical care

during the COVID-19 pandemic, it is likely that new features will need to be sup-

ported by the CC-HIC data model. This includes adding new data concepts and

relationships. It would be prudent to review whether or not extending the CC-HIC

data model is a worthwhile endeavour, given its shortcomings. It is the recommen-

dation therefore of this evaluation, that the CC-HIC data model should be scheduled

for discontinuation, in favour of implementing an established international standard,

for example the OHDSI common data model.



Chapter 4

Data Quality Evaluation &

Extraction

It is paramount that prior to conducting any clinical research on secondary use data,

its quality must be systematically evaluated. Researchers are often distant to the

point of data entry and may not posses full knowledge of the clinical origins of

healthcare data or the peculiarities of the research data pipeline. As a result, they

may be content to perform superficial checks of summary statistics without a sys-

tematic approach or underlying theoretical basis to support the discovery of com-

mon errors that plague routinely collected healthcare data. Sections 4.1-4.2 provide

the theoretical background for data quality evaluation from the motivation of sys-

tematic error discovery. inspectEHR [6] is introduced in Section 4.3 as software

developed as a contribution to this thesis for the practical implementation of this

theory. wranglEHR [5] is introduced in Section 4.4 as software developed as a

contribution to this thesis for the standardised extraction of data from the CC-HIC

research database. Principal findings from the data quality evaluation are provided

in Section 4.5, with motivating examples provided to illustrate errors that are com-

mon, important, or have particular relevance to the clinical studies that follow. Sec-

tion 4.6 provides a discussion of the quality of data within the CC-HIC research

database, and contrasts the CC-HIC as a research platform with other similar re-

search projects. Concluding remarks and a set of recommendations for future im-

provements are provided in Section 4.7.
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4.1 Background
The terms “quality control (QC)” and “quality assurance (QA)” are frequently ap-

plied, particularly in the adjacent field of healthcare data engineering [172]. I have

chosen to avoid this terminology. Problematically, one cannot “control” the quality

of data outside the source EHR if the error exists within the EHR itself. Control

in this sense implies cleaning or removal of erroneous data patterns, which may in-

troduce bias into the cohort [173, 174]. Decisions over which data to exclude from

analysis are best left to the analysis stage itself. In a best case scenario, the research

database is a perfect reflection of the source EHR, including all the errors that the

source EHR contains. Since the underlying source EHR is both dynamic and com-

plex, it is inevitable that new errors will manifest, possibly even in areas thought to

be previously of “high” quality. “Assurances” of data quality are therefore unlikely

to be permanent. Instead, I favour the term “quality evaluation (QE)”, since it is a

more accurate description of the process that follows. In this spirit, the goal of QE

is not to:

• facilitate the production of a “clean” or “cleansed” dataset.

• provide assurances that the source data are of high quality.

• control the quality of data.

Rather, the specific goal of QE as presented is to systematically identify and label

data with their potential sources of error. This provides a common benchmark—

based on expert clinical domain knowledge—against which analysts can make de-

cisions on what data require modification, what to exclude, and what the conse-

quences of such actions might be.

Figure 4.1 shows the current CC-HIC data pipeline, with the points where

current QE takes place. This includes:

1. source validation. Confirmation by local sites that the extracted XML meets

the data model specification and that data are an accurate reflection of the

EHR.

2. central XSD validation. Technical validation that contributed XML conforms

to the specification of the CC-HIC data model XSD.
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EHRS XML interchange

BRC Hospitals UCL Data Safe Haven

ICUs

Data exports

Analysis Research output

Public Domain

Supplementary data
e.g. ICNARC

inspectEHR

Site feedback

1. Source validation

2. XSD validation 3. Database constraints

5. Inferential

4. InspectEHR

Figure 4.1: The current CC-HIC QE pipeline. Areas where data QE take place are shown
in blue boxes. Places where there is missed opportunity for data QE are shown
in red.

3. application of database constraints. XML data can be read into the research

database without producing errors related to data type conformity or referen-

tial integrity.

4. central systematic QE. Implemented by inspectEHR [6] to be discussed

within this chapter.

5. inferential. Ongoing (and often informal) QE performed when analysts in-

vestigate the multivariate properties of data through modelling. For example,

the reporting of spurious findings.

inspectEHR [6] is a data QE software package written as a software contribu-

tion to this thesis. The primary objectives of inspectEHR [6] are to:

1. provide a comprehensive and transparent evaluation of data quality within the

CC-HIC research database.

2. non-destructively append research data with QE meta-data labels thus facili-

tating:

• a consistent approach for interpreting data quality.

• standardisation of analyst work flows within an environment where er-

roneous data are common.

• persistence of data quality labels for reusability and reproducibility.
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4.2 Methods
The theoretical basis for the QE implemented by inspectEHR [6] is drawn from the

standardised framework proposed by Kahn et al [175]1. This framework consoli-

dates much of the prior research in this field from the Data Quality Collaborative

(DQC) [176], as well as the The Observational Health Data Sciences and Infor-

matics (OHDSI) data validation framework, known as Achilles [177]. The design

principles of inspectEHR [6] itself have been heavily influenced by The Turing Way

[178]. The Turing Way is an open source set of guidelines designed to facilitate high

quality reproducible data science. An overview of how the end user is expected to

interact with inspectEHR [6] is provided in the software vignette in appendix Sec-

tion C.1 (page 275).

4.2.1 Kahn Evaluation Framework

The Kahn evaluation framework encompasses three fundamental domains:

1. conformance: does data adhere to appropriate standards and formats?

2. completeness: are data present as expected?

3. plausibility: are data believable within their context?

These are evaluated through two processes:

1. validation: the use of an external gold standard data source that can be used

for corroboration.

2. verification: internal checks of data so that they meet a particular standard or

expectation.

Once data have been extracted and removed from source, the ability to per-

form validation is limited. It follows that local source validation is a vital stage in

developing a high quality research database. However, this, by definition, is diffi-

cult to implement in a central capacity. In lieu of a central gold standard resource

or access to local data, the multi-centre nature of the CC-HIC can be used to im-

plement statistical validation. In this way, each site acts as a control for the others,
1This is the same research team responsible for creating the CDM evaluation framework reported

in the previous chapter.
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and various properties of data can be compared. Any differences will logically ei-

ther be attributable to case mix variation or error2. For continuous data, this can be

performed by applying the Kolmogorov-Smirnov (KS) test, as shown in equation

4.1.

Dn = sup
x
|Fn(x)−F(x)| (4.1)

Where Dn is the KS test statistic, and Fn(x) and F(x) are two continuous empir-

ical cumulative distribution functions to be compared. The KS test statistic is a

non-parametric measure of the maximal distance between two empirical cumula-

tive distribution functions. It returns a value between 0 (identical distributions) and

1 (maximally different distributions).

4.2.2 Implementation and Error Classification

The Kahn evaluation framework is comprehensive, though it lacks a formal sys-

tem for implementation. In order to implement the Kahn framework, it has been

necessary to develop a classification system for errors. In the present context, two

orthogonal systems of classification can be used to describe errors:

• by origin: do the errors exist in the source EHR, or are they created within the

research pipeline by the Extract Transform Load (ETL) process, or

• by existence: is the error caused by data that are missing, or data that are

present but incorrect.

This proposed system of classification (presented in table 4.1) is, to my knowledge,

unique (although derived from other similar data QE processes [172]). The classi-

fication is a practical one because there are competing requirements between how

captured errors need to be stored within the research database as meta-data, and

what actions analysts will want to take based upon the errors.

The error origin classification system categorises errors by how they arise in

the EHR research pipeline into “source errors” and “transcription errors”. Source

errors occur when research data are a true reflection of the source EHR. Source
2I use error here in the broadest possible sense. This may include for example, differences in the

source EHRs such that one system is able to capture information where another might not.
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Error existence

Missing Present

Error
origin

Transcription
Data omitted from the ETL (e.g.
project time constraints or accidental
omission)

Data modified on ETL (e.g.
transformation error)

Data forcibly omitted (e.g. not
supported by data model)

Data forcibly modified (e.g.
data partially supported
by model requiring work-around)

Source
Data not captured on patients
(e.g. local capture of RRT is
on paper, not EHR)

Data stored in EHR incorrectly
(e.g. heights semantically listed in
cm with range from 0-1.8)

EHR build error (e.g. drop down
menu not presented to user at correct
time)

EHR build error (e.g. weights of
neonates added to maternal record)

Table 4.1: Proposed classification of secondary use errors. RRT = Renal Replacement
Therapy

errors reflect real but erroneous occurrences in the source EHR. In many instances,

this may reflect a systematic error in the source EHR that may need to be corrected

and propagated through the research pipeline3. While the errors continue to exist

in the source EHR, they should be similarly preserved in the research pipeline and

appended with meta-data labels to highlight their known error state. Transcription

errors occur when research data are not a true reflection of the source EHR. Tran-

scription errors form as part of the research ETL somewhere between the source

EHR and research database. Since these errors are part of the data extraction pro-

cess itself, they risk introducing bias into downstream research that could result

in invalidation of research findings. Transcription errors are therefore critical to

identify and correct as a matter of priority. Transcription errors are also to be found

where data loss has occurred as a result of the limitations of the CC-HIC data model

itself, as previously outlined. In this case, some data loss is inevitable, as the CC-

HIC data model cannot fully express all features of clinical data as they exist in

reality.

In the orthogonal error existence classification system, errors can be identified

because data are suspected or confirmed to be missing, or data that are present but

3Indeed, the discovery of such source errors may also require that corrections are propagated into
the live production limb of the EHR.
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Figure 4.2: Extension to the CC-HIC schema for persistent storage of data QE meta-data.
Some connections are omitted to improve readability. Each data quality table
contains a column for “origin” to represent errors as transcription or source.

erroneous. This is a practical distinction, for the purpose of persisting error codes as

meta-data labels in the research database. Since by definition, missing data will have

no linking row within the research database, these missing data require a different

representation in the research database. This alternate view is based upon observed

time periods where data are suspected to be missing. I have extended the CC-HIC

data model schema to allow persistence of data quality meta-data as shown in figure

4.2.
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Four new tables are added to the database schema, based on whether or not

data are missing, or present but in error:

1. episodes quality. Data quality meta-data labels for episodes.

2. episodes missing. Data quality meta-data labels for the temporal regions

where it is likely that episodes are missing, based on prior contribution pat-

terns.

3. events quality. Data quality meta-data labels for events.

4. events missing. Data quality meta-data labels for the temporal regions where

it is likely that events are missing, based on prior contribution patterns.

Tables with the quality suffix make reference to data concepts that are con-

tributed with error. Tables with the missing suffix attempt to qualify the time peri-

ods over which data are suspected to be missing.

Following the creation of these tables it is straightforward, via a table join,

for analysts to take actions based on each of the data quality codes that they store.

Since all data evaluation codes are a positive assertion that a quality concern has

been raised, any research data that does not have a companion row in a data quality

table can be safely assumed to have passed through all procedures without issue; no

news is good news.

While it is not yet implemented, these data quality tables reserve the “origin”

column for whether errors are thought to be transcription or source related. This is

not yet implemented as it would require tight coordination with contributing sites

and addition to the CC-HIC data model. This modification would be important in

the long run so that analysts could identify where erroneous data patterns represent

real data in the EHR, without needing to communicate with each contributing site.

4.3 inspectEHR
inspectEHR [6] is a software package written in the R statistical computing lan-

guage as a contribution to this thesis. It is written in the tidy style, follows best

practices from the R Studio development team where possible, and implements the

modern paradigm of tidy evaluation [179, 180]. inspectEHR [6] uses the S3 class
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extract evaluate export

Figure 4.3: A simplified overview of the extract, evaluate and export paradigm followed
by inspectEHR [6]. Data are extracted from the research database and stan-
dardised. Evaluation takes place by R in memory. Results are standardised and
exported as meta-data labels to be appended to either a quality or missing table
depending upon their context.

system of method dispatch to provide a clean user interface while performing data

quality evaluation.

inspectEHR [6] follows an extract, evaluate and export paradigm as depicted

in figure 4.3. Data are extracted from the research database and standardised so

that all primary data and meta-data (including any salient date time information)

are transformed from the sparse EAV structure of the research database and into a

dense rectangular data frame suitable for further analysis. Other salient informa-

tion required for downstream processing is appended to the extracted data frame

as attributes. This includes the designation of the extracted data item and its class

as assigned by inspectEHR [6]. Classes are implemented within inspectEHR [6] to

allow S3 method dispatch to take appropriate action based on the fundamental prop-

erties of an extract data item, while abstracting away the complexities of the process

to help ensure that the codebase of the package is straightforward to maintain (table

4.2).

The standardised extracted data frame is passed to a number of evaluative func-

tions, each designed to evaluate a specific facet of the Kahn data quality evaluation

Data type Temporal component inspectEHR class Example

Integer Static integer-1d Recent steroid use
Real Static real-1d Height
String Static string-1d Ethnicity
Date Static date-1d Date of death
Time Static time-1d Time of death
Datetime Static datetime-1d ICU Admission
Integer Time varying integer-2d Heart rate
Real Time varying real-2d Central venous pressure
String Time varying string-2d Organism

Table 4.2: inspectEHR [6] class system
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framework. Each evaluative function takes as an input the standardised data frame

produced from the data extraction previously described, and produces as an output

a standardised data frame that can be written back into the research database as

either a quality or missing table. If an evaluative function finds no errors then an

empty table with the correct column headers and class labels are returned for consis-

tency. Each found error is assigned a code that corresponds to the Kahn evaluation

framework. These codes follow the format “process-domain-number” (PP-DD-##)

where:

• process (PP) = either VA (validation) or VE (verification).

• domain (DD) = a two letter short code for the specific Kahn evaluation do-

main being evaluated.

• number (##) = an unique code for the specific evaluation within inspectEHR

[6].

The quality or missing tables produced at the end of the quality evaluation pro-

cess have their own validating functions that are evoked prior to writing out to the

research database. A schematic overview of this process is outlined in figure 4.4.

During each data extraction, a series of diagnostic plots are produced as side effects

and captured external to the research database in a user defined location. Examples

of these plots are contained throughout the rest of this chapter, each of which was

produced by inspectEHR [6] during a live evaluation.

4.3.1 Implementation of the Kahn framework

A detailed breakdown of all the QE procedures currently implemented against the

CC-HIC research database are included in tables 4.3 and 4.4 representing the valida-

tion and verification procedures respectively as previously described. These tables

list all the areas that are covered by the Kahn framework, including those that are

not presently implemented in inspectEHR [6]. Procedures that have been imple-

mented are accompanied with a unique implementation code and indicated in the

tables.
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CC-HIC Research Database

extract()
S3 generator function

evaluate_chronology()
evaluate_duplication()
evaluate_metadata()
evaluate_periodicity()
S3 Methods. Evaluative functions

S3 Class
class:
code_name:

integer_1d
NIHR_HIC_ICU_0108 

S3 Class
class: event_missingness

S3 Class
class: event_evaluation

is_event_evaluation()
Table validation

write_notify()
Table writing

plot()

Figure 4.4: Schematic overview of inspectEHR [6]. Data is extracted from the research
database using the extract S3 generic. This creates an object with an S3
class corresponding to one of 7 prototypical classes supported by inspectEHR
[6] (see table 4.2 for details). The extracted data object is passed to a se-
ries of evaluative methods. Each evaluative method performs a specific data
quality check and must output a data frame of class “event missingness” or
“event evaluation”. These data frames are then validated and exported back
into the research database where they persist for re-use. This entire pipeline is
automated from a single function call exposed to the end user. Further details
of how the end user is expected to interact with inspectEHR [6] can be found
in appendix Section C.1 (page 275).
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Classification Definition Implementation

Value Conformance
(VA VC 01) Data values conform to representational constraints based on external standards. Values that have a specific external stanard

are validated against that standard. This
includes: NHS number, Post Code, IC-
NARC diagnostic codes

Relational conformance
(VA RC 01) Data values conform to relational constraints based on external standards. Structural data missingness conform to

agreed schema
Computational conformance Computed results based on published algorithms yield values that match valida-

tion values provided by external source.
Completeness
(VA CP 01) The absence of data values at a single moment in time agrees with trusted refer-

ence standards or external knowledge
Missingness of a particular item from the
requisite schema at site level

Completeness The absence of data values measured over time agrees with trusted reference
standards or external knowledge.

Uniqueness Plausibility Data values that identify a single object in an external source are not duplicated.
Atemporal plausibility
(VA AP 01) Data values and distributions (including subgroup distributions) agree with

trusted reference standards or external knowledge.
Values share similar distributions com-
pared between sites

Atemporal plausibility Similar values for identical measurements are obtained from two independent
databases representing the same observations with equal credibility.

Atemporal plausibility Two dependent databases (e.g., database 1 abstracted from database 2) yield
similar values for identical variables.

Temporal plausibility
(VA TP 01) Observed or derived values have similar temporal properties across one or more

external comparators or gold standards.
Values share similar temporal distribu-
tions compared between sites

Temporal plausibility Sequences of values that represent state transitions are similar to external com-
parators or gold standards.

Temporal plausibility Measures of data value density against a time-oriented denominator are expected
based on external knowledge.

The sampling frequency distribution of all
data items is uniform across sites

Table 4.3: Kahn data quality evaluation framework: validation process. Where domains have been implemented within inspectEHR the accompanying
evaluation code has been provided.
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Classification Definition Implementation

Value Conformance
(VE VC 01)

Data values conform to internal formatting constraints. Data items are contributed with the correct

data type
Value Conformance
(VE VC 02)

Data values conform to internal formatting constraints. Categorical data items are contributed

with the correct string representation
Value Conformance
(VE VC 03)

Data values conform to allowable values or ranges. numeric data falls within limits of possi-

bility
Value Conformance
(VE VC 04)

Data values conform to allowable values or ranges. categorical data falls within allowable cat-

egories
Value Conformance
(VE VC 05)

Data values conform to allowable values or ranges. date, date-time and time data falls within

possibility
Value Conformance
(VE VC 06)

Data values conform to allowable values or ranges. Episodes cannot be overlapping

Relational conformance
(VE RC 01)

Data values conform to relational constraints. Referential integrity of the database (eval-

uated by application of database schema)
Relational conformance
(VE RC 02)

Unique (key) data values are not duplicated. Primary key integrity of the database

(evaluated by application of database

schema)
Relational conformance Changes to the data model or data model versioning.
Relational conformance
(VE RC 04)

Changes to the data model or data model versioning. Events originate from episodes that have

passed QC
Computational conformance Computed values conform to computational or programming specifications.
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Classification Definition Implementation

Completeness
(VE CP 01)

The absence of data values at a single moment in time agrees with local or com-

mon expectations.

Episodes must have a reconciled end date-

time
Completeness
(VE CP 02)

The absence of data values at a single moment in time agrees with local or com-

mon expectations.

Missingness patterns in data items are a

function of casemix, and not true missing-

ness
Completeness
(VE CP 03)

The absence of data values measured over time agrees with local or common

expectations.

Episodes do not originate within sectors of

time that are sparse for other contributions
Completeness
(VE CP 04)

The absence of data values measured over time agrees with local or common

expectations.

Missingness patterns in data contribution

over time, controlled by each site
Completeness
(VE CP 05)

Metadata are present and complete

Uniqueness Plausibility
(VE UP 01)

Data values that identify a single object are not duplicated. Patient level singular events are not dupli-

cated across episodes. Examples include:

episode start and end time, death, with-

drawal time, body removal time
Uniqueness Plausibility
(VE UP 02)

Data values that identify a single object are not duplicated. Events are not likely duplicates

Atemporal plausibility Data values and distributions agree with an internal measurement or local knowl-

edge.
Atemporal Plausibility
(VE AP 01)

Data values and distributions for independent measurements of the same fact are

in agreement.

Two or more coincident events obey a log-

ical constraint.
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Classification Definition Implementation

Atemporal plausibility Logical constraints between values agree with local or common knowledge (in-

cludes “expected” missingness).
Atemporal plausibility Values of repeated measurement of the same fact show expected variability.
Temporal plausibility
(VE TP 01)

Observed or derived values conform to expected temporal properties. Admission occurs before discharge

Temporal plausibility
(VE TP 02)

Sequences of values that represent state transitions conform to expected proper-

ties.

The chronology of events is correct

Temporal plausibility
(VE TP 03)

Measures of data value density against a time-oriented denominator are expected

based on internal knowledge.

Events occur within episodes

Temporal plausibility
(VE TP 04)

Measures of data value density against a time-oriented denominator are expected

based on internal knowledge.

Events from a particular site demonstrate

similar seasonal patterns
Temporal plausibility
(VE TP 05)

Measures of data value density against a time-oriented denominator are expected

based on internal knowledge.

Events occur with anticipated patient level

periodicity

Table 4.4: Kahn data quality evaluation framework: verification process. Where domains have been implemented within inspectEHR the accompanying
evaluation code has been provided.
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4.3.2 Best Practice Development in Restricted Environments

A major challenge to the development of inspectEHR [6] was the need to implement

the data quality evaluation pipeline within the UCL DSH. There are key differences

between an ideal for scientific reproducibility, which would include version control,

testing of code and the use of reproducible environments [178], and what is possible

in the DSH. These differences are outlined.

Version Control

Version control is a formal method to track changes to project files [181]. As soft-

ware grows in complexity, version control becomes increasingly useful. In the con-

text of scientific software development, version control has two core functions:

1. tracking of the state of the codebase so that research outputs can be associated

with a specific fixed point in the development history of the software. In short,

facilitating scientific reproducibility.

2. management of the interconnected dependencies that may exert downstream

effects if not properly managed. Thus allowing the developer to isolate and

revert any particular changes to the codebase should it be required.

In the DSH version control was not widely available until the latter parts of this

project, making development challenging. As version control support was added

(in the form of git and gitlab4) development was accelerated. Connections could

subsequently be made between any particular stage of development for inspectEHR

[6] and research outputs. It remains a challenge to connect the development of soft-

ware between the DSH and external environments. It is not feasible to review the

entire version control history of a project before exporting from the DSH, and so

there is a practical limitation on exporting any version controlled software from the

DSH. As a result, development either needs to proceed entirely inside the DSH, or

fragments of code can be written external to the DSH and imported. Current work

is ongoing to allow a more streamlined process whereby code could be developed

external to the DSH and mirrored into the DSH in a more automated fashion. This
4git is the version control software, and gitlab is a suite of developer tools that utilise git
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would permit a full version control tree both inside and outside the DSH. The main

obstacles for this ideal include security concerns and a lack of comprehensive test

data. There must be some reasonable guarantee that nefarious code is not going to

be imported as part of this process. Additionally, since much development needs to

take place in proximity to research data, this is only a realistic solution if develop-

ment can take place with test data that is close enough to the original so as to have

utility for development, but without any privacy concerns. This is an ongoing and

as yet unsolved problem.

Testing

Testing code is a critical component of software development, ensuring that re-

search code performs as expected. Failure to properly test research code can have

disastrous consequences [182]. Each of the evaluation functions employed by

inspectEHR [6] has a companion test suite written with the testthat package [183],

which ensures that functions:

• handle anticipated inputs correctly.

• handle unanticipated inputs by failing safely.

• handle all possible cases where the function is sufficiently specific to allow

these options to be enumerated.

• handle a range of appropriate test cases, including edge cases, where the input

options are too numerous to be enumerated in entirety.

The main challenge to writing a testing suite, was the lack of good quality test

data. The overcome this, I created a synthetic test cohort. As a generative cohort,

this had perfect privacy preserving features (i.e. patients cannot possibly be real in

this cohort). Specific tolerances could be set to produce cohorts with certain error

prone characteristics. This was designed to mimic the kinds of errors that were

commonly encountered in reality, and include for example:

• sites that contribute data in different units.

• missing data.

• duplicate data.
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• patients that follow incoherent temporal patterns.

• contribution frequencies that were too high or too low.

Test data were abstracted into their own package “hic.data”, along with com-

mon utilities and configuration files, so that it could be shared as a dependency for

both inspectEHR [6] and wranglEHR [5].

Reproducible Environments

The UCL DSH has evolved in maturity over the course of this project. However,

there remains one key element that is missing as a core element for producing high

quality reproducible research; reproducible environments. Any research output will

be a function of both data and the research environment. This includes the interac-

tion between the operating system, software and hardware. Small perturbations in

how systems are constructed can have surprisingly dramatic effects on research out-

puts [184]. Further, if we wish to repeat a previous study, even when presented with

perfect copies of archived data and all software in the exact state when it was orig-

inally conducted, the interaction with a different research environment may cause

the research pipeline to fail or produce a different result. This problem is largely

solved by the implementation of project containers and virtual machines to create

an encapsulation of the entire operating environment. Owing the security concerns,

a solution to this problem is not currently implemented, though it remains of high

priority to address.

4.3.3 Summary Data Quality Metrics

The quality evaluation process outlined is necessarily verbose, and so it has proven

useful to have a set of summary metrics that help communicate an overall impres-

sion of data quality. Two scoring systems are presented, each providing an appraisal

of data quality at the foundational elements of the CC-HIC data model; episodes and

events (i.e. all individual data elements that are contained within each episode). The

main goal of these metrics is to provide a simple summary measure that is largely

independent of the size of the cohort, or the therapies provided.

The episode score is defined in equation 4.2. Simply, it is the proportion of
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episodes that pass validation, with a penalty applied for large portions of the data

contribution where episodes are highly likely to be missing. Although necessarily

an estimate, this penalty factor is important to include as missing episodes are a

common problem in the CC-HIC database. This penalty prevents an overly opti-

mistic score that would be achieved by sites electing to not submit erroneous data.

∑
Npresent
n=1 I(episoden)

Npresent +Nmissing
(4.2)

Where:

• I(episoden) is the indicator function for whether or not the nth episode pro-

ceeds through the inspectEHR [6] evaluation pipeline without raising an error.

• Npresent is the total number of episodes submitted to CC-HIC.

• Nmissing is the total number of episodes thought to be missing from the submis-

sion. This is based on identifying calendar months within which the number

of daily admissions falls two standard deviations below the seasonal daily av-

erage for that site for ≥ 10 days. This is a somewhat arbitrary cut off, but

does serve to detect deficient episode contribution with little ambiguity, since

such a pattern would be extremely unusual. This penalty therefore is likely to

return a conservative estimate of the number of missing cases.

The event score is defined in equation 4.3. The event score is normalised

against calendar months of data submission for each site. This is because at the

patient or episode level, it should be expected that many data concepts will be miss-

ing; patients do not receive all treatments and investigations in each stay. At the

scale of the month however, it would be reasonable to expect that at least one in-

stance of each data concept in the CC-HIC data model should be observed.

∑
M
m=1 I(conceptm)

∑
T
t=1 I(montht)(eventp/event f+eventp)

T
M

(4.3)

Where:

• I(conceptm) is the indicator function for the mth concept being contributed to
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CC-HIC.

• M is the total number of primary data concepts in the CC-HIC data model.

• I(montht) is the indicator function for the tth month of data submission con-

taining any instances of the concept.

• T is the total number of contiguous months of submission, from the date of

first submission, to the last observed submission in the cohort.

• eventp is the number of events that do not yield any error codes for concept

m.

• event f is the number of events that do yield error codes for concept m.

The primary advantage of these scores is that they encapsulate all aspects of

the data QE process and present the results in an easy to understand format bound

on [0,1] with 1 representing a perfect score.

4.4 wranglEHR
A common statistical work flow (and the one adopted in this thesis) is to repre-

sent data in the so-called “tidy” format [185], that is, a rectangular format with the

following specification:

• one row per statistical unit.

• one column per unique variable.

In this case, the statistical unit is either an ICU episode (where time invari-

ant data are concerned), or a period of time for each patient (often 30 minutes or

an hour)5. This step of extracting data from the CC-HIC research database and

transforming it into a rectangular format is so commonly required, that it was desir-

able to write a software package to standardise this process. The cleanEHR pack-

age [14] originally served this purpose, whereby a user could specify the extrac-

tion requirements via a configuration YAML Ain’t Markup Language (YAML) file.

wranglEHR [5] could be thought of as the spiritual successor to cleanEHR, though

5The underlying EHR rarely stores data more often than at 5 minute intervals, and so this is a
reasonable expected upper boundary. At higher temporal resolutions, the methods described here
are likely to fail
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wranglEHR [5] was written from the ground up as a software contribution to this

thesis. As with inspectEHR [6], wranglEHR [5] is written in the tidy style, follows

best practices from the R Studio development team where possible, and implements

the modern paradigm of tidy evaluation [179, 180]. wranglEHR exposes two main

functions to the end user:

1. extract demographics()

2. extract timevarying()

Both allow flexible data extraction from the CC-HIC research database, ac-

cording to a user specification which is supplied directly as arguments to the above

exported functions. Extracted data are transformed into a rectuangular shape for

analysis, with accompanying meta-data identified and arranged into appropriately

labelled columns. The extraction process can be customised to suit a specific case

use, including:

• setting the desired temporal cadence of the table (i.e. one row per hour, versus

one row per day).

• defining a custom or user specified action if the data storage resolution is

higher than the target row cadence.

The advantage of this approach, is that the data extraction process can be stan-

dardised for a large number of research questions. Accompanying unit tests have

been written to ensure that the data extraction process takes place as expected, and

is consistent across a broad range of requirements. wranglEHR [5] abstracts away

a large amount of code that is required to extract data from the CC-HIC database.

Further, the analyst does not need to take on the cognitive load in remembering

exactly how data is represented within the database, or switch between SQL and

the analysis language of their choice. An overview of how the end user is expected

to interact with wranglEHR [5] is provided in the software vignette in appendix

Section C.2 (page 275).
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4.5 Results
Results are presented in accordance with the format of the Kahn data QE frame-

work. Specific examples are provided to help illustrate important or recurring

themes, or where the area of concern is likely to impact upon the clinical research

studies that follow. Table 4.5 illustrates how the results are to be presented. Results

are provided with the total number times that an error is observed, and the propor-

tion of total errors that this represents. The number of concepts affected by the error

are shown as a means to quantify the breadth of the error in the CC-HIC database.

eval code description count proportion concepts

PP-DD-## Description of the inspectEHR
evaluation code

1,000 1.0×10−3 25

Table 4.5: Example of data quality error results. An inspectEHR evaluation code with its
description are provided. Count: the number of occurrence of this error label in
the CC-HIC research database. Proportion: the proportion of total errors that
this code represents. Concepts: the number of concepts that this error code is
observed against (to a maximum of 255.)

4.5.1 Value Conformance

Data values should conform to constraints defined internally in the CC-HIC data

model, or by appropriate external bodies. Data should be present in the correct

system of measure (i.e. provided in the correct units), fall within an appropriate

numerical range or set, or follow a pre-specified pattern (e.g. post codes should

conform to UK standards). A summary of value conformance errors for the CC-

HIC research database are shown in table 4.6.

Commonly encountered value conformance errors include numerical data that

were contributed in incorrect units, or data that did not conform to the correct pre-

eval code description count proportion concepts

VE-VC-01 Value does not conform to external
standard

12,152 1.35×10−4 6

VE-VC-03 Numeric data falls outside range of
possibility

6,457,616 7.16×10−2 87

Table 4.6: Summary of data quality errors found for the value conformance domain
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specified pattern.

