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Abstract

Significance: Early monolingual versus bilingual experience induces adaptations in the develop-
ment of linguistic and cognitive processes, and it modulates functional activation patterns during
the first months of life. Resting-state functional connectivity (RSFC) is a convenient approach to
study the functional organization of the infant brain. RSFC can be measured in infants during
natural sleep, and it allows to simultaneously investigate various functional systems. Adaptations
have been observed in RSFC due to a lifelong bilingual experience. Investigating whether bilin-
gualism-induced adaptations in RSFC begin to emerge early in development has important
implications for our understanding of how the infant brain’s organization can be shaped by early
environmental factors.

Aims:We attempt to describe RSFC using functional near-infrared spectroscopy (fNIRS) and to
examine whether it adapts to early monolingual versus bilingual environments. We also present
an fNIRS data preprocessing and analysis pipeline that can be used to reliably characterize RSFC
in development and to reduce false positives and flawed results interpretations.

Methods: We measured spontaneous hemodynamic brain activity in a large cohort (N ¼ 99) of
4-month-old monolingual and bilingual infants using fNIRS. We implemented group-level
approaches based on independent component analysis to examine RSFC, while providing proper
control for physiological confounds and multiple comparisons.

Results: At the group level, we describe the functional organization of the 4-month-old infant
brain in large-scale cortical networks. Unbiased group-level comparisons revealed no differences
in RSFC between monolingual and bilingual infants at this age.

Conclusions: High-quality fNIRS data provide a means to reliably describe RSFC patterns in
the infant brain. The proposed group-level RSFC analyses allow to assess differences in RSFC
across experimental conditions. An effect of early bilingual experience in RSFC was not
observed, suggesting that adaptations might only emerge during explicit linguistic tasks, or at
a later point in development.
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1 Introduction

Language acquisition begins about 3 months prior to birth when infants are able to hear spoken
language.1 In a bilingual learning environment, infants are exposed to the linguistic statistical
regularities (e.g., speech sounds, words, and grammar) of not one but two linguistic inputs.
Therefore, differently from monolinguals, bilinguals need to discriminate between two lan-
guages. Although bilingual infants’ overall linguistic exposure should be comparable to that
of monolinguals, bilingual infants likely receive less exposure to each of their languages com-
pared to their monolingual counterparts, as their exposure time is divided between two linguistic
inputs.

The potential complexity of the bilingual input has consequences on infants’ behavior and
brain responses. These consequences have been conceptualized as dissimilar adaptation patterns
to monolingual versus bilingual environments. From the perspective of bilingual infants, func-
tional adaptations across multiple cognitive domains might facilitate the acquisition of two lan-
guages as opposed to one. For example, at the behavioral level, bilingualism has an impact when
attention allocation to languages is considered: bilingual 4-month-olds orient slower to their
native languages,2,3 and they exhibit longer sustained attention periods than monolinguals when
processing spoken language.4 It has also been proposed that bilingual infants possess increased
executive control abilities5,6 (but see also Ref. 7). Neuroimaging studies have demonstrated dis-
similar patterns of brain activation in monolingual and bilingual infants in a language discrimi-
nation/recognition task8 and in early phonetic processing.9 In a cohort of 4- to 8-month-old
infants, Mercure et al.10 showed that brain activation responses to spoken and signed language
showed no lateralization effects in monolingual and bimodal bilingual infants. However, unim-
odal bilingual infants’ brain responses were right lateralized over posterior temporal regions for
both conditions. Differential neural responses have also been reported in older monolingual and
bilingual infants when their sensitivity to native and non-native speech sounds11,12 or words13

were assessed. Despite the differences described above, language acquisition trajectories are not
fundamentally different between monolingual and bilingual infants,14–16 suggesting that specific
cognitive and/or functional adaptations that take place during the bilingual learning process
might help these infants compensate the increased complexity of a bilingual environment.

In this work, we aim to assess whether growing up in a bilingual environment (i.e., simulta-
neously acquiring two languages from birth) might shape the intrinsic functional organization of
the infant brain. To answer this question, we measured resting-state functional connectivity
(RSFC) in 4-month-old infants using functional near-infrared spectroscopy (fNIRS).17,18 RSFC
can be defined as synchronized cerebral activity between brain regions that share a common role
in supporting functionally relevant sensory and cognitive processes.19,20 RSFC can be measured
in infants, children, and adults, providing a window into neural specialization across the life
span. The intrinsic functional organization of the infant brain described by RSFC can be modu-
lated by various pre- and postnatal factors.21–23 As measured by functional magnetic resonance
imaging (fMRI), premature and full-term infants show different RSFC patterns.24,25 It has been
suggested that the configuration and maturational course of functional connectivity differs in
typical and atypical functional brain development.26,27 In addition, it has been proposed that
early environmental factors can modify RSFC, including caregivers’ education level, or socio-
economic status.28 Based on these observations, the present study aims to assess whether the
brain’s functional connectivity begins to adapt to a bilingual environment as early as 4 months of
age, by the time neural and behavioral responses to external stimuli already differ across mono-
lingual and bilingual infants. MRI studies in adults suggest that a long-term exposure to two
languages might alter the brain’s functional29–31 and structural connectivity.32,33 Stronger func-
tional connectivity in bilingual adults, as compared to monolinguals, has been observed in long-
range bilateral and anterior–posterior connections on both hemispheres29 and in brain networks
associated with language and executive control processes.30,31 Studying RSFC in monolingual
and bilingual infants can elucidate the extent to which a long-term environmental factor such as
early bilingual experience might lead to specific adaptations in the intrinsic properties of differ-
ent functional brain systems, while avoiding potential confounds due to task interference. Based
on previous task-based studies with similar age groups8–10 and considering the spatial resolution
and coverage of our fNIRS setup, differences in functional connectivity are expected to emerge
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over brain regions overlapping the auditory and the language networks with bilinguals showing
stronger interhemispheric connectivity in these networks. Tentatively, bilinguals might also show
a stronger functional connectivity in networks involving frontal regions.

When attempting to describe RSFC at the group level and to quantitatively compare RSFC
patterns across experimental groups, traditional fNIRS-RSFC data analysis methods such as
seed-based correlation analysis,34–37 independent component analysis (ICA),38,39 or clustering
methods18,40 present some limitations. For example, group-level functional connectivity studies
based on ICA have often been computed by averaging subject-specific independent components
(ICs) that match a priori spatial configurations (e.g., bilateral and covering sensorimotor regions)
or exhibit high similarity across subjects. However, individual data are usually affected by noise
components of different characteristics which might result in an ICA separation that differs
across subjects, making it difficult to match components. The ultimate consequence of these
limitations is that previous fNIRS-RSFC studies have evaluated group differences using quali-
tative comparisons18,40 or performing statistical analysis on specific connectivity indices only.41

Hence, an additional goal of this work is to overcome the aforementioned limitations by
implementing two data-driven methodologies based on ICA to extract group-level large-scale
functional connectivity patterns from fNIRS data. First, we used temporal group ICA (tGICA)
with dual regression to compute temporally independent patterns of spontaneous hemodynamic
activity.42,43 By decomposing the concatenated fNIRS channel time series of multiple subjects,
tGICA generates a set of group-level maximally independent temporal time courses and its
common aggregated spatial maps [i.e., functional networks (FN)], which quantify the presence
of each particular IC on each channel. Group-level spatial maps, which spatially represent the FN
of interest, can be regressed out to the subject level to obtain subject-specific spatial maps using
spatiotemporal or dual regression, in which statistical analyses can be performed to assess group
differences. Second, we implemented an fNIRS-tailored version of the connectome-based ICA
(connICA) method.44 In the connICA method, the individual functional connectivity matrices or
connectomes are jointly decomposed to obtain latent group-level independent functional con-
nectome components (FCCs) and its associated weights, which quantify the relative prominence
of the FCC on each subject. These values can also be used to perform statistical comparisons
between groups. The two proposed ICA-based analyses provide complementary information to
study RSFC. tGICA searches for independence between signal subcomponents based on their
temporal dynamics, resulting in temporally independent patterns of hemodynamic brain activity.
In contrast, connICA relies on a precomputed similarity index (e.g., Pearson correlation) to
perform this separation, and the extracted components represent independent whole-cortex func-
tional connectomes. In addition to describing cortical network organization at the group level,
the two methods allow a quantitative investigation of the link between particular experimental
variables (i.e., early bilingualism in the current work) and the relative presence of the extracted
functional connectivity patterns on each experimental group under assessment. Here the pres-
ence of the identified FN and FCC was quantified in each participant, and results were compared
across two monolingual groups of infants and one bilingual group of infants by means of conven-
tional frequentist and Bayesian statistical frameworks.45 Finally, we present a framework to
determine the optimal number of components (i.e., ICA model order) considering their computa-
tional consistency, the neurophysiological properties of the fNIRS signal, and the amount of data
variance explained.