In many cases it is easy to find a solution to data that have been contributed

in the wrong units. FIO2 is one such example where it is contributed variably as

either a percentage (ranging from 21-100%) or a fraction (ranging from 0.21-1).

The distributions of these values exist on a non-overlapping support, are site spe-

cific, and the underlying meaning behind the values is straightforward to imply.

As such, one can be reassured about applying a post hoc transformation to align

all values onto the correct scale. There are situations where such a conversion is

not possible. Noradrenaline—a drug used to constrict the blood vessels and in-

crease blood pressure—is best represented as micrograms per kilogram per minute

(mcg/kg/min). This allows one to understand the mass (and hence dose) of drug

administered. Two sites contributed this concept in what can be assumed to be

millilitres per hour (mL/hr) of an unknown concentration. This representation of

noradrenaline cannot be reconciled into interpretable units as the dose adminis-

tered is unknown without knowing the concentration of noradrenaline used. The

contributed units of mL/hr hold no clinical meaning—implying a range of possible

doses—and so beyond knowing that the patient received noradrenaline, little further

information can be gleaned.

4.5.2 Relational Conformance

Data values should conform to relational constraints, including those that are struc-

turally imposed by the data model and database. A summary of relational confor-

mance errors for the CC-HIC research database are shown in table 4.7. The single

error type identified in this domain was the presence of events that originate from

episodes that did not pass the minimum data quality standard to be considered safe

for research use. Since the episodes themselves were not trustworthy, the data they

contain are also likely to be questionable.

4.5.3 Computational Conformance

Data values that are derived or calculated should be replicable internally and com-

pare positively to external standards. Computational conformance is not presently



130 Chapter 4. Data Quality Evaluation & Extraction

eval code description count proportion concepts

VE-RC-04 Event originates in episode failing
quality evaluation

4,305,829 4.77×10−2 246

Table 4.7: Summary of data quality errors found for the relational conformance domain

implemented in inspectEHR [6]. Calculated fields that would benefit from evalua-

tion would include the APACHE-II score and the daily total of basic and advanced

life support. These are not currently implemented because the source data to re-

calculate and check these fields internally have a high degree of missingness. This

would result in a poor performance in this domain, where the evaluation would,

in effect, be re-evaluating for data missingness (which is already addressed by the

“completeness plausibility” domain) rather than evaluating for computational con-

formance.

4.5.4 Completeness Plausibility

Data should be complete with respect to project specifications, local EHR data avail-

ability and case mix. This completeness should be, within acceptable tolerances,

uniform over time. A summary of completeness plausibility errors for the CC-HIC

research database are shown in table 4.8.

Missing data patterns across the CC-HIC research database are shown in fig-

ures 4.5-4.7. Not all data concepts are provided by all sites. This is not necessarily

a point of concern as sites do not uniformly collect and store data on all concepts in

the CC-HIC data model. Concepts with a high degree of non-contribution included

systematic ICU components, cardiac output monitoring, and certain drugs that are

less commonly administered.

eval code description count proportion concepts

VE-CP-02 Non temporal missing data pattern
in data item

8,956 9.93×10−5 104

VE-CP-04 Temporal missing data pattern in
data item

16,043 1.78×10−4 222

VE-CP-05 Metadata is absent 16,658,827 1.85×10−1 21

Table 4.8: Summary of data quality errors found for the completeness plausibility domain
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Figure 4.5: Data quality and data missingness patterns for the entire CC-HIC research
database. Data concepts that are missing are highlighted in red. The data
quality event score is shown in grey-blue (deeper blue hue indicating a higher
performance).
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Figure 4.6: Data quality and data missingness patterns for the entire CC-HIC research
database. Data concepts that are missing are highlighted in red. The data
quality event score is shown in grey-blue (deeper blue hue indicating a higher
performance).
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Figure 4.7: Data quality and data missingness patterns for the entire CC-HIC research
database. Data concepts that are missing are highlighted in red. The data
quality event score is shown in grey-blue (deeper blue hue indicating a higher
performance).
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eval code description count proportion concepts

VE-UP-02 Event is likely a duplicate 569,482 6.31×10−3 97

Table 4.9: Summary of data quality errors found for the uniqueness plausibility domain

Systematic ICU components are likely missing as there is no logical means through

which an episode centric data model can represent these concepts. Other missing

concepts are site specific and may in places reflect data availability in the source

EHR.

Meta-data showed a disproportionately high degree of missingness, account-

ing for 18% of all error codes generated. Meta-data in the CC-HIC data model of-

ten encodes information that is vital to the correct interpretation of primary data.

For example—and with particular relevance to the clinical research studies that

follow—this includes the anatomical source of a blood gas sample, without which

the sample oxygen characteristics are uninterpretable.

Some important temporal patterns of missingness were observed. This in-

cluded two sites who stopped contributing data for a range of drug infusions yet

were still contributing the episodes. In both cases, the underlying cause of temporal

missing data were back-end changes to the source EHR, causing certain concepts

to no longer be captured properly by local research data pipelines.

4.5.5 Uniqueness Plausibility

Data that describes a singular concept should not be duplicated. It is only possible

for data duplication to occur in CC-HIC among time varying events since, fortu-

nately, there is referential integrity in the CC-HIC data model to prevent such du-

plications occurring in time invariant events. A summary of uniqueness plausibility

errors for the CC-HIC research database are shown in table 4.9.

Data duplications in the CC-HIC research database are rare. In one investiga-

tion of data duplication, the duplicate findings were in fact genuine and existed in

the source EHR. This was attributed to the existence of multiple systems to view

clinical data, each of which had persisted data into the EHR. This is an interesting

example of a “source” type error and it is open to debate as to whether it would be
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eval code description count proportion concepts

VA-AP-01 Values do not share a common dis-
tributions across sites

10,652,827 1.18×10−1 100

VE-AP-01 Two or more events not not obey a
logical constraint

33,102 3.67×10−4 3

Table 4.10: Summary of data quality errors found for the atemporal plausibility domain

beneficial to retain, but label, these particular data values.

4.5.6 Atemporal Plausibility

Data values and distributions should broadly conform to expected patterns. A sum-

mary of atemporal plausibility errors for the CC-HIC research database are shown

in table 4.10. A large proportion of submitted data, across many concepts (11% of

all errors) were found in the atemporal plausibility domain. This is despite setting a

relatively high tolerance for the applied KS test of 0.5, which permits distributions

to diverge from one another by a considerable amount. The large number of errors

generated is in part related to how errors are assigned for all values for the data

concept, since this is a distributional test and therefore applies to every value.
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Figure 4.8 illustrates this distributional check process for two data items, heart

rate and noradrenaline. It is easy to discern from the test, that heart rate performs

favourably, while noradrenaline does not.

4.5.7 Temporal Plausibility

Data value density should meet expectations when evaluated against a time-oriented

denominator. Time dependent data that can be ordered, should appear in the correct

order. A summary of temporal plausibility errors for the CC-HIC research database

are shown in table 4.11.

Key findings of this domain include a high number of events that are reported

from times outside of an ICU episode (20% of all errors) or contributed at a higher

or lower frequency than would be expected (34% of all errors). Information con-

tributed from outside an ICU episode is not a point of concern, other than it high-

lights that the data model has not been applied correctly. The frequency of data

contribution is of concern, and is well illustrated by the urine output concept. The

frequency with which a concept is contributed can be examined by calculating the

time between samples for the same patient. The frequency of urine output (shown

in figure 4.9) is extremely variable across the cohort. Some sites only contribute

hourly data, which makes it extremely unlikely that non-catheterised6 patients have

been included in the cohort. On the contrary, one site rarely contributes hourly data,

making it unlikely that catheterised patients form a large component of these data.

In this example, zeros are variably contributed.
6a catheter is a small tube placed into the bladder. In an ICU, urine output is typically recorded

hourly when such a device is present. Without a catheter, urine can only be measured according to
the patient’s own schedule.

eval code description count proportion concepts

VA-TP-01 Values do not share a common tem-
poral distribution across sites

1,852,155 2.05×10−2 31

VE-TP-02 Chronology of key events is correct 11,778 1.31×10−4 3
VE-TP-03 Events occur outside the timespan

of an episode
18,652,675 2.07×10−1 145

VE-TP-05 Events occur outside anticipated
patient level periodicity

30,962,048 3.43×10−1 151

Table 4.11: Summary of data quality errors found for the temporal plausibility domain
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Figure 4.9: Empirical cumulative distribution functions are displayed. Top panel: value
of urine output. Arrows are imposed to highlight the significant difference
between sites recording zeros. Middle panel: time of day that urine output
concept was contributed. Bottom panel: time (in hours) between samples.
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This is particularly suspicious as an indicator for missing data, since it would be

unusual for a UK ICU to never see any patients with anuria. Confusingly, the distri-

bution of times for urine output events are strikingly uniform between the cohorts.

Therefore, it is difficult to fully reconcile the data for this concept. One can spec-

ulate that the source EHRs store urine output for catheterised and non-catheterised

patients separately and, in some instances, perhaps both have not been entered into

the CC-HIC cohort. Regardless, the data for this concept are suspicious for not

being representative of reality.

Figure 4.10 highlights errors where the temporal order of data concepts is log-

ically incorrect. Timings relating to discharge from ICU, discharge from hospital

and death were particularly problematic. In many instances, this could be attributed
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Figure 4.10: Chronology of key events. Cells highlight occurrences where key events that
can be ordered in time, have appeared out of sequence. Commonly seen errors
include patients: being ready for discharge prior to their arrival in the ICU, and
discharged from hospital before discharged from the ICU.
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to information that occurred from outside the ICU episode (for example hospital

discharge or death) being erroneously connected to an ICU episode in the past or

future.

4.5.8 Episode Characterisation

An area of data quality not evaluated directly by the Kahn framework is episode

characterisation. This is a composite evaluation that requires many of the domains

described previously to coordinate an answer. To be characterised, episodes must

have an unambiguous:

1. start: when did the episode begin?

2. end: when did the episode finish?

3. outcome: did the patient survive or not?

4. patient: to whom does the episode belong?

Further, episodes must originate from areas of the database where data integrity

are not of immediate concern. There are analytic scenarios where these missing

properties could be approached through an appropriate set of methods (e.g. multiple

imputation by chained equations). Here these properties are being employed as

surrogates of overall data quality. It would be highly unusual for the four properties

listed to not be identifiable from the EHR, since they are necessary for healthcare

delivery. Where episodes are unable to provide unambiguous answers to these four

properties, it suggests that the quality of these data has degraded to an unacceptable

level.

The start of an episode is unambiguous in the CC-HIC data model, forming

part of the primary key for the episode, and so mandatory for submission. The end

of an episode is less clearly defined and must be reconciled by correlating the pa-

tient outcome with one of: the date-time of discharge, date-time of death, date-time

of body removal or the last observed physiological data. The episode outcome is

mostly described by a single concept (status at discharge) with support from a sec-

ondary concept for the special case where patients are declared brain stem dead7.

7this is a relatively uncommon event in the CC-HIC database, but does create a situation whereby
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Evaluation code Description n

VA-CP-01 No ICU outcome status 348
VA-VC-01 Invalid nhs number 38
VE-CP-01 Episode end cannot be reconciled 373
VE-CP-03 Episode originates in bad sector 146
VE-TP-01 Episode length ≤ 0 572
VE-UP-01 Duplicate and conflicting death times 199
VE-VC-04 Overlapping episodes 150

Table 4.12: Results of episode characterisation. Evaluation codes are as implemented by
inspectEHR and defined in tables 4.3 and 4.4. A “bad sector” is a period of
time where contribution from a particular site is in question.

Since a person is an attribute of the episode in the CC-HIC data model, then an

incorrect identification of an individual would lead to the undesirable association of

episodes between different patients. This is most commonly seen when the NHS

number is absent, fails to conform to known standards or is contributed as a place

holder (most commonly: “000000000”)8. Exclusion on these grounds is particu-

larly worrisome as invalid or missing NHS numbers have been shown to be more

common in women, ethnic minorities, non-UK born individuals and those with so-

cial risk factors [186]. There is therefore a risk that the CC-HIC may introduce

social bias into analysis by relying on the NHS number alone to identify patients as

unique.

The results of episode characterisation are shown in table 4.12. Episode char-

acterisation reduces the available size of the maximum cohort from 47,932 to 46,658

episodes (97.3%).

Table 4.13 shows the patient characteristics for this primary cohort, stratified

by whether or not they were excluded by failing to meet the minimum specification

for episode characterisation. Episodes that are excluded tended to:

• be for patients with lower weight (though likely not clinically relevant).

• be an emergency admission.

• be a medical admission.

a patient’s body can be retained inside the ICU for a relatively long period of time, while still pro-
ducing physiological data.

8While invalid, the “000000000” placeholder technically passes the NHS number checksum
specification, which is likely the reason why it is used in trusts that require patients to have an
NHS number, even when one has not been issued to a patient.
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• have higher APACHE II scores (i.e. are sicker).

• have much higher rates of cardiopulmonary resuscitation (CPR) prior to ad-

mission (15% vs. 4%).

• have much higher rates of death (61% vs. 8%).

4.5.9 Spell Reconcilliation

A minor modification to the way in which episodes are represented is necessary

before research can proceed. This is because one site in particular starts a new

episode for each patient as they transition between physical ICU sites in the hospital.

This is quite a common occurrence, for example, when a patient transitions from

a level 3 ICU into a level 2 HDU during a phase of recovery from critical illness.

In these instances, we are interested in a contiguous period of critical illness, rather

than when a patient transitions between physical locations, which often occur on

both clinical and administrative grounds (like bed availability). As a result, new

episodes for the same patient that start within six hours of a previous episode, are

linked as the same “spell”.
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Characteristic Overall1 Excluded1 Included1 p-value2

N 47,932 1,438 46,494
Height 1.69 (0.10) 1.69 (0.10) 1.69 (0.10) 0.2

Missing 50 1 49
Weight 75 (65, 87) 73 (62, 85) 75 (65, 87) 0.014

Missing 0 0 0
Sex 0.4

Female 19,663 (41%) 605 (3.1%) 19,058 (96.9%)
Male 28,268 (59%) 833 (2.9%) 27,435 (97.1%)
Missing 1 0 1

Ethnicity
White British 29,503 (62%) 893 (3%) 28,610 (97%)
White Irish 821 (1.7%) 21 (2.6%) 800 (97.4%)
White other 3,280 (6.9%) 87 (2.7%) 3,193 (97.3%)
Mixed white/black 160 (0.3%) 3 (1.9%) 157 (98.1%)
Mixed white/Asian 51 (0.1%) 1 (2%) 50 (98%)
Mixed any other 145 (0.3%) 2 (1.4%) 143 (98.6%)
Asian/Asian British 1935 (4.0%) 58 (3%) 1,877 (97%)
Black/Brit. Carribean 1,197 (2.5%) 24 (2%) 1,173 (98%)
Black/British African 1,505 (3.1%) 31 (2.1%) 1,474 (97.9%)
Black/British other 1,006 (2.1%) 9 (0.9%) 997 (99.1%)
Chinese 261 (0.5%) 7 (2.7%) 254 (97.3%)
Other ethnic group 1,849 (3.9%) 43 (2.3%) 1,806 (97.7%)
Not stated 6,124 (13%) 213 (3.5%) 5,911 (96.5%)
Missing 95 46 49

Admission priority <0.001
Elective 17,206 (36%) 363 (2.1%) 16,843 (97.9%)
Emergency 30,726 (64%) 1,075 (3.5%) 29,651 (96.5%)
Missing 0 0 0

Admission Type <0.001
Medical 25,748 (54%) 871 (3.4%) 24,877 (96.6%)
Surgical 21,793 (46%) 262 (1.2%) 21,531 (98.8%)
Missing 391 305 86

Surgical classification <0.001
NA (medical) 25,748 (56%) 871 (3.4%) 24,877 (96.6%)
Elective 12,396 (27%) 134 (1.1%) 12,262 (98.9%)
Scheduled 2,520 (5.5%) 9 (0.4%) 2,511 (99.6%)
Urgent 2,490 (5.4%) 41 (1.6%) 2,449 (98.4%)
Emergency 2,796 (6.1%) 61 (2.2%) 2,735 (97.8%)
Missing 1,982 322 1,660

Organ system
Cardiovascular 12,477 (26%) 313 (2.5%) 12,164 (97.5%)
Dermatological 356 (0.7%) 7 (2%) 349 (98%)
Endocrine 2,113 (4.4%) 37 (1.8%) 2,076 (98.2%)
Gastrointestinal 8,112 (17%) 180 (2.2%) 7,932 (97.8%)
Genito-urinary 5,308 (11%) 103 (1.9%) 5,205 (98.1%)
Haematological 755 (1.6%) 28 (3.7%) 727 (96.3%)
Musculoskeletal 1,539 (3.2%) 24 (1.6%) 1,515 (98.4%)
Neurological 3,490 (7.3%) 115 (3.3%) 3,375 (96.7%)
Poisoning 812 (1.7%) 6 (0.7%) 806 (99.3%)
Psychiatric 29 (<0.1%) 0 (0%) 29 (100%)
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Characteristic Overall1 Excluded1 Included1 p-value2

Respiratory 10,456 (22%) 263 (2.5%) 10,193 (97.5%)
Trauma 2,094 (4.4%) 57 (2.7%) 2,037 (97.3%)
Missing 391 305 86

Level 2 days (HDU) 2 (1, 3) 1 (0, 2) 2 (1, 3) <0.001
Missing 33 1 32

Level 3 days (ICU) 0 (0, 2) 1 (0, 2) 0 (0, 2) 0.3
Missing 33 1 32

Supported organs (max) 2 (1, 2) 2 (1, 3) 2 (1, 2) 0.017
Missing 5,117 182 4,935

Apache II Score 14 (11, 18) 20 (15, 27) 14 (11, 18) <0.001
Missing 10,685 951 9,734

CPR prior to admission 2,051 (4.3%) 210 (10.2%) 1,841 (89.8%) <0.001
Missing 7 6 1

ICU outcome <0.001
Survivor 43,179 (91%) 422 (1%) 42,757 (99%)
Non-survivor 4,405 (9.3%) 668 (15.2%) 3,737 (84.8%)
Episode open 9 (<0.1%) 9 (100%) 0 (0%)
Missing 339 339 0

Hospital outcome <0.001
Survivor 33,227 (92%) 233 (0.7%) 32,994 (99.3%)
Non-survivor 2,760 (7.6%) 143 (5.2%) 2,617 (94.8%)
Episode open 228 (0.6%) 25 (11%) 203 (89%)
Missing 11,717 1,037 10,680

Site <0.001
A 25,757 (54%) 296 (1.1%) 25,461 (98.9%)
B 5,373 (11%) 345 (6.4%) 5,028 (93.6%)
C 3,935 (8.2%) 120 (3%) 3,815 (97%)
D 8,910 (19%) 542 (6.1%) 8,368 (93.9%)
E 3,957 (8.3%) 135 (3.4%) 3,822 (96.6%)
Missing 0 0 0

Table 4.13: 1Statistics presented: Mean (SD); Median (IQR); n (%). 2Statistical tests per-
formed: Wilcoxon rank-sum test; chi-square test of independence; Fisher's ex-
act test. Percentages provided in the Overall column are column-wise. Per-
centages provided in the Excluded and Included columns are calculated row-
wise.

4.5.10 Summary Data Quality Metrics

The result of the data quality metrics are shown in table 4.14. The episode scores

are promising, with four of five sites scoring above 0.9. Many of the points of

failure are caused by logical inconsistencies in these data. For example, episodes

that finish before they start or those that have conflicting outcomes (i.e. episodes

are tagged with outcomes for “survivor” and “non-survivor” simultaneously.) Since

many of these conflicts are managed internally to EHRs as a matter of routine data
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Figure 4.11: Overview of admissions from a single site. Squares in red indicate days in
which no episodes have been submitted. There is a clear weekend effect vis-
ible, with lower number of admissions on Saturday and Sunday. Two blocks
lasting several months exist where data submission dropped to a very low
level. Data that was submitted during these time periods is also likely to be in
question.

reconciliation for patient care, it seems probable that many of these inconsisten-

cies originate as transcription errors when writing EHR data into the CC-HIC data

model. Therefore, it is possible that enforcing these relational requirements in the

CC-HIC data model, would result in an increase in the quality of submitted data.

Site E performs well against the episode score, though there are likely many missing

episodes that have not been detected by current procedures. The signal for potential

missing episodes is for there to be a high proportion of missing episodes concen-

trated in a single month. This can be seen in the site admission profile for site D in

figure 4.11. In comparison to the site admission profile for site E (figure 4.12), one

will observe the generally low number of admissions. This is an extraordinarily low

number of admissions to an NHS ICU, and certainly does not match expectations

for this site.

The event scores are also shown graphically figures 4.5-4.7 (pages 131-133).

The event score is likely a pessimistic view of the CC-HIC research database for two
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Figure 4.12: Overview of admissions from a single site. Case submission for this site is
uniformly very low, and without a discernable weekend effect. There are nu-
merous days where zero admissions occurred, but these are evenly distributed
throughout the cohort. The low number of submissions is not commensu-
rate to the size of the NHS trust from which these data originate, calling into
question the likelihood of missing episodes.

reasons. First, the CC-HIC data model does not support the ability to indicate which

data concepts cannot be contributed because they do not exist in the source EHR.

This would negatively impact on sites unable to contribute a data concept that they

do not have, which is not desirable. Second, the result is a consequence of being

atypically comprehensive. inspectEHR [6] implements an extremely broad range

Site Episode score Event score

A 0.98 0.58
B 0.93 0.43
C 0.95 0.54
D 0.84 0.49
E *0.96 0.39

Table 4.14: Data quality metric scores: episode and event scores are shown across all sites.
The current scoring system penalises for events that are not contributed, and so
the event scores may result in a lower score for sites that would be reasonable
if those concepts are not persisted within the source EHR. *: site E scores well
on the episode score, but their over all number of submitted cases are far lower
than would be expected.
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of data QEs. As each additional layer of evaluation is added, it can only possibly

reduce the score for each site. This is off set by the hope that after demonstrating

the issues with data quality, sites can be afforded to opportunity to correct errors

and re-issue improved cohorts.

4.6 Discussion
This was the first, and most thorough, evaluation of the quality of data stored in the

CC-HIC research database. This evaluation by necessity draws out deficiencies in

these data, though there are many areas that evaluate favourably. Four of the five

contributing sites were able to contribute a vast and comprehensive dataset. This

contribution was maintained on a regular schedule throughout most of the project

lifetime. Some major deficiencies that were reported back to contributing sites were

either corrected at source, or external data were issued providing a correction within

the CC-HIC research database itself. This demonstrates the successful movement of

a comprehensive multicentre critical care dataset into a secure research environment

and therefore indicates the successful attainment of the original aims of the HIC

outlined in Section 2.3 (page 42).

Throughout the study period, modifications to data submissions were neces-

sary to correct some of the data quality issues highlighted. Examples of some major

improvements to data quality included:

• restoration of drug infusions that had ceased to flow with the primary data.

• contribution of a large portion of missing respiratory data via an external data

patch.

• re-supply of drug infusions in the correct units via an external data patch.

These modifications were typically submitted as bespoke patches of data (in the

form of Comma Separated Value (CSV) files) that could be added to the CC-HIC

research database manually. While this may be a pragmatic solution, adding files in

this way outside the normal pathway, introduces an unstable element that is prone

to failure and not easily reproduced. Creating a provenance for such a process was

challenging and so the source files for these patches, along with the code used to
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import them into the database have been archived for reproducibility. On discussion

with local data engineers, the following thematic reasons emerged as difficulties to

changing the XML research pipeline:

1. resources were limited, and so there was not enough human resource to re-

write the original data pipeline. However, a direct Structured Query Language

(SQL) query on a case-by-case basis was quicker to action.

2. lack of institutional memory. The individuals who had written the original

data pipeline had in some cases left the department, and these pipelines were

written in a language that was not supported by remaining members of the

team.

3. lack of familiarity with XML. Generally, individuals associated with the

project at contributing sites had a much greater preference for working with

SQL, rather than XML.

There were periods where data contribution for a given site either paused en-

tirely, or for a certain subset of concepts. These instances were usually related to

factors within the local hospital EHR itself, which were then unintentionally inte-

grated into the research pipeline. This highlights the importance of have a continu-

ous data quality monitoring process embedded within an EHR research pipeline.

Some deficiencies exist within these data that are yet to be fully accounted for.

These include: an extremely high proportion of missing meta-data, non-contribution

of certain concepts that are ubiquitous in critical care (for example, APACHE II

scores or blood gas data), a general lack of alignment in concept units.

4.6.1 CC-HIC in Context

The CC-HIC research platform is compared and contrasted to others that exist in the

critical care domain including ICNARC, MIMIC and Phillips eICU. A summary of

this comparison is presented in table 4.15.



148
C

hapter4.
D

ata
Q

uality
E

valuation
&

E
xtraction

CC-HIC ICNARC MIMIC-III MIMIC-IV DECOVID PHILLIPS eICU

Timeframe [2014, 2018] [1993*-Present] [2008-2014] [2008-2019] 2020 [2014-2015]
Scope multi-centre (re-

gional)
multi-centre (na-
tional)

single centre single centre 2 centres multi-centre

ICU episodes >40,000 53,423 Unpublished 200,859
Unique patients >28,000 38,597 >40,000 Unpublished 139,367
Inclusion all level 2/3 admis-

sions
all level 2/3 admis-
sions

all level 2/3 admis-
sions

all level 2/3 admis-
sions

all acute admissions
≥ level 1

Stratified sample

Scale ICU only ICU only (first 24
hours)

ICU only ICU and some
wards

all hospital ICU only

Externally linkable Partially (limited by
data quality con-
cerns)

No No No No No

Internally linkable Partially (limited by
data quality con-
cerns)

Possible Yes (at source) Yes (at source) Yes (via pseudo
key)

Yes (pseudonym
lookup not re-
tained)

Longitudinal data During ICU level
care

No Yes Yes Yes -

Rich EHR representation No No Yes Yes Partially Yes
Findable Partially No Yes Yes Partially Yes
Accessible Highly restricted Restricted Public Public Highly restricted Public
Interoperable No No Partially Partially Yes No
Reusable No Yes Yes Yes Yes Yes
Sharing model Centralised Centralised Centralised Centralised Centralised Centralised
Local access to data No Curated Yes Yes Partially -
Data model CC-HIC data model

(bespoke)
ICNARC version
3/4

MIMIC version 3 MIMIC version 4 OHDSI version
5.3.1

bespoke

Free text No No Yes Yes No Structured
Imaging No No No Yes No -
Waveforms No No No Yes No -
Physiology Some Minimal Comprehensive Comprehensive Comprehensive
Treatment Some Minimal Comprehensive Comprehensive Comprehensive

Table 4.15: Comparison of major ICU data sharing collaborations. Note: *not all UK ICUs contributed data from the outset, however the capture is
now extensive.



4.6. Discussion 149

MIMIC is undoubtedly an exemplar and research leader in this field [12, 13].

There are a number of features that make MIMIC a natural choice for researchers

who wish to work with routinely collected United States (US) critical care data.

There are major differences in healthcare delivery between the US and the UK,

and so one must be cautious about generalisations made when comparing research

conducted against MIMIC to the UK. MIMIC presents a rich EHR representation

of data, and have addressed many of the points that are drawn out in the discus-

sion of the CC-HIC data model including sample versus result relationships and

episode versus patient centric representations. Rather than proceed with a more

generic CDM, MIMIC opted to developed their own bespoke data model. As early

movers in this field, the landscape of widely used and validated CDMs at the time

of MIMIC’s creation was much less mature. Owing to the popularity of the OMOP

CDM, the authors of MIMIC—Massachusetts Institute of Technology (MIT)—have

written transformations of the MIMIC CDM into the OMOP CDM [187]9. The

MIMIC CDM is expressed as relational tables, and can be supplied in CSV files

for import into a database of the researchers’ choosing. This is a major distinction

between the project infrastructure of the CC-HIC and MIMIC. MIMIC researchers

are able to use the tools with which they are familiar, and even work on their own

personal computer. This took considerable effort so as to address the concerns of

confidentiality that would normally necessitate a more restricted model of access

to data. This was supported by extensive anonymisation, including redaction of

identifying features in free text notes and random offsets for all dates and times.

The advantages for studies that focus on the analysis of non-identifying longitudi-

nal physiology are potentially profound, since all the limitations of working within

a restricted research environment have been removed. The cost of this accessibility

and convenience is that any external linkage based on patient identifiers is no longer

possible. Depending upon the broader goals of the research platform, this may be

considered an acceptable loss.

Since data are so readily available within MIMIC in a standardised format, it

9though sadly the codebase for this transformation is no longer maintained.
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has encouraged researchers to share their research code, producing a broad, high

quality and validated codebase to perform common research tasks (for example the

identification of ventilated patients) [13]. With a thriving and diverse research com-

munity, errors are identified through crowd-sourcing and reported back for correc-

tion via open issue trackers. This is analogous to the “inferential” stage of quality

evaluation previously described and depicted in figure 4.1 on page 109. More recent

developments have added imaging data to MIMIC in the form of chest radiographs

[188, 189]. With each major revision, MIMIC moves closer to the ideal of present-

ing a full instantiation of the EHR in a research ready format.

An important driving factor behind MIMICs success is that it is conducted

from a single private center, the Beth Israel Deaconess Medical Center in Boston,

Massachusetts (US). It is undoubtedly easier to proceed through all the legal restric-

tions from a single centre. By comparison, attempts to release the CC-HIC research

database as a public asset would require—in addition to a fundamental change in

the underlying ethics provision for the project—oversight and approval from at least

five different NHS trusts and a number of collaborator organisations including the

NIHR.

In trying to learn from the successful open model of MIMIC, an anonymised

representative sample cohort of 1000 patients from the CC-HIC research database

was developed. This cohort was anonymised with the SDCmicro package for R

[190], and applied data reduction, micro-aggregation and local suppression as meth-

ods to achieve a pre-determined degree of anonymisation. The goal of this process

was that researchers could develop research code external to the UCL DSH and

then import and continue to develop code internally at a later stage of development;

hopefully shortening the development cycle and mitigating some of the challenges

of working within a secure research environment. The anonymisation process en-

countered an unexpected conflict with the episode centric nature of the CC-HIC data

model. Anonymisation removed the ability to link sequential episodes as spells,

which would normally be performed by patient level identifiers, and so minor al-

terations to the data model were required for the cohort to keep its logical and time
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ordered structure. This limited the success of the approach, since the data models

inside and outside of the DSH were different enough to frustrate development when

moving between them10.

The Phillips eICU shares many similarities with MIMIC and can be thought

of as a spiritual successor to MIMIC extended into the multi-centre domain. The

eICU covers a large geographical area of the US where a tele-medicine service

provided by Philips centrally aggregates certain physiological and treatment data

feeds. This is quite distinct from the data sharing model of the CC-HIC where data

harmonisation was required over a range of EHR vendors. Since all information

comes from the same vendor, the process of data harmonisation was straightforward

by comparison. There would be an expectation that a majority of core data feeds

would be stored in a default pattern11.

A core challenge for both the eICU and CC-HIC was that not all data feeds

were available from all contributing centers. The information detailing which feeds

are missing because they are not recorded in the first place is not accessible to

the end user, and so it can be challenging to identify what information is missing

because the center is unable contribute the data, and what is missing as an error.

ICNARC centrally aggregates summary patient data from a comprehensive

number of ICUs across the UK bar Scotland. The ICNARC data model is mature,

expressed in “strong specification” semantics, and tailored towards the specific audit

and research requirements of the Case Mix Programme [24]. The current ICNARC

data transfer process involves a lossy transformation of data from source hospi-

tal into the summary fields of the ICNARC data model. Because ICNARCs data

collection is so vast, it covers many hospitals that do not implement an EHR. By

comparison, the CC-HIC aggregate data from a much smaller number of digitally

10For interesting historical context, the OHDSI data model was developed in part so that the entire
person table could be dropped from the data model, providing instant pseudonymisation without any
loss of data integrity. This feature was developed to assist in the sharing of confidential healthcare
data with pharmaceutical companies.

11There is some complexity here as sites are permitted to extend their local interface to capture
unique data elements. The quality of how this is performed is therefore dependent on the individuals
involved and can force the creation of semantic and ontological build errors without appropriate
training.
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mature sites, and tries to do so with much greater depth; attempting to translate

much of the full longitudinal representation of the EHR into its data model. The

goals and infrastructural set up of ICNARC and the CC-HIC are therefore distinct.

4.7 Conclusion & Recommendations
A comprehensive data QE has been implemented by inspectEHR [6]. In doing so, it

has revealed many areas of concern within the CC-HIC research database that were

previously unknown. This should impose some conservative expectations on the

clinical research that is possible with this resource. A core goal of implementing a

data model and sharing data across multiple healthcare organisations is that of data

harmonisation. While some of the foundational elements for data harmonisation do

exist within the CC-HIC, by large this process has not occurred, with alignment in

many cases happening by chance rather than design.

Based on the review of the CC-HIC data model and the quality of the CC-HIC

database, the following recommendations can now be made:

1. define the research data needs before developing a data model or sharing data.

2. make use of pre-existing open data modelling standards (for example

OHDSI), and favour the extension of existing models, rather then devel-

oping new bespoke models, unless absolutely necessary to complete research

goals.

3. consider the use of a person centric data model for healthcare data.

4. apply data normalisation principles to the degree necessary to fulfil analytic

goals.

5. make use of interchange standards for data that are routinely used by data

engineers working at contributing sites. For example, it may be prudent to

exchange data in CSV format, even if XML provides a better technical stan-

dard, if the former is more familiar to key stakeholders.

6. transfer data in a format that can be inspected with a limited toolset by hu-

mans. Tabular structures are particularly useful in this regard.

7. avoid lossy transformations of data wherever possible.
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8. prioritise the transfer of raw data concepts and document when data concepts

are derived during the ETL process as meta-data within the data model.

9. employ a “weakly specified” data specification, that takes full advantage of lo-

cal ontological mappings that already exist. Avoid hard coding data requests

into the data model.

10. should a hospital not be able to contribute a requested data concept, document

this information. Preferably as meta-data within the data model.

11. conform to international semantic and interoperability standards, such as

SNOMED.

12. avoid arbitrary choices in data representations, and apply rules with consis-

tency.

13. discourage data submissions outside the agreed pipeline, but ensure that the

research pipeline is serviceable for the long term duration of the project.

14. develop a data evaluation pipeline in parallel to the data model, ensuring that

an iterative feedback cycle is an intrinsic component of any data submission.

Thereby creating an expectation that information exchange is bidirectional.

15. include both local and central data evaluations where possible.

These recommendations now form the basis of the next phase of the CC-HIC

project. As of writing, the OHDSI data model is being implemented as a replace-

ment for the CC-HIC data model in a modular fashion. Database tables are submit-

ted one-by-one, and populated incrementally with data according to research need

and data availability. This has placed data quality at the center of the next phase of

the CC-HIC project. These recommendations also contributed to the development

of the DECOVID data model, which similarly implements a variation of the OHDSI

data model.
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Chapter 5

Cumulative Exposure to Excess

Oxygen

The aim of this exemplar study is to determine whether cumulative exposure to

oxygen levels in excess of clinical need are associated with increased ICU mortality.

This study makes use of the unique features of the CC-HIC data resource that are not

presently available elsewhere in the UK. First, longitudinal data capture, including

arterial blood gas sampling. This allows for the exploration of oxygen exposure as

a necessarily longitudinal drug exposure. Second, a large number of available cases

enabling the detection of what are likely to be small statistical signals. The principal

findings from this chapter have been published [4]1. Details of the literature review

and search strategy for this Chapter can be found in Appendix Section B (page 271).

5.1 Background
The possible harms associated with extremely high levels of oxygen administration

are well documented in humans [51, 40]. What is less clearly understood is the dose

response relationship between excess oxygen and mortality and whether or not the

levels of oxygen that patients are administered in routine practice are detrimental.

There are several facets of this problem that make it methodologically chal-

lenging. First, oxygen exposure is longitudinal in nature. While there are biolog-

1Minor perturbations between these published results and the results presented in this thesis
are anticipated. This reflects updates to the data quality procedures and progression in scientific
thinking.
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ical mechanisms that could contribute to harm on a relatively short time-scale (for

example, vasoconstriction and absorption atelectasis), the primary means through

which mortality is proposed to manifest—namely ARDS, lung fibrosis and in-

creased inflammation—take time to accumulate and impart their harm. This has

been a major limitation of most prior studies in this field of research, where data

availability has been typically restricted to the first 24 hours of intensive care. In

order to measure excess oxygen exposure, a window of observation is required to

demonstrate an effect. This creates a tension with the attrition of patients from

ICU from death and discharge; longer periods of observation are only possible for

a cohort of diminishing size. As a longitudinal exposure in critical care, oxygen

exposure is also potentially subject to informatively missing data patterns as previ-

ously outlined. This could lead to bias if not specifically accounted for. Second,

the administration of oxygen is a therapeutic intervention for the correction of hy-

poxaemia, which is itself a manifestation of illness severity. The effect of exposure

to oxygen on mortality is therefore confounded by acute illness severity and res-

piratory impairment; so-called confounding by treatment indication. There is no

routinely observed feature of the patient that would allow one to isolate the causal

pathway of potential harm between oxygen exposure and mortality. Therefore, the

risk will always remain for residual confounding to hinder inferences, particularly

if studying oxygen exposure directly as the FIO2. Last, there is no clear feature of

the patient that is routinely monitored that provides an unambiguous definition of

“oxygen excess”, and so one must be created.

There are notable patient groups that may be more susceptible to the effects

of excess oxygen, including those who are mechanically ventilated, or those with

sepsis or COPD. Mechanically ventilated patients may be at increased risk of harm

from oxygen toxicity mechanisms, since the mechanisms that are proposed to medi-

ate harm could be potentially amplified by stresses to the alveolus caused by ventila-

tion [68]. There are conflicting data as to whether or not high levels of oxygen could

be harmful or helpful in sepsis [53]. COPD is established to have worse outcomes

with high levels of oxygen exposure, mediated by a mechanism that is distinct from
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those previously discussed [191]. In this regard, COPD could be used as a yardstick

in models to determine if known effects have been appropriately captured.

5.1.1 Identifying Markers of Excess Oxygenation

Several features of oxygen administration are recorded in the EHR. This includes:

• fraction of inspired oxygen (FIO2).

• peripheral oxygen saturation (SpO2).

• PaO2/FIO2 ratio or SpO2/FIO2 ratio.

• partial pressure of oxygen in arterial blood (PaO2).

Each of these features represents an imperfect measure of oxygenation, or exposure

to excess oxygen.

FIO2 is a logical primary candidate to investigate since this is the direct ad-

ministration of oxygen to the patient [70, 192]. When investigated in RCTs, it is

the FIO2 that is modified as the therapeutic intervention under investigation [52],

typically to target a particular SpO2 or PaO2. From an observational perspective,

as a marker on its own, it is difficult to determine what constitutes “excess” FIO2,

as opposed to what is in keeping with a patient’s requirements. A patient who is

maintained on pure oxygen (an FIO2 of 1.0) for long periods of time will already be

at high risk of a poor outcome, regardless of the contribution made by oxygen ex-

posure itself. FIO2 is therefore confounded by treatment indication, and it may not

be possible to gain appropriate statistical control [193, 194]. To reiterate, the risk

of naively including FIO2 in a statistical model to investigate the potential harms of

oxygen exposure, is that high FIO2 will, in all likelihood, show a close relationship

with increased mortality, regardless of how one applies statistical adjustment. But

this will often be commensurate to the patient’s increased clinical needs, rather than

indicating direct harm itself. In lieu of a reliable instrumental variable within the

CC-HIC database, or other means to apply a principled causal methodology, this is

problematic in of itself.

Due to the sigmoid nature of the oxyhaemoglobin dissociation curve, SpO2

demonstrates a ceiling at 100%, which is reached at even low levels of supplemen-
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tary oxygen. This variable is thus limited in its capacity to reveal the effects of

excess oxygenation. With the exception of chronic obstructive pulmonary disease

(COPD)—a respiratory disease with well established oxygen sensitivity—most pa-

tients in intensive care are prescribed oxygen with a lower treatment threshold (e.g.

to maintain an SpO2 > 92%). From a modelling standpoint, one could consider

SpO2 as a biomarker with a censored distribution, with an upper detection thresh-

old at 100%. Re-considering SpO2 as a threshold detection problem would provide

a principled means through which SpO2 could be studied, despite the restricted in-

formation it contains. Complicating matters, pulse oximitry (the method by which

SpO2 is measured) is subject to a relatively high degree of measurement error, and

systematic biases from both acute physiology and patient ethnicity [195].

The PaO2/FIO2 and SpO2/FIO2 ratios provide a reflection of lung function,

though both can be augmented by a change in ventilation strategy, which is not nec-

essarily reflective of an improvement in underlying lung function. The ARDSNet

study showed that patients with better PaO2/FIO2 ratios (suggesting improved lung

function) experienced worse outcomes [129]. The prevailing consensus attributes

this to the more liberal ventilation settings used in this group. In this respect, it

may be more useful to use the PaO2/FIO2 ratio as a direct means to control for

impairment of the respiratory system, rather than to investigate exposure to oxygen

itself. Given the sensitivity of the PaO2/FIO2 ratio to changes in ventilation strategy,

it has been suggested that the PaO2/FIO2 ratio is also modelled alongside positive

end expiratory pressure (PEEP) as a means of accounting for the effect of ventila-

tion, though this approach has also been contested [196]. The PaO2/FIO2 ratio will

have the inherent disadvantage of only being recorded intermittently on the ICU

with a sampling frequency related to the illness severity of the patient. Conversely,

the SpO2/FIO2 ratio has similar properties to the PaO2/FIO2 ratio, but is measured

more frequently and likely without the sampling bias observed in the PaO2/FIO2

ratio. The SpO2/FIO2 ratio is subject to the same distributional artefacts caused

by the ceiling effect observed in SpO2. The relationship between SpO2 and PaO2

may be altered by pathophysiology and ageing [197, 36]; the former may present
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challenges to control for within an observational cohort.

From a biological standpoint it remains unclear which of these biomarkers (or

combination thereof) provides the best measure to elucidate potential effects on

outcomes.

The PaO2 represents the partial pressure of oxygen present in the artery. Under

reasonable conditions encountered in clinical practice, the PaO2 cannot exceed 13.3

kPa without the administration of supplemental oxygen. This limit is governed

by the alveolar2 gas equation shown in equation 5.1. The alveolar gas equation

describes the partial pressure of oxygen in the alveolus (PAO2), which must be

higher than that of the artery (PaO2) due to the concentration gradient that drives

the movement of oxygen into the body.

PAO2 = (Patm−PH2O)×FIO2−
PaCO2

RQ
(5.1)

PAO2 = (101−6.18)×0.21− 5.5
0.8

PAO2 ≈ 13.3

There is a limited clinical rationale that can be used to justify why a sustained

PaO2 in excess of 13.3 kPa would be necessary in critical care3. This threshold al-

lows the creation of a less ambiguous (albeit imperfect) definition of excess oxygen:

a PaO2 ≥ 13.3 kPa. This definition of oxygen excess has the following limitations:

1. FIO2 is the direct exposure of interest, and so a high PaO2 would likely act a

surrogate for potential harm.

2. while a PaO2 ≥ 13.3 kPa is unambiguously in excess for most clinical sit-

uations, there will be patients who are in relative clinical excess below this

threshold. For example, patients with pre-existing lung disease who do not

maintain a PaO2 of 13.3 kPa under normal circumstances and have acclima-

tised to lower levels.
2the alveolus is the functional anatomical unit of the lung; an air sac responsible for the exchange

of gas between the atmosphere and the blood stream
3High flow oxygen is used in certain clinical conditions where the patient does not display hy-

poxaemia; this would include pneumothorax and carbon monoxide poisoning.
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3. there is a complex relationship between FIO2 and PaO2, where different

pathologies lead to different degrees and types of decrement in oxygen be-

tween the alveolus and bloodstream. An investigation targeted at PaO2 would,

by default, ignore these differences.

4. there will invariably be patients who have too high a degree of respiratory

impairment to increment their PaO2 ≥ 13.3 kPa, and so these patients would

not be able to contribute to the variability in this constructed variable.

5. imposing a threshold on PaO2, even on biological grounds, does not make use

of full information and so could be considered statistically suboptimal.

Excess oxygen under the 13.3 kPa threshold definition can be converted into

a longitudinal exposure by parametrising repeated PaO2 samples as the cumulative

effects biomarker morphology (as discussed in subsection 2.4.1 on page 49). The

cumulative effect of PaO2 ≥ 13.3 kPa is calculated as the area under PaO2-time

curve, bounded by 13.3 kPa, as shown in figure 5.1. For brevity, I refer to this

parametrisation as “cumulative hyperoxaemia”, which takes the units kPa.hours.

To enhance comparisons between differing lengths for the observation window of

potential exposure to oxygen, a time weighted average can be taken. This divides

cumulative hyperoxaemia by the number of hours of potential exposure, returning

the constructed variable of “hyperoxaemia dose” in the more natural units of kPa.
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Figure 5.1: Illustration of cumulative hyperoxaemia for a random patient in the CC-HIC
database. The red shaded area demonstrates the total exposure to a PaO2 ≥
13.3 kPa
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For example, 1 kPa of hyperoxaemia dose for an exposure window of 24 hours

describes that a patient’s PaO2 was 1 kPa above 13.3 kPa on average for the duration

of those 24 hours.

5.2 Hypothesis Statement
Models will be constructed to evaluate the following hypothesis:

• exposure to oxygen in excess to clinical requirements—as defined by the hy-

peroxaemia dose—is associated with increased mortality in the general criti-

cal care population.

I also explored particular patient subgroups who are at a perceived elevated

risk from exposure to excess oxygen, including patients with: COPD, sepsis or

those receiving mechanical ventilation.

5.3 Methods

5.3.1 Cohort Definition

The primary cohort for this study were all adult (≥ 18 years) index spells submitted

to the CC-HIC from 31st January 2014 to 31st December 2018. Spells were included

in the study if they had sufficient quality represented by the following criteria:

1. spells (and their constituent episodes) could be unambiguously characterised.

2. spells contained at least one PaO2 sample.

Spells were excluded on the following grounds:

1. a spell length of stay less than 24 hours.

2. spells used for pre-surgical preparation only.

3. the presence of any treatment limitation orders.

4. cardiopulmonary resuscitation in the 24 hours preceding ICU admission.

Patients with a length of stay less than 24 hours were most commonly admissions

for post-anaesthetic care following elective surgery. These patients have a very low

risk of mortality, and limited observable exposure of oxygen, and so are unlikely
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Figure 5.2: Manual data integration external to the CC-HIC pipeline. Data that are miss-
ing from the CC-HIC research database are processed into the correct format
(EAV) and directly added to the database with their own provenance. Replace-
ment data for concepts that are present in the CC-HIC research database, but
erroneous, are processed downstream of the CC-HIC research database and in-
tegrated into the study directly.

to contribute a meaningful signal for detection. The same justification is true for

patients admitted for pre-surgical preparation. Treatment limitations may preclude

escalating oxygen to clinical requirement. Patients who undergo cardiopulmonary

resuscitation have an exceedingly high mortality and commonly receive 100% oxy-

gen with little regard for clinical requirement [65, 198, 199]. For the purposes of

this study, they were removed, though they do present an interesting cohort to study

in future work.

5.3.2 Maximising Available Data

Limited data availability via the main data pipeline (the XML pathway) for core

concepts required for the study, jeopardised its viability. This stems from three

main areas of concern:

1. one site was not able to contribute any blood gas data.

2. several sites contributed incorrect APACHE-II scores; the primary means of

risk stratification built into the CC-HIC data model.

3. a large amount of meta-data used to distinguish PaO2 (arterial) from PvO2

(venous) were missing.

One site was not able to submit arterial blood gas data for their cohort via the

XML pathway. The reasons for this relate to resource availability for ongoing main-
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Figure 5.3: Distribution of the APACHE-II score after corrective submissions from each
site. A known issue with the oxygen component positively biases the Cam-
bridge (RGT) distribution.

tenance of the existing local XML pathway and has been previously discussed. In

order to increase the number of cases that could be used in the study, a data patch

was provided external to the XML pathway with PaO2, PaCO2 and pH values for

all patients from this site. These data were manually integrated into the CC-HIC

database as illustrated in figure 5.2. Patients in the manual extract were identified

and linked into the main CC-HIC database by their NHS number and ICU admis-

sion date. Blood gas data were standardised to match the CC-HIC data model and

assigned to an episode in the CC-HIC database should the datetime stamp of the

blood gas fall between the start and end of a fully characterised episode that al-

ready existed in the CC-HIC database. A similar process was used to add new

APACHE-II data. Since the APACHE-II data conflicted with existing data that had

been contributed, these new data were not read into the CC-HIC research database

as they would cause a conflict with existing data provenance. Instead these data

were integrated downstream from the CC-HIC research database into the study di-

rectly.

Figure 5.3 shows the distribution for the APACHE-II score stratified by each

site after the corrections had been made. Even after these corrections there was a

large discrepancy between sites that is difficult to account for by case-mix alone. A

known miscalculation for site B’s data remains whereby the oxygen component of
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the APACHE-II score had been miscalculated. Due to the nature of the error, this is

likely to increase a patient’s oxygen subcomponent score by a maximum of 2 points

(from a total of 71) and so thought not to be particularly relevant.

5.3.3 Labelling Arterial Blood Gases

It is necessary to identify the anatomical source of any blood gas sample, to dis-

tinguish whether the sample originates from the arterial or venous circulation. The

anatomical source of the blood gas is represented in the CC-HIC data model as

meta-data, of which a significant proportion are missing. As of writing, 1.6× 106

samples with a partial pressure of oxygen have been submitted to the CC-HIC

database, of which 0.4×106 (25%) do not contain an anatomical label. This miss-

ingness was not isolated to any particular site or patient cohort that would explain

a systematic fault for the missing data. This missingness is at odds with standard

clinical practice since the clinical interpretation of a blood gas relies on knowing its

anatomical source. Thus these labels should be complete to a high degree within

any EHR. One possible explanation is that the true anatomical source of these un-

labelled samples was something other than “arterial” or “venous” and therefore not

specified in the CC-HIC data model. For example, extra-corporeal blood gas sam-

ples are taken for the routine monitoring of calcium levels during citrated RRT.

Even if this is the case, it remains that a 25% missingness, without localisation to a

particular patient group, is still much higher than would be clinically expected.

A logistic regression was used to model the anatomical source of unlabelled

blood gases. The outcome variable was the anatomical source, with the positive in-

dicator representing an arterial origin. The predictor variables chosen for inclusion

were the PxO2
4, PxCO2, blood acidity (pH), all pair-wise and three-way interac-

tions. Variables were transformed onto the unit-variance scale prior to inclusion

in the model. There are more variables that form part of the standard blood gas

panel that could potentially be used to improve this model. However, missing data

patterns indicated that these other variables contained within the standard blood

4For clarity, I use the conventions of Pa, Pv and Px to describe a partial pressure obtained from
the artery, vein or unknown source respectively.
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Figure 5.4: Univariate empirical cumulative distribution functions for PCO2 (left), PO2
(middle) and pH (right). There are overt differences between arterial and ve-
nous samples for PO2. Differences in PCO2 and pH are present, but subtle.

gas panel are far more frequently missing in the CC-HIC research database, and

so inclusion of additional variables would likely fail to support the primary mo-

tivation of the model; to predict anatomical labels (rather than extract particular

inferences). By restricting the problem to use only these three predictors, which are

present for almost all samples, a larger proportion of blood gases that are missing

anatomical labels could be relabelled. Individual blood gas samples were treated

as independent, even if they came from the same patient. This approach renders

many of the inferences from the model invalid, for example, by shrinking standard

errors and making the model unreasonably confident in its estimates. A multilevel

approach was initially taken (samples nested in patients), however, as convergence

issues were encountered, this approach was abandoned in favour of a simpler model

specification.

Figure 5.4 demonstrates the cumulative density functions for the three pre-

dictor variables stratified by their known anatomical labels (arterial or venous) or

unknown status. A large difference exists between the arterial and venous distribu-

tion of the PaO2, with a notably smaller difference between those of the PaCO2 and

pH distributions.

Figure 5.5 shows the resulting coefficients from the fitted model. Bootstrapped

95% confidence intervals are drawn using 100 resamples, though even these confi-
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Figure 5.5: Coefficients for predictive variables in the blood gas re-labelling model.

dence intervals will be over confident given the model formulation described above.

These coefficients should only be used to provide an indication as to the relative im-

portance of variables within the model. The model intercept is positive, indicating

the increased likelihood that a sample is arterial if PO2, PCO2 and pH are all mea-

sured at their mean values of 10.5 kPa, 5.8 kPa and 7.39 respectively. This reflects

the higher number of arterial samples in the CC-HIC database.

The performance characteristics of the reclassification are shown in figure 5.6.

The area under the receiver operator and precision recall curves was 0.98 [0.98,

0.98] (estimate [bootstrapped 95% confidence intervals]) and 0.97 [0.97, 0.97] re-

spectively5. The performance characteristics were evaluated by applying the 100

bootstrapped models to a reserved test set (15% of all labelled samples). The high

performance of this model can be attributed to how the logistic regression is mod-

elling a physico-chemical environment; as such there are strict chemical laws that

govern the relationship of the variables under investigation [200]. In other words,

there are considerable differences between the arterial and venous circulation which

can be taken advantage of by the model.

The resulting model coefficients were implemented as a function in

inspectEHR [6] allowing other researchers to reproducibly re-label blood gases.

The re-labelled blood gases were not embedded in the CC-HIC database as meta-

data labels as this would potentially cause confusion with regard to data provenance.

5These bootstrapped confidence interval were very tight around the mean.
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Figure 5.6: Discrimination curves for blood gas labelling model. Left: Receiver operator
characteristic curve with area under the curve 0.98. Right: Precision recall
curve with area under the curve 0.97. Confidence intervals are shown, though
they are extremely tight around the central estimate.

5.3.4 Ventilation Phenotype

Following review of the CC-HIC data model and data quality evaluation, it was

anticipated that defining ventilation within the cohort would be non-trivial. This

stems from a lack of semantic expressiveness for ventilation coupled with the mixed

use of measured and derived concepts relating to ventilation within the data model.

Further, missing data patterns suggested that not all sites contribute all the concepts

that relate to ventilation. Ventilation is a complex therapy, and represented through

a large constellation of fields in the typical EHR. The absence of ventilation is

unlikely to be explicitly asserted as it does not form part of routine documentation6.

Rather, the absence of concepts relating to ventilation must be used to infer that a

patient is not receiving ventilation.

The requirements for this study are modest since it is only necessary to distin-

guish patients who are ventilated from those that are not. A suitable scheme for this

simple phenotype would therefore be the following:

1. no ventilatory support.

2. ventilatory support (optionally divided into invasive or non-invasive).

This would allow for a straightforward delineation of patients who are ventilated
6It would be quite strange in fact to document what therapies the patient is not receiving, since

this list would be unfathomably long.
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from those who are not, with an optional additional level of detail to identify those

who receive invasive mechanical ventilation. There are concepts expressed in the

CC-HIC data model that make triangulation on this simplified ventilation phenotype

possible. However, systematic differences in the way in which sites contribute data

render a general purpose ventilation phenotype more challenging.

Each site contributes the concepts that relate to ventilation in a unique way.

This is demonstrated in figure 5.7 which shows the correlations between data sub-

missions for these concepts in the CC-HIC database. The patterns of data contribu-

tion are unique to each site, and not wholly explainable through missing data alone.

The monitoring of ventilated patients is standardised in the UK [201], and so it is

likely that at least some of this pattern of data contribution represents transcription

errors.

The potential concepts from the CC-HIC data model from which a ventilator

phenotype could be derived are enumerated below (where “missing” denotes miss-

ing data, rather than a specific level called missing):

1. airway:

• none (positive declaration).

• missing.

• endotracheal tube.

• tracheostomy tube.

2. ventilation settings:

• any of: tidal volume, ventilator respiratory rate or airway pressure

present. These are all concepts related to a ventilator and should not

appear in documentation unless ventilation is active.

• missing.

3. ventilation status:

• invasive ventilation.

• non-invasive ventilation.

• missing.
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Figure 5.7: Correlations in missing data patterns for ventilation parameters. There are clear differences demonstrated in how concepts are documented
between sites. Concepts that are not contributed are indicated as grey cells.
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The combinations of these levels have been enumerated in table 5.1 alongside

a proposed ventilator phenotype. The corresponding phenotype is provided with

a level of confidence determined by how much missing information is being used

to triangulate on a level. An important feature is that it is much easier under this

phenotype to identify that a patient is receiving ventilator support, than to identify

that they are not. Only one combination of concepts positively identifies a patient as

being free of ventilation. This particular combination is dependent upon the use of

“none” documented as the airway. It is important to consider this as a limitation of

any study that makes use of ventilation inside the CC-HIC database. With a limited

ability to determine who is not in receipt of ventilation, there may be a bias toward

patients demonstrating more severe respiratory failure.

A number of illustrations are provided in figures 5.8 to showcase the varied

underlying data available to construct the ventilation phenotype. These illustrations

were chosen as they showcase typical patterns of data contribution seen, both in

terms of the concepts and frequency with which they are contributed.

In order to evaluate the phenotype a random sample of spells was visually

inspected. This provided a subjective—but domain knowledge-led—approach to

determine the quality of the phenotype from the available data. The proportion of

“error” phenotype labels (where logically inconsistent parameters are observed as

highlighted in table 5.1) is enumerated in table 5.2. 7.5% of these data are shown to

produce erroneous labels. The majority of the phenotype produces an “unknown”

label, though this likely represents times when the patient is not receiving advanced

respiratory support. From this review, I decided that the available data would likely

neither support a phenotype at a higher than daily resolution, nor one that distin-

guishes invasive from non-invasive ventilation. This primarily related to the high

number of oscillations between neighbouring levels of the ventilator phenotype

which are unlikely to be observed in practice. By limiting the scope of the phe-

notype to distinguish between any form of ventilation and none, these oscillations

are less likely to adversely impact on the analyses that follow.
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Data concepts Ventilator phenotype

Airway Ventilator settings Ventilator status Phenotype Confidence

Tracheostomy Present Non-invasive Error -
Endotracheal Present Non-invasive Error -
None Present Non-invasive Non-Invasive High
Missing Present Non-invasive Non-Invasive Moderate
Tracheostomy Missing Non-invasive Unknown Low
Endotracheal Missing Non-invasive Error -
None Missing Non-invasive Non-Invasive Moderate
Missing Missing Non-invasive Non-Invasive Low
Tracheostomy Present Invasive Invasive High
Endotracheal Present Invasive Invasive High
None Present Invasive Error -
Missing Present Invasive Invasive Moderate
Tracheostomy Missing Invasive Invasive Moderate
Endotracheal Missing Invasive Invasive Moderate
None Missing Invasive Error -
Missing Missing Invasive Invasive Moderate
Tracheostomy Present Missing Invasive Moderate
Endotracheal Present Missing Invasive Moderate
None Present Missing Non-Invasive Low
Missing Present Missing Unknown Low
Tracheostomy Missing Missing Invasive Low
Endotracheal Missing Missing Invasive Moderate
None Missing Missing None High
Missing Missing Missing Unknown High

Table 5.1: Enumeration of all possible levels of the simplified ventilation phenotype in CC-
HIC. Possible levels are: “Error”; the combination of values does not lead to a
logical conclusion. “Unknown”; the combination cannot identify a particular
level of respiratory support. “None”; no respiratory support (a positive state-
ment). “Non-invasive”; non-invasive support. “Invasive”; invasive ventilation.
A level of confidence in the phenotype label is provided determined by how
much missing information is necessary for the label, with more missing infor-
mation reducing the confidence in the label.