2 Methods

2.1 Participants

One hundred and twenty-three healthy, full-term infants participated in this study. Sixteen of
these participants were not tested as these infants were unable to fall asleep. The data of one
participant were discarded for receiving a regular exposure to English. Two infants were
excluded before data preprocessing because their datasets were shorter than 600 s. Five infants
(n ¼ 2 Basque–Spanish bilingual infants, n ¼ 1 Spanish monolingual infant, and n ¼ 2 Basque
monolingual infants) were excluded during data preprocessing due to insufficient data quality.
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In the final sample, for which data were analyzed and results are presented, 99 participants were
included: 36 Basque–Spanish bilingual (BIL) infants (21 girls; mean age ¼ 125� 4 days),
30 Spanish (SP) monolingual infants (13 girls; mean age ¼ 123� 3 days), and 33 Basque (BQ)
monolingual infants (17 girls; mean age ¼ 122� 4 days). Participants’ language background
was assessed with a questionnaire filled by the parents, in which infants’ percentage of exposure
to each language (SP and BQ) during the first months of life was measured. Participants exposed
to a single language (SP or BQ), or <10% of the time to a second language (SP or BQ), were
included in each of the monolingual groups. Infants exposed to two native languages (Spanish–
Basque) from birth formed the bilingual group. Participants were recruited from the same region
of the Basque Country (Gipuzkoa); a socioeconomic status questionnaire was completed to
ensure similar levels of education, parental occupation, and household income across groups.
Parents were informed about the procedure of the study and signed a written informed consent
before starting the experiment. This study was approved by the local ethical committee.

2.2 Data Acquisition

fNIRS measurements were performed with a NIRScout system (NIRx Medical Technologies,
CA, USA) at wavelengths 760 and 850 nm with a sampling frequency of 8.93 Hz. Sixteen light
emitters and 24 detectors were positioned on a stretchy fabric cap (Easycap GmbH, Germany)
over frontal, temporal, parietal, and occipital regions of both hemispheres according to the
international 10–20 system (Fig. 1). Each pair of an adjacent light emitter and a detector formed
a single measurement channel, generating 52 channels for each hemoglobin oxygenation state
(i.e., oxyhemoglobin HbO and deoxyhemoglobin HbR). This configuration yielded source–
detector separation distances ranging from ∼20 to ∼45 mm (Fig. 1). Nasion, inion, and preaur-
icular points were used as external head landmarks, and caps of two different sizes were
employed to adapt to individual head circumference size (i.e., 40 and 42). This approach ensured
a consistent cap and optode positioning across infants (i.e., without additional MR images or
external coordinate tracking system), so that channels corresponded to comparable anatomical
locations. Occipital channels were discarded in all participants for being particularly prone to
contain signal artifacts. During data acquisition, the back part of the infants’ head was leaning
against the parent’s body and any minor movement resulted in the misplacement of these
particular optodes. Data from the remaining 14 sources and 19 detectors (i.e., 46 channels) were
analyzed.

The sensitivity profile of the fNIRS probe setup was computed to provide information of the
brain areas under investigation. The probe setup was registered to an average 6-month-old infant
template46 to compute the sensitivity matrix of our source–detector configuration using Toast+
+.47 We obtained the aggregated sensitivity profile of our probe by summing the normalized
cortical sensitivity profiles of each individual channel (Fig. 1). Channel positions were defined
as the gray matter node which coordinates were closest to the central point of the maximum
sensitivity path along each source–detector pair. A 6-month-old average atlas was used to com-
pute a probabilistic spatial registration of the cortical structures underlying each channel.48

Channel coordinates were first transformed to the average48 T1 template space using advanced
normalization tools,49 and then registered into the anatomic atlas,48 defined by 116 cortical
regions based on automated anatomical labeling (AAL).50 For each channel, the AAL anatomical
labels within a distance of 20 mm were defined, and the percentage of overlap with each AAL
region was calculated (see Fig. 1).

2.3 Experimental Procedure

We measured infants’ spontaneous hemodynamic activity during natural sleep while leaning on
their parents’ lap in a sound-attenuated room. The only source of illumination in the room was
the screen of the recording computer, which was attenuated to low brightness levels. Recordings
started when infants were relaxed, accustomed to the fNIRS cap, and clear signs of sleep were
noticeable by the experimenters and the parents. Over the duration of the recording, parents were
asked to remain silent and minimize movements in order to avoid involuntary cap or optode
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displacement. Recordings of 10 to 25 min were acquired in order to maximize the duration of
continuous, motion-free periods.

2.4 Data Preprocessing and Quality Assessment

Data preprocessing and analyses were performed in MATLAB (R2012b and R2014b,
MathWorks, MA, USA) using in-house scripts as well as third-party toolboxes and algorithms.

Fig. 1 (a) fNIRS optode (sources in red and detectors in green) and channel (black) localization in
the current experimental setup. The normalized sensitivity profile of this configuration is displayed
in a 6-month-old infant head model. (b) Localization of the fNIRS channels in our setup registered
to a 6-month-old infant AAL template. (c) Table depicting source–detector distances and the brain
labels of our setup based on the on the probabilistic spatial registration of the fNIRS channels to
a 6-month-old infant AAL template. Ch, channel and S–D, source–detector pair.

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-5 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Optical density changes were calculated from raw light intensity data by computing the negative
logarithm of the ratio between detected light intensity at each time point and a reference baseline
value (e.g., the mean signal).51 Noisy periods at the beginning or/and at the end of the recordings,
presumably matching awake activity of the infants (i.e., before the infant was completely asleep
and after the infant woke up) were visually identified and removed. As participants were asleep
during the acquisition, fNIRS measurements displayed high data quality. Some datasets showed
brief, sparse motion-induced artifacts characterized by abrupt amplitude signal changes and/or
artifactual signal drifts. These artifacts were corrected using the wavelet-based method described
by Patel et al.,52 which was adapted for fNIRS data.53 Briefly in this method, the time series of
individual channels are decomposed in the wavelet domain. Wavelet coefficients existing simul-
taneously across multiple frequencies characterize non-stationary signal changes caused by low-
and high-frequency artifacts. Hence, wavelet coefficients identified as series of local maxima and
minima are nulled (i.e., set to zero) to recompose the denoised signal. Optical density data were
then converted into HbO and HbR concentration changes by means of the modified Beer–
Lambert Law with differential pathlength factors of 5.3 and 4.2.54 After this step, all datasets
were limited to 5000 samples (i.e., ∼560 s) to ensure homogeneous effect estimate precision in
the first level of the analysis (i.e., robust Pearson correlation coefficient). This step was per-
formed by visually identifying the segment of the dataset displaying the best data quality.
Temporal filtering and global signal regression were performed simultaneously in a unique nui-
sance regression model.55 Specifically, contributions of high-frequency physiological noise
sources (e.g., respiration and cardiac pulsation) were accounted for by including Fourier terms
for frequencies above 0.09 Hz in the model. Slow frequency fluctuations and signal drifts were
modeled by adding the first four-order Legendre polynomials to the model, for which the spectral
power predominantly consists of very low frequencies (0 to 0.004 Hz).56 The average fNIRS
signal across all channels was also included in the regression model to remove globally occurring
hemodynamic processes in cerebral and extracerebral tissues assumed to largely reflect systemic
hemodynamic changes.57,58 As HbO and HbR are differently affected by global systemic
processes, data of each hemoglobin chromophore were filtered independently by including
either the global HbO or HbR signal in the model. Additional information about the codes and
parameters used in our preprocessing pipeline are included in the Supplementary Material. The
fNIRS datasets employed in this study have been made publicly available and can be found
in Ref. 59.