Ventilation phenotype Count Proportion

Invasive mechanical ventilation 276,258 30.5%
Non-invasive ventilation 191,496 21.2%
No ventilatory support 33,751 3.2%
Unknown status 336,600 37.1%
Conflict (data quality issue) 68,071 7.5%

Table 5.2: Frequency of different ventilator phenotypes in the CC-HIC database. “No ven-
tilatory support” is under-represented from a lack of positive indicators in the
CC-HIC data model for this level of the phenotype. There is a commensurate
increase in “Unknown status” labels which, in many cases, will represent no
advanced ventilatory support.
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(a) Invasive mechanical ventilation
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(b) Frequent level switches
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(c) Non-invasive ventilation
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(d) No data contributed

Figure 5.8: Illustrated ventilator phenotypes. Panels show different typical realisations of
the ventilator phenotype for real patients drawn from the CC-HIC database. a)
A patient is in receipt of invasive mechanical ventilation with all contributing
data in agreement. The different frequency with which concepts are contributed
(airway status four times per day) creates some gaps in the phenotype when
creating a phenotype with hourly resolution and no accommodation of concept
lag. b) There are frequent level switches between NIV and IMV, which is
not clinically possible. It is likely that an error has been introduced on data
export from the EHR (transcription error). c) Patient is mostly receiving NIV.
Some occasional invasive episodes facilitated by a tracheostomy are plausible.
d) No data are contributed. The likelihood is that the patient received only
conventional oxygen via a facemask.
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5.3.5 Power

Current information that could be used to inform a power calculation is limited by

studies that have either targeted surrogate outcomes [52] or mortality but within a

highly enriched population [202] that would not be representative of the more gen-

eral cohort of the CC-HIC. Regardless, the current research landscape suggests that

most studies to date have been powered optimistically. A simulation was conducted

to provide an impression of the anticipated power for different possible effect and

sample sizes. Mortality in the unexposed group was fixed at 5%, with varying pro-

posed effect sizes that correspond to odds ratios of 1.1 (pessimistic), 1.3 and 1.6

(optimistic). Sample sizes were evaluated at various points from 5,000 to 40,000

patients. Each simulation was run 100 times to provide an empirical estimate of

statistical power at the convention 0.05 alpha threshold. A summary of results are

shown in table 5.3. For optimistic effect sizes (odds ratio 1.6) power ranged from

79% (n = 5000) to 100% (n = 40,000), while for pessimistic effect sizes (odds ratio

1.1) power ranged from 7% (n = 5000) to 39% (n = 40,000). It would be reasonable

to conclude that even with the large convenience sample offered by the CC-HIC,

this study question is unlikely to be overpowered and indeed may well be under-

powered.

sample size log odds ratio odds ratio power

5,000 0.1 1.1 0.07
0.3 1.3 0.39
0.5 1.6 0.79

10,000 0.1 1.1 0.07
0.3 1.3 0.67
0.5 1.6 0.98

20,000 0.1 1.1 0.18
0.3 1.3 0.92
0.5 1.6 1.00

40,000 0.1 1.1 0.39
0.3 1.3 0.99
0.5 1.6 1.00

Table 5.3: Results of simulated power analysis
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5.3.6 Procedure

Characterised episodes were coalesced into spells as previously outlined. When

combining data from episodes into spells, it was necessary to reconcile data that

were duplicated across multiple episodes. Data concepts relating to the start of a

spell (e.g. admission diagnosis or admission APACHE-II score) were taken from

the primary episode of the spell. Data concepts that relate to the end of a spell (e.g.

patient outcomes) were taken from the final episode of the spell. Should data con-

cepts be missing from any particular episode, concepts were obtained opportunisti-

cally from any available episode, provided this did not cause a logical inconsistency

(for example, a patient dying in their first episode, but progressing onto a second

episode evidently alive).

Data were extracted from the CC-HIC database using the wranglEHR [5] pack-

age for R [137] using a 30 minute base cadence. Longitudinal data submitted at a

higher frequency were summarised over this 30 minute period as either the mean,

mode, maximum or minimum value as deemed clinically relevant to signify the

most deranged physiology of that 30 minute window.

Since the CC-HIC database does not contain information on patients from out-

side their ICU episode, only the index spell was considered in the analysis. This was

to limit confounding by an unknown exposure to oxygen either following discharge

or between ICU episodes. Similarly, ICU mortality for the index spell was chosen

as the primary outcome measure, in preference to hospital mortality or other distant

outcome measure. The primary cohort was further narrowed to investigate the expo-

sure to hyperoxaemia with each additional day of exposure, from 1 to 14 days (i.e.

between 0-1, 0-2, 0-3 and so on to 0-14 days). Each cohort therefore had a window

of potential exposure to oxygen that was the same between patients, and therefore

unaffected by informative censoring from either ICU discharge or death. This ap-

proach allows for a fair comparison between patients in the presence of informative

censoring from death and discharge.

A substantial proportion of spells had a hyperoxaemia dose of zero, i.e. no

observed PaO2 above 13.3 kPa. To address this “spike at zero” an additional variable
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indicating whether or not there was any exposure to a PaO2 ≥ 13.3 kPa was added to

the models [203]. For clarity, these variables are referred to as hyperoxaemia dose

(containing continuous dose information) and hyperoxaemia indicator. The role of

the hyperoxaemia indicator is to allow a discontinuity in the regression at the zero

boundary for hyperoxaemia dose. Both variables should be considered in concert

when interpreting the model, as they pertain to the same biological concept.

ICU mortality was modelled as a function of hyperoxaemia dose and hyperox-

aemia indicator using multivariable logistic regression. A new model was fitted for

each additional day of potential exposure, creating 14 models in total with potential

exposure windows ranging from 0-1 day to 0-14 days.

Other predictor variables included: sex (male/female), age at admission

(years), weight (kg), prior need for assisted daily living (independent or any level

of dependence), primary admission reason (medical/surgical) and the APACHE II

score. These variables were chosen on the basis of either salience to the underly-

ing research question, scientific plausibility as treatment confounders, or a known

strong association with mortality so as to improve model precision. Additional pre-

dictor variables were added as interaction effects to explore potential HTE within

the cohort, including mechanical ventilation on each day of the exposure window

(yes/no), a prior history of COPD and an acute diagnosis of sepsis for the spell

under investigation. These variables were chosen as they are strong candidates for

the presence of HTE within the cohort. Continuous variables were entered into the

model without categorization. Age, weight, APACHE-II score and hyperoxaemia

dose were modelled non-linearly using restricted cubic splines. Two internal knots

were placed at the 0.25 and 0.75 quantiles of each distribution, with boundary knots

at the value limits.

To regularise PaO2—which is measured irregularly when arterial blood gas

samples are drawn—linear imputation was performed with a 12 hour window.

Where PaO2 measures were still unavailable, the exposure was assumed to be zero.

The average treatment effect (ATE) of exposure to hyperoxaemia was calcu-

lated by fitting models with each individual’s own recorded exposure to hyperox-
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aemia, and contrasting this with the counterfactual scenario had this exposure been

zero.

Model validation was performed using the non-parametric bootstrap with 100

resamples to provide optimism corrected calibration and discrimination indices.

Calibration was evaluated through inspection of high resolution calibration plots

and optimism corrected Brier scores. Model discrimination was evaluated using the

area under the receiver operator characteristic and precision recall curves.

5.4 Results
Over the four year period of the study, 45,320 episodes were available. After exclu-

sions and refactoring episodes into spells, a primary cohort with a minimum ICU

length of stay of 24 hours of 24,348 spells remained. Conditioning on patients re-

maining alive and inside the ICU up to 14 days provided a cohort that tapers to

2,791 spells by day 14 as shown in the study flow diagram in figure 5.9. Baseline

characteristics, stratified by exposure to hyperoxaemia, for the windows of expo-

sure evaluated at days 1 and 14 are shown in table 5.4 (page 181). In total, 952,707

PaO2 samples were available for analysis, or 17 [10, 37] samples per spell (median

[IQR]).

Exposure to hyperoxaemia was readily identified in the cohort, with a total of

18,968 (77.7%) of patients exposed to hyperoxaemia after 1 day. This increased in

proportion to 97.3% of the cohort after 14 days. Figure 5.10 (page 183) shows the

distribution of the hyperoxaemia dose variable over the period under investigation.

An initial period over the first four days of relatively increased exposure give way

to a stable pattern of exposure that follows.

The model coefficients for the hyperoxaemia indicator variable for each ex-

posure window are shown in figure 5.11 (page 183). A consistent association was

found between the hyperoxaemia indicator variable and increased ICU mortality.

This association generally increased in effect size from day 1 to 11, with a simul-

taneous reduction in certainty in line with the reduction in cohort size over that

time.
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Fully characterised episodes (n = 46,640)

Total episodes (n = 48,320)

Episodes recast as spells (n = 42,940)

Index episode only (n = 36,682)

Primary Cohort at day 1 (n = 25,424)

Episodes missing core information (n = 1,420)

Spell reconciliation (n = 3,700

Not infection related (n = 6,258)

No PaO2 samples (3,470)
Treatment limitation orders (2,059)
Pre-surgical preparation (52)

Final Cohort at day 14 (n = 2,907)

Figure 5.9: Hyperoxaemia study flow diagram.

Hyperoxaemia dose was modelled non-linearly with restricted cubic splines.

The coefficients for the spline basis functions do not hold an intuitive meaning, and

so partial dependence plots for this variable are presented in figure 5.12 (page 184).

The curves displayed are mostly flat, suggesting no dose response effect. There

is a small suggestion, particularly in the models beyond day 8, of some protective

effect exerted by higher hyperoxaemia levels. However, there is a great deal of

uncertainly in the confidence intervals shown, which are entirely consistent with no

effect identified. In the models that do show some protective effect, this curvature

is driven by a relatively small number of cases that saw very high levels of exposure

to PaO2 and went on to survive. This would explain the slight downwards slope, but

with very large confidence intervals.

There was evidence to support HTE between each of the a priori specified

subgroups of interest. As would be expected, patients with COPD showed a positive

association between exposure to hyperoxaemia and increased mortality. Patients in

receipt of ventilation, and those with sepsis both showed a potentially protective

association between exposure to hyperoxaemia and increased mortality.
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Exposure window 0-1 day Exposure window 0-14 days

Variable Not Exposed Exposed Not Exposed Exposed

N 5454 18968 76 2729
Age 62.81 (16.67) 60.05 (17.45) 62.13 (16.68) 57.52 (17.22)
Weight 78.51 (21.68) 77.27 (19.05) 73.58 (23.30) 78.82 (20.13)
Sex

Female 2245 (41.2) 7415 (39.1) 34 (44.7) 956 (35.0)
Male 3208 (58.8) 11553 (60.9) 42 (55.3) 1772 (64.9)
Missing 1 (0.0) 0 (0.0) 0 (0.0) 1 (0.0)

Ethnicity
White British 3384 (62.0) 11780 (62.1) 49 (64.5) 1703 (62.4)
White Irish 109 (2.0) 258 (1.4) 2 (2.6) 31 (1.1)
White other 392 (7.2) 1235 (6.5) 6 (7.9) 220 (8.1)
Mixed white/black 16 (0.3) 54 (0.3) 0 (0.0) 3 (0.1)
Mixed white/Asian 10 (0.2) 19 (0.1) 0 (0.0) 2 (0.1)
Mixed any other 20 (0.4) 63 (0.3) 0 (0.0) 3 (0.1)
Asian/Asian British 197 (3.3) 842 (6.1) 4 (5.2) 166 (6.2)
Black/Brit. Carribean 142 (2.6) 338 (1.8) 1 (1.3) 48 (1.8)
Black/British African 174 (3.2) 451 (2.4) 1 (1.3) 66 (2.4)
Black/British other 122 (2.2) 281 (1.5) 4 (5.3) 43 (1.6)
Chinese 25 (0.5) 95 (0.5) 0 (0.0) 14 (0.5)
Other ethnic group 189 (3.5) 833 (4.4) 2 (2.6) 165 (6.0)
Not stated 670 (12.3) 2693 (14.2) 7 (9.2) 258 (9.5)
Missing 4 (0.1) 26 (0.1) 0 (0.0) 5 (0.2)

Apache II score 16.60 (6.12) 16.51 (6.96) 18.22 (6.15) 19.82 (7.31)
System

Respiratory 1824 (33.4) 2830 (14.9) 38 (50.0) 867 (31.8)
Cardiovascular 1131 (20.7) 6628 (34.9) 18 (23.7) 549 (20.1)
Gastrointestinal 804 (14.7) 3349 (17.7) 6 (7.9) 355 (13.0)
Neurological 298 (5.5) 1513 (8.0) 2 (2.6) 308 (11.3)
Genitourinary 522 (9.6) 1653 (8.7) 6 (7.9) 116 (4.3)
EMTP 269 (4.9) 605 (3.2) 3 (3.9) 34 (1.2)
Haem/Immunological 135 (2.5) 208 (1.1) 1 (1.3) 40 (1.5)
Trauma 172 (3.2) 1131 (6.0) 0 (0.0) 338 (12.4)
Other 268 (4.8) 850 (4.4) 1 (1.3) 59 (2.4)
Missing 31 (0.6) 201 (1.1) 1 (1.3) 56 (2.1)

Prior dependency 0.23 (0.42) 0.14 (0.35) 0.33 (0.47) 0.16 (0.37)
Medical 0.70 (0.46) 0.42 (0.49) 0.87 (0.34) 0.73 (0.44)
Surgical classification

Elective 1004 (18.4) 6314 (33.3) 2 (2.6) 173 (6.3)
Scheduled 125 (2.3) 1684 (8.9) 3 (3.9) 71 (2.6)
Urgent 288 (5.3) 1259 (6.6) 2 (2.6) 110 (4.0)
Emergency 273 (5.0) 1842 (9.7) 4 (5.3) 386 (14.1)
Missing 3764 (69.0) 7869 (41.5) 65 (85.5) 1989 (72.9)

CPR 0.02 (0.15) 0.05 (0.21) 0.04 (0.20) 0.08 (0.27)
Oxygenation∫ t

0 PaO2 ≥ 13.3kPa 0.00 (0.00) 39.28 (49.76) 0.00 (0.00) 202.05 (258.56)
TW

∫ t
0 PaO2 ≥ 13.3kPa 0.00 (0.00) 1.64 (2.07) 0.00 (0.00) 0.60 (0.77)

median SpO2 95.36 (2.61) 97.72 (1.87) 93.80 (3.60) 96.37 (2.01)
Subgroups of interest

Septic 0.18 (0.38) 0.09 (0.29) 0.30 (0.46) 0.24 (0.43)
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Exposure window 0-1 day Exposure window 0-14 days

Variable Not Exposed Exposed Not Exposed Exposed

COPD 0.13 (0.34) 0.04 (0.19) 0.12 (0.33) 0.05 (0.22)
Ventilated 0.29 (0.45) 0.34 (0.47) 0.38 (0.49) 0.55 (0.50)

Site
A 3018 (55.3) 9093 (47.9) 45 (59.2) 1018 (37.3)
B 497 (9.1) 2496 (13.2) 5 (6.6) 570 (20.9)
C 385 (7.1) 2163 (11.4) 9 (11.8) 560 (20.5)
D 1112 (20.4) 3149 (16.6) 16 (21.1) 357 (13.1)
E 442 (8.1) 2067 (10.9) 1 (1.3) 224 (8.2)

ICU mortality 249 (4.6) 809 (4.3) 7 (9.2) 204 (7.5)
Spell LOS (days) 7.43 (10.94) 6.98 (10.90) 27.52 (16.21) 29.15 (20.33)

Table 5.4: Patient characteristics for the hyperoxaemia study. Patients have been stratified
by exposure to PA≥ 13.3 kPa as the primary treatment effect of interest. Charac-
teristics over the first and last exposure windows are shown (days 0-1 and 0-14).
EMTP = Endocrine, Metabolic, Thermoregulation and Poisoning. TW = time
weighted. LOS = length of stay.
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exposure window ROC AUC PR AUC brier

1 day 0.82 (0.81, 0.83) 0.17 (0.16, 0.19) 0.038
2 days 0.79 (0.78, 0.80) 0.15 (0.13, 0.16) 0.043
3 days 0.77 (0.75, 0.78) 0.14 (0.13, 0.16) 0.047
4 days 0.75 (0.73, 0.76) 0.14 (0.12, 0.15) 0.051
5 days 0.73 (0.72, 0.75) 0.15 (0.13, 0.17) 0.055
6 days 0.73 (0.71, 0.75) 0.16 (0.14, 0.18) 0.059
7 days 0.72 (0.71, 0.74) 0.16 (0.14, 0.18) 0.063
8 days 0.72 (0.7, 0.74) 0.17 (0.14, 0.19) 0.065
9 days 0.73 (0.71, 0.75) 0.18 (0.15, 0.20) 0.067
10 days 0.73 (0.71, 0.75) 0.18 (0.15, 0.21) 0.068
11 days 0.73 (0.7, 0.75) 0.18 (0.15, 0.21) 0.067
12 days 0.74 (0.71, 0.76) 0.19 (0.16, 0.22) 0.067
13 days 0.74 (0.71, 0.76) 0.18 (0.16, 0.22) 0.066
14 days 0.73 (0.71, 0.76) 0.18 (0.15, 0.22) 0.065

Table 5.5: Model performance characteristics for hyperoxaemia models. Confidence inter-
vals show the 95% bootstrapped confidence intervals.

The average treatment effect of hyperoxaemia was estimated by evaluating

each patients risk of mortality with their observed oxygen exposure contrasted with

an exposure fixed at zero. The resulting sampling distribution of average treatment

effect is shown in figure 5.14. The mean value of the ATE distribution for each

exposure window is consistently below 0, though there is too much uncertainty in

the estimates to draw any conclusions from these findings. The confidence intervals

are wide and reflect both great uncertainty in the overall estimates, as well as the

potential signal for both benefit and harm from the different subgroups examined.

Overall model discrimination and calibration was good. Optimism-corrected

area under the receiver operator and precision recall curves are shown in table 5.6.

Illustrative calibration plots, with accompanying risk densities are shown in figure

5.16.



5.4. Results 183

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time since admission to ICU (days)

H
y
p
er

o
x
ae

m
ia

 d
o
se

 (
k
P

a)

Figure 5.10: Distribution of exposure to hyperoxaemia dose. Exposure is readily seen in-
side the cohort.
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Figure 5.11: Model coefficients for hyperoxaemia indicator. Standard error derrived 68%
and 95% confidence intervals are drawn. The vertical dashed line at log odds
of zero indicates a null effect.
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Figure 5.12: Partial dependence plot showing the non-linear effect on outcome as hyperox-
aemia dose is modified.
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Figure 5.13: Interaction effects for COPD, ventilation status, and sepsis are presented.
Standard error derrived 68% and 95% confidence intervals are displayed.
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Figure 5.16: Hyperoxaemia models calibration curves for the exposure windows 0-1, 0-7 and 0-14 for the left, middle and right panels respectively.
Point estimates and 95% confidence intervals are selected from each decile of risk, with a non-parametric locally estimated scatterplot
smoothing (LOESS) fit highlighted in blue.
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term estimate std.error statistic p

1 days

Hyperoxaemia (indicator) 0.3 0.1 2.0 4.43×10−2

Hyperoxaemia COPD interaction 0.4 0.3 1.7 8.18×10−2

Hyperoxaemia ventilation interaction −0.3 0.2 −1.7 9.46×10−2

Hyperoxaemia sepsis interaction −0.1 0.2 −0.8 4.52×10−1

2 days

Hyperoxaemia (indicator) 0.6 0.2 3.7 2.43×10−4

Hyperoxaemia COPD interaction 0.5 0.3 1.7 9.68×10−2

Hyperoxaemia ventilation interaction −0.4 0.2 −2.0 4.31×10−2

Hyperoxaemia sepsis interaction −0.3 0.2 −1.6 1.07×10−1

3 days

Hyperoxaemia (indicator) 0.5 0.2 2.4 1.79×10−2

Hyperoxaemia COPD interaction 0.7 0.4 1.9 5.81×10−2

Hyperoxaemia ventilation interaction −0.5 0.2 −2.0 4.20×10−2

Hyperoxaemia sepsis interaction −0.3 0.2 −1.4 1.66×10−1

4 days

Hyperoxaemia (indicator) 0.8 0.3 3.1 2.21×10−3

Hyperoxaemia COPD interaction 1.6 0.6 2.5 1.08×10−2

Hyperoxaemia ventilation interaction −0.7 0.3 −2.2 2.92×10−2

Hyperoxaemia sepsis interaction −0.6 0.3 −1.9 6.04×10−2

5 days

Hyperoxaemia (indicator) 0.7 0.3 2.6 9.36×10−3

Hyperoxaemia COPD interaction 1.3 0.6 2.0 4.23×10−2

Hyperoxaemia ventilation interaction −0.7 0.3 −2.2 2.89×10−2

Hyperoxaemia sepsis interaction −0.6 0.3 −1.9 6.29×10−2

6 days

Hyperoxaemia (indicator) 0.9 0.3 2.8 5.45×10−3

Hyperoxaemia COPD interaction 1.6 0.8 2.0 4.41×10−2

Hyperoxaemia ventilation interaction −1.0 0.4 −2.6 9.95×10−3

Hyperoxaemia sepsis interaction −0.6 0.4 −1.6 1.05×10−1

7 days

Hyperoxaemia (indicator) 1.0 0.4 2.6 8.62×10−3

Hyperoxaemia COPD interaction 1.1 0.8 1.4 1.53×10−1

Hyperoxaemia ventilation interaction −0.7 0.4 −1.6 1.10×10−1

Hyperoxaemia sepsis interaction −1.0 0.4 −2.2 3.12×10−2

8 days

Hyperoxaemia (indicator) 1.0 0.4 2.4 1.67×10−2

Hyperoxaemia COPD interaction 0.9 0.8 1.2 2.40×10−1

Hyperoxaemia ventilation interaction −0.8 0.5 −1.8 7.93×10−2

Hyperoxaemia sepsis interaction −1.1 0.5 −2.3 1.97×10−2

9 days
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Hyperoxaemia (indicator) 1.1 0.5 2.1 3.18×10−2

Hyperoxaemia COPD interaction 0.9 0.8 1.1 2.67×10−1

Hyperoxaemia ventilation interaction −0.7 0.5 −1.4 1.71×10−1

Hyperoxaemia sepsis interaction −1.4 0.5 −2.5 1.20×10−2

10 days

Hyperoxaemia (indicator) 1.4 0.6 2.2 2.55×10−2

Hyperoxaemia COPD interaction 1.5 1.1 1.3 1.86×10−1

Hyperoxaemia ventilation interaction −1.1 0.6 −1.7 8.54×10−2

Hyperoxaemia sepsis interaction −1.3 0.6 −2.0 4.40×10−2

11 days

Hyperoxaemia (indicator) 1.5 0.7 2.1 3.92×10−2

Hyperoxaemia COPD interaction 1.2 1.1 1.1 2.80×10−1

Hyperoxaemia ventilation interaction −0.7 0.7 −1.0 3.01×10−1

Hyperoxaemia sepsis interaction −1.7 0.7 −2.3 2.12×10−2

12 days

Hyperoxaemia (indicator) 1.3 0.8 1.6 1.16×10−1

Hyperoxaemia COPD interaction 0.9 1.2 0.8 4.46×10−1

Hyperoxaemia ventilation interaction 0.2 0.8 0.3 7.40×10−1

Hyperoxaemia sepsis interaction −2.1 0.8 −2.5 1.27×10−2

13 days

Hyperoxaemia (indicator) 1.1 0.8 1.4 1.76×10−1

Hyperoxaemia COPD interaction 0.5 1.2 0.4 6.80×10−1

Hyperoxaemia ventilation interaction −0.1 0.8 −0.1 9.16×10−1

Hyperoxaemia sepsis interaction −1.9 0.9 −2.1 3.59×10−2

14 days

Hyperoxaemia (indicator) 1.0 0.8 1.2 2.49×10−1

Hyperoxaemia COPD interaction 0.0 1.3 0.0 9.80×10−1

Hyperoxaemia ventilation interaction −0.1 0.9 −0.1 9.41×10−1

Hyperoxaemia sepsis interaction −1.3 1.0 −1.3 1.95×10−1

Table 5.6: Model coefficients for hyperoxaemia variables.

5.5 Discussion
A small yet consistent association was found in models between exposure to hyper-

oxaemia (by indicator) and mortality from day 2 to day 11 following admission to

the ICU. While the 95% compatibility interval contained the null for models with

exposure windows of ≥12 days. With regards to hyperoxaemia dose, there was no

convincing association between dose response and mortality, with the curve being

largely flat across observed hyperoxaemia dose and exposure windows. There was

a small downward curvature of the hyperoxaemia dose curve, particularly at longer
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exposure windows. This downwards deflection was informed by a small number

of outlying patients with very high oxygen exposure levels who survived, which is

reflected in the broad confidence intervals around the estimate.

It is important to exercise caution over “statistical significance” particularly in

the observational context where sample size is largely a function of convenience,

rather than an a priori power calculation. Large sample sizes can lead to parameter

estimates with p values that fall below the arbitrary 0.05 threshold, regardless of

effect size. It is therefore important to consider the Minimum Clinically Important

Difference (MCID) for a given exposure. Given the ubiquity of oxygen as an expo-

sure, it would be reasonable to accept a very low MCID, as even very small effect

sizes could impart benefit when scaled to a large population.

An important consideration for the interpretation of these findings is the theo-

retical time-scale and over which exposure to excess oxygen could exert an effect,

and therefore the plausibility of finding an association with mortality within such a

window. Prior research has shown that in humans the onset of sequelae from ex-

posure to pure oxygen are quite rapid. Evidence of worsening gas exchange, acute

lung injury and mortality can be seen as swiftly as 24 hours following continuous

exposure to pure oxygen [40, 51, 67]. It remains a more challenging question to

answer how this effect may be mediated by exposure to the much lower concentra-

tions of oxygen seen in typical clinical practice. Nevertheless, if exposure to excess

oxygen does impart an effect on mortality, then it would be reasonable to expect to

see this mediated over the time-scale of this study.

There was evidence to support the presence of HTE from exposure to hyperox-

aemia acting in the presence of COPD, ventilation and sepsis. Figure 5.13 demon-

strates the relationship between being exposed to a PaO2 ≥13.3 kPa and each of

these patient groups. As would be expected, COPD has a positive association be-

tween oxygen exposure and increased mortality. This is an established mechanism

and helps provide face validity and framing for other findings. Both ventilation and

sepsis were found to have an association between oxygen exposure and improved

survival. While this may be a true effect that warrants further investigation, it is
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also important to consider whether or not the way in which these models have been

conditioned may have produced the effect itself. To illustrate this potential issue,

consider the cohort of septic patients. In order for these patients to be able to aug-

ment their PaO2 ≥13.3 kPa, these patients must have a certain degree of respiratory

reserve. Severely unwell patients, with profound respiratory insufficiency, would

not be able to increment their PaO2 to this level. By creating the variable “hyper-

oxaemia dose”, a conditioning on patients who can achieve this state of blood oxy-

genation has been induced. This may result in those patients with highly performing

lungs providing a strong signal for survival, far in excess of any small potential harm

from oxygen administration. This type of confounding is well recognised, and in

lieu of applying a specific causal methodology, can be difficult to rule out. One

potential approach to address this would be to isolate patients who receive patient

controlled analgesia (PCA) following surgery, and employ this as an instrumental

variable. Oxygen is typically mandated—regardless of clinical need—for patients

in receipt of PCA. Further, PCA is sufficiently common so as to provide a large

cohort for study. These data are not present in the CC-HIC data model, though it

remains a promising avenue to explore in future work.

Placing these finding in the context of existing literature, a small (albeit non-

significant) signal of improved outcomes has previously been observed when liberal

oxygenation strategies were applied in sepsis in a post hoc analysis of the ICU-ROX

trial [53]. Challenging this, the HYPER2S study was stopped early due to increased

adverse events in the high oxygen group [67]. The HYPER2S used a protocol of

100% FIO2, whereas the ICU-ROX trial used “usual care” for the high oxygen

group, which would have been much lower. It is hypothesis generating therefore,

that in septic patients, there may be a small signal of benefit from using modestly

elevated oxygen levels, which may eventually become detrimental at higher levels.

Having a mildly elevated oxygen level may also mitigate against ischaemic events,

some of which have been observed when implementing conservative oxygen strate-

gies in sepsis. For example, an increased number of mesenteric ischaemia events

have been observed with conservative oxygenation strategies in ARDS [202]. These
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events may in part contribute to the potentially deleterious effects of conservative

oxygen strategies, and so finding the optimal oxygen level in this group remains

elusive.

Many prior observational [70, 71, 204, 192] and interventional [59, 60, 68, 52]

studies have shown an association between exposure to increased oxygen levels and

harm. Eastwood et al, as the only exception in this field, could not find supporting

evidence of this association [72].

A major limitation of these previous approaches has been the availability of

longitudinal oxygenation data. A common approach has been to study the asso-

ciation of a single arterial blood gas result (for example, the “worst” sample in a

24 hour period) on outcome. As previously discussed, it takes many days for the

deleterious effects of even pure oxygen to become apparent in humans [40]. And so

there is a lack of biological plausibility to support that any single isolated measure

of oxygenation could meaningfully alter outcomes.

Only one prior large study has investigated longitudinal oxygenation in the

critically ill population [71]. The authors found “a dose-response relationship be-

tween supra-physiologic arterial oxygen levels and hospital mortality.” This effect

was observed in the upper category of oxygen exposure, and a gradient of wors-

ening outcomes across oxygen exposure—which is a requirement to define dose-

dependency—was not demonstrated. The most directly similar measure in their

study to the approach presented in this thesis was a 96 hour area under the curve

for PaO2. There was an association between this metric and increased hospital (but

not intensive care) mortality. These findings are challenging to reconcile, and with

these caveats, a convincing dose-response relationship was not identified.

A small study by Ruggiu et al [204] used a PaO2 >13.3 kPa to indicate hy-

peroxaemia, and so is more directly comparable to the methods applied here. They

modelled mortality with survival analysis and arrived at the conclusion that a “dose-

independent” exposure to hyperoxaemia was associated with harm.

It is possible that the unintended consequence of creating an unambiguous def-

inition of oxygen excess (PaO2 ≥13.3 kPa) is that associations identified could rep-
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resent artefacts of conditioning. This has already been discussed with regard to the

potentially protective effect observed in sepsis. Counter to this, patient groups who

have a higher mortality and a known increased opportunity to be exposed to high

oxygen levels would be highlighted in the model. For example, patients who un-

dergo transfers and procedures. These patients are inherently less stable, experience

higher mortality [205] and morbidity [206] and may be placed on a high inspired

oxygen concentration regardless of clinical need. Such scenarios would be condi-

tioned by the model, with the likely result of a relationship being created between

hyperoxaemia and mortality.

5.6 Limitations
The methodological approach taken in this analysis is undoubtedly ad hoc and sub-

optimal. An alternative approach would have been to use survival analysis, either

by extending Cox’s proportional hazards model to include hyperoxaemia dose as a

time varying variable or to apply joint models with hyperoxaemia dose represented

in the longitudinal submodel. With regards to the extended Cox model, there was

concern that since the PaO2 samples were endogenous in nature (i.e. produced in-

ternally by the patient) then the model would not be valid [145]. The joint model

would potentially address this concern, however there was a very high variability in

serial PaO2 samples when viewed over time (i.e. low autocorrelation). There was a

lack of confidence that this volatility of serial PaO2 samples could be appropriately

captured by the longitudinal submodel in a joint model formulation. On reflection,

it may have been prudent to apply these methods regardless of the concerns raised,

since the underlying models described are more naturally suited to address the fea-

tures of the research question in a parsimonious manner.

Missing data were problematic when devising the study cohort. Several strate-

gies were implemented in attempt to reclaim missing or erroneous data, most no-

tably linear imputation for PaO2 samples and the logistic regression model based

recovery of anatomical labels. It is unclear what effect (if any) these approaches

would have on final inferences. A multiple imputation approach could have been
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advantageous in these situations, to better propagate uncertainty into the final mod-

els.

This analysis was conducted as a two-stage approach to the modelling of longi-

tudinal data. In this approach, a longitudinal process, such as serial PaO2 samples,

are collapsed into a single measure to be included within the model, so as to not

violate the independence assumption mandated by the model. While a common

approach, there is necessarily a loss of statistical information, and so this approach

is only able to address questions related to the cumulative exposure to hyperox-

aemia, rather than any other specific morphology (as previously outlined in sub-

section 2.4.1 on page 49). Under this approach, exposure to high levels of excess

oxygen for a short period of time are thought of equally to low levels of excess

oxygen for a long period of time.

There is likely to be a significant exposure to oxygen prior to ICU admission.

Patients enter the ICU after a non-ignorable amount of time in either an operating

theatre, emergency department or ward. It is reasonable to assume that most have

had a prior exposure to oxygen, and so much of the potential exposure to oxygen is

censored from the CC-HIC database. Indeed, even if normoxaemia is achieved after

admission to ICU, a brief period of hyperoxaemia in the emergency department has

been suggested to be detrimental [207].

A PaO2 ≥13.3 kPa likely captures a surrogate of the mechanism that is causing

harm (high FIO2). Much of the preclinical data favours high FIO2 as being causative

for lung parenchymal damage [50]. However, there may be other unrecognised

systemic and cellular effects acting other than in the lungs that result directly from

a raised PaO2.

The cohort is notable for being low in overall risk, as seen in the calibration

plots in figure 5.16. Despite being a relatively large cohort in the context of this

research subject, the power of a logistic regression is related to the number of events

observed in the smallest outcome group. A relatively small number of observed

deaths, coupled with the anticipated small effect size of oxygen excess on mortality,

increases the likelihood that this study was underpowered.
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5.7 Conclusions
This study overcame a number of methodological and technical barriers including

reduced data availability, and a lack of data harmonisation in key concepts. Novel

solutions were implemented to recover sufficient data to conduct the primary re-

search question. The study suggests that continued exposure to PaO2 ≥ 13.3 kPa

may be harmful, although there was a high degree of uncertainty in model esti-

mates. Given the absent dose-response relationship, it would be prudent not to give

these findings a causal interpretation. There was evidence to support the existence

of HTE in all subgroups of interest, including COPD, sepsis and ventilation.

As a necessarily longitudinal treatment effect, studies that seek to use indi-

vidual measures of oxygenation to extrapolate on outcomes should be avoided in

future research. In the observational context, research efforts should be directed

towards data resources that cover the whole hospitalisation period, so as to remove

the limitation of left censored data that is likely a feature of this study. Should ex-

posure to hyperoxaemia increase the risk of mortality, it is unclear over what time

frame following exposure this risk returns to baseline. This is an area that remains

largely unexplored, and will not likely be addressed by ongoing randomised studies.

Further experimental investigation into this controversial field is thus warranted.



Chapter 6

Physiological Morphologies in Sepsis

In this chapter I will explore the relationship between the morphology of longitudi-

nal physiology and survival in sepsis. Particular attention will be paid to informa-

tively missing data patterns—which are endemic to critical care cohorts—through

the application of joint models. Septic patients within the CC-HIC data resource

will be used as the primary cohort for investigation. Details of the literature review

and search strategy for this Chapter can be found in Appendix Section B (page 271).

6.1 Background
As described in Section 2.6, sepsis is a highly heterogeneous disease. Potential

areas of heterogeneity that have yet to be explored with formal methodological

approaches are the varied morphologies that can be demonstrated in longitudinal

physiology. These morphologies are outlined in subsection 2.4.1 (page 49) and

include:

• severity: the value of a biomarker at a point in time.

• velocity: the rate of change of a biomarker with respect to time.

• trajectory: the combination of severity and velocity sufficient to describe the

path taken by the biomarker.

• cumulative exposure: the aggregate impact of the biomarker over time, typi-

cally defined by the area under the curve of the biomarker.

Patient physiology during sepsis is dynamic; while lacking a reference to disease

time zero (which is generally unknown), it is nonetheless of interest to investigate
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how these different morphologies relate to outcomes. This may reveal insights into

the disease process, in lieu of a marker that reliably tracks the “stage” of sepsis.

Due to the endemic presence of death in the critical care population, estimates that

pertain to longitudinal biomarkers are subject to informative missingness. This has

implications where longitudinal biomarkers are used as the target of inference, as

in this instance. This study focuses on the longitudinal morphologies of the SOFA

score, its individual constituent parts, and the serum level of C-reactive protein. C-

reactive protein is included as it is routinely measured in critical care as a marker of

inflammation. Inflammation is a driving mechanism of the pathophysiology of sep-

sis, and is not captured directly within the SOFA score. SOFA is itself well suited

to the exploration of longitudinal morphologies in sepsis. Not in the least because

SOFA was specifically developed to assist in the day-to-day tracking of organ dys-

function in sepsis [95]. The sepsis-III definition itself requires an increase in the

SOFA score of at least two points [93]. We can consider that the diagnosis of sepsis

requires a deterioration in organ function. The current definition of sepsis there-

fore already seeks to define sepsis in terms of a specific longitudinal morphology;

disease velocity.

Prior research has investigated some specific morphologies of SOFA. Most

commonly this involves modelling the change in SOFA (∆SOFA) over a defined

time frame. Common examples of ∆SOFA include ∆96SOFA; the change in SOFA

score between arrival to ICU and at 96 hours, and ∆maxSOFA; the change in SOFA

score between arrival and the maximum observed SOFA score. This restricts the

evaluation of the velocity of SOFA to an average taken between two points in time.

Patients may improve, stabilise and deteriorate all within this time frame. If we

wish to explore the morphologies of SOFA throughout the ICU episode, then it is

necessary to consider the SOFA score as a continuous biomarker that we regularly

sample. Rarely have steps been taken in this field to address informative censor-

ing of patient data, and this has—in my view—led to some conflicting findings,

particularly with respect to ∆SOFA.

Until recently, methodological constraints have been a limiting factor in de-
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veloping these ideas more formally in the applied context. The development of a

rich ecosystem of research software to support the application of joint models has

permitted greater exploration of this topic.

6.2 Hypothesis Statement
Three joint models for each biomarker will be fit to explore the different physiolog-

ical morphologies in sepsis: severity, trajectory, and cumulative effect. Building on

prior knowledge in this area, evidence will be sought against the following testable

hypotheses:

1. the trajectory parametrisation will yield a superior model fit over other

parametrisations.

2. predictive performance of the models will reduce over time as patients enter

a chronic phase of disease and acute physiological changes exert less of an

influence on outcome.

It is also of interest to understand how the cumulative effects parametrisation

relates to outcomes. With no prior research into this particular morphology, it is

only possible to speculate on the associations that may be found.

6.3 Methods

6.3.1 Data Preparation

Data were pre-processed using inspectEHR [6] to apply standard data quality eval-

uation rules as outlined previously. Invalid episodes were removed, while those that

remained were reconciled into spells. When aligning episodes into spells, base-

line data pertaining to the start of the spell were captured from the primary episode

(for example, co-morbidities), whereas data pertaining to the end of the spell were

captured from the final episode (for example, patient outcome). In cases of data

missingness, information was retrieved from whichever episode it was available

from, provided the data concept was unlikely to change between episodes. For ex-

ample, date of birth could be retrieved from any episode, whereas the APACHE II
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Figure 6.1: Cumulative incidence of the competing risks: discharge alive from the ICU
(blue area) and death (red area). Cumulative incidence estimates were obtained
using the cmprsk package [208].

score (which would be re-evaluated for each new episode) could not. Longitudi-

nal data are often captured in duplicate across episodes that refer to the same spell.

These duplicate data were removed, with data re-allocated to the correct episode

(and hence spell) from which they originated.

The timing for spells was re-sequenced, so that the date-time information for

all data concepts was referenced to the number of hours since ICU admission in the

primary episode. Length of stay was capped at 30 days and all longitudinal results

and outcome events beyond this point were censored. The outcome for patients who

remained inside the ICU and alive beyond 30 days were marked as “survivors”, re-

gardless of their outcome at a later time. These patients are hence administratively

censored. Of the 4,188 patients included in the study, 327 (7.8%) had lengths of stay

greater than 30 days. Of these, 58 were non-survivors and 269 were survivors. The

distribution of outcome times are shown for all patients in figure 6.1. This decision

to limit the study to 30 days was informed by the need to balance a representative

cohort, with the excessive computational burden of modelling the extremely long

distributional tail of the relatively few patients who remained beyond 30 days. Re-

gardless, models fitted against data beyond 30 days would be increasingly reliant
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Figure 6.2: Overall data availability for the Sepsis study. Calendar months containing re-
liable data from each site are highlighted in blue. Regions where the overall
data quality did not meet a minimum standard is highlighted in red. Regions
for which no data have been received are shaded grey.

on a very small number of patients, with potentially limited generalisability.

The following data concepts were used to evaluate “safe” portions of the

database that can be used for data extraction:

• invasive mean arterial pressure.

• lactate.

• noradrenaline.

• PaO2.

• FIO2.

• urine output.

• creatinine.

• bilirubin.

• platelet count.

• total Glasgow Coma Score (GCS).

I make reference to these data concepts as “bellwether” concepts, since their

presence should be ubiquitous in a septic cohort. A high degree of data quality

issues or data missingness arising in bellwether concepts raises concerns over the
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broader reliability of these data. Months were flagged as “unsafe” and removed

from analysis if they contained more than ten calendar days with an error free con-

tribution of data that dropped below two standard deviations of the long running

average for all bellwether concepts. This identified corresponding “safe” portions

which are highlighted in figure 6.2 (page 199). Site “E” was unable to contribute to

this study as there were no months of data contribution meeting these requirements.

Sites “A” and “C” had their contribution to the study terminated early, mostly at-

tributed to a drop off in reliable infusion data.

Standardised data extraction from the CC-HIC database was performed with

wranglEHR [5] setting a temporal cadence of one hour. If a data concept is con-

tributed more than once in an hour, multiple events were collapsed into a single

event using the following summary functions:

• mean: for all continuous data except urine output.

• mode: for categorical data.

• sum: for urine output (to represent the total urine output in that hour).

All data concepts were visually inspected, and transformations made (typically

at site level) where appropriate to align to common units. Examples include:

• FIO2 was transformed to be represented as a fraction.

• PaO2/FIO2 ratio was transformed to be represented in kiloPascals (kPa).

• urine output was transformed to be represented as millilitres (mL) and with

the same sign (positive).

Multiple data concepts referring to the same semantic concept were coalesced

into a single measure with a pre-specified order of precedence. For example, non-

invasive and invasive blood pressure are both recorded simultaneously in the CC-

HIC database. While there will invariably be some disagreement between these two

readings for biological and technical reasons, the majority of the data describes a

close relationship between these different measures of the same underlying biolog-

ical phenomenon.

If outlying data fell outside a predefined range of plausible values it was en-

tered as the limit value for that data concept. For example, the limit value for SpO2
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is 100%, and so a value of 102% would be capped at 100%. The limit values ap-

plied were obtained from either the ICNARC data specification, a case literature

search or, in lieu of published evidence, clinical judgement. These limit values are

listed alongside the primary data specification in appendix table A.1. In cases where

the outlier was attributable to a misapplication of the CC-HIC data model, efforts

were made to reconcile the outlier if reasonably achieved. Common examples have

previously been discussed when reviewing the CC-HIC data model and include:

• categorical data incorrectly represented.

• continuous data contributed in the wrong units.

• data that deviate from an established pattern (e.g. ICNARC codes).

Resolving Outcomes

Following the spell reconciliation process, a small number of records continued to

show some outcome variables that were logically inconsistent. In most cases this

was caused by earlier ICU admissions for a patient being tagged with the outcome

data from subsequent admissions. If patients die on a future re-admission, this

results in labelling earlier admissions with their ultimate outcome. Table 6.1 shows

occurrences of this inconsistency. Patient outcome is stratified by whether or not

death timing data are present. The off axis diagonal elements of the table indicating

records that have mismatching outcome data.

Survivor Non-survivor

Death date absent 3189 5
Death date present 128 874

Table 6.1: Outcome data stratified by death timing data. A perfect cohort would have no
conflicting resulting in the off axis diagonal.

Of the 128 cases with a death date present and a conflicting outcome status of

“survivor”, only four cases have the death time represented as occurring within the

time boundaries of the episode. In all four instances, this occurred because no time

of death was present1. The time defaulted to midnight, artefactually bringing the
1dates and times are stored separately in the CC-HIC data model, and so it is entirely possible to

have one without the other.



202 Chapter 6. Physiological Morphologies in Sepsis

0

5

10

15

20

25

0 365 730

time difference between end of spell and date of death (days)

co
un

t

within 3 days no yes

Figure 6.3: Histogram displaying the difference in hours between the declared end of a
spell, and the associated time of death. A large number of timings occur within
24 hours of each other, which would be expected from the typical administra-
tive processes governing end of life declarations. A long tail exists as spells
have been unintentionally tagged with outcome data from future admissions.

time of death forward to occur within the episode. The outcomes for these episodes

were reconciled by replacing the death time with the time that the episode was

closed. It was assumed that the other 124 cases in this category were tagged with

outcome data from a future admission, and so this information was disregarded. The

five cases that are documented as non-survivors, but with missing date information

for their outcome, have this value replaced by the documented time of the episode

ending. Figure 6.3 shows the difference in time between the episode end time and

the documented death time. In a considerable proportion of cases there is a discrep-

ancy between the episode end and the time of death, with the latter occurring in the

distant future (relative to the episode). This suggests that these recorded deaths are

related to events that occur outside the ICU episode and, for the purposes of this

study, were ignored.

6.3.2 Identification of Sepsis

Sepsis was identified using a modification of the approach used by the ICNARC

case mix program [97]. The presence of any underlying infection in the CC-HIC

primary or secondary diagnostic codes, was identified using the ICNARC coding
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Fully characterised episodes (n = 46,512)

Total episodes (n = 47,932)

Sepsis suspected / confirmed (n = 4,880)

Episodes with data for at least 3 organ systems (n = 6,072)

Episodes originating in “safe” areas (n = 31,129)

Episodes with infection in primary diagnosis (n = 6,344)

Episodes recast as spells (n = 4,188)

Episodes missing core information (n = 1,420)

Episodes from regions of data quality concern (n = 15,383)

Not infection related (n = 24,785)

Limited organ set contributed (n = 272)

No evidence of organ dysfunction (n = 1,272)

Figure 6.4: Sepsis study flow diagram

method2. Preliminary data were extracted from the CC-HIC research database for

the first 24 hours of each episode. It was assumed that prior to ICU admission, the

patient SOFA score is zero. Evidence was sought for a maximum SOFA score of

two or more within the first 24 hours following ICU admission. Patients who had

previous evidence of fulminant chronic liver or dialysis dependent renal dysfunction

had these respective components of SOFA excluded. Most prior data quality checks

are aimed at the site level. As an additional patient level data quality check, only

episodes that were able to contribute at least three organs to the SOFA score were

considered. Urine output was not used in the evaluation of SOFA as it had been

contributed in distinct ways by each site in CC-HIC and it was not possible to prop-

erly reconcile these values. The renal component therefore relied upon creatinine

only. A septic shock cohort was further identified from those who had a persistent

lactate >2 mmol/L, or the presence of ongoing vasopressor use during the initial 24

hour window. A study flow diagram is shown in figure 6.4.

2INCARC code ##.##.##.27.## (27 at the 4th level of hierarchy) [98]
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Figure 6.5: The naive marginal trajectory for maximum daily SOFA score is shown for sur-
vivors (left, blue) and non-survivors (right, red). A generalised additive model
is applied against the whole sepsis cohort, without consideration of censoring
from death. A sample of patients are illustrated to highlight some individual
SOFA evolutions that are observed. A sudden artefactual decrease is seen in
the final 24 hours of observation for the cohort due to the partial contribution
of SOFA score componenents in this period.

6.3.3 Calculation of SOFA Score

The SOFA score is shown in table 2.4 (page 59). Minor modifications were neces-

sary to implement SOFA against routinely collected data. The default behaviour of

the SOFA score is to assume a zero score for an organ should that organ system not

be observed. Since only partial measurements of the total SOFA score were possible

in the final 24 hours of a spell, this approach would result in an artefactual decrease

(i.e. an improvement) in SOFA score shortly before death or discharge. To correct

for this, following the last completely observed 24 hour period, any remaining data

were entirely disregarded and no SOFA score was provided. This artefactual de-

crease can be seen in the naive marginal trajectories for the whole population SOFA

score shown in figure 6.5.

When there was a higher-than-expected quantity of missing data within the

cohort, the score was not returned for that day if a particular data concept was

missing. The typical protocol for SOFA is to return a zero if no information is
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available. This is based on the assumption that if an organ system is not measured,

it is likely that the clinician views the organ system as functioning normally and

so does not require investigation or intervention. By making explicit assumptions

about the whole evolution of the longitudinal biomarker, the mixed effects model

can account for some intermittent missingness. This would likely return less biased

estimates for the biomarker, than if the input data to the SOFA score were incorrect.

6.3.4 Data Missingness

Figure 6.6 (page 206) shows the missing data proportions at spell level of all longi-

tudinal data used in the present study.

Drug infusions in CC-HIC are typically described on the basis of the times

at which a continuous infusion rate is changed.3 When data are extracted on a

regular time cadence “missing data” for a particular hour represents instances where

infusions were either not running, or rate changes had not occurred. In this situation,

a last one carried forward (LOCF) procedure is appropriate, since this procedure

mirrors the clinical actions that are taking place4. An univariate LOCF procedure

was applied to vasoactive drug data, filling gaps up to a maximum of six hours.

With longer gaps, it was assumed that the infusions were switched off, and so no

imputation was performed. “Zeros” were not seen from any of the sites for drug

infusions, which likely reflects documentation practice whereby infusions are not

documented as zero when they are switched off. As such, infusions were manually

“zeroed” either after the last recorded entry, or when the imputation window was

greater than six hours. This procedure was inspired by the concept of “persistence

windows” from the field of comparative effectiveness research, whereby a sustained

period of missing data is used as a signal to decide that a particular drug regimen

has been stopped [209].

Similar steps were undertaken as for the hyperoxaemia study to reclaim addi-

tional data, including a model based approach to re-labelling blood gas data.

3unlike conventional drug investigations, vasoactive drugs in ICU are typically administered via
a continuous infusion into a central vein. The half life of these drugs is measured in minutes, and so
the rate of infusion (rather than the absolute dose) is the metric of clinical importance.

4LOCF are seldom appropriate methods for the imputation of biological data. Drug infusions on
ICU are not however biological in nature, and do not display a continuous change in dosing patterns.
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Figure 6.6: Spell level missing data patterns. Variables are shown as grey when no such
data exists for the entire spell. Variables are shown as blue when there is at
least one result for the spell. Aligned vertical lines across biomarkers indicates
data that are missing (or present) for the same patient. There are numerous such
alignments, suggesting that missing data are non-random as they are dependent
upon the patient. The percentage of complete data are provided in parenthesis
on the x-axis labels. Some missing data will invariable exist because the patient
did not receive a therapy, for example renal replacement.
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6.3.5 Model Fitting

In order to elucidate the relationships between the morphologies of longitudinal

biomarkers and outcome, a number of univariate joint models were fitted under

maximum likelihood. The following biomarkers were used:

• biomarkers of inflammation:

– C-reactive protein (CRP).

• biomarkers of individual level organ dysfunction:

– bilirubin (liver).

– creatinine (renal).

– PaO2/FIO2 ratio (respiratory).

– maximum daily noradrenaline equivalents (cardiovascular).

– total GCS (neurological).

– platelets (clotting).

• summary measures of global organ dysfunction:

– maximum daily SOFA score.

For all models, the baseline variables of Cox’s sub-model included:

• age (unit variance transformed).

• weight (unit variance transformed).

• sex.

• major comorbidities (any vs none)5.

• prior dependency (any vs none).

• cardiopulmonary resuscitation (CPR) prior to admission to the ICU (yes vs

no).

• first 24 hours maximum SOFA score.

These baseline variables were chosen because they either have a known relationship

with mortality, or can be used as surrogates for acute severity of illness, co-morbid
5Major comorbidities were defined as any of: cirrhosis, recent chemotherapy, chronic lympho-

cytic leukemia, dialysis dependency, congenital immunosuppression, hepatic encephalopathy, ac-
quired immune deficiency syndrome, home ventilation, lymphoma, metastatic cancer, portal hyper-
tension, radiotherapy, severe respiratory disease, steroid use, or severe cardiovascular disease.



208 Chapter 6. Physiological Morphologies in Sepsis

1 −0.1−0.08 0.02 −0.050.060.26 0.060.05 −0.030.05−0.04

−0.07

−0.1

1

0.09

0.03

0

0.01

−0.07

−0.08

0

−0.06

−0.21

0.34

−0.01

−0.08

0.091 −0.02 0.010.15

0.04

0.090.03 −0.04−0.180.08

−0.06

0.02

0.03

−0.02

1 −0.050.03

0.04

−0.16

−0.01

−0.04−0.010.13

−0.01

−0.05

0

0.01

−0.05

1

0.18

−0.07

0.04

0.03

−0.12

−0.07

0.16

0.05

0.06

0.01

0.15

0.03

0.181

0.03

−0.01

0.12

0.07

−0.14

0.31

0.1

0.26

−0.070.04 0.04 −0.070.031 0.04−0.04 0.050.02−0.06

−0.04

0.06

−0.08

0.09

−0.16

0.04−0.01

0.04

1

−0.02

0.11

0

−0.67

−0.02

0.05

0

0.03

−0.01 0.030.12

−0.04

−0.021 −0.06−0.040.07

0.19

−0.03

−0.06

−0.04

−0.04

−0.120.07

0.05

0.11

−0.06

1

0.02

−0.28

−0.04

0.05

−0.21

−0.18

−0.01

−0.07−0.14

0.02

0

−0.04

0.021

−0.35

−0.02

−0.04

0.34

0.08

0.13

0.160.31

−0.06

−0.67

0.07

−0.28−0.351

0.06−0.07 −0.01−0.06 −0.01 0.050.1−0.04 −0.020.19 −0.04−0.020.061weight

age

dependency

comorbidities

sex

prior CPR

SOFA

platelets

PaO2 FIO2 ratio

GCS

creatinine

c reactive protein

bilirubin

weig
ht ag

e

de
pe

nd
en

cy

co
mor

bid
iti

es se
x

pr
ior

CPR
SOFA

pla
tel

ets

P aO
2
F IO

2
rat

io
GCS

cre
ati

nin
e

c
rea

cti
ve

pr
ote

in

bil
iru

bin

Figure 6.7: Correlogram of core components used in joint models. There is some degree
of correlation between SOFA score and its individual components as would be
expected.

disease burden, or clinical frailty. Significant collinearity in the baseline variables

was examined prior to model inclusion as shown in figure 6.7. SOFA does show a

degree of collinearity with its constituent components, as would be expected. It was

worthwhile including the SOFA score as a baseline variable in the non SOFA mod-

els, since there is no other variable contributing to these models that represents an

overall notion of acute disease severity. Baseline SOFA score itself is omitted from

the SOFA models because the longitudinal submodel makes an implicit assumption

about a patients SOFA score at time zero, without having to add SOFA score to the

Cox sub model.

The linear mixed effects sub-model were fitted to each of the listed biomarkers

flexibly using natural cubic splines. Fixed effects were fitted using a third degree

natural spline6 basis with boundary knots at days 0 and 30. Internal knots were

placed asymmetrically at days 7.5 and 15 to accommodate more flexibility toward

6otherwise known as restricted cubic splines
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Biomarker System Transformation

C-Reactive Protein Inflammatory Square root
Bilirubin Hepatobiliary Square root
PaO2/FIO2 Respiratory Unit variance
Platelets Clotting Square root
Noradrenaline equivalents Cardiovascular -
GCS Neurological -
SOFA Score Global -

Table 6.2: transformations for biomarkers in univariate joint models.

the first half of the model where more events are occurring, and so we might rea-

sonably expect more volatility in the biomarker. The random effects were fitted

with splines of the same specification, allowing the accurate capture of individual

non-linear trajectories without specifying an a priori functional form. Since the as-

sociation structure is of primary inferential importance to the study, it is important

that these potentially non-linear and individual patterns are captured correctly prior

to any simplifying assumptions that may necessarily follow.

Some transformations of biomarkers (detailed in table 6.2) were necessary to

facilitate model convergence. In most instances a square root transformation was

applied in order to stabilise the variance of the biomarker, which are often strictly

positive values with a positive skew.

Although creatinine was used to calculate the total SOFA score, it was not

used to model the renal organ system in an univariate analysis. Without the accom-

panying renal replacement therapy information, the creatinine value can give a false

impression of renal organ failure in the ICU.

Blood pressure is maintained between fairly tight limits in intensive care, and

so is unlikely to provide useful variation to understand cardiovascular dysfunction

in an ICU context. This is the primary motivation for the presence of vasopressor

use in the SOFA score. Noradrenaline is the predominant vasopressor in use in the

cohort. There is less frequent, but non-ignorable use of adrenaline, and so a compos-

ite marker for “noradrenaline equivalents” was created. Noradrenaline equivalents

are the sum of both noradrenaline and adrenaline in the units of mcg/Kg/min.
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6.3.6 Model Morphologies

For each biomarker three models were specified, each with a different association

structure representing a different morphology of interest:

• severity; an instantaneous measure of the magnitude of disease.

• trajectory (severity + velocity); the path of severity at a given moment. This

is what most clinicians rely on for intuition when evaluating the prognosis of

a patient, or the relevance of a biomarker result. All new results are contextu-

alised (where possible) to what came before.

• cumulative effect; the history of exposure up to and including the point of in-

terest. If any biomarker is thought to exhibit an effect in an aggregate manor,

as was seen in the previous chapter, then the cumulative effect parametrisation

is best placed to elicit these effects.

In precis of subsection 2.4.1 (page 49), these conform to the morphological patterns

shown in figure 6.8. This figure provides an illustration to orientate on the results

that follow.
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Figure 6.8: Graphical illustration to aid in the interpretation of joint model results. Re-
sults from the three morphologies (severity, trajectory and cumulative effect)
will be presented graphically with the same approach. Each column of plots
corresponds to a particular morphology. To assist in orientation, a graphical
depiction of the morphology is presented here in the first row. Left column:
the severity morphology, represented by the blue observed point. Middle col-
umn: the trajectory morphology, represented as a dashed blue line and point
representing the simultaneous measure of disease severity (value) and velocity
(slope). Right column: the cumulative effect morphology, represented by the
shaded blue area under the biomarker. Each row of results corresponds to joint
models for the same biomarker. The three possible association parameters are
displayed on the y axis; velocity, severity, and cumulative effect. The severity
model only displays the severity association parameter. The trajectory model
displays both severity and velocity association parameters. The cumulative ef-
fect model only displays the cumulative effect association parameter. The null
effect is shown as a vertical dashed line at a hazard ratio of 1 (log hazard ratio
of 0). Coefficients displayed to the right (larger hazard ratio) show a stronger
association for potential harm. The opposite is true for coefficients displayed
to the left. Point estimates, 68% and 95% confidence intervals are displayed as
points and lines of diminishing thickness.
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6.4 Results
The characteristics of patients included in the sepsis cohort are included in table

6.3. Overall, this cohort is typical for those with sepsis in ICU, with a baseline

mortality of around 20%. As would be expected, most patients are medical (86%),

male (60%) and without any comorbidies (73%). There was good representation

of different organ systems affected, although the majority of cases were respiratory

insults (57%).

Characteristic Overall Sepsis Septic shock p-value

N 4,188 3,216 972
Admission type 0.2

Medical 3,588 (86%) 2,743 (85%) 845 (87%)
Surgical 600 (14%) 473 (15%) 127 (13%)

Organ system
Cardiovascular 403 (9.6%) 272 (8.5%) 131 (13%)
Dermatological 82 (2.0%) 56 (1.7%) 26 (2.7%)
Endocrine 53 (1.3%) 46 (1.4%) 7 (0.7%)
Gastrointestinal 422 (10%) 297 (9.2%) 125 (13%)
Genito-urinary 374 (8.9%) 263 (8.2%) 111 (11%)
Haematological 107 (2.6%) 75 (2.3%) 32 (3.3%)
Musculoskeletal 89 (2.1%) 73 (2.3%) 16 (1.6%)
Neurological 255 (6.1%) 210 (6.5%) 45 (4.6%)
Poisoning 9 (0.2%) 8 (0.2%) 1 (0.1%)
Respiratory 2,381 (57%) 1,905 (59%) 476 (49%)
Trauma 13 (0.3%) 11 (0.3%) 2 (0.2%)

Age 64 (51, 75) 63 (50, 75) 65 (52, 75) 0.11
Sex 0.7

Female 1,691 (40%) 1,293 (40%) 398 (41%)
Male 2,497 (60%) 1,923 (60%) 574 (59%)

Comorbidities 0.046
0 3,038 (73%) 2,336 (73%) 702 (72%)
1 752 (18%) 593 (18%) 159 (16%)
2 308 (7.4%) 227 (7.1%) 81 (8.3%)
3 80 (1.9%) 52 (1.6%) 28 (2.9%)
4 10 (0.2%) 8 (0.2%) 2 (0.2%)

CPR 128 (3.1%) 69 (2.1%) 59 (6.1%) <0.001
Any dependency 1,183 (28%) 903 (28%) 280 (29%) 0.7
Spell LOS (days) 6 (3, 13) 5 (3, 12) 7 (3, 16) <0.001
ICU mortality 822 (20%) 462 (14%) 360 (37%) <0.001

Table 6.3: Patient characteristics for the sepsis cohort. Statistics presented: n (%); Median
(IQR). Statistical tests performed: chi-square test of independence; Wilcoxon
rank-sum test; Fisher’s exact test. LOS = length of stay.

In order to provide an indication as to the representativeness of the models,

example model fits are shown for a sample of patients for the trajectory model
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across all biomarkers in figure 6.9. The varied and often non-linear paths taken by

patients are demonstrated.

The model coefficients for the baseline patient features are shown graphically

in figure 6.10 The majority of baseline coefficients across all joint models exhibit

the same overall pattern; that is, the baseline coefficients are stable and relatively

insensitive to the specification of the longitudinal biomarker. In general, baseline

SOFA, the presence of dependencies and comorbidities, and age were positively

associated with mortality. Weight and male sex were negatively associated with

mortality. CPR prior to arrival had a variable relationship with mortality, with the

confidence interval for this variable often containing the null. Noradrenaline is

not shown, as models for this longitudinal outcome would not converge under the

primary joint model specification.

The coefficients for the association parameters are shown in figure 6.11. In all

cases, the cumulative effects parametrisation has a clinically negligible association

with mortality. The trajectory models consistently demonstrate a strong relationship

between both the velocity and severity parameters, and mortality. This relationship

always occurred in the direction that would be expected, depending upon which di-

rectional change in the biomarker indicates a deterioration (for example, PaO2/FIO2

decreases with deterioration, while SOFA score increases with deterioration.) In all

instances, the velocity parameter has a much larger effect size on the outcome than

the value parameter. The coefficients obtained for the severity parameter were in-

sensitive to the inclusion of the velocity parameter. In comparison to the baseline

coefficients shown in figure 6.10, we can observe that changes in the longitudinal

biomarker demonstrate a much large effect size.

The tabular representation of the association parameters is shown in table 6.4.

Coefficients for all model parameters are shown in appendix table A.2 on page 269.