Data quality was evaluated in each participant at each preprocessing step (see the
Supplementary Material). We inspected channel time series (e.g., intensity, optical density, and
concentration) to detect motion-induced artifacts and signal drifts in the raw data and after wave-
let despiking. We assessed the presence of physiological components, such as respiration and
cardiac pulsation, in the power spectral density of HbO and HbR prior to temporal filtering. We
evaluated the statistical association between time series fluctuations of Hb chromophores (i.e.,
HbO and HbR) which is expected to be characterized by a strong negative correlation 60,61 and an
antiphase state.62 These properties describing the intrinsic relationship between HbO and HbR
hemodynamic fluctuations have been confirmed in the previous task-based63 and resting-state
fNIRS studies in infants and adults.62,64 Algorithms that maximize the negative correlation
between Hb chromophores have also been proposed as a signal improvement or noise reduction
method.65 A negative correlation between HbO and HbR signals (i.e., an antiphase state) was
considered as a valid indicator of data quality. As part of our data quality assessment routine
during preprocessing, we also replicated the results of two previous fNIRS RSFC studies with
infants. We replicated the work by Watanabe et al.62 showing the expected antiphase state
between HbO and HbR signals in each of our three experimental groups. Following the work
by Homae et al.,18 we performed a hierarchical clustering analysis to spatially group channels
based on the degree of similarity between their time series and measured as pairwise temporal
correlation. This analysis was computed for HbO and HbR, and we obtained similar spatial
clusters as in the original study, with frontal, temporal, and parietal channels of each hemisphere
clustering together. Quality assurance figures for each participant and group-level replication
analyses are given in the Supplementary Material.
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2.5 Functional Connectivity Analyses

2.5.1 Temporal group ICA with dual regression

Group-level FNs were computed by means of a tGICA approach [Fig. 2(a)]42 by temporally
concatenating participants’ datasets after time series normalization to zero mean and unit
variance—producing a single-group dataset with dimensions [channels (46) × Hb chromophores
(2)] × [time points (5000) × participants (99)]. The FastICA algorithm66 was applied to the group
dataset to extract 15 ICs. This number corresponds to the number of principal components
explaining 60% of group data variance, which was established previously using principal com-
ponent analysis (PCA). The number of ICs was determined using three criteria based on the
consistency of the components across different initializations of the ICA algorithm, the anticor-
relation between the Hb chromophores, as well as the percentage of data variance explained
by each IC (see the Supplementary Material for additional details on ICA model order selection).
The subject-specific spatial maps associated with each independent FN were obtained using
a dual regression approach. This two-step method involves an initial spatial regression of the
tGICA spatial maps to the individual fNIRS datasets to obtain the subject-specific time courses
associated with each group-level IC. A linear model fit is computed between the estimated
subject-specific time courses and fNIRS datasets to estimate the subject-specific spatial maps.

Statistical analyses were performed channelwise for each FN using a one-way random effects
ANOVA with language background as a factor (i.e., BIL, SP, and BQ), resulting in 15 spatial
maps of between group differences (i.e., channelwise F-test). Statistical tests were corrected for
multiple comparisons at the channel level using the false discovery rate (FDR, q < 0.05)
method.67 Bayesian hypothesis testing was also performed to estimate the relative likelihood
of the data under the null and the alternative models.45 To quantify the plausibility of the absence
of an effect (i.e., evidence of absence), we repeated our group-level statistical analyses for each
FN based on a Bayesian ANOVA using the R package BayesFactor.68

Fig. 2 (a) Processing pipeline for tGICA and (b) connICA methods.
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2.5.2 Connectome-based analyses

A connICA approach was performed based on infants’ functional connectomes.44 For each indi-
vidual, the temporal synchronization between channels was evaluated by computing a pairwise
robust Pearson’s correlation between the time courses of the HbO and HbR signals separately at
every channel for each infant. Robust Pearson’s correlation reduces the contribution of possible
outlier time points (e.g., due to residual motion artifacts after preprocessing) in the correlation
estimation.69 Briefly, for each i, j element representing the preprocessed time series of channels i
and j, a joint weighting matrix is calculated as

EQ-TARGET;temp:intralink-;sec2.5.2;116;633rftg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iftg2 þ jftg2

q
:

A weighting function ðSÞ defined as

EQ-TARGET;temp:intralink-;sec2.5.2;116;580S

�
r
σ

�
¼

(
1 −

�
r

σ−k

�
2;

�� r
σ

�� < k
0;

�� r
σ

�� ≥ k

is applied to each i, j element such that iW ¼ Si and jW ¼ Sj. The correlation for each entry of
the functional connectivity matrix is computed between the preprocessed weighted signals iW ,
jW . The tuning parameter k ¼ 4.685 is the value typically employed in the literature which pre-
serves 95% of statistical efficiency in the absence of outliers.69 We calculated σ from the media-
nabsolute deviation (MAD) of the signal r as σ ¼ 1.4826 MADðrÞ, using a constant scale factor
that is standard for normally distributed data.70 Individual robust functional connectivity matri-
ces representing the temporal association between channels were defined for HbO and HbR,
where the iW , jW element reflects the robust Pearson’s correlation between channels iW and
jW . For the sake of simplicity, hereinafter the robust functional connectivity matrices will be
referred to as functional connectivity matrices. Individual functional connectivity matrices were
converted from r values to z scores by Fisher’s r-to-z transformation and averaged across sub-
jects within each experimental group.

Individual functional connectivity matrices of HbO and HbR were input to a hybrid con-
nectome-based ICA (connICA) [Fig. 2(b)].44,71 The upper triangular part of the symmetric
functional connectivity matrices of HbO and HbR were vectorized and concatenated for each
individual. These vectors were concatenated in rows to form a group-level functional connec-
tivity matrix of dimensions [99 participants] × [1035 connectivity pairs × 2 Hb chromophores].
The integration of the information on functional connectivity provided by HbO and HbR
was done under the premise that similar RSFC patterns should be observed across Hb
chromophores.36,72 Next, the FastICA algorithm was applied to the group-level functional con-
nectivity matrix to obtain a set of latent group-level independent FCCs and their corresponding
weights in each participant. From this analysis, 11 FCCs were extracted; a number that is equal to
the number of principal components necessary to explain 60% of the group data variance. The
choice of this parameter is explained in the Supplementary Material. Finally, the individual IC
weights were evaluated as random effects. An ANOVA was performed with language back-
ground as a factor (i.e., BIL, SP, and BQ) to examine differences across experimental groups
in the prominence of the extracted independent functional components. Statistical tests were
corrected for multiple comparisons at the component level using the FDR (q < 0.05) method.
Bayesian ANOVAs were also performed on each FCC using the R package BayesFactor.45,68

3 Results

From the 123 infants, who participated in this study, following preprocessing and quality assess-
ment of the fNIRS datasets, we were able to obtain 99 fNIRS recordings with good data quality
for HbO and HbR signals. All the participants had recordings with a duration of 9 min, which
were input for data analysis with tGICA and connICA. Only those FN and FCC with an inter-
pretable spatial configuration are discussed in the main text. The complete sets of FN and FCC
are available in the Supplementary Material. Frequentist and Bayesian tests were used to perform
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statistical comparisons on the observed FN and FCC as a function of the language background.
BF10 values were used to quantify the relative likelihood of two competing models (i.e., per-
formance of the model with and without the experimental factor, here language background)
based on the information provided by the data. The ranges of the BF10 describing effect strength
were formulated based on Wetzels and Wagenmakers (2012).73 In this formulation, a BF10 of
value [3 to 10] represents a “substantial evidence for H1,” and a BF10 of value [1 to 3] is
described as “anecdotal evidence for H1.” A BF10 of value [1] provides “no evidence” for any
of the models. This can be interpreted as data being not sufficiently informative. Equivalent
ranges are used for describing evidence for H0, which can be obtained by calculating
BF01 ¼ 1∕BF10.