There was a concern that the precision of the estimates shown in figure 6.11

were too high (i.e. that the confidence intervals are too small). Even in the presence

of relatively large volume of data, it seemed unlikely that the confidence intervals

demonstrated would cover the correct proportion of cases. In the semiparametric
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Figure 6.9: Example model fits drawn from the trajectory joint models
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Figure 6.10: Baseline coefficients for all univariate joint models. A very similar pattern
is seen across nearly all biomarkers and association structures, highlighting
a lack of sensitivity of the baseline variables to these model elements. Other
features are as described in figure 6.11. c+s = centered and scaled variable.
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Figure 6.11: Association coefficients for all univariate joint models. Models for the same
biomarkers are shown in rows. Models for the same morphology are shown in
columns, from left to right: severity, trajectory, and cumulative effect. Results
for the velocity parameter from the PaO2/FIO2 ratio trajectory model have
been displayed as an arrow since the effect size is outside the limits of the
plot. The log hazard ratio scale is displayed on the bottom x axis, the hazard
ratio scale is displayed on the top x axis. Point estimates, 66% and 95%
confidence intervals are shown. The dashed veritcal line is the point of null
effect.



6.4. Results 217

log hazard ratio hazard ratio

Model Parameter Coef L95 U95 Coef L95 U95 z p-value

Bilirubin

Severity Severity 0.10 0.08 0.12 1.11 1.09 1.12 12.37 3.72×10−35

Trajectory Severity 0.09 0.07 0.10 1.09 1.07 1.11 9.97 1.97×10−23

Trajectory Velocity 0.73 0.48 0.98 2.08 1.62 2.67 5.77 8.01×10−9

Cum E. Cum E. 0.01 0.00 0.01 1.01 1.00 1.01 7.23 4.68×10−13

CRP

Severity Severity 0.09 0.07 0.11 1.09 1.07 1.12 9.03 1.71×10−19

Trajectory Severity 0.11 0.09 0.13 1.12 1.09 1.14 11.10 1.20×10−28

Trajectory Velocity 0.85 0.67 1.03 2.34 1.96 2.79 9.40 5.58×10−21

Cum E. Cum E. 0.00 0.00 0.01 1.00 1.00 1.01 3.25 1.14×10−3

GCS

Severity Severity −0.16 −0.18 −0.14 0.85 0.83 0.87 −14.37 8.19×10−47

Trajectory Severity −0.17 −0.20 −0.15 0.84 0.82 0.86 −15.04 4.27×10−51

Trajectory Velocity −1.30 −1.50 −1.11 0.27 0.22 0.33 −13.32 1.73×10−40

Cum E. Cum E. −0.01 −0.01 −0.01 0.99 0.99 0.99 −8.01 1.11×10−15

PaO2/FIO2

Severity Severity −0.94 −1.07 −0.82 0.39 0.34 0.44 −14.72 4.48×10−49

Trajectory Severity −1.01 −1.14 −0.88 0.36 0.32 0.41 −15.30 7.75×10−53

Trajectory Velocity −6.44 −7.91 −4.96 0.00 0.00 0.01 −8.56 1.12×10−17

Cum E. Cum E. −0.08 −0.09 −0.07 0.92 0.91 0.94 −11.53 9.65×10−31

Platelets

Severity Severity −0.11 −0.13 −0.10 0.89 0.88 0.91 −13.04 7.66×10−39

Trajectory Severity −0.12 −0.14 −0.11 0.88 0.87 0.90 −13.72 7.46×10−43

Trajectory Velocity −1.01 −1.20 −0.83 0.36 0.30 0.43 −10.97 5.51×10−28

Cum E. Cum E. −0.01 −0.01 −0.00 0.99 0.99 1.00 −8.53 1.47×10−17

SOFA

Severity Severity 0.21 0.19 0.23 1.24 1.21 1.26 21.69 2.66×10−104

Trajectory Severity 0.21 0.19 0.23 1.23 1.21 1.25 20.75 1.34×10−95

Trajectory Velocity 0.95 0.71 1.19 2.60 2.04 3.30 7.80 5.96×10−15

Cum E. Cum E. 0.01 0.01 0.01 1.01 1.01 1.01 13.39 6.86×10−41

Table 6.4: Association coefficients for univariate joint models. Findings are grouped by
biomarker and morphological parameterisation. Cum E. = Cumulative effects.
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model association parameter log hazard ratio (95% CI) hazard ratio (95% CI)

severity severity 0.21 (0.20, 0.24) 1.24 (1.22, 1.27)
trajectory velocity 0.95 (0.73, 1.19) 2.62 (2.07, 3.28)
trajectory severity 0.21 (0.19, 0.23) 1.23 (1.21, 1.26)
cumulative effect cumulative 0.01 (0.00, 0.01) 1.01 (1.00, 1.01)

Table 6.5: Bootstrapped association parameters for SOFA joint models. empirical means
and 95% confidence intervals are drawn from the sampling distribution of 250
resamples for each model.

approach taken by Cox for the proportional hazard model, the baseline hazard func-

tion is left unspecified7 and the partial maximum likelihood is maximised. With the

joint model specification, the baseline hazard function is unavoidably part of the

maximum likelihood specification due to the shared random effects. This can result

in a systematic under-estimation of the model standard errors when the baseline haz-

ard is left unspecified [145]. Two general purpose solutions have been proposed to

solve this problem. First, a parametric baseline hazard function can be used for full

maximum likelihood inference to proceed without bias. Second, the non-parametric

bootstrap is a useful general purpose tool that can be applied to provide confidence

intervals. The general flexibility of the bootstrap comes at a high computational

burden, particularly when applied to joint models which are themselves computa-

tionally demanding. The models demonstrated in figure 6.11 are all fitted using a

piecewise-constant baseline hazard function. Although the standard errors should

be valid under this approach, the models have been refitted under a weibull baseline

hazard function to provide an alternate fully parametric baseline hazard. Boot-

strapped confidence intervals have also been drawn from the weibull models for

the trajectory SOFA model with 250 resamples8 to provide corroborating evidence

for this model. The model coefficients and standard errors (either those computed

analytically in the weibull models, or those derived empirically from the bootstrap

samples) are largely comparable between both piecewise-constant and weibull haz-

ard functions. The bootstrapped parameters are shown in figure 6.12 and table 6.5.

7hence the use of the term semi-parametric
8the weibull models fit in a shorter time than the piecewise models, and so a bootstrap approach

was more feasible with these models.
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Figure 6.12: Association parameters for SOFA joint models with empirical bootstrapped
95% confidence intervals.

6.4.1 Model Evaluation

Model comparison was performed by evaluating each model’s likelihood, Akaike

information criterion (AIC) and Bayesian information criterion (BIC) (table 6.6).

The trajectory model consistently proves to be the best representation of these data

across all three criteria for each biomarker. Because the severity and trajectory mod-

els are nested (the trajectory model contains one additional parameter, in the form

of the velocity association parameter), the likelihood ratio test can be applied to for-

mally compare these models. In all cases, the likelihood ratio test when comparing

the trajectory model to the severity model demonstrates a significant improvement

in model fit by the inclusion of the velocity parameter.

A comparison can now be made between the marginal (population average)

biomarker evolutions derived from the trajectory joint models and those from a

naive analysis that does not consider informative censoring from death. These find-

ings are shown in figure 6.13, which allows for a direct comparison for each longi-

tudinal biomarker. On the whole, the generalised additive model (GAM) evolutions

tend to be flatter than their joint model counterparts. In some cases, the GAM mod-

els fail entirely to capture a good representation of the evolution of the biomarker.

This is particularly evident in the GCS, PaO2/FIO2, and SOFA models where the

evolution in the GAM models trend toward more extreme values as they are likely

dominated by those who remain alive and critically unwell inside the cohort. There

is often an inflection in the biomarker evolutions at around seven days. Since this
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model LRT p logLik AIC BIC

bilirubin

cumulative effect - - −49,189 98,425 98,577
severity - - −49,151 98,349 98,501
trajectory 30.5 3.30×10−8 −49,135 98,321 98,479

CRP

cumulative effect - - −88,943 177,934 178,086
severity - - −88,913 177,873 178,025
trajectory 79.6 4.64×10−19 −88,873 177,796 177,954

GCS

cumulative effect - - −92,384 184,816 184,967
severity - - −92,302 184,652 184,804
trajectory 178.4 1.11×10−40 −92,213 184,476 184,634

noradrenaline

cumulative effect - - 12,487 −24,927 −24,775
severity - - 12,564 −25,080 −24,928
trajectory 49.7 1.76×10−12 12,589 −25,128 −24,970

PF

cumulative effect - - −38,008 76,063 76,214
severity - - −37,956 75,959 76,109
trajectory 54.8 1.34×10−13 −37,928 75,906 76,063

platelets

cumulative effect - - −81,066 162,180 162,332
severity - - −81,008 162,064 162,216
trajectory 76.7 2.02×10−18 −80,970 161,989 162,148

SOFA

cumulative effect - - −84,731 169,508 169,653
severity - - −84,585 169,217 169,363
trajectory 55.7 8.26×10−14 −84,557 169,163 169,315

Table 6.6: Piecewise joint model comparison characteristics. The Log-Likelihood (logLik),
Akaike information criterion (AIC) and Bayesian information criterion (BIC) are
detailed for all univariate joint models. Where models are nested (as is the case
with the severity and trajectory models) a likelihood ratio test (LRT) has been
performed. All tests have 1 degree of freedom. In all biomarkers, the trajectory
model provides a better fit across all criteria than severity or cumulative effect
models. The noradrenaline model failed to achieve proper convergence and is
shown for completeness only.
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Figure 6.13: Comparison between joint model and naive marginal trajectories. The left
column shows the marginal trajectories for each biomarker drawn from the
trajectory joint models. Grey vertical dashed lines are provided at the point
of spline knots (7.5 and 15 days). The right column shows the corresponding
trajectories drawn from a GAM that does not take informative censoring into
consideration.
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coincides with the position of the first spline knot, it would be prudent to re-model

at different knot positions to evaluate if the inflection point is sensitive to the spline

specification. Though similar (albeit less pronounced) inflections are seen in some

of the GAM models, where the number of spline knots (and hence their placement)

is informed by the data itself, rather than as an a priori specification.

In each of the joint models, the evolutions have been cautiously extrapolated

backward in time to one day prior to arrival in the ICU9. In all cases, the biomarkers

are on an “improving” trajectory, suggesting that patients are improving at the point

of ICU arrival.

The model performance was evaluated with dynamic area under the receiver

operating characteristic (AUROC) (discrimination) and dynamic Brier scores (cal-

ibration). In each case, a time horizon of interest must be defined, over which

the metric can be evaluated. The dynamic AUROC and dynamic Brier scores are

shown graphically in figures 6.14-6.15 and 6.16-6.17 respectively. In each case,

performance is evaluated from days 2-14, with a time horizon of 7 days into the

future.

In all cases, discrimination and calibration of each biomarker decreased over

time as the length of the time horizon increased. This highlights the increasing dif-

ficulty in predicting outcomes further into the future. The composite SOFA score

yielded better performance than its individual components. While the trajectory

models were superior in formal model comparisons, the picture is less clear when

examining model performance stratified by time of interest. As is more clearly

seen in the difference heatmaps in figures 6.15 and 6.17, there are regions of both

improved and worse performance in the trajectory model when compared to the

severity model. In general, the trajectory model was favourable within the first

week of the cohort, and then performance deteriorated thereafter. The cumulative

effect model consistently performed worse than the severity model, with the possi-

ble exception for CRP, which showed some possible improved discrimination in the

second week.

9The use of restricted splines means that they are linear in their tails, and so short extrapolation
beyond the limits of the data can be appropraite.
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Figure 6.14: Dynamic area under the receiver operating characteristic (AUROC). The
dynamic AUROC is shown for all biomarkers (rows) and morphologies
(columns). The point of evaluation is shown on the x-axis from day 2-14.
A time horizon of interest of up to 7 days is shown on the y-axis. Colour
mapping is provided with deeper blue hue indicating better performance. Ra-
dial lines are drawn to emphasise this same effect with lines vertical at 90◦

indicating better performance.
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Figure 6.15: The setup of the plot is as for figure 6.14. The value in cell for the trajectory
and cumulative effect models has been subtracted from the severity model.
The result is displayed as a difference heatmaps showing the difference for
each time point compared to the severity model, which is shown in white as
the reference. Areas of red and blue indicate worse or better performance
respectively.
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Figure 6.16: Dynamic Brier scores. The dynamic Brier score is shown for all biomarkers
(rows) and morphologies (columns). The point of evaluation is shown on the
x-axis from day 2-14. A time horizon of interest of up to 7 days is shown on
the y-axis. Colour mapping is provided with deeper blue hue indicating better
performance. Radial lines are drawn to emphasise this same effect with lines
horizontal at 90◦ indicating better performance.
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Figure 6.17: The setup of the plot is as for figure 6.16. The value in cell for the trajectory
and cumulative effect models has been subtracted from the severity model.
The result is displayed as a difference heatmaps showing the difference for
each time point compared to the severity model, which is shown in white as
the reference. Areas of red and blue indicate worse or better performance
respectively.
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6.5 Discussion
This study has provided encouraging evidence that biomarker morphologies in sep-

sis are differentially related to outcomes. What is most striking about these findings,

is that regardless of the biomarker under investigation, the same pattern of findings

was observed. Based on log likelihood and information criteria, the trajectory model

provided a superior fit to these data than other morphologies. Further, the effect on

outcome associated with an increase in the velocity of a biomarker was greater in all

cases than the corresponding increase in severity. This effect size was greater than

the typical effect sizes that were seen in any of the baseline patient characteristics,

highlighting the relative importance of disease trajectories. In all cases, the cumula-

tive effects parametrisation provided a very precise estimate for a negligible clinical

effect on outcome. This raises questions over the transition between the shift from

acute to chronic critical illness, and will be explored in this discussion.

The notion that different longitudinal morphologies of biomarkers could confer

different relationships with outcomes in sepsis is not a new idea. Vincent et al de-

veloped the SOFA10 score in 1996 [95]. In 1999, Meroeno et al [210] demonstrated

that the change in SOFA score (∆SOFA) correlated favourably with acute mortality.

However, the performance of ∆SOFA fell short of the maximum day one SOFA

score, even after adjustment for the SOFA score on arrival to ICU. These findings

were corroborated shortly afterwords by Russell et al [211] and by Ferriera et al

[212]. Using two time points (day zero and day three) Russell et al demonstrated an

increased mortality in patients who showed an increase in organ dysfunction over

this time. Ferreira et al demonstrated that increases in SOFA score within the first

48-96 hours of ICU were associated with a particularly high mortality (50% ver-

sus < 35%). Their univariate analysis of 352 patients showed better discriminative

performance in predicting outcome with the first day maximum SOFA score, rather

than ∆SOFA, mirroring the earlier findings by Meroeno et al These earlier findings

were corroborated by the larger SOAP observational study [213] in 2012.

In the intervening years, SOFA gained increasing popularity within the criti-

10At its introduction, the SOFA score was referred to as a the “sepsis related organ failure score”
and has subsequently undergone a name change due to its broader application in critical care.
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cal care community, culminating in its direct use in the sepsis-III definition [93].

Based on this prior research, the sepsis-3 definition is notable for its dynamic rep-

resentation of the SOFA score to indicate salient organ dysfunction (a ∆SOFA of ≥

2).

With increasing use not just as a target of inference in critical illness, but as

an outcome in its own right, ∆SOFA was revisited by Degrooth et al in 2017 [214].

Their meta-analysis analysed 87 RCTs that reported SOFA score and mortality.

Counter to some of the earlier evidence that shaped this field in the late 90s, De-

grooth showed that although the SOFA score itself correlated with outcome, it ex-

plained only a small proportion of the outcome variance (R2 = 0.09). Studies that

reported ∆SOFA had a closer relationship with outcome, and explained a much

higher proportion of the outcome variance (R2 = 0.32). Though it is not entirely

clear how the authors chose to include RCTs that did not make an account for in-

formative censoring of SOFA.

Placing this current study in the context of this prior research, many of the

comparable findings are in agreement. A consistent association was found between

the trajectory of SOFA score and its components and mortality, with the veloc-

ity parameter showing a much larger effect on mortality than the value parameter.

Many of the prior studies modelled ∆SOFA, over a single fixed timeframe (often

96 hours), in univariate analysis, and without consideration for informative censor-

ing from death. This is analogous to modelling the velocity parameter in isolation,

and at only a single point in time. After applying joint models to account for the

informative censoring problem, the relationship becomes much clearer and is more

in line with the findings from Degrooth et al [214].

Challenging this direct comparison, is the fact that I did not build any models

that targeted the velocity parameter in isolation. A velocity only model would lack

scientific plausibility and be challenging to interpret. To illustrate, we should rea-

sonably expect that a patient moving from a SOFA score from 0 to 1 has a vastly

better prognosis than a patient moving from 16 to 17. These patients demonstrate

the same SOFA velocity, which must be contextualised with the severity of SOFA,
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for this to be interpretable.

Three studies exploring this domain from the joint modelling perspective in-

clude the methodological studies from Deslandes and Chevret [135] and Musoro et

al [136], and the clinical study from Harhay et al [215]. Deslandes and Chevret con-

firmed the relationship between SOFA severity and mortality [135]. Again this find-

ing was corroborated by Musoro et al [136]. With direct clinical application Harhay

et al re-analysed the data from an RCT that investigated the use of vasopressin in

septic shock. None of these studies investigated the relationship between differ-

ent longitudinal morphologies and outcome, which is to my knowledge a unique

investigation of the subject matter.

A notable point of interest is the difference in findings when comparing mod-

els either based on likelihood or information criteria, and that with dynamic ROC

and Brier methodologies. The trajectory models were unequivocally selected as the

preferred model based on likelihood and information criteria methods. However,

when examining model performance over a range of different time horizons, there

was varied performance in the trajectory model. There are a number of reasonable

explanations that may explain these findings. First, the power of the AUROC test

as a means to compare models is lower than the likelihood approach, and so should

be applied with caution for model selection. It may be that the model evaluations

shown do not have the appropriate power to be used in the manner presented. Sec-

ond, the performance indicated by the AUROC test is highly heterogeneous, with

some regions performing better, and some worse. It may be, that on the whole,

model performance is better with the trajectory model, but the peculiarities of this

cohort render it less performant in certain places. It would be useful to validate

these findings in an external cohort, to examine if these findings are replicable, or if

they are specific to the cohort in hand.

6.5.1 Chronic Critical Illness

A prevailing sentiment in the critical care literature is that “chronic critical illness”

is defined either arbitrarily at day 14, or by the point at which acute physiology is

no longer predictive of a patient’s outcomes [216, 217]. The findings here chal-
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lenge this position, as there is little evidence that the acute physiology captured by

the models was less predictive of outcome as time progressed. Indeed, the prefer-

ence of the trajectory models, rather than the cumulative effects model suggests that

outcomes are more closely related to acute physiology, and how that physiology is

changing in any given moment, rather than the full history of how a patient arrived

at that point in time.

The main evidence to counter this position is the cumulative effects CRP mod-

els. While the trajectory models were still selected as the best models for CRP,

the AUROC evaluation does show there was better performance in the cumulative

effects model beyond week 1. CRP is the only biomarker that captures inflamma-

tion. It is biologically plausible that the aggregation of inflammation could have a

stronger relationship with outcomes, than any acute changes, particularly late in the

clinical course. This aspect warrants further investigation.

6.6 Limitations
Efforts have been made to explicitly model the missing data mechanism, however

I have not attempted to account for an informative sampling process. An example

of an informative sampling process would be an increased sampling frequency of

arterial blood gas samples, in a patient who is unwell. This may bias the system

toward these more unwell cases and impact the study in two ways. First, there are

scenarios in which the underlying data have been regularised to a fixed sampling

schedule, for example, the SOFA models. In this situation, while the sampling

frequency presented to the model has been regularised, the data that went into the

SOFA calculation was not. This may have introduced bias into the SOFA calcu-

lation itself, of which we would be unaware. Second, there are also scenarios in

which the underlying data has been modelled directly, for example, CRP. These

biomarkers tend to have a natural daily cadence of measure in the ICU, but might

be monitored more frequently in more severely unwell patients.

SOFA is an imperfect encapsulation of the treatment-physiology interaction of

organ dysfunction, with numerous artefactual problems that may bias models that
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use it to describe organ dysfunction trajectory. Its main limitations include:

• it is an ordinal scale, but most commonly modelled as if it were continuous

(as has also been performed in this study) which is known to cause inferential

issues [218].

• the categorisation of underlying continuous biomarkers reduces statistical ef-

ficiency.

• SOFA considers each organ system as independent, when they are demon-

strably interconnected.

Despite these limitations, the SOFA model generally outperformed the other com-

ponent models, particularly in the very short term.

The implementation of sepsis-3 in this study relies on potentially indirect ev-

idence of infection through the use of ICNARC diagnostic codes. This limits the

study to patients in whom sepsis is suspected on arrival into the ICU (which may

itself be advantageous for the study) but does not permit the study of patients who

go on to develop sepsis during their ICU episode. Suspicion of infection was not

confirmed with the use of microbiology data, as the investigation of data quality

outlined in chapter 4 does not provide enough confidence that this approach would

be reliable.

Vasopressor and inotrope administration remains a point of concern. Usage

of these drugs in the cohort was lower than would be clinically anticipated for pa-

tients who have sepsis in ICU. A possible explanation is that alternative forms of

inotropy that are not captured by the CC-HIC data model are in use. For example,

one site employs the use of glucose-insulin-potassium infusions that augment the

cardiovascular system but do not feature in the CC-HIC data model. A more likely

explanation is that data is missing due to translation errors at the point of local data

extraction. In either case, the exploration of the cardiovascular system should pro-

ceed with caution, and the total SOFA score may have a systematic underestimation

from a lack of cardiovascular data.
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6.6.1 Cardiovascular System

The models investigating noradrenaline equivalents would not converge properly.

While estimates were obtainable, valid standard errors could not be calculated, and

so the estimates from these models should not be used without further investigation.

It is possible that the heavy weighting of zeros in this variable proved challenging

for convergence. A possible solution would be to perform a data reduction tech-

nique (such as PCA) over all cardiovascular data, and to regress against the principal

components.

6.6.2 Other Forms of Censoring

This study has mainly concerned itself with informative right censoring. It should

be noted that left censoring of biomarkers also features in this cohort. Patients

are assumed to have had the onset of sepsis either at the very beginning of the ICU

episode, or prior to arrival. As discussed, on the biological time scale, there is going

to be a variable and fundamentally unknown period of time that patients are treated

between the onset of sepsis and before arriving in ICU. This stands to maximally

impact upon the cumulative effects parametrisation of the joint models, where this

censoring may reduce any association seen in ICU.

6.6.3 Competing Risks

The joint models presented consider patient death as the only time-to-event out-

come. There is, however, a competing risk present in this cohort contributed by

patients leaving the ICU alive. Discharge from an ICU is on the whole predicated

on the resolution of organ dysfunction. Once patients leave the ICU their physiolog-

ical data is no longer submitted to the CC-HIC. Failing to account for this additional

non-random loss of patient data from the cohort could potentially bias findings. The

current approach was taken as a simplifying assumption, but it would be important

to re-visit and address this in any future work. The use of a competing risks sub-

model, in place of the currently used Cox or Weibull survival sub-models, would

allow for the cause specific hazards from both death and discharge to be taken into

consideration.
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6.7 Conclusions
This study overcame a number of methodological and technical barriers including

reduced data availability, and a lack of data harmonisation in key concepts. The

same novel solutions as described in the hyperoxaemia study were implemented to

recover sufficient data to conduct the primary research question. The study sug-

gests that for all biomarkers investigated, biomarker trajectory was more strongly

related to outcome than the value or cumulative effect of the biomarker. The con-

sistent ability of these biomarkers to discriminate on outcome raises implications

for the definition of chronic critical illness, implying that the acute phase of dis-

ease may last longer than previously described. The consistent evidence in support

of the trajectory of biomarkers provides supporting evidence that risk prediction

and prognostic trial enrichment should incorporate a dynamic function of treatment

response, rather than just the level of organ dysfunction at a given time. The un-

derlying biological drivers of these trajectories has not been explored here, because

this does not form part of the routine data collection during the normal course of

patient treatment.
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Chapter 7

Conclusions

7.1 The CC-HIC
With its ancestry rooted in the ICNARC data model, the CC-HIC data model should

have excelled in its role, supporting the secondary use of routinely collected critical

care data for research. Perhaps unexpectedly, this was not the case. At the transi-

tion between a conventional disease registry and a full realisation of the EHR as a

research platform for secondary use, the CC-HIC data model fails to provide nec-

essary support. The CC-HIC data model is burdened in parts by its complexity and

its “strong specification” where each data concept is hard coded into the schema

directly. In other areas, complexity is lacking, limiting the potential utility of in-

formation as was demonstrated with representations of both microbiology data and

medicines administration. An overall lack of consistency in approach has placed a

large cognitive burden on the data engineers who export data into the CC-HIC data

model, and the researchers who use the platform. This is perhaps most strongly

highlighted by the lack of interoperability between data models used by different

HIC themes, meaning that cross discipline research from within the same research

platform would currently be challenging.

The data quality evaluation of the CC-HIC research database was written as a

software contribution to this thesis as the R package inspectEHR [6]. inspectEHR

[6] applied a standardised approach to data quality evaluation, necessitating the

development of a novel accompanying data quality schema through which differ-
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ent kinds of data quality issues could be presented alongside research data. As

was the goal of the evaluation, numerous data quality deficiencies were discovered.

This allowed contributing sites to make gradual improvements to data quality over

time. This showcased a functional iterative data quality cycle for the duration of

the project. Where data quality issues could not be corrected, limits could be set

for inferences for the clinical research studies that followed. This was a vitally im-

portant step to ensure that research data were used responsibly by indicating where

bias may be present from both the source EHR and the research pipeline itself.

The inherent challenges of sharing complex healthcare data from multiple NHS

organisations have been clearly identified. Different NHS organisations store and

access data in distinct ways and are able to contribute different levels of resource

and technical expertise to data sharing projects. In such an environment the more

that resources are allocated to bespoke endeavours—such as developing and imple-

menting a bespoke data model for each theme of the HIC—the less that resources

will be available for the routine maintenance of research data pipelines. Similarly,

as research data pipelines become more technically specialist, the pool of trained

individuals who can work with such resources is diminished. The penalty for build-

ing healthcare data models de novo—unless there is a genuine need—is therefore

high.

Current conversations in this space often push toward the implementation

of more advanced solutions to the interoperability and data sharing problem, for

example Fast Healthcare Interoperability Resources (FHIR) [170] or openEHR

[219, 220, 221]. Both these solutions are as comprehensive and elegant as they

are complex. And while these solutions represent laudable goals, as we reflect on

the research presented in this thesis, it is prudent to evoke the aphorism “perfect

is the enemy of good”. The technical specifications of these technologies are far

in excess of the requirements for most typical observational research projects. Part

of this desire to push for the latest and greatest technologies may arise from a per-

ception that there is an unacceptable amount of data loss when transitioning into a

certain clinical data model. However, clinical data models such as the OHDSI CDM
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are well validated in this regard [17].

The learning that has taken place from both an applied use of the CC-HIC data

model, coupled with these critical appraisals, led to a number of recommendations

to be taken forward by the CC-HIC. Many of these recommendations set the tone for

the next phase of the CC-HIC, with an understanding that quality and sustainability,

are of paramount importance. In this spirit, the CC-HIC is currently implementing

a modularised OHDSI data model. Tables are submitted one-by-one and populated

as research requirements and data availability allow. The ambition is that this will

allow for a tight feedback cycle between contributing sites and the central hub with

a focus on regular updates to data and quality.

7.2 Exemplar Clinical Studies
Two clinical exemplar studies were conducted to evaluate areas of clinical impor-

tance using the unique feature of longitudinal data of the CC-HIC. Several problems

arising within the research pipeline necessitated the development of solutions to en-

sure that research data were of a high enough standard to be used to address clinical

research questions.

7.2.1 Cumulative Exposure to Oxygen

Oxygen administration at levels in excess of clinical need were readily demon-

strated in the CC-HIC research cohort. Looking at just those samples with a PaO2

≥13.3 kPa revealed a small but consistent association between excess exposure and

a worse outcome. A dose dependency was not demonstrated, which—in accor-

dance with the Bradford Hill criteria for causality—casts doubt over the potential

for a causal relationship. One interpretation is that this might represent a ceiling ef-

fect, whereby a large, and unaccounted for, exposure to oxygen prior to admission

to the ICU, renders the exposure seen in the ICU less relevant; has the damage al-

ready been done? Several small randomised controlled trials have failed to provide

a definitive answer to this question, and much larger randomised controlled trials

are now ongoing.

The modelling approach taken in the oxygen study reflects an earlier stage in
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my statistical training. More appropriate methods, including the extended Cox or

joint model, could have been employed to study this phenomenon.

7.2.2 Physiological Morphologies in Sepsis

The trajectory of organ dysfunction was consistently shown to be a better model

fit, and associated with worse outcomes, than other biomarker morphologies. This

finding is most striking for its consistency across all the different organ systems

investigated. Previous criticisms have been made against SOFA for weighting each

organ system equally, however the research presented here would argue strongly

that this was in fact the correct approach.

These models show relatively little loss in discrimination or calibration over

the short time horizons (in the order of a few days) under investigation, which may

challenge the conventional wisdom on the definition of chronic critical illness. This

is generally described as the point at which acute physiology fails to be predictive

of outcome, and often described as being within two weeks of the onset of critical

illness.

7.3 Future Work
This thesis is inherently cross discipline, positioning itself at the nexus of critical

care medicine, healthcare data engineering, and applied statistics. There are a num-

ber of fertile areas to take forward in future work from across these domains.

7.3.1 Healthcare Data Engineering

The current data quality procedures have highlighted the importance of checking

data quality as a routine component of secondary use research. The current pro-

cedures of inspectEHR [6], while extremely thorough, produce a large number of

diagnostic plots for inspection and so this remains a manual and often overwhelm-

ing process. It has been difficult at times for contributing sites to identify and pri-

oritise which changes should be made, unless directed towards assisting a specific

research question. This issue can be resolved by integrating the evaluative process

of inspectEHR [6] as a unit testing paradigm. This would involve specifying an ac-

ceptable error tolerance for each evaluative function. For example, records missing
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outcome data could be set with a very low tolerance (e.g. “allow less than 1% of

records to be missing outcome data”). This approach would allow the majority of

data quality checks to proceed in an automatic fashion. The pointblank package for

R is a contemporaneous example that successfully employs this approach for table

validation [222]. The next steps therefore are to modify inspectEHR [6] to function

against the OHDSI CDM backend, and extend the package to function in a unit

testing paradigm. This would allow the package to support a range of applications,

including both the CC-HIC and DECOVID.

7.3.2 DECOVID

In late 2019, a cluster of acute severe pneumonia cases presented in Wuhan, China.

Shortly thereafter the beta-coronavirus SARS-CoV-2 was identified to cause the

clinical syndrome of COVID-19. With no existing community resistance, COVID-

19 proliferated across the globe with the WHO declaring a pandemic on 11th March

2020. There was a global call to the scientific community to address the deficits in

knowledge to tackle this novel infection.