Group ICA spatial maps representing FNs of temporally independent spontaneous hemo-
dynamic activity are displayed in Fig. 3. FNs are depicted as t-statistical maps from one-sample
t-tests on the subject-specific reconstructed spatial maps. The observed networks were robust
across multiple realizations of the ICA algorithm based on ICASSO,74 showing consistency
values (Iq) ranging from 0.49 to 0.91. FNs also exhibited high consistency across HbO and
HbR, displaying correlation r values between −0.97 and −0.99, as expected due to hemo-
dynamic physiology (see the Supplementary Material for a full description of these metrics).
The first three FNs, labeled as sensorimotor networks (FN 1-3), depict a symmetric pattern over
bilateral areas in the precentral and postcentral gyrus. FN 4 and FN 5 cover mainly areas located
in the inferior frontal gyrus and the superior temporal gyrus that can be associated with the
auditory and the language networks, respectively. Two FNs were observed over frontal regions,
including FN 6 and FN 7. FN 6 is confined to regions in the middle and superior frontal gyrus.
FN 7 comprised middle frontal areas and areas in the inferior parietal gyrus which can be related
to the outer brain regions of the default-mode network that is typically observed in RSFC studies
with fMRI. The observed FNs exhibited significant patterns of anticorrelated spontaneous
activity. In FN 1-5, anticorrelated patterns were observed involving superior and middle frontal
areas, posterior areas in the inferior and middle temporal gyrus, and inferior parietal regions.
FN 6 showed anticorrelated activity with posterior temporal and inferior parietal regions.
In FN 7, the negative spatial pattern was less prominent than the positive part and included
inferior frontal and superior temporal regions.

Fig. 3 FNs representing the spatial maps derived from the tGICA method (HbR). Colorbar shows
the t -value of the channel level one-sample t -test computed for each spatial map.
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HbO and HbR FNs were reconstructed to the subject space using dual regression to extract
the subject-specific FNs. Between group statistical comparisons were conducted to assess the
effect of early bilingual exposure on each channel and network (one-way ANOVA at the channel
level, FDR corrected among 46 channels, q < 0.05). Significant differences between experimen-
tal groups were only observed on isolated channels, with most effects not surviving multiple
comparison correction and not being consistent across HbO and HbR. Bayesian tests assessing
channelwise group differences revealed an overall higher likelihood of the null hypothesis (i.e.,
substantial evidence for H0, HbO: 602/690 tests, and HbR: 596/690 tests). Substantial evidence
for H1 denoting differences between groups in FN was found only on isolated channels (HbO:
11/690 tests and HbR: 7/690 tests), and these channels did not show consistency across HbO and
HbR (a full description is provided in the Supplementary Material).

The input of the connICA method is the individual functional connectivity matrices com-
puted based on a robust Pearson’s correlation approach. A high degree of similarity was
observed at the individual and at the group level in the configuration of functional connectivity
matrices (see the Supplementary Material). A marked negative correlation between HbO and
HbR and a stronger correlation between homotopic regions were also evidenced on these matri-
ces. These features were considered indicative of the quality and reliability of the datasets.
Group-level FCC extracted from the connICA analysis are depicted in Fig. 4. For the sake
of representation, each FCC plot only displays 10% largest positive connections between nodes
(i.e., fNIRS channels), with node size representing the number of connections linked to it. FCC
showed a high level of robustness based on the ICASSO algorithm, with Iq values between 0.5
and 0.96, and a large degree of similarity between HbO and HbR, with correlation r values
between 0.7 and 0.95. FCC 1 is characterized by local, short-range, connections between adja-
cent nodes. It involves within hemisphere connections between nodes over the whole fNIRS
setup, with interhemispheric connections constrained to the most anterior nodes. FCC 2 reflects
functional connectivity between homotopic channels across hemispheres. FCC 3 and FCC 4
show a high degree of symmetry, displaying mainly short and long-range within hemisphere
connections. FCC 5 and FCC 6 also show a highly symmetric pattern, revealing that the nodes
located over the superior temporal gyrus are functional hubs with a large number of intrahemi-
spheric connections between temporal and frontal regions, and interhemispheric connections
with frontal and posterior temporo-parietal regions. Finally, FCC 7 and FCC 8 are also highly
symmetric with their main functional hubs located in precentral and inferior frontal regions and
showing intrahemispheric connections across frontal and precentral regions and interhemi-
spheric connections between frontal, superior temporal, and precentral regions (the full set of
extracted FCC is provided in the Supplementary Material).

Statistical analyses assessing significant differences across experimental groups were com-
puted on the individual weights that quantify the prominence of each independent FCC in each
individual. A one-way ANOVA at the FCC level indicated no significant differences between
monolingual and bilingual infants after multiple comparisons correction by the number of com-
ponents (FDR corrected among 11 FCC, q < 0.05). Bayes factors (BF10) indicated that, in most
FCC, the data were more likely under H0 than under H1 (Fig. 4). A substantial evidence for H0

was observed in 6 out of 8 FCC, whereas FCC 8 showed anecdotal evidence for H0. FCC 5 had
the largest evidence (anecdotal) for differences across the groups and would be the only FCC to
exceed significance (p ¼ 0.018) in frequentist F-tests without multiple comparisons correction.

4 Discussion

This work evaluated the effect of bilingualism on RSFC based on high-quality fNIRS datasets
acquired in 4-month-old monolingual and bilingual infants. To the best of our knowledge, this
sample of 99 valid participants with 9 min fNIRS recordings per infant is the largest dataset to
study RSFC in this age group. Our analyses identified large-scale group-level RSFC patterns in
the 4-month-old infant brain by implementing two data analysis approaches based on ICA that
search for independence between, either the time-courses of spontaneous hemodynamic activity
measured with fNIRS (i.e., tGICA),42,43 or in the connectivity patterns across multiple individual
functional connectivity matrices (connICA).44
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The main goal of this study was to assess whether an early and continued exposure to
a bilingual environment during the first months of life might impact the configuration of the
emerging functional connectivity. The human brain’s capacity to adapt to long-term environ-
mental factors manifests prominently during the first stages of development and it is particularly
relevant during early language experience. For this reason, the link between long-term exposure
to two languages and its effect on cognitive and functional brain development has received
great attention in recent years.75 Our frequentist group-level analyses showed no significant
differences between the RSFC of monolingual and bilingual infants at 4 months of age.
Bayesian statistical analyses confirmed that H0 (i.e., no group differences) was overall more
likely than the alternative model for the two functional connectivity analysis methods. Overall,
an effect of linguistic background in RSFC was not observed, suggesting that an early bilingual
environment might not affect the configuration of intrinsic functional connectivity at this age.
However, FCC 5, in which the highest evidence for H1 was observed for both frequentist
and Bayesian tests, covers areas that largely overlap with language and auditory regions.

Fig. 4 FCCs estimated using connICA and associated statistics (frequentist and Bayesian)
assessing between-group differences. Components have been threshold to show only the top
10% of connections (absolute value). Node size was adjusted based on the number of connec-
tions reaching each node.
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One would expect that, if differences due to a dissimilar linguistic background exist, they could
potentially manifest in such an FN/component (in fact, one would have concluded so if multiple
comparisons correction were not applied). Despite the acquired sample size and fNIRS recording
length, these results might indicate that the number of participants might have still been insuf-
ficient to robustly detect this effect. Here RSFC was examined in 4-month-old infants, as this is
the first point in development, in which the behavioral and neural consequences of a bilingual
effect have been described.2–4,8,10 Bilingualism has been only shown to modulate RSFC in adult
participants thus far,29–31 and evidence of differences between monolingual and bilingual infants
in previous neuroimaging studies manifested during explicit language tasks only.8–13 It is, there-
fore, a possibility that, if differences between monolinguals and bilinguals exist at this age, they
might only be observable during the performance of specific linguistic tasks. Further research
with monolingual and bilingual infants at different ages should also help clarify if the differ-
ences observed in adults’ functional connectivity might only emerge at a later stage in neural
development.

The spatial resolution of the current optode setup might have been insufficient to detect subtle
variations in RSFC configuration induced by early bilingualism. Variability in head size and
shape across participants and the lack of precise spatial information of our probe might have
increased spatial variance in channel position on the head, thus limiting the spatial accuracy of
our findings and reducing statistical power in group-level analysis. However, a recent work dem-
onstrates that differences in head size and shape do not lead to substantial differences in channel
positions and localization in infants (i.e., differences in head size make little difference over the
range of head circumferences for a given age).76 It is also challenging to ensure a consistent
probe positioning when acquiring fNIRS data from infant subjects, as most methods for optode
localization require participants to remain motionless for long periods of time, which is generally
not suitable. Recently, photogrammetry methods that provide faster and easier optode registra-
tion procedures demonstrated their validity and reliability for probe position estimation.77,78

A wider adoption of these methods by the community could help increase within and between-
subject reproducibility of fNIRS measurements on developmental populations. The spatial accu-
racy of our findings might have also been reduced by the use of 6-month-old head templates
as opposed to age-matched templates. To the best of our knowledge, the nearest parcellation
atlas that is publicly available to 4-months is at 6-months.48 We used a 6-month structural atlas,
which can be better registered to a parcellation atlas from the same cohort.

Testing sleeping infants might have prevented us from detecting subtle differences in RSFC
properties across experimental groups.79,80 Nonetheless, previous studies assessing RSFC in
infants have also been conducted with sleeping infants, irrespective of the imaging modality
(i.e., fMRI or fNIRS), and were able to identify RSFC differences induced by prenatal and post-
natal factors such as premature birth25 or socioeconomic status.28 Brain imaging techniques are
particularly sensitive to motion-induced artifacts commonly observed in acquisitions on awake
infants. In our experience, collecting RSFC data from awake infants considerably degrades the
reliability of the inferred temporal correlations between voxel or channel time courses.69 Because
our goal was to collect high-quality RSFC data, we tested participants during natural sleep,
which also allowed us to perform longer recordings than those normally reported in the literature.
All infants were tested under similar conditions (i.e., immediately after they fall asleep) with the
aim of ensuring a homogenous sleep state and minimizing any possible confound due to different
arousal states across participants.21 However, assessing sleep state through behavioral and/or
electrophysiological measures would have been desirable to provide a more accurate control.80

The proposed fNIRS data preprocessing and analysis pipeline enabled us to reliably char-
acterize group-level RSFC patterns in 4-month-old infants. FN extracted with tGICA demon-
strated a marked bilateral functional relationship between homotopic brain regions in HbO and
HbR hemodynamic fluctuations. The spatial configuration of the FN indicates that, at this age,
RSFC predominantly consists of synchronous activity between anatomically and functionally
similar regions across hemispheres, as already described in the previous works.18,81–83 We
showed FN located in primary sensorimotor (FN 1-3) and auditory regions (FN 4) which have
been repeatedly reported in infant studies using fMRI,28,81,83 but from which evidence from
infant studies using optical methods was limited.18,39,72 FN 5 overlaps with language related
regions spreading over the inferior frontal gyrus and superior temporal gyrus. Interestingly,
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a stronger involvement of the right hemisphere in the auditory (FN 5) and language (FN 4)
networks can be observed in Fig. 3, which matches previous observations showing increased
activity in the right hemisphere for speech input.82,84,85 Homotopic areas over frontal regions also
demonstrated a high degree of functional synchronization. The spatial organization of FN 6,
involving multiple channels within frontal regions and across the midline, supports existing
evidence showing that frontal regions become functionally connected during the first year of
life.28,83 FN 7 showed a symmetric functional connectivity pattern involving channels in middle
frontal and inferior parietal regions, which is partly consistent with the spatial topology of
the default-mode network, which exhibits its most prominent activity when the subject is not
engaged in any particular task.19 Evidence of a developing default-mode network has often been
reported in infants with fMRI.86 Using fNIRS, evidence of a gradual increase of frontal–
temporoparietal connectivity in resting state between 11 and 36 months of age as a prospective
precursor of the developing default-mode network has been observed.87,88 However, due to the
limited spatial resolution of the current experimental setup, and the inability of fNIRS to measure
deep medial and subcortical regions, such as the posterior cingulate cortex and the precuneus,
our results should be interpreted with caution.

The connICA method allowed us to identify group-level macroscale properties of functional
connectivity based on individual functional connectivity matrices. The functional relationship
between fNIRS channels formed coherent interregional ensembles with distinct topological
properties of large-scale functional connectivity. The first functional connectome component
(FCC 1) showed short-range functional connectivity between adjacent channels, spanning the
complete fNIRS setup. This functional connectivity pattern reflecting the intrinsic functional
configuration of the infant brain has been shown to progressively decrease over the course
of development, whereas long-distance connections tend to increase toward a more distributed
functional brain organization.18,89 FCC 2 displayed interhemispheric correlations between homo-
topic regions. This type of functional connectivity is prevalent in most studies assessing RSFC in
infant subjects and has been linked with the interaction between functional and structural brain
maturation.18,28,81,83 Due to the marked spatial symmetry observed in components FCC 3 to FCC
8, we presented them in pairs in Fig. 4. FCC 3 and FCC 4 displayed mostly intrahemispheric
connectivity between anterior and posterior brain regions in the left and right hemispheres,
respectively. Similarly, FNs extracted with our tGICA approach also showed patterns of
long-range intrahemispheric connectivity. However, evidence from previous studies suggests
that at this age this type of connectivity is still immature.18,28 FCC 5 and FCC 6 showed func-
tional hubs in the left and right temporal areas, respectively, which were densely interconnected
with inferior frontal and posterior temporal regions within and across hemispheres and mainly
covered auditory and language related areas. In FCC 7 and FCC 8, connections converged over
channels located in precentral and inferior frontal gyrus, which showed intra- and interhemi-
spheric connections with channels localized in frontal regions. Due to their spatial character-
istics, these components might well represent the activity of motor and language networks,
which have been consistently identified in infant populations.

Our results showed reliable patterns of correlated and anticorrelated activity within the
observed FNs and FCCs. An interesting finding in this study is that the anticorrelated networks
observed in our primary FNs (FN 1-5) considerably overlap with the spatial configuration of the
FN labeled as default-mode network (FN 7). It is, therefore, a possibility that this activity might
reflect the interaction between task-positive and task-negative brain regions. One question that
might arise from these findings is whether the observed patterns of negative functional connec-
tivity are the result of our preprocessing pipeline including global signal regression, or if they
reflect intrinsic, functionally meaningful properties of network organization.90 Recent guidelines
suggest that, in infants, regressing out signals from short-separation channels could reduce the
impact of confounding physiological signals from extracerebral tissues, increasing the reliability
of fNIRS measurements. When short-separation channels are not available in the fNIRS setup,
applying a signal processing method to remove physiological confounds (e.g., PCA or global
signal regression) is a recommended alternative.91 This preprocessing step is necessary to
account for the effects of widespread systemic physiological confounds that are commonly
observed in fNIRS recordings.57,58,91 As seen from the individual quality assessment figures (see
the Supplementary Material), global signal regression removes physiological components that
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would otherwise artificially increase global connectivity, thus increasing the risk for false pos-
itives. Future work should specifically address what method is more appropriate to remove
physiological confounds in developmental populations, where this issue has usually not been
considered and where fNIRS setups including short-separation channels are less feasible.
We computed FN and FCC without applying global signal regression and found that anticorre-
lated patterns of functional connectivity were still present. Most previous optical imaging studies
assessing RSFC reported only positive correlations or presented both positive and negative cor-
relations in the results but only discussed the former.38,39 This has been mostly due to the lack of a
straightforward interpretation of the observed anticorrelated activity in the literature.90

5 Conclusion

This work describes and compares RSFC in 4-month-old infants considering a large sample size,
high-quality datasets, comprehensive data quality assessment, and preprocessing routines. We
demonstrate the consistency of our recordings with the expected physiological and functional
properties of the fNIRS signal, thus strengthening the reliability of the observed RSFC patterns
(i.e., FN and FCC). As for our main theoretical question, group-level statistical comparisons
based on frequentist and Bayesian statistics revealed no differences between monolingual and
bilingual infants’ RSFC at 4 months of age, although connICA revealed a trend for significant
effects in a left-lateralized component overlapping auditory and language-related frontal and
temporal regions. In light of previous research that demonstrated neural adaptations in bilingual
infants during linguistic tasks at this age, our results suggest that intrinsic functional brain net-
works are not affected by bilingual experience during the earliest stages of life. Considering
previously reported differences in adult monolingual versus bilingual RSFC patterns, in which
stage in development changes in RSFC based on language environment begin to appear remains
open for future research. Finally, we believe that negative results in correctly motivated, rigor-
ously performed, and comprehensively described research are an important component of sci-
entific literature. In our view, the quality of a research output should not be judged based on the
direction or the significance of the observed findings. Negative results can help filling the gaps of
current scientific knowledge and are essential for improving research transparency and
reproducibility.92,93

Disclosures

The authors declare that this research was conducted in the absence of any commercial or finan-
cial relationships that could represent potential conflicts of interest.