Although the CC-HIC was already established at the time of the COVID-19

pandemic, several limitations meant that it was not suitable to support research into

COVID-19. Secondary to the “strong specification” issue, the existing data model

proved too rigid to extend to include new data concepts (for example, COVID-19

status). Doing so would have required a fundamental re-write to core infrastructure

at each contributing site. COVID-19 changed the way critical care is delivered in

the UK. Patients who would normally be admitted to an ICU were treated outside

the ICU owing to capacity issues. Temporary ICUs were created dynamically in

response to extreme bed pressures. The CC-HIC data model did not support these

developments, and so the complex patterns of patient movement within the hospital

were not visible.

In response to the scientific call, and the limitations of existing data sharing

platforms, the DECOVID consortium was established. DECOVID is a multi-centre

research consortium between University Hospitals Birmingham (UHB), University

of Birmingham, University College London Hospitals (UCLH), University College
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London (UCL) and The Alan Turing Institute. DECOVID presented a unique op-

portunity to apply lessons from the lived experience of the CC-HIC. Many of the

design decisions taken in DECOVID were aimed at removing limitations previously

encountered with the CC-HIC.

Raw data were extracted from the local EHR at UCLH and UHB, and trans-

formed into the OHDSI CDM (version 5.3.1). This data model undergoes some

minor alterations, jointly developed by Roma Klapaukh and myself, to render it

maximally useful in a UK environment, while meeting the security requirements

required by DECOVID. Data are securely transferred to the UCL DSH, where ded-

icated analytic teams can work directly with the data using methods to which they

are accustomed.

The DECOVID data specification is comprehensive, including many thousands

of discrete concepts represented at the natural resolution of the source EHR, includ-

ing:

• patient characteristics:

– date of birth.

– sex.

– ethnicity.

• social factors:

– smoking status and history.

• full resolution longitudinal laboratory findings:

– diagnostic labels.

– vital signs.

– biochemistry.

– near patient sampling.

– sampling and reporting times.

• longitudinal treatments:

– all pharmacology.

– non-pharmacological (e.g. comprehensive ventilation parameters).
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– treatment limitation orders.

• patient outcomes:

– mortality at any point of hospitalisation.

• patient movements:

– clinically salient movement within the hospital.

DECOVID is now entering a testing phase, making available a large quantity

of routinely collected data for secondary use research. My current involvement is

both to help direct data quality evaluation procedures, and as a principal investi-

gator for a research question that aims to identify an optimal ventilation strategy

in severe COVID-19 pneumonitis. This ventilation research question is being un-

dertaken in partnership with the London School of Hygiene and Tropical Medicine

(LSHTM), applying the target trial approach [223] and a marginal structural mod-

elling approach, with inverse probability weighting, to ascertain estimates for dy-

namic treatment regimens [224].

7.3.3 Physiological Morphologies and Risk Communication

A major component of the clinical research aspect of this thesis has been to un-

derstand the connection between longitudinal morphologies of physiology and out-

comes. The goals of this thesis have largely been inferential in nature, though the

joint models applied are equally powerful in the task of dynamic prediction; the

process of predicting in light of updated information [160]. This has been used

successfully in adjacent fields to, for example, provide patient specific surveillance

schedules in cancer [225]. Current risk models in critical care are typically based

upon the patients physiology from the first 24 hours following admission and base-

line factors [29]. From a clinical perspective, it can be challenging to convey ongo-

ing risk to a patient and their relatives. Using a validated risk prediction model that

has the ability to dynamically update based upon the latest physiological informa-

tion, would be extremely useful in terms of risk communication. In particular, the

visualisation of a prediction interval would help patients and relatives understand
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the high levels of uncertainty over making predictions for the days and weeks that

lie ahead in critical care.

Prior to developing these models as risk prediction tools, some of the limita-

tions previously discussed will need to be addressed, most notably accounting for

the competing risks problem.

The current research design focused on the morphologies of individual

biomarkers and their relationship with outcome. It would be important to look

at this problem in the multivariate context, in order to understand how the different

organ systems interact with each other. The SOFA score currently considers each

organ system in isolation. Further research into this area to help quantify the relative

weighting and interaction of different organ systems could provide the foundation

for a revision to the SOFA score.

Treatment effects were not explored with the joint modelling paradigm. It

would be prudent to align the research on organ dysfunction morphologies and ex-

posure to hyperoxaemia together under one framework. This would serve three

main goals. First, this would help bring the work on exposure to hyperoxaemia into

a more methodologically grounded framework. Second, this would be a suitable

means through which to explore how the proposed association with mortality is

mediated. The effects of hyperoxaemia should be mediated through deteriorations

in cardiovascular and respiratory function, and so recasting the question in the joint

modelling paradigm would allow a deeper investigation into how these effects are

mediated. Last, as a useful proof of principle for handling longitudinal exposures in

general which are common place in critical care, including exposure to antibiotics,

vasoactive substances and invasive devices such as ventilators.
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7.4 Closing Remarks
The critical care community—and medicine more broadly—has in recent years seen

a significant increase in the number of published studies that rely on large secondary

use cohorts. With the rise in EHR data availability, a large mass of patient data

is now readily available for study. Previously, retrospective studies of this nature

would require a significant effort in terms of manual data collection and curation.

This enforced a first pass of data—typically by a domain expert—to facilitate the

production of a “clean” dataset that was fit for research use. The relative ease with

which data can be extracted from an EHR has permitted easy access to healthcare

data that has often undergone little clinical scrutiny. The NHS is ideally placed to

create secondary use research platforms. It is the clear finding of this thesis that

such platforms must have data quality as a foundational element. This requires a

shift in focus from data volume to data quality, and a commensurate shift in funding

from establishing the platform to maintaining it.

This research would not have been possible without the titan efforts of the

CC-HIC who wrote the data model and bravely shared granular patient data across

institutes. The difficulty of these endeavours should not be under-estimated, and this

research would not have been possible without this vital foundation. It is incumbent

on us to ensure that these cohorts are maintained to a high degree, commensurate to

the effort that was expended in making them.
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Appendix A

Tables



limits

NIHR HIC code concept name inspectEHR class min max units

NIHR-HIC-ICU-0001 PAS number string-1d - - -

NIHR-HIC-ICU-0002 Site code (ICNARC CMP number) string-1d - - -

NIHR-HIC-ICU-0003 Code of GP string-1d - - -

NIHR-HIC-ICU-0004 Treatment function code string-1d - - -

NIHR-HIC-ICU-0005 Critical care local identifier / IC-

NARC admission number

integer-1d - - -

NIHR-HIC-ICU-0006 CCU bed configuration 02 string-1d - - -

NIHR-HIC-ICU-0007 Level 2 (HDU) days integer-1d 0 365 days

NIHR-HIC-ICU-0008 Level 3 (ICU) days integer-1d 0 365 days

NIHR-HIC-ICU-0009 Organ support maximum integer-1d 0 11 systems

NIHR-HIC-ICU-0010 Acute myeloid/lymphocytic

leukaemia or myeloma

integer-1d 0 1 -

NIHR-HIC-ICU-0011 Admission for pre-surgical prepara-

tion

integer-1d 0 1 -

NIHR-HIC-ICU-0013 Adult ICU/HDU within your criti-

cal care transfer group (in)

integer-1d 0 1 -

NIHR-HIC-ICU-0015 Antimicrobial use after 48 hours in

your unit

integer-1d 0 1 -
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NIHR-HIC-ICU-0016 Biopsy proven cirrhosis integer-1d 0 1 -

NIHR-HIC-ICU-0017 Height real-1d 1 3 m

NIHR-HIC-ICU-0018 Height (Source) string-1d - - -

NIHR-HIC-ICU-0019 Weight real-1d 20 300 kg

NIHR-HIC-ICU-0020 Weight (Source) string-1d - - -

NIHR-HIC-ICU-0021 Cardiopulmonary resuscitation

within 24 hours prior to admission

to unit

string-1d - - -

NIHR-HIC-ICU-0022 Basic Cardiovascular support days integer-1d 0 365 days

NIHR-HIC-ICU-0023 Advanced Cardiovascular support

days

integer-1d 0 365 days

NIHR-HIC-ICU-0024 Chemotherapy (within the last

6months) steroids alone excluded

integer-1d 0 1 -

NIHR-HIC-ICU-0025 Chronic myelogenous /lymphocytic

leukaemia

integer-1d 0 1 -

NIHR-HIC-ICU-0026 Chronic renal replacement therapy integer-1d 0 1 -

NIHR-HIC-ICU-0027 classification of surgery string-1d - - -

NIHR-HIC-ICU-0029 Congenital immunohumoral or cel-

lular immune deficiency state

integer-1d 0 1 -

NIHR-HIC-ICU-0030 Critical care visit post-discharge

from your unit

string-1d - - -
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NIHR-HIC-ICU-0031 Critical care visit prior to this ad-

mission to your unit

string-1d - - -

NIHR-HIC-ICU-0032 date of admission to your hospital date-1d - - calendar date

NIHR-HIC-ICU-0033 Date of birth date-1d - - calendar date

NIHR-HIC-ICU-0034 Date of last critical care visit prior

to this admission to your unit

date-1d - - calendar date

NIHR-HIC-ICU-0035 Date of original admission

to/attendance at acute hospital

date-1d - - calendar date

NIHR-HIC-ICU-0036 Date of original admission to

ICU/HDU

date-1d - - calendar date

NIHR-HIC-ICU-0037 Date of ultimate discharge from

ICU/HDU

date-1d - - calendar date

NIHR-HIC-ICU-0038 Date body removed from your unit date-1d - - calendar date

NIHR-HIC-ICU-0039 Time body removed from your unit time-1d - - time

NIHR-HIC-ICU-0042 Date of death on yout unit date-1d - - calendar date

NIHR-HIC-ICU-0043 Time of death on your unit time-1d - - time

NIHR-HIC-ICU-0044 Date of declaration of brain stem

death

date-1d - - calendar date

NIHR-HIC-ICU-0045 Time of declaration of brain stem

death

time-1d - - time

NIHR-HIC-ICU-0048 Date treatment first withdrawn date-1d - - calendar date

NIHR-HIC-ICU-0049 Time treatment first withdrawn time-1d - - time
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NIHR-HIC-ICU-0050 Date fully ready for discharge date-1d - - calendar date

NIHR-HIC-ICU-0051 Time fully ready for discharge time-1d - - time

NIHR-HIC-ICU-0053 Delayed admission string-1d - - -

NIHR-HIC-ICU-0054 Delay real-1d 0 100 hours

NIHR-HIC-ICU-0055 Dependency prior to admission string-1d - - -

NIHR-HIC-ICU-0056 Dermatological support days integer-1d 0 365 days

NIHR-HIC-ICU-0058 Ethnicity string-1d - - -

NIHR-HIC-ICU-0059 Gastrointestinal support days integer-1d 0 365 days

NIHR-HIC-ICU-0060 Hepatic encephalopathy integer-1d 0 1 -

NIHR-HIC-ICU-0062 HIV/AIDS integer-1d 0 1 -

NIHR-HIC-ICU-0063 Home ventilation integer-1d 0 1 -

NIHR-HIC-ICU-0065 Hospital housing location (in) string-1d - - -

NIHR-HIC-ICU-0066 Level of care at discharge from your

unit

integer-1d 0 3 level

NIHR-HIC-ICU-0067 Liver support days integer-1d 0 365 days

NIHR-HIC-ICU-0068 Location (in) string-1d - - -

NIHR-HIC-ICU-0069 Discharge location (location out) string-1d - - -

NIHR-HIC-ICU-0070 Lymphoma integer-1d 0 1 -

NIHR-HIC-ICU-0071 Metastatic disease integer-1d 0 1 -

NIHR-HIC-ICU-0072 Neurological support days integer-1d 0 365 days

NIHR-HIC-ICU-0073 NHS number string-1d - - -
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NIHR-HIC-ICU-0074 Other condition in past medical his-

tory

string-1d - - -

NIHR-HIC-ICU-0075 Portal hypertension integer-1d 0 1 -

NIHR-HIC-ICU-0076 Postcode string-1d - - -

NIHR-HIC-ICU-0080 Radiotherapy integer-1d 0 1 -

NIHR-HIC-ICU-0081 Discharge status (Reason for dis-

charge from your unit)

string-1d - - -

NIHR-HIC-ICU-0082 Referred for solid organ or tissue

donation

integer-1d 0 1 -

NIHR-HIC-ICU-0083 Renal support days integer-1d 0 365 days

NIHR-HIC-ICU-0084 Residence post discharge from

acute hospital

string-1d - - -

NIHR-HIC-ICU-0085 residence prior to admission to

acute hospital

string-1d - - -

NIHR-HIC-ICU-0086 Basic respiratory support days integer-1d 0 365 days

NIHR-HIC-ICU-0087 Advanced respiratory support days integer-1d 0 365 days

NIHR-HIC-ICU-0088 Secondary reasons for admission to

your unit

string-1d 0 1 -

NIHR-HIC-ICU-0092 Severe respiratory disease integer-1d 0 1 -

NIHR-HIC-ICU-0093 Sex string-1d - - -

NIHR-HIC-ICU-0094 Solid organ or tissue donor string-1d - - -
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NIHR-HIC-ICU-0095 Status at discharge from your hos-

pital

string-1d - - -

NIHR-HIC-ICU-0097 Dead or alive on discharge string-1d - - -

NIHR-HIC-ICU-0098 Status at ultimate discharge from

hospital

string-1d - - -

NIHR-HIC-ICU-0099 Steroid treatment integer-1d 0 1 -

NIHR-HIC-ICU-0100 Transferring unit admission number integer-1d - - -

NIHR-HIC-ICU-0101 Transferring unit identifier (in) string-1d - - -

NIHR-HIC-ICU-0103 Treatment withheld/withdrawn string-1d - - -

NIHR-HIC-ICU-0104 Type of adult ICU/HDU (in) string-1d - - -

NIHR-HIC-ICU-0107 Very severe cardiovascular disease integer-1d 0 1 -

NIHR-HIC-ICU-0108 Heart rate integer-2d 0 300 bpm

NIHR-HIC-ICU-0109 Heart rhythm integer-2d 1 31 -

NIHR-HIC-ICU-0110 Mean arterial blood pressure - Art

BPMean arterial blood pressure

integer-2d 0 266 mmHg

NIHR-HIC-ICU-0111 Mean arterial blood pressure -

NBPMean arterial blood pressure

integer-2d 0 266 mmHg

NIHR-HIC-ICU-0112 Systolic Arterial blood pressure -

Art BPSystolic Arterial blood pres-

sure

integer-2d 0 400 mmHg
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NIHR-HIC-ICU-0113 Systolic Arterial blood pressure -

NBPSystolic Arterial blood pres-

sure

integer-2d 0 400 mmHg

NIHR-HIC-ICU-0114 Diastolic arterial blood pressure -

Art BPDiastolic arterial blood pres-

sure

integer-2d 0 200 mmHg

NIHR-HIC-ICU-0115 Diastolic arterial blood pressure -

NBPDiastolic arterial blood pres-

sure

integer-2d 0 200 mmHg

NIHR-HIC-ICU-0116 Central venous pressure real-2d −25 50 mmHg

NIHR-HIC-ICU-0117 Cardiac output - LiDCO Plus real-2d 0 35 L/min

NIHR-HIC-ICU-0118 Cardiac output - LiDCO Rapid real-2d 0 35 L/min

NIHR-HIC-ICU-0119 Cardiac output - PICCO real-2d 0 35 L/min

NIHR-HIC-ICU-0120 Cardiac output - PA Catheter real-2d 0 35 L/min

NIHR-HIC-ICU-0121 Cardiac output - Doppler real-2d 0 35 L/min

NIHR-HIC-ICU-0122 Lactate - ABG real-2d 0 40 mmol/L

NIHR-HIC-ICU-0123 Lactate - Lab real-2d 0 40 mmol/L

NIHR-HIC-ICU-0125 Central venous saturation real-2d 0 100 %

NIHR-HIC-ICU-0126 Airway string-2d - - -

NIHR-HIC-ICU-0129 SpO2 integer-2d 0 100 %

NIHR-HIC-ICU-0130 SaO2 - ABG integer-2d 0 100 %

NIHR-HIC-ICU-0132 PaO2 - ABG real-2d 0 90 kPa
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NIHR-HIC-ICU-0134 PaCO2 - ABG real-2d 0 30 kPa

NIHR-HIC-ICU-0136 pH - ABG / VBG real-2d 6 8 -log[mmol/L]

NIHR-HIC-ICU-0138 HCO3 - ABG / VBG real-2d 0 60 mmol/L

NIHR-HIC-ICU-0141 Temperature - Central real-2d 15 45 degrees Celsius

NIHR-HIC-ICU-0142 Temperature - Non-central real-2d 15 45 degrees Celsius

NIHR-HIC-ICU-0143 Position integer-2d 1 7 -

NIHR-HIC-ICU-0144 Invasive or non-invasive (ventila-

tion)

integer-2d 1 2 -

NIHR-HIC-ICU-0145 Total respiratory rate (monitor) integer-2d 0 180 cycles/min

NIHR-HIC-ICU-0146 Total respiratory rate (ventilator) integer-2d 0 180 cycles/min

NIHR-HIC-ICU-0147 Mandatory Respiratory Rate integer-2d 0 60 cycles/min

NIHR-HIC-ICU-0148 Minute volume real-2d 0 40 L/min

NIHR-HIC-ICU-0149 Peak airway pressure integer-2d 0 80 cmH2O

NIHR-HIC-ICU-0150 Inspired fraction of oxygen real-2d 0 1 -

NIHR-HIC-ICU-0151 Positive End Expiratory Pressure real-2d 0 60 cmH2O

NIHR-HIC-ICU-0152 Airway pressure integer-2d 0 80 cmH2O

NIHR-HIC-ICU-0153 Frequency (Hz) integer-2d 0 30 Hz

NIHR-HIC-ICU-0154 Cycle Volume integer-2d 0 1,000 mL

NIHR-HIC-ICU-0155 Base flow integer-2d 0 1,000 L/min

NIHR-HIC-ICU-0156 GCS - total integer-2d 3 15 -

NIHR-HIC-ICU-0157 GCS - motor component integer-2d 1 6 -

NIHR-HIC-ICU-0158 GCS - eye component integer-2d 1 4 -
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NIHR-HIC-ICU-0159 GCS - verbal component integer-2d 1 5 -

NIHR-HIC-ICU-0160 Sedation score (hourly) integer-2d −6 4 -

NIHR-HIC-ICU-0161 Renal replacement mode integer-2d 1 2 -

NIHR-HIC-ICU-0162 Urine output integer-2d 0 2,500 mL

NIHR-HIC-ICU-0164 Urea real-2d 1 60 mmol/L

NIHR-HIC-ICU-0166 Creatinine real-2d 1 2,000 micromol/L

NIHR-HIC-ICU-0168 Sodium real-2d 110 170 mmol/L

NIHR-HIC-ICU-0169 Sodium ABG/VBG real-2d 110 170 mmol/L

NIHR-HIC-ICU-0171 Potassium real-2d 2 12 mmol/L

NIHR-HIC-ICU-0172 Potassium ABG/VBG real-2d 2 12 mmol/L

NIHR-HIC-ICU-0174 Bilirubin real-2d 0 500 mmol/L

NIHR-HIC-ICU-0175 Glucose ABG/VBG real-2d 0 60 mmol/L

NIHR-HIC-ICU-0176 Glucose bedside test real-2d 0 60 mmol/L

NIHR-HIC-ICU-0178 Haemoglobin ABG/VBG real-2d 0 200 g/L

NIHR-HIC-ICU-0179 Haemoglobin real-2d 0 200 g/L

NIHR-HIC-ICU-0182 White cell count real-2d 0 200 cells x 10ˆ9/L

NIHR-HIC-ICU-0183 Neutrophil count real-2d 0 150 cells x 10ˆ9/L

NIHR-HIC-ICU-0184 Platelets real-2d 0 1,500 cells x 10ˆ3/L

NIHR-HIC-ICU-0187 Organism string-2d - - -

NIHR-HIC-ICU-0242 Fentanyl real-2d 0 1,000 micrograms/hour

NIHR-HIC-ICU-0252 milrinone real-2d 0 20 -

NIHR-HIC-ICU-0395 CCU bed configuration 03 string-1d - - -
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NIHR-HIC-ICU-0396 CCU bed configuration 05 string-1d - - -

NIHR-HIC-ICU-0397 CCU bed configuration 90 string-1d - - -

NIHR-HIC-ICU-0398 Admission type string-1d - - -

NIHR-HIC-ICU-0399 Primary reason for admission to

your unit

string-1d - - -

NIHR-HIC-ICU-0400 Brain stem death declared integer-1d 0 1 -

NIHR-HIC-ICU-0405 Timeliness of discharge from your

unit

string-1d - - -

NIHR-HIC-ICU-0406 Date of discharge from your hospi-

tal

date-1d - - -

NIHR-HIC-ICU-0407 Date of first critical care post-

discharge from your unit

date-1d - - -

NIHR-HIC-ICU-0408 Date of ultimate discharge from

your hospital

date-1d - - -

NIHR-HIC-ICU-0409 APACHE II Score integer-1d 0 71 -

NIHR-HIC-ICU-0410 APACHE II Probability real-1d 0 100 -

NIHR-HIC-ICU-0411 Date & Time of admission to your

unit

datetime-1d - - -

NIHR-HIC-ICU-0412 Date & Time of discharge from

your unit

datetime-1d - - -

NIHR-HIC-ICU-0413 Fluid Balance (hourly) integer-2d −2,500 10,000 mL/hour

NIHR-HIC-ICU-0414 Amikacin integer-2d 0 4,500 mg
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NIHR-HIC-ICU-0415 Amoxicillin integer-2d 0 2,000 mg

NIHR-HIC-ICU-0416 Azithromycin real-2d 0 2,000 mg

NIHR-HIC-ICU-0417 Benzylpenicillin integer-2d 0 3,000 mg

NIHR-HIC-ICU-0418 Cefotaxime real-2d 0 4,000 mg

NIHR-HIC-ICU-0419 Ceftazidime integer-2d 0 4,000 mg

NIHR-HIC-ICU-0420 Ceftriaxone real-2d 0 4,000 mg

NIHR-HIC-ICU-0421 Cefuroxime integer-2d 0 3,000 mg

NIHR-HIC-ICU-0422 Chloramphenicol real-2d 0 5,000 mg

NIHR-HIC-ICU-0423 Ciprofloxacin integer-2d 0 3,000 mg

NIHR-HIC-ICU-0424 Clarithromycin integer-2d 0 4,000 mg

NIHR-HIC-ICU-0425 Clindamycin integer-2d 0 4,000 mg

NIHR-HIC-ICU-0426 Co-Amoxiclav integer-2d 0 2,400 mg

NIHR-HIC-ICU-0427 Colistin real-2d 0 10 Millions of units

NIHR-HIC-ICU-0428 Co-Trimoxazole integer-2d 0 18,000 mg

NIHR-HIC-ICU-0429 Demeclocycline HCL integer-2d 0 5,000 mg

NIHR-HIC-ICU-0430 Doxycycline integer-2d 0 800 mg

NIHR-HIC-ICU-0432 Ertapenem real-2d 0 2,000 mg

NIHR-HIC-ICU-0433 Erythromycin integer-2d 0 1,000 mg

NIHR-HIC-ICU-0434 Ethambutal HCL integer-2d 0 5,000 mg

NIHR-HIC-ICU-0435 Flucloxacillin integer-2d 0 2,000 mg

NIHR-HIC-ICU-0436 Fuscidic acid integer-2d 0 2,000 mg

NIHR-HIC-ICU-0437 Gentamicin integer-2d 0 1,000 mg
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NIHR-HIC-ICU-0438 Isoniazid integer-2d 0 900 mg

NIHR-HIC-ICU-0439 Levofloxacin integer-2d 0 1,000 mg

NIHR-HIC-ICU-0440 Linezolid integer-2d 0 1,200 mg

NIHR-HIC-ICU-0441 Meropenem real-2d 0 4,000 mg

NIHR-HIC-ICU-0442 Metronidazole integer-2d 0 2,000 mg

NIHR-HIC-ICU-0443 Moxifloxacin integer-2d 0 800 mg

NIHR-HIC-ICU-0444 Neomycin real-2d 0 3,000 mg

NIHR-HIC-ICU-0445 Nitrofurantion integer-2d 0 400 mg

NIHR-HIC-ICU-0446 Ofloxacin integer-2d 0 800 mg

NIHR-HIC-ICU-0447 Pentamidine integer-2d 0 600 mg

NIHR-HIC-ICU-0448 Phenoxymethylpenicillin integer-2d 0 1,000 mg

NIHR-HIC-ICU-0449 Piperacillin/Tazobactam real-2d 0 9 g

NIHR-HIC-ICU-0450 Pyrazinamide integer-2d 0 5,000 mg

NIHR-HIC-ICU-0452 Rifampacin integer-2d 0 1,800 mg

NIHR-HIC-ICU-0453 Rifater integer-2d 0 - tablets

NIHR-HIC-ICU-0454 Rifinah integer-2d 0 - tablets

NIHR-HIC-ICU-0456 Sodium Fusidate integer-2d 0 2,000 mg

NIHR-HIC-ICU-0457 Teicoplanin integer-2d 0 2,000 mg

NIHR-HIC-ICU-0458 Tigecycline integer-2d 0 200 mg

NIHR-HIC-ICU-0459 Tobramycin integer-2d 0 900 mg

NIHR-HIC-ICU-0460 Trimethoprim integer-2d 0 1,500 mg

NIHR-HIC-ICU-0461 Vancomycin real-2d 0 3,000 mg
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NIHR-HIC-ICU-0462 Propofol real-2d 0 1,000 mg/hour

NIHR-HIC-ICU-0463 Midazolam real-2d 0 30 mg/hour

NIHR-HIC-ICU-0464 Remifentanil real-2d 0 2 micrograms/Kg/hour

NIHR-HIC-ICU-0465 Adrenaline real-2d 0 4 micrograms/Kg/min

NIHR-HIC-ICU-0466 Dobutamine real-2d 0 20 micrograms/Kg/min

NIHR-HIC-ICU-0467 Dopamine real-2d 0 200 micrograms/hour

NIHR-HIC-ICU-0468 Enoximone real-2d 0 30 micrograms/hour

NIHR-HIC-ICU-0469 Levosimendan real-2d 0 0 micrograms/hour

NIHR-HIC-ICU-0470 Noradrenaline real-2d 0 4 micrograms/Kg/min

NIHR-HIC-ICU-0471 Vasopressin real-2d 0 40 micrograms/hour

NIHR-HIC-ICU-0549 Spontaneous Respiratory Rate integer-2d 0 60 -

NIHR-HIC-ICU-0550 Tidal volume integer-2d 0 5,000 mL

NIHR-HIC-ICU-0552 Duration of therapy (hours per day) real-2d 0 24 hours/day

NIHR-HIC-ICU-0553 Total effluent per day integer-2d 0 1,000 L/day

NIHR-HIC-ICU-0554 Dialysate integer-2d 0 200,000 L

NIHR-HIC-ICU-0555 Replacement fluid during RRT integer-2d - - -

NIHR-HIC-ICU-0556 Type of anticoagulation integer-2d 1 4 -

NIHR-HIC-ICU-0557 C reactive protein real-2d 0 1,000 mg/L

NIHR-HIC-ICU-0558 Thiopentone / Thiopental real-2d 0 1,000 mg/hour

NIHR-HIC-ICU-0559 Clonidine real-2d 0 200 micrograms/hour

NIHR-HIC-ICU-0560 Dexmedetomidine real-2d 0 1,000 micrograms/hour

NIHR-HIC-ICU-0561 Ketamine real-2d 0 300 mg
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NIHR-HIC-ICU-0563 Morphine real-2d 0 45 mg

NIHR-HIC-ICU-0564 dopexamine real-2d 0 1,000 -

NIHR-HIC-ICU-0565 Terlipressin real-2d 0 1,000 -

NIHR-HIC-ICU-0573 Destination post discharge within

your hospital

string-1d - - -

NIHR-HIC-ICU-0906 Esmolol real-2d 0 1,000 -

NIHR-HIC-ICU-0907 Metoprolol real-2d 0 1,000 -

NIHR-HIC-ICU-0908 Dexamethasone real-2d 0 100 -

NIHR-HIC-ICU-0909 Hydrocortisone real-2d 0 2,000 -

NIHR-HIC-ICU-0910 Methylprednisolone real-2d 0 1,000 -

NIHR-HIC-ICU-0911 Sedation yes/no integer-2d 0 1 -

NIHR-HIC-ICU-0912 Ultimate primary reason for admis-

sion to unit

string-1d - - -

NIHR-HIC-ICU-0913 PaO2/FiO2 ratio real-2d 0 100 kPa

NIHR-HIC-ICU-0915 Fluid Balance (daily) integer-2d −20 20 L

NIHR-HIC-ICU-0918 Glucose (laboratory) real-2d 0 60 mmol/L

NIHR-HIC-ICU-0930 Dead or alive on discharge string-1d - - -

NIHR-HIC-ICU-0931 Advanced respiratory support integer-2d 0 1 -

NIHR-HIC-ICU-0932 Basic respiratory support integer-2d 0 1 -

NIHR-HIC-ICU-0933 Advanced Cardiovascular support integer-2d 0 1 -

NIHR-HIC-ICU-0934 Basic Cardiovascular support integer-2d 0 1 -

NIHR-HIC-ICU-0935 Renal support integer-2d 0 1 -
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NIHR-HIC-ICU-0936 Neurological support integer-2d 0 1 -