Acknowledgments

The authors would like to thank all the parents and infants who generously participate in our
studies. The authors also would like to thank Elena Aguirrebengoa for her assistance on recruit-
ing and testing participants and Enrico Amico for discussion regarding the connICA approach.
This work was supported by the Basque Government (Nos. PRE_2018_2_0154, PIBA_2019_
104, and BERC 2018-2021); the Spanish Ministry of Economy and Competitiveness (Nos.
RYC-2017-21845, PID2019-105520GB-100, and PSI2014-5452-P); the Natural Sciences and
Engineering Research Council of Canada (Nos. 506948 and 506993); and the Engineering and
Physical Sciences Research Council (Nos. EP/N025946/1 and EP/509577/1).

References

1. J. F. Werker, “Perceptual beginnings to language acquisition,” Appl. Psycholinguist. 39(4),
703–728 (2018).

2. L. Bosch and N. Sebastián-Gallés, “Native-language recognition abilities in 4-month-old
infants from monolingual and bilingual environments,” Cognition 65(1), 33–69 (1997).

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-14 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1017/S0142716418000152
https://doi.org/10.1016/S0010-0277(97)00040-1


3. N. Sebastián-Gallés et al., “A bilingual advantage in visual language discrimination in
infancy,” Psychol. Sci. 23(9), 994–999 (2012).

4. M. Molnar, J. Gervain, and M. Carreiras, “Within-rhythm class native language discrimi-
nation abilities of Basque-Spanish monolingual and bilingual infants at 3.5 months of age,”
Infancy 19(3), 326–337 (2014).

5. Á. M. Kovács, “Cognitive adaptations induced by a multi-language input in early develop-
ment,” Curr. Opin. Neurobiol. 35, 80–86 (2015).

6. E. Bialystok, “Bilingualism and the development of executive function: the role of atten-
tion,” Child Dev. Perspect. 9(2), 117–121 (2015).

7. M. Kalashnikova, J. Pejovic, and M. Carreiras, “The effects of bilingualism on attentional
processes in the first year of life,” Dev. Sci. 24, e13011 (2020).

8. L. Nácar-Garcia et al., “Evoked and oscillatory EEG activity differentiates language dis-
crimination in young monolingual and bilingual infants,” Sci. Rep. 8(1), 2770 (2018).

9. L. A. Petitto et al., “The “Perceptual Wedge Hypothesis” as the basis for bilingual babies’
phonetic processing advantage: new insights from fNIRS brain imaging,” Brain Lang.
121(2), 130–143 (2012).

10. E. Mercure et al., “Language experience impacts brain activation for spoken and signed
language in infancy: insights from unimodal and bimodal bilinguals,” Neurobiol. Lang.
1(1), 9–32 (2020).

11. A. Garcia-Sierra et al., “Bilingual language learning: an ERP study relating early brain
responses to speech, language input, and later word production,” J. Phonetics 39(4),
546–557 (2011).

12. N. Ferjan-Ramírez et al., “Speech discrimination in 11-month-old bilingual and monolin-
gual infants: a magnetoencephalography study,” Dev. Sci. 20(1), e12427 (2017).

13. B. T. Conboy and D. L. Mills, “Two languages, one developing brain: event-related poten-
tials to words in bilingual toddlers,” Dev. Sci. 9(1), F1–F12 (2006).

14. T. C. Burns et al., “The development of phonetic representation in bilingual and monolin-
gual infants,” Appl. Psycholinguist. 28, 455–474 (2007).

15. M. Sundara, L. Polka, and M. Molnar, “Development of coronal stop perception: bilingual
infants keep pace with their monolingual peers,” Cognition 108, 232–242 (2008).

16. J. Werker, “Perceptual foundations of bilingual acquisition in infancy,” Ann. N.Y. Acad. Sci.
1251(1), 50–61 (2012).

17. H. Obrig et al., “Spontaneous low frequency oscillations of cerebral hemodynamics and
metabolism in human adults,” Neuroimage, 12, 623–639 (2000).

18. F. Homae et al., “Development of global cortical networks in early infancy,” J. Neurosci.
30(14), 4877–4882 (2010).

19. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).

20. J. S. Damoiseaux et al., “Consistent resting-state networks across healthy subjects,” Proc.
Natl. Acad. Sci. U. S. A. 103(37), 13848–13853 (2006).

21. W. Gao, “Functional connectivity of the infant human brain: plastic and modifiable,”
Neuroscientist 23(2), 169–184 (2017).

22. K. Keunen, S. J. Counsell, and M. J. Benders, “The emergence of functional architecture
during early brain development,” Neuroimage 160, 2–14 (2017).

23. H. Zhang, D. Shen, and W. Lin, “Resting-state functional MRI studies on infant brains:
a decade of gap-filling efforts,” NeuroImage 185, 664–684 (2019).

24. E. Damaraju et al., “Resting-state functional connectivity differences in premature children,”
Front. Syst. Neurosci. 4, 23 (2010).

25. C. D. Smyser et al., “Longitudinal analysis of neural network development in preterm
infants,” Cereb. Cortex 20(12), 2852–2862 (2010).

26. I. Dinstein et al., “Disrupted neural synchronization in toddlers with autism,” Neuron 70(6),
1218–1225 (2011).

27. B. Keehn et al., “Functional connectivity in the first year of life in infants at-risk for autism:
a preliminary near-infrared spectroscopy study,” Front. Hum. Neurosci. 7, 444 (2013).

28. W. Gao et al., “Functional network development during the first year: relative sequence and
socioeconomic correlations,” Cereb. Cortex 25(9), 2919–2928 (2015).

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-15 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1177/0956797612436817
https://doi.org/10.1111/infa.12041
https://doi.org/10.1016/j.conb.2015.07.003
https://doi.org/10.1111/cdep.12116
https://doi.org/10.1111/desc.13011
https://doi.org/10.1038/s41598-018-20824-0
https://doi.org/10.1016/j.bandl.2011.05.003
https://doi.org/10.1162/nol_a_00001
https://doi.org/10.1016/j.wocn.2011.07.002
https://doi.org/10.1111/desc.12427
https://doi.org/10.1111/j.1467-7687.2005.00453.x
https://doi.org/10.1017/S0142716407070257
https://doi.org/10.1016/j.cognition.2007.12.013
https://doi.org/10.1111/j.1749-6632.2012.06484.x
https://doi.org/10.1006/nimg.2000.0657
https://doi.org/10.1523/JNEUROSCI.5618-09.2010
https://doi.org/10.1038/nrn2201
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1177/1073858416635986
https://doi.org/10.1016/j.neuroimage.2017.01.047
https://doi.org/10.1016/j.neuroimage.2018.07.004
https://doi.org/10.3389/FNys.2010.00023
https://doi.org/10.1093/cercor/bhq035
https://doi.org/10.1016/j.neuron.2011.04.018
https://doi.org/10.3389/fnhum.2013.00444
https://doi.org/10.1093/cercor/bhu088


29. G. Luk et al., “Lifelong bilingualism maintains white matter integrity in older adults,”
J. Neurosci. 31(46), 16808–16813 (2011).