NIHR-HIC-ICU-0937 Liver support integer-2d 0 1 -

NIHR-HIC-ICU-0938 Dermatological support integer-2d 0 1 -

NIHR-HIC-ICU-0939 Gastrointestinal support integer-2d 0 1 -

Table A.1: CC-HIC data specification
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log hazard ratio hazard ratio

parameter Coef L95 U95 Coef L95 U95 z p

bilirubin - severity

age 0.43 0.34 0.51 1.53 1.41 1.67 9.82 9.36×10−23

male sex −0.14 −0.29 0.01 0.87 0.75 1.01 −1.85 6.41×10−2

weight −0.06 −0.14 0.01 0.94 0.87 1.01 −1.59 1.12×10−1

CPR 0.16 −0.14 0.46 1.17 0.87 1.58 1.05 2.92×10−1

cormorbidities 0.64 0.49 0.79 1.90 1.64 2.20 8.56 1.16×10−17

dependencies 0.42 0.27 0.57 1.52 1.31 1.77 5.42 5.89×10−8

baseline SOFA 0.20 0.12 0.27 1.22 1.12 1.31 4.87 1.09×10−6

severity 0.10 0.08 0.12 1.11 1.09 1.12 12.37 3.72×10−35

bilirubin - trajectory

age 0.42 0.34 0.51 1.53 1.40 1.66 9.68 3.70×10−22

male sex −0.13 −0.28 0.01 0.87 0.75 1.01 −1.77 7.61×10−2

weight −0.07 −0.15 0.01 0.93 0.86 1.01 −1.80 7.24×10−2

CPR 0.10 −0.20 0.40 1.11 0.82 1.49 0.67 5.05×10−1

cormorbidities 0.61 0.47 0.76 1.85 1.59 2.14 8.15 3.57×10−16

dependencies 0.42 0.27 0.57 1.52 1.31 1.77 5.44 5.21×10−8

baseline SOFA 0.18 0.11 0.26 1.20 1.11 1.30 4.59 4.49×10−6

severity 0.09 0.07 0.10 1.09 1.07 1.11 9.97 1.97×10−23

velocity 0.73 0.48 0.98 2.08 1.62 2.67 5.77 8.01×10−9

bilirubin - cumulative effect

age 0.38 0.30 0.46 1.46 1.34 1.59 8.91 4.93×10−19

male sex −0.15 −0.30 −0.01 0.86 0.74 0.99 −2.07 3.85×10−2

weight −0.07 −0.14 0.01 0.94 0.87 1.01 −1.65 9.88×10−2

CPR 0.16 −0.14 0.45 1.17 0.87 1.57 1.03 3.04×10−1

cormorbidities 0.70 0.56 0.85 2.02 1.75 2.33 9.57 1.11×10−21

dependencies 0.38 0.23 0.53 1.46 1.25 1.69 4.91 8.94×10−7

baseline SOFA 0.28 0.20 0.35 1.32 1.22 1.43 7.20 6.00×10−13

cumulative effect 0.01 0.00 0.01 1.01 1.00 1.01 7.23 4.68×10−13

CRP - severity

age 0.35 0.27 0.43 1.42 1.30 1.54 8.24 1.68×10−16

male sex −0.15 −0.30 −0.01 0.86 0.74 0.99 −2.05 4.05×10−2
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weight −0.10 −0.18 −0.03 0.90 0.83 0.97 −2.59 9.64×10−3

CPR 0.17 −0.12 0.47 1.19 0.89 1.60 1.15 2.50×10−1

cormorbidities 0.73 0.58 0.87 2.07 1.79 2.39 9.86 6.09×10−23

dependencies 0.43 0.28 0.58 1.53 1.32 1.78 5.55 2.84×10−8

baseline SOFA 0.29 0.22 0.37 1.34 1.24 1.44 7.73 1.07×10−14

severity 0.09 0.07 0.11 1.09 1.07 1.12 9.03 1.71×10−19

CRP - trajectory

age 0.35 0.27 0.44 1.42 1.31 1.55 8.28 1.26×10−16

male sex −0.17 −0.32 −0.02 0.84 0.73 0.98 −2.22 2.64×10−2

weight −0.10 −0.18 −0.02 0.90 0.83 0.98 −2.48 1.31×10−2

CPR 0.11 −0.19 0.41 1.12 0.83 1.51 0.72 4.74×10−1

cormorbidities 0.65 0.50 0.80 1.92 1.66 2.22 8.66 4.83×10−18

dependencies 0.46 0.30 0.61 1.58 1.35 1.84 5.83 5.62×10−9

baseline SOFA 0.26 0.19 0.34 1.30 1.21 1.40 6.90 5.33×10−12

severity 0.11 0.09 0.13 1.12 1.09 1.14 11.10 1.20×10−28

velocity 0.85 0.67 1.03 2.34 1.96 2.79 9.40 5.58×10−21

CRP - cumulative effect

age 0.35 0.26 0.43 1.41 1.30 1.54 8.26 1.49×10−16

male sex −0.18 −0.33 −0.03 0.83 0.72 0.97 −2.43 1.51×10−2

weight −0.08 −0.16 −0.01 0.92 0.85 0.99 −2.10 3.53×10−2

CPR 0.16 −0.14 0.46 1.17 0.87 1.58 1.05 2.94×10−1

cormorbidities 0.73 0.58 0.87 2.07 1.79 2.39 9.95 2.64×10−23

dependencies 0.34 0.19 0.49 1.41 1.21 1.64 4.45 8.75×10−6

baseline SOFA 0.32 0.24 0.39 1.37 1.28 1.48 8.44 3.27×10−17

cumulative effect 0.00 0.00 0.01 1.00 1.00 1.01 3.25 1.14×10−3

GCS - severity

age 0.41 0.33 0.50 1.51 1.39 1.65 9.50 2.01×10−21

male sex −0.08 −0.23 0.07 0.92 0.79 1.07 −1.10 2.70×10−1

weight −0.10 −0.18 −0.02 0.91 0.84 0.99 −2.32 2.01×10−2

CPR −0.07 −0.38 0.23 0.93 0.69 1.26 −0.47 6.37×10−1

cormorbidities 0.74 0.60 0.89 2.10 1.82 2.44 9.96 2.37×10−23

dependencies 0.37 0.22 0.52 1.44 1.24 1.68 4.74 2.19×10−6

baseline SOFA 0.06 −0.02 0.15 1.07 0.98 1.16 1.54 1.25×10−1

severity −0.16 −0.18 −0.14 0.85 0.83 0.87 −14.37 8.19×10−47
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GCS - trajectory

age 0.42 0.33 0.50 1.52 1.39 1.66 9.22 2.91×10−20

male sex −0.09 −0.25 0.06 0.91 0.78 1.06 −1.19 2.32×10−1

weight −0.09 −0.17 −0.00 0.92 0.84 1.00 −2.02 4.33×10−2

CPR −0.03 −0.34 0.29 0.97 0.71 1.33 −0.17 8.63×10−1

cormorbidities 0.51 0.35 0.67 1.67 1.42 1.96 6.35 2.16×10−10

dependencies 0.35 0.19 0.51 1.41 1.20 1.66 4.25 2.13×10−5

baseline SOFA 0.12 0.04 0.20 1.13 1.04 1.23 2.78 5.42×10−3

severity −0.17 −0.20 −0.15 0.84 0.82 0.86 −15.04 4.27×10−51

velocity −1.30 −1.50 −1.11 0.27 0.22 0.33 −13.32 1.73×10−40

GCS - cumulative effect

age 0.39 0.31 0.48 1.48 1.36 1.61 9.10 8.76×10−20

male sex −0.12 −0.27 0.02 0.88 0.76 1.02 −1.65 9.98×10−2

weight −0.09 −0.17 −0.01 0.91 0.84 0.99 −2.31 2.07×10−2

CPR 0.07 −0.23 0.37 1.07 0.79 1.45 0.45 6.52×10−1

cormorbidities 0.74 0.60 0.89 2.10 1.81 2.43 9.99 1.65×10−23

dependencies 0.34 0.19 0.49 1.40 1.20 1.63 4.35 1.34×10−5

baseline SOFA 0.24 0.16 0.32 1.27 1.17 1.37 5.96 2.50×10−9

cumulative effect −0.01 −0.01 −0.01 0.99 0.99 0.99 −8.01 1.11×10−15

PF - severity

age 0.35 0.27 0.44 1.43 1.31 1.56 8.00 1.23×10−15

male sex −0.15 −0.30 0.01 0.86 0.74 1.01 −1.89 5.82×10−2

weight −0.09 −0.17 −0.01 0.91 0.84 0.99 −2.21 2.69×10−2

CPR 0.28 −0.02 0.59 1.33 0.98 1.80 1.83 6.77×10−2

cormorbidities 0.68 0.53 0.83 1.97 1.69 2.28 8.89 6.24×10−19

dependencies 0.43 0.27 0.58 1.53 1.32 1.79 5.44 5.21×10−8

baseline SOFA 0.32 0.24 0.39 1.38 1.28 1.48 8.39 4.73×10−17

severity −0.94 −1.07 −0.82 0.39 0.34 0.44 −14.72 4.48×10−49

PF - trajectory

age 0.36 0.27 0.45 1.43 1.31 1.56 7.75 9.51×10−15

male sex −0.15 −0.31 0.01 0.86 0.74 1.01 −1.82 6.87×10−2

weight −0.08 −0.16 0.01 0.93 0.85 1.01 −1.78 7.47×10−2

CPR 0.40 0.08 0.72 1.50 1.09 2.06 2.48 1.33×10−2

cormorbidities 0.64 0.48 0.80 1.90 1.62 2.22 7.94 2.08×10−15
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dependencies 0.41 0.25 0.57 1.51 1.28 1.78 4.96 6.88×10−7

baseline SOFA 0.32 0.24 0.40 1.37 1.27 1.49 7.91 2.64×10−15

severity −1.01 −1.14 −0.88 0.36 0.32 0.41 −15.30 7.75×10−53

velocity −6.44 −7.91 −4.96 0.00 0.00 0.01 −8.56 1.12×10−17

PF - cumulative effect

age 0.35 0.27 0.44 1.43 1.31 1.55 8.11 4.93×10−16

male sex −0.15 −0.30 0.00 0.86 0.74 1.00 −1.94 5.23×10−2

weight −0.10 −0.18 −0.02 0.90 0.83 0.98 −2.47 1.35×10−2

CPR 0.23 −0.08 0.53 1.25 0.93 1.70 1.47 1.43×10−1

cormorbidities 0.72 0.57 0.87 2.05 1.77 2.38 9.55 1.25×10−21

dependencies 0.40 0.24 0.55 1.49 1.28 1.73 5.06 4.23×10−7

baseline SOFA 0.35 0.28 0.43 1.42 1.32 1.53 9.17 4.59×10−20

cumulative effect −0.08 −0.09 −0.07 0.92 0.91 0.94 −11.53 9.65×10−31

platelets - severity

age 0.41 0.33 0.50 1.51 1.39 1.64 9.59 9.11×10−22

male sex −0.10 −0.24 0.05 0.91 0.78 1.05 −1.28 2.01×10−1

weight −0.06 −0.14 0.02 0.94 0.87 1.02 −1.53 1.26×10−1

CPR 0.27 −0.03 0.56 1.30 0.97 1.75 1.78 7.53×10−2

cormorbidities 0.37 0.22 0.53 1.45 1.24 1.70 4.70 2.65×10−6

dependencies 0.40 0.25 0.56 1.50 1.29 1.74 5.29 1.25×10−7

baseline SOFA 0.16 0.08 0.23 1.17 1.08 1.26 3.93 8.50×10−5

severity −0.11 −0.13 −0.10 0.89 0.88 0.91 −13.04 7.66×10−39

platelets - trajectory

age 0.40 0.32 0.49 1.50 1.37 1.63 9.16 5.42×10−20

male sex −0.04 −0.19 0.11 0.96 0.83 1.12 −0.53 5.94×10−1

weight −0.06 −0.14 0.02 0.94 0.87 1.02 −1.46 1.43×10−1

CPR 0.29 −0.01 0.59 1.34 0.99 1.80 1.89 5.83×10−2

cormorbidities 0.26 0.10 0.42 1.29 1.10 1.52 3.17 1.54×10−3

dependencies 0.41 0.26 0.56 1.51 1.29 1.75 5.26 1.46×10−7

baseline SOFA 0.14 0.06 0.22 1.15 1.06 1.24 3.50 4.66×10−4

severity −0.12 −0.14 −0.11 0.88 0.87 0.90 −13.72 7.46×10−43

velocity −1.01 −1.20 −0.83 0.36 0.30 0.43 −10.97 5.51×10−28

platelets - cumulative effect

age 0.38 0.30 0.46 1.46 1.35 1.59 8.95 3.68×10−19
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male sex −0.13 −0.28 0.01 0.88 0.76 1.01 −1.78 7.48×10−2

weight −0.07 −0.15 0.01 0.93 0.86 1.01 −1.74 8.10×10−2

CPR 0.21 −0.08 0.51 1.24 0.92 1.66 1.43 1.54×10−1

cormorbidities 0.56 0.42 0.71 1.76 1.51 2.04 7.43 1.11×10−13

dependencies 0.35 0.20 0.50 1.42 1.22 1.65 4.60 4.23×10−6

baseline SOFA 0.27 0.19 0.34 1.31 1.21 1.41 7.00 2.52×10−12

cumulative effect −0.01 −0.01 −0.00 0.99 0.99 1.00 −8.53 1.47×10−17

SOFA - severity

age 0.44 0.35 0.52 1.55 1.42 1.68 9.95 2.40×10−23

male sex −0.18 −0.32 −0.03 0.84 0.72 0.97 −2.38 1.72×10−2

weight −0.11 −0.19 −0.03 0.90 0.83 0.97 −2.75 6.04×10−3

CPR 0.02 −0.28 0.31 1.02 0.76 1.36 0.12 9.08×10−1

cormorbidities 0.48 0.33 0.63 1.61 1.39 1.87 6.36 2.07×10−10

dependencies 0.45 0.30 0.60 1.56 1.35 1.81 5.85 4.82×10−9

severity 0.21 0.19 0.23 1.24 1.21 1.26 21.69 2.66×10−104

SOFA - trajectory

age 0.45 0.36 0.54 1.57 1.43 1.71 10.00 1.58×10−23

male sex −0.17 −0.32 −0.02 0.85 0.73 0.98 −2.17 3.00×10−2

weight −0.10 −0.18 −0.02 0.90 0.83 0.98 −2.50 1.24×10−2

CPR 0.05 −0.25 0.35 1.05 0.78 1.42 0.33 7.41×10−1

cormorbidities 0.37 0.22 0.53 1.45 1.25 1.69 4.78 1.73×10−6

dependencies 0.48 0.33 0.63 1.62 1.39 1.88 6.12 9.42×10−10

severity 0.21 0.19 0.23 1.23 1.21 1.25 20.75 1.34×10−95

velocity 0.95 0.71 1.19 2.60 2.04 3.30 7.80 5.96×10−15

SOFA - cumulative effect

age 0.36 0.28 0.44 1.43 1.32 1.55 8.56 1.13×10−17

male sex −0.14 −0.28 0.01 0.87 0.75 1.01 −1.88 5.98×10−2

weight −0.08 −0.16 −0.00 0.92 0.85 1.00 −2.04 4.11×10−2

CPR 0.22 −0.07 0.52 1.25 0.93 1.68 1.50 1.32×10−1

cormorbidities 0.66 0.52 0.80 1.93 1.68 2.23 9.01 1.99×10−19

dependencies 0.37 0.22 0.52 1.45 1.25 1.68 4.90 9.43×10−7

cumulative effect 0.01 0.01 0.01 1.01 1.01 1.01 13.39 6.86×10−41

Table A.2: All coefficients for univariate joint models. Findings are grouped by biomarker
and morphological parameterisation.





Appendix B

Search Terms for Literature Review

The following search parameters were used when performing a literature review

(note, all parameters for a given topic are used with boolean “OR” clauses):

• Sepsis:

– sepsis[Title]

– septic[Title]

– Sepsis[MeSH]

– septic shock[Title]

• Hyperoxaemia:

– hyperoxia[Title/Abstract]

– hyperoxemic[Title/Abstract]

– excessive[Title/Abstract]

– excess[Title/Abstract]

– unnecessary[Title/Abstract]

• Outcomes:

– outcome(s)[Title/Abstract]

– morbidity[Title/Abstract]

– mortality[Title/Abstract]

– harm[Title/Abstract]

• Organ dysfunction:
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– sofa[Title]

– organ failure assessment[Title/Abstract]

– organ failure[Title]

• Critical Care:

– critical care[MeSH Term]

– critical care[Title/Abstract]

– intensive care[All fields]

– critical illness[MeSH Term]

– critical illness[Title/Abstract]

– intensive care units[MeSH Term])

• Trajectories:

– trajectory[Title/Abstract]

– course[Title/Abstract]

– natural history[Title]

– time series[Title]

– longitudinal[Title]

– profile[Title]

• Phenotype:

– phenotype[Title/Abstract]

– phenotype[MeSH Terms]

– endotype[Title/Abstract]

– subgroup[Title]

– subtype[Title]

– classification[Title]

– latent[Title]

– heterogeneity[Title/Abstract]

– cluster[Title]

• Joint Models:

– joint model[Title/Abstract]
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– joint modelling[Title/Abstract]

– shared parameter[Title/Abstract]

Initial searches were conducted in pubmed and google scholar on 31st October

2018 and updated on 23rd March 2020. Searches were restricted to adult humans

with the full text available in English. References of relevant papers were searched

for any missed papers. Google citation alerts were set up for key authors in the

relevant fields.

Initial search strategies:

• “oxygen” AND hyperoxaemia AND critical care AND outcomes

• Sepsis AND organ failure AND trajectories

• sepsis AND trajectories AND phenotype

• joint models AND (sepsis OR critical care)





Appendix C

Software Vignettes

C.1 Data Quality Evaluation with inspectEHR
inspectEHR [6] applies the Kahn data quality evaluation framework to the CC-HIC

research database and persists the findings as meta-data alongside the primary re-

search data. It also produces a large number of diagnostic plots to explore each con-

tributed data concept, which are stored in a user defined location external to the re-

search database. inspectEHR [6] follows an extract, evaluate and export paradigm.

The basic approach is that data concepts are extracted from the CC-HIC database,

evaluated for particular qualities (for example, that they are within appropriate ref-

erence ranges) and any violations are converted to a predefined format, and exported

to the database. After performing the full evaluation, any data concept that does not

have a corresponding row in a data quality table, can therefore be safely assumed to

have passed all data quality evaluation procedures.

Usage

library(inspectEHR)

# Establish a database connection

db_pth <- system.file("path_to_database")

ctn <- DBI::dbConnect(RSQLite::SQLite(), db_pth)

Optionally, you may wish to obscure the names of contributing sites by providing

translation lookups.
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translate_site <- tibble::tibble(

site = c("St. Elsewhere", "Royal Other"),

translation = LETTERS[1:2])

Choose an output folder. This will be where plots are exported for inspection. Then

you can run inspectEHR.

output_folder <- "˜/documents/cchic/eval/"

perform_evaluation(connection = ctn,

output_folder = output_folder,

translate_site = translate_site,

verbose = TRUE)

C.2 Extracting data with wranglEHR
A common statistical work flow (and the one adopted in this thesis) is to repre-

sent data in the so-called “tidy” format [185], that is, a rectangular format with the

following specification:

• one row per statistical unit

• one column per unique variable

In our case, the statistical unit is either an ICU episode (where time invariant

data are concerned), or a period of time for each patient (often 30 minutes or an

hour)1. wranglEHR exposes two main functions to the end user:

1. extract demographics()

2. extract timevarying()

Both allow flexible data extraction from the CC-HIC database, and reconcile

the data into the appropriate format for analysis. Any accompanying meta-data are

identified and arranged into appropriately labelled columns. The extraction process

can be customised to suite a specific case use, including:
1The underlying EHR rarely stores data more often than at 5 minute intervals, and so this is a

reasonable expected upper boundary. At higher temporal resolutions, the methods described here
are likely to fail
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• Setting the desired temporal cadence of the table (i.e. one row per hour, versus

one row per day)

• Defining a custom, possibly user specified, action if the data storage resolu-

tion is higher than the target row cadence

Installation

# install directly from github with

remotes::install_github("DocEd/wranglEHR")

A copy should already be installed into the group library for the CC-HIC team

inside the UCL safe haven. If you are having problems with this, please contact me

directly. The package is now in a stable state, and so changes to the interface are

unlikely. Please do ensure you capture the version number or git commit hash to

ensure reproducibility of your pipeline.

Usage

library(wranglEHR)

# Establish a database connection

db_pth <- system.file("path_to_database")

ctn <- DBI::dbConnect(RSQLite::SQLite(), db_pth)

We can extract demographic data by specifying the ‘code name‘ of interest.

# Extract static variables. Rename on the fly.

dtb <- extract_demographics(

connection = ctn,

episode_ids = 13639:13643,

code_names = c("NIHR_HIC_ICU_0017", "NIHR_HIC_ICU_0019"),

rename = c("height", "weight")

)

Flexible extraction of longitudinal data is possible.
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# Extract time varying variables. Rename on the fly.

ltb <- extract_timevarying(

connection = ctn,

code_names = "NIHR_HIC_ICU_0108",

rename = "hr")

We can perform for complex and parameterised extractions:

• Set the base cadence for 2 hours

• Automatically handle metadata

• Limit the time boundaries of the cohort

• Supply a user defined summary function to handle realignment of the data to

the new cadence:

– Must return a vector of length 1

– Must return in consistent data type

– Must be able to handle the variable appearance of NAs

summary_mean <- function(x) {

if (all(is.na(x))) {

return(x[1])

} else {

mean(x, na.rm = TRUE)

}

}

ltb_2 <- extract_timevarying(

connection = ctn,

code_names = "NIHR_HIC_ICU_0108", "NIHR_HIC_ICU_0116",

rename = "hr", "cvp",

cadence = 2, # 1 row every 2 hours

coalesce_rows = summary_mean,

time_boundaries = c(0, 6) # first 6 hours only
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)

DBI::dbDisconnect(ctn)

Getting help

If you find a bug, please file a minimal reproducible example on github at

https://github.com/DocEd/wranglEHR/issues





Appendix D

Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX. It

was composed with the Atom and R studio integrated developer environment. Plot-

ting was performed with the GGplot2 package for R.





Bibliography

[1] The CC-HIC. The Critical Care Health Informatics Collaborative.

https://hic.nihr.ac.uk/critical+care. Last accessed 23-06-2021, 2016.

[2] The DECOVID Consortium. DECOVID. https://www.decovid.org. Last Ac-

cessed 23-06-2021., 2020.

[3] Matt Hancock. Driving digital in the NHS.

https://www.gov.uk/government/speeches/driving-digital-in-the-nhs. Ac-

cessed, March 2021.

[4] Edward Palmer, Benjamin Post, Roman Klapaukh, Giampiero Marra,

Niall S. MacCallum, David Brealey, Ari Ercole, Andrew Jones, Simon Ash-

worth, Peter Watkinson, Richard Beale, Stephen J Brett, J. Duncan Young,

Claire Black, Aasiyah Rashan, Daniel Martin, Mervyn Singer, and Steve Har-

ris. The Association Between Supra-Physiologic Arterial Oxygen Levels

and Mortality in Critically Ill Patients: A Multi-Centre Observational Cohort

Study. American Journal of Respiratory and Critical Care Medicine, pages

rccm.201904–0849OC, September 2019.

[5] Edward Palmer. wranglEHR: Standardised data extraction for CC-HIC.

www.github.com/DocEd/wranglEHR. Version 1., 2020.

[6] Edward Palmer. inspectEHR: Standardised data quality evaluation for CC-

HIC. www.github.com/DocEd/inspectEHR. Version 1., 2020.



284 Bibliography

[7] MIT Critical Data. Secondary Analysis of Electronic Health Records.

Springer International Publishing : Imprint: Springer, Cham, 1st ed. 2016

edition, 2016.

[8] Richard Williams, Evangelos Kontopantelis, Iain Buchan, and Niels Peek.

Clinical code set engineering for reusing EHR data for research: A review.

Journal of Biomedical Informatics, 70:1–13, June 2017.

[9] George Hripcsak, Charles Knirsch, Li Zhou, Adam Wilcox, and Genevieve

Melton. Bias Associated with Mining Electronic Health Records. Journal of

Biomedical Discovery and Collaboration, 6:48–52, 2011.

[10] Lee Jacobs. Interview with Lawrence Weed, MD– The Father of the

Problem-Oriented Medical Record Looks Ahead. The Permanente Journal,

13(3), July 2009.

[11] David Harrison. Case Mix Programme dataset update. ICNARC, page 26,

2019.

[12] Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman,

Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits,

Leo Anthony Celi, and Roger G. Mark. MIMIC-III, a freely accessible criti-

cal care database. Scientific Data, 3:160035, May 2016.

[13] Alistair E.W. Johnson, David J. Stone, Leo A. Celi, and Tom J. Pollard.

The MIMIC Code Repository: Enabling reproducibility in critical care re-

search. Journal of the American Medical Informatics Association, 25(1):32–

39, 2018.

[14] Steve Harris, Sinan Shi, David Brealey, Niall S. MacCallum, Spiros De-

naxas, David Perez-Suarez, Ari Ercole, Peter Watkinson, Andrew Jones, Si-

mon Ashworth, Richard Beale, Duncan Young, Stephen Brett, and Mervyn

Singer. Critical Care Health Informatics Collaborative (CCHIC): Data, tools

and methods for reproducible research: A multi-centre UK intensive care



Bibliography 285

database. International Journal of Medical Informatics, 112:82–89, April

2018.

[15] Jeffrey G. Klann, Aaron Abend, Vijay A. Raghavan, Kenneth D. Mandl, and

Shawn N. Murphy. Data interchange using i2b2. Journal of the American

Medical Informatics Association: JAMIA, 23(5):909–915, September 2016.

[16] S. N. Murphy, G. Weber, M. Mendis, V. Gainer, H. C. Chueh, S. Churchill,

and I. Kohane. Serving the enterprise and beyond with informatics for in-

tegrating biology and the bedside (i2b2). Journal of the American Medical

Informatics Association, 17(2):124–130, March 2010.

[17] J. Marc Overhage, Patrick B. Ryan, Christian G. Reich, Abraham G.

Hartzema, and Paul E. Stang. Validation of a common data model for active

safety surveillance research. Journal of the American Medical Informatics

Association: JAMIA, 19(1):54–60, 2012 Jan-Feb.

[18] Erica A. Voss, Rupa Makadia, Amy Matcho, Qianli Ma, Chris Knoll, Mar-

tijn Schuemie, Frank J. DeFalco, Ajit Londhe, Vivienne Zhu, and Patrick B.

Ryan. Feasibility and utility of applications of the common data model to

multiple, disparate observational health databases. Journal of the American

Medical Informatics Association: JAMIA, 22(3):553–564, May 2015.

[19] Bruce M. Psaty and Alasdair M. Breckenridge. Mini-Sentinel and regulatory

science–big data rendered fit and functional. The New England Journal of

Medicine, 370(23):2165–2167, June 2014.

[20] Lesley H. Curtis, Mark G. Weiner, Denise M. Boudreau, William O. Cooper,

Gregory W. Daniel, Vinit P. Nair, Marsha A. Raebel, Nicolas U. Beaulieu,

Robert Rosofsky, Tiffany S. Woodworth, and Jeffrey S. Brown. Design con-

siderations, architecture, and use of the Mini-Sentinel distributed data sys-

tem. Pharmacoepidemiology and Drug Safety, 21 Suppl 1:23–31, January

2012.



286 Bibliography

[21] Rachael L. Fleurence, Lesley H. Curtis, Robert M. Califf, Richard Platt,

Joe V. Selby, and Jeffrey S. Brown. Launching PCORnet, a national patient-

centered clinical research network. Journal of the American Medical Infor-

matics Association: JAMIA, 21(4):578–582, 2014 Jul-Aug.

[22] Mark D. Danese, Marc Halperin, Jennifer Duryea, and Ryan Duryea. The

Generalized Data Model for clinical research. BMC medical informatics and

decision making, 19(1):117, June 2019.

[23] NIHR HIC. The NIHR Health Informatics Collaborative.

https://hic.nihr.ac.uk/about?page id=24. Last Accessed 23-06-2021, July

2020.

[24] David a Harrison, Anthony R Brady, and Kathy Rowan. Case mix, out-

come and length of stay for admissions to adult, general critical care units

in England, Wales and Northern Ireland: The Intensive Care National Audit

& Research Centre Case Mix Programme Database. Critical care (London,

England), 8(2):R99–111, 2004.

[25] K. Rowan. Are scoring systems adequate indicators for quality and per-

formance of the ICU? Anasthesiologie, Intensivmedizin, Notfallmedizin,

Schmerztherapie: AINS, 33(1):52–55, January 1998.

[26] N. F. de Keizer, G. J. Bonsel, C. Goldfad, and K. M. Rowan. The added value

that increasing levels of diagnostic information provide in prognostic models

to estimate hospital mortality for adult intensive care patients. Intensive Care

Medicine, 26(5):577–584, May 2000.

[27] Jonathan A. Hyam, Catherine A. Welch, David A. Harrison, and David K.

Menon. Case mix, outcomes and comparison of risk prediction models for

admissions to adult, general and specialist critical care units for head injury:

A secondary analysis of the ICNARC Case Mix Programme Database. Crit-

ical Care (London, England), 10 Suppl 2:S2, 2006.



Bibliography 287

[28] David A Harrison, Gareth J Parry, James R Carpenter, Alasdair Short, and

Kathy Rowan. A new risk prediction model for critical care: The Intensive

Care National Audit & Research Centre (ICNARC) model. Critical care

medicine, 35(4):1091–8, April 2007.

[29] Paloma Ferrando-Vivas, Andrew Jones, Kathryn M. Rowan, and David A.

Harrison. Development and validation of the new ICNARC model for pre-

diction of acute hospital mortality in adult critical care. Journal of Critical

Care, 38:335–339, 2017.

[30] ISO. ISO/IEC 27001 Information Security Management.

https://www.iso.org/isoiec-27001-information-security.html. Last Accessed

23-06-2021.

[31] NHS. Data Security and Protection Toolkit. https://www.dsptoolkit.nhs.uk.

Last Accessed 23-06-2021.

[32] Annie Herbert, Linda Wijlaars, Ania Zylbersztejn, David Cromwell, and Pia

Hardelid. Data Resource Profile: Hospital Episode Statistics Admitted Pa-

tient Care (HES APC). International journal of epidemiology, 46(4):1093–

1093i, August 2017.

[33] University College London Hospitals NHS Foundation Trust. National In-

stitute for Health Research, health Informatics Collaborative, Critical care.

https://www.youtube.com/watch?v=NjE9VQo-nP4&t=23s, June 2015.

[34] Pamela M Vacek. Assessing the Effect of Intensity When Exposure Varies

Over Time. page 9, 1997.

[35] Derek K Chu, Lisa H-y Kim, Paul J Young, Nima Zamiri, Saleh A Alme-

nawer, Roman Jaeschke, Wojciech Szczeklik, and Holger J Schünemann.

Mortality and morbidity in acutely ill adults treated with liberal versus con-

servative oxygen therapy (IOTA): A systematic review and meta-analysis.

Lancet, 391(10131):1693–1705, 2018.



288 Bibliography

[36] Benjamin Post, Edward Palmer, Steve Harris, Mervyn Singer, and Daniel

Martin. Oxygenation of the critically ill in selected intensive care units in

the UK: Are we usual? British Journal of Anaesthesia, 125(3):e277–e279,

September 2020.

[37] Antoine Lavoisier. Histoire de La Société Royale de Médecine. Années 1782
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[42] Jérôme Aboab, Bjorn Jonson, Achille Kouatchet, Solenne Taille, Lisbet

Niklason, and Laurent Brochard. Effect of inspired oxygen fraction on alve-

olar derecruitment in acute respiratory distress syndrome. Intensive Care

Medicine, 32(12):1979–1986, December 2006.

[43] Hendrik J. F. Helmerhorst, Rob B. P. de Wilde, Dae Hyun Lee, Meindert Pal-

men, Jos R. C. Jansen, David J. van Westerloo, and Evert de Jonge. Hemody-

namic effects of short-term hyperoxia after coronary artery bypass grafting.

Annals of Intensive Care, 7(1):20, December 2017.



Bibliography 289
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