30. C. L. Grady et al., “Brain network activity in monolingual and bilingual older adults,”
Neuropsychologia 66, 170–181 (2015).

31. J. A. Berken et al., “Effects of early and late bilingualism on resting-state functional
connectivity,” J. Neurosci. 36(4), 1165–1172 (2016).

32. L. García-Pentón et al., “Anatomical connectivity changes in the bilingual brain,”
Neuroimage 84, 495–504 (2014).

33. S. G. Mohades et al., “White-matter development is different in bilingual and monolingual
children: a longitudinal DTI study,” PLoS One 10(2), e0117968 (2015).

34. B. R. White et al., “Resting-state functional connectivity in the human brain revealed with
diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).

35. C. M. Lu et al., “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci.
Methods 186(2), 242–249 (2010).

36. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity
of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336
(2010).

37. S. L. Novi, R. B. Rodrigues, and R. C. Mesquita, “Resting state connectivity patterns with
near-infrared spectroscopy data of the whole head,” Biomed. Opt. Express 7(7), 2524–2537
(2016).

38. H. Zhang et al., “Functional connectivity as revealed by independent component analysis of
resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).

39. B. R. White et al., “Bedside optical imaging of occipital resting-state functional connectivity
in neonates,” Neuroimage 59(3), 2529–2538 (2012).

40. F. Homae et al., “Large-scale brain networks underlying language acquisition in early
infancy,” Front. Psychol. 2, 93 (2011).

41. M. Imai et al., “Functional connectivity of the cortex of term and preterm infants and infants
with Down’s syndrome,” Neuroimage 85, 272–278 (2014).

42. C. F. Beckmann et al., “Group comparison of resting-state FMRI data using multi-subject
ICA and dual regression,” Neuroimage 47(Suppl. 1), S148 (2009).

43. S. M. Smith et al., “Temporally independent functional modes of spontaneous brain
activity,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 3131–3136 (2012).

44. E. Amico et al., “Mapping the functional connectome traits of levels of consciousness,”
Neuroimage 148, 201–211 (2017).

45. C. Keysers, V. Gazzola, and E. Wagenmakers, “Using Bayes factor hypothesis testing in
neuroscience to establish evidence of absence,” Nat. Neurosci. 23, 788–799 (2020).

46. J. E. Richards et al., “A database of age-appropriate average MRI template,” Neuroimage
124(B), 1254–1259 (2016).

47. M. Schweiger and S. R. Arridge, “The Toast++ software suite for forward and inverse
modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).

48. L. F. Akiyama et al., “Age-specific average head template for typically developing 6-month-
old infants,” PLoS One 8(9), e73821 (2013).

49. B. B. Avants, N. Tustison, and G. Song, “Advanced normalization tools (ANTS),” Insight J.
2, 1–35 (2009).

50. N. Tzourio-Mazoyer et al., “Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain,” Neuroimage
15(1), 273–289 (2003).

51. T. J. Huppert et al., “HomER: a review of time-series analysis methods for near-infrared
spectroscopy of the brain,” Appl. Opt. 48(10), D280–D98 (2009).

52. A. X. Patel et al., “A wavelet method for modeling and despiking motion artifacts from
resting-state fMRI time series,” Neuroimage 95, 287–304 (2014).

53. B. Blanco, M. Molnar, and C. Caballero-Gaudes, “Effect of prewhitening in resting-state
functional near-infrared spectroscopy data,” Neurophotonics 5(4), 040401 (2018).

54. F. Scholkmann and M. Wolf, “General equation for the differential pathlength factor of the
frontal human head depending on wavelength and age,” J. Biomed. Opt. 18(10), 105004
(2013).

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-16 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1523/JNEUROSCI.4563-11.2011
https://doi.org/10.1016/j.neuropsychologia.2014.10.042
https://doi.org/10.1523/JNEUROSCI.1960-15.2016
https://doi.org/10.1016/j.neuroimage.2013.08.064
https://doi.org/10.1371/journal.pone.0117968
https://doi.org/10.1016/j.neuroimage.2009.03.058
https://doi.org/10.1016/j.jneumeth.2009.11.010
https://doi.org/10.1016/j.jneumeth.2009.11.010
https://doi.org/10.1364/BOE.1.000324
https://doi.org/10.1364/BOE.7.002524
https://doi.org/10.1016/j.neuroimage.2010.02.080
https://doi.org/10.1016/j.neuroimage.2011.08.094
https://doi.org/10.3389/fpsyg.2011.00093
https://doi.org/10.1016/j.neuroimage.2013.04.080
https://doi.org/10.1016/S1053-8119(09)71511-3
https://doi.org/10.1073/pnas.1121329109
https://doi.org/10.1016/j.neuroimage.2017.01.020
https://doi.org/10.1038/s41593-020-0660-4
https://doi.org/10.1016/j.neuroimage.2015.04.055
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1371/journal.pone.0073821
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1364/AO.48.00D280
https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.1117/1.NPh.5.4.040401
https://doi.org/10.1117/1.JBO.18.10.105004


55. C. Caballero-Gaudes and R. C. Reynolds, “Methods for cleaning the BOLD fMRI signal,”
Neuroimage 154, 128–149 (2017).

56. K. N. Kay et al., “Modeling low-frequency fluctuation and hemodynamic response time
course in event-related fMRI,” Hum. Brain Mapp. 29, 142–156 (2008).

57. M. D. Pfeifer, F. Scholkmann, and R. Labruyère, “Signal processing in functional near-
infrared spectroscopy (fNIRS): methodological differences lead to different statistical
results,” Front. Hum. Neurosci. 11, 641 (2018).

58. I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-
infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3),
031405 (2016).

59. B. Blanco et al., “RS_fNIRS_4Months,” https://osf.io/7fzkm/ (2021).
60. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human

brain function,” Trends Neurosci. 20(10), 435–442 (1997).
61. H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,”

J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003).
62. H. Watanabe et al., “Hemoglobin phase of oxygenation and deoxygenation in early brain

development measured using fNIRS,” Proc. Natl. Acad. Sci. U. S. A. 114(9), E1737–E1744
(2017).

63. M. Wolf et al., “Different time evolution of oxyhemoglobin and deoxyhemoglobin concen-
tration changes in the visual and motor cortices during functional stimulation: a near-infra-
red spectroscopy study,” Neuroimage 16(3), 704–712 (2002).

64. G. Taga et al., “Spontaneous oscillation of oxy-and deoxy-hemoglobin changes with a phase
difference throughout the occipital cortex of newborn infants observed using non-invasive
optical topography,” Neurosci. Lett. 282(1-2), 101–104 (2000).

65. X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal
improvement based on negative correlation between oxygenated and deoxygenated hemo-
globin dynamics,” Neuroimage 49(4), 3039–3046 (2010).

66. A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analy-
sis,” IEEE Trans. Neural Networks 10(3), 626–634 (1999).

67. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and power-
ful approach to multiple testing,” J. R. Stat. Soc. B. 57(1), 289–300 (1995).

68. R. D. Morey et al., “BayesFactor,” https://cran.r-project.org/web/packages/BayesFactor/
BayesFactor.pdf (2015).

69. H. Santosa et al., “Characterization and correction of the false-discovery rates in resting state
connectivity using functional near-infrared spectroscopy,” J. Biomed. Opt. 22(5), 055002
(2017).

70. J. W. Barker, A. Aarabi, and T. J. Huppert, “Autoregressive model based algorithm for cor-
recting motion and serially correlated errors in fNIRS,” Biomed. Opt. Exp. 4(8), 1366 (2013).

71. E. Amico and J. Goñi, “Mapping hybrid functional-structural connectivity traits in the
human connectome,” Network Neuro. 2(3), 306–322 (2018).

72. S. L. Ferradal et al., “Functional imaging of the developing brain at the bedside using diffuse
optical tomography,” Cereb. Cortex 26(4), 1558–1568 (2015).

73. R. Wetzels and E. J. Wagenmakers, “A default Bayesian hypothesis test for correlations and
partial correlations,” Psychon. Bull. Rev. 19(6), 1057–1064 (2012).

74. J. Himberg, A. Hyvärinen, and F. Esposito, “Validating the independent components of neuro-
imaging time series via clustering and visualization,” Neuroimage 22(3), 1214–1222 (2004).

75. A. Costa and N. Sebastián-Gallés, “How does the bilingual experience sculpt the brain?”
Nat. Rev. Neurosci. 15(5), 336 (2014).

76. L. H. Collins-Jones et al., “Construction and validation of a database of head models for
functional imaging of the neonatal brain,” Hum. Brain Mapp. 42(3), 567–586 (2021).

77. S. Jaffe-Dax et al., “Video-based motion-resilient reconstruction of three-dimensional posi-
tion for functional near-infrared spectroscopy and electroencephalography head mounted
probes,” Neurophotonics 7(3), 035001 (2020).

78. E. M. Frijia et al., “Functional imaging of the developing brain with wearable high-density
diffuse optical tomography: a new benchmark for infant neuroimaging outside the scanner
environment,” NeuroImage 225, 117490 (2021).

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-17 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1002/hbm.20379
https://doi.org/10.3389/fnhum.2017.00641
https://doi.org/10.1117/1.NPh.3.3.031405
https://osf.io/7fzkm/
https://osf.io/7fzkm/
https://doi.org/10.1016/S0166-2236(97)01132-6
https://doi.org/10.1097/01.WCB.0000043472.45775.29
https://doi.org/10.1073/pnas.1616866114
https://doi.org/10.1006/nimg.2002.1128
https://doi.org/10.1016/S0304-3940(00)00874-0
https://doi.org/10.1016/j.neuroimage.2009.11.050
https://doi.org/10.1109/72.761722
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
https://doi.org/10.1117/1.JBO.22.5.055002
https://doi.org/10.1364/BOE.4.001366
https://doi.org/10.1162/netn_a_00049
https://doi.org/10.1093/cercor/bhu320
https://doi.org/10.3758/s13423-012-0295-x
https://doi.org/10.1016/j.neuroimage.2004.03.027
https://doi.org/10.1038/nrn3709
https://doi.org/10.1002/hbm.25242
https://doi.org/10.1117/1.NPh.7.3.035001
https://doi.org/10.1016/j.neuroimage.2020.117490


79. T. Watanabe et al., “Network-dependent modulation of brain activity during sleep,”
Neuroimage 98, 1–10 (2014).

80. C. W. Lee et al., “Sleep state modulates resting-state functional connectivity in neonates,”
Front. Neurosci. 14, 347 (2020).

81. P. Fransson et al., “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U. S. A.
104(39), 15531–15536 (2007).

82. D. Perani et al., “Neural language networks at birth,” Proc. Natl. Acad. Sci. U. S. A. 108(38),
16056–16061 (2011).

83. E. Damaraju et al., “Functional connectivity in the developing brain: a longitudinal study
from 4 to 9 months of age,” Neuroimage 84, 169–180 (2014).

84. F. Homae et al., “The right hemisphere of sleeping infant perceives sentential prosody,”
J. Neurosci. Res. 54(4), 276–280 (2006).

85. S. Telkemeyer et al., “Sensitivity of newborn auditory cortex to the temporal structure of
sounds,” J. Neurosci. 29(47), 14726–14733 (2009).

86. W. Gao et al., “Evidence on the emergence of the brain’s default network from 2-week-old
to 2-year-old healthy pediatric subjects,” Proc. Natl. Acad. Sci. U. S. A. 106(16) 6790–6795
(2009).

87. C. Bulgarelli et al., “Fronto-temporoparietal connectivity and self-awareness in 18-month-
olds: a resting state fNIRS study,” Dev. Cognit. Neurosci. 38, 100676 (2019).

88. C. Bulgarelli et al., “The developmental trajectory of fronto-temporoparietal connectivity as
a proxy of the default mode network: a longitudinal fNIRS investigation,” Hum. Brain
Mapp. 41, 2717–2740 (2020).

89. M. Ouyang et al., “Short-range connections in the developmental connectome during typical
and atypical brain maturation,” Neurosci Biobehav. Rev. 83, 109–122 (2017).

90. K. Murphy and M. D. Fox, “Towards a consensus regarding global signal regression for
resting state functional connectivity MRI,” Neuroimage 154, 169–173 (2017).

91. M. A. Yücel et al., “Best practices for fNIRS publications,” Neurophotonics 8(1), 012101
(2021).

92. A. Franco, N. Malhotra, and G. Simonovits, “Publication bias in the social sciences: unlock-
ing the file drawer,” Science 345(6203), 1502–1505 (2014).

93. N. Matosin et al., “Negativity towards negative results: a discussion of the disconnect
between scientific worth and scientific culture,” Disease Models Mech. 7, 171–173 (2014).

Borja Blanco received his PhD in cognitive neuroscience from the Basque Center on Cognition,
Brain, and Language. He is currently a research associate in the Department of Psychology at the
University of Cambridge. His fields of interest include data processing and analysis methods for
neuroimaging in infant research (fNIRS and EEG). He is interested in the application of these
imaging methods to study the development of functional connectivity and cognitive processes
such as social cognition and language acquisition in infant populations.

Monika Molnar is an assistant professor at the University of Toronto. She received her PhD in
communication sciences and disorders from McGill University. Her research focuses on typical
and atypical cognitive and language development in bilingual and multilingual populations
across the lifespan.

Manuel Carreiras is the scientific director of the Basque Center on Cognition, Brain, and
Language, Donostia–San Sebastián, Spain. He is also an Ikerbasque research professor, an
honorary professor at University College London (UCL), and a distinguished researcher of the
University of the Basque Country (UPV/EHU). His research focuses on reading, bilingualism,
and second language learning.

Liam H. Collins-Jones is a PhD student in the Medical Physics and Biomedical Engineering
Department at University College London. His research focusses on integrating structural infor-
mation into the analysis of fNIRS data with a particular focus on diffuse optical tomography.

Ernesto Vidal is a research associate in the Department of Medical Physics and Biomedical
Engineering at UCL. He received his PhD in control engineering at the University of Sheffield,

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-18 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1016/j.neuroimage.2014.04.079
https://doi.org/10.3389/fnins.2020.00347
https://doi.org/10.1073/pnas.0704380104
https://doi.org/10.1073/pnas.1102991108
https://doi.org/10.1016/j.neuroimage.2013.08.038
https://doi.org/10.1016/j.neures.2005.12.006
https://doi.org/10.1523/JNEUROSCI.1246-09.2009
https://doi.org/10.1073/pnas.0811221106
https://doi.org/10.1016/j.dcn.2019.100676
https://doi.org/10.1002/hbm.24974
https://doi.org/10.1002/hbm.24974
https://doi.org/10.1016/j.neubiorev.2017.10.007
https://doi.org/10.1016/j.neuroimage.2016.11.052
https://doi.org/10.1117/1.NPh.8.1.012101
https://doi.org/10.1126/science.1255484
https://doi.org/10.1242/dmm.015123


followed by a postdoctoral position at ICFO—The Institute of Photonic Sciences, Spain.
Currently, his work is focused on the development of reconstruction algorithms for high-density
diffuse optical tomography. His research interests also include speckle imaging, diffuse corre-
lation spectroscopy/tomography, broad-band spectroscopy, and system identification.

Robert J. Cooper is an EPSRC fellow and an assistant professor in the Department of Medical
Physics and Biomedical Engineering at University College London, where he leads the DOT-
HUB Research Group. His research focuses on the advancement of diffuse optical tomography
and wearable neuroimaging technologies for both neuroscience and clinical applications.

César Caballero-Gaudes is the group leader of the signal processing in the Neuroimaging
Research Group and MRI engineer at the Basque Center on Cognition, Brain, and Language.
He received his telecommunications engineering degree from the University of Zaragoza and his
PhD from the University of Nottingham. His research interest concern signal processing algo-
rithms and neuroimaging methods for the study of human brain function with applications in
clinical and cognitive neuroscience.

Blanco et al.: Group-level cortical functional connectivity patterns using fNIRS. . .

Neurophotonics 025011-19 Apr–Jun 2021 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


