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Abstract—The reuse of artefacts is fundamental to software
development and can reduce development cost and time as well
as improve the quality of the output. For example, developers
often create new tests from existing tests by copying and adapting
them. However, reuse opportunities are often missed due to the
cost of discovering suitable artefacts to reuse.

Development artefacts form groups that have both internal
connections between artefacts of the same type, and cross-group
connections between artefacts of different types. When a pair
of artefact groups are considered, the cross-group connections
form a bipartite graph. This paper presents RASHID, an abstract
framework to assist artefact reuse by predicting edges in these
bipartite graphs. We instantiate RASHID with RELATEST, an
approach to assist developers to reuse tests. RELATEST recom-
mends existing tests that are closely related to a new function
and can, therefore, be easily adapted to test the new function.
Our evaluation finds that RELATEST’s recommendations result
in an average 58% reduction in developer effort (measured in
tokens), for 75% of functions, resulting in an overall saving of
43% of the effort required to create tests. A user study revealed
that, on average, developers needed 10 minutes less to develop a
test when given RELATEST recommendations and all developers
reported that the recommendations were useful.

I. INTRODUCTION

Reuse is a core pillar of software development that delivers
multiple benefits including an increase in development pro-
ductivity and a reduction in the cost and development time of
software projects. Reuse can also improve the quality of the
resultant software as reused artefacts tend to be more mature
and well tested than newly created artefacts.

Discovering relationships between artefacts facilitates reuse
as software artefacts are linked to each other by their re-
lationships, for example, a test for a function, or a design
artefact for a requirement. Revealing new connections between
existing artefacts can, therefore, be used to discover situations
where artefacts may be reused. For example, an existing test
may be discovered and adapted to test a new function, or an
existing function may be discovered that can be adapted, or
even used directly, to fulfil a new requirement. The discovered
relationships may also be useful for traceability establishment,
such as discovering which regulatory codes are relevant to a
particular requirement.

This paper presents RASHID1, an abstract framework for
facilitating the reuse of software artefacts by modelling the
relations between artefacts of two different types using what

1Rashid (meaning ”guide”): the Arabic name of Rosetta, the town where
the Rosetta Stone was discovered.

we define as an artefact relation graph: a graph with a bipartite
subgraph connecting the artefacts of the two types. We also
present a tool, RELATEST, that instantiates RASHID to partially
automate the reuse of existing unit tests.

Test reuse was selected to serve as the practical example for
this approach as many modern software systems struggle to
maintain a high level of test coverage, especially as projects
grow in size and complexity. This is in part due to the heavy
burden that writing many unit tests places on the developers
and the de-prioritisation of this work in the presence of
tight release deadlines. The failure to maintain an adequate
level of test coverage can result in large numbers of bugs
going undetected for long periods of time, jeopardising the
correctness and reliability of the system.

RELATEST assists in test reuse by using RASHID to discover
existing tests that are closely related to a new function and
can therefore be recommended and adapted to test the new
function. When the recommended test is close to the needed
test, RELATEST saves time and avoids introducing new faults
that might have been introduced if the developer had written
a new test from scratch.

RELATEST also provides a unique benefit over test genera-
tion tools in that the recommended tests contain human written
elements that are difficult or impossible for test generation
tools to produce, such as oracles and specific test inputs.

An investigation of the quality of RELATEST’s recommen-
dations showed that developers consider 65% of its recom-
mendations to be useful and, when using the token-based edit
distance to known tests as a proxy for effort, represent a
58% reduction in developer effort versus writing tests from
scratch. When considering only top-ranked recommendations,
the chance of being considered useful by a developer rises
to 91% and the reduction in developer effort rises to 66%.
When considering the rate of functions that receive recom-
mendations, this results in a 43% reduction in the total effort
required to create tests. We demonstrate this in a real-world
application by using RELATEST to create twelve tests for a
large open source project, yielding an average 45% saving of
effort. This supports our evaluation results.

The main contributions of this paper are:

• RASHID, an abstract framework for the reuse of artefacts
using artefact relation graphs.

• RELATEST, a realisation of RASHID to recommend ex-
isting tests to be reused for new functions.



• An evaluation of the effectiveness of RELATEST which
shows a 43% overall reduction in effort to create tests
across a project.

Our evaluation artefacts are available at https://figshare.com/
s/2e54394880818d6d32dc.

II. APPROACH

This section presents the approach of RASHID and its
realisation in RELATEST. The overall idea of RASHID is to
use existing relationships between the artefacts of two domains
and the domain-intrinsic relationships between the artefacts
to recommend new relationships across the two domains. For
example, if two artefacts are related across domains, then a
relationship to similar artefacts is recommended.

A. Example

Figure 1 shows how test reuse through RELATEST can be
applied to a real-world example from the JFreeChart system.
In this example, the developer has just implemented a new
function (f2) implementing next for a new class and requires
a new unit test for it. Without RELATEST, the developer would
need to either write the new test from scratch or manually
search through a potentially very large codebase to find an
appropriate test to reuse: both time consuming and repetitive
tasks. RELATEST streamlines this process by finding f1, a
function similar to f2 (actually implementing next in a
different class) in the corpus and exploiting the traceability link
between f1 and t1 (the unit test testNext) to recommend
t1 to the developer as the starting point for a test for f2 (the
new unit test). In Figure 1 the developer needs only to make
a few edits to transform t1 (the old unit test) into the new test
t2 to test f2 and all but one of the changes (marked in bold)
are simple type replacements or variable renames to match the
new type.

B. Artefact Reuse Framework

Figure 2 illustrates RASHID, which utilises an artefact rela-
tion graph to model the intra- and inter-domain relationships
for a set of artefacts over two distinct domains. The artefact
relation graph is defined as G = (V1, V2, E1, E2, EB , EP )
where V1 and V2 are the sets of vertices representing the
artefacts in domain 1 and domain 2 respectively; E1 is the edge
set that contains the edges between the vertices in V1, and E2

is the edge set that contains the edges between the vertices in
V2. E1 and E2 model the intra-domain relationships between
the artefacts. EB is the edge set that contains the edges of
the bipartite subgraph, that is the edges between the vertices
in V1 and the vertices in V2. EB models the inter-domain
connections between the artefacts. EP is a set of predicted
bipartite edges that we will construct using E1, E2, and EB .

To construct E1, E2, and EB , we define three binary
relations (R1, R2, RB), one for each of the three edge sets,
such that two vertices will be connected by an edge if they
satisfy the relation. For E1: (v, v′) ∈ E1 if vR1v

′ (v, v′ ∈ V1).
For E2: (v, v′) ∈ E2 if vR2v

′ (v, v′ ∈ V2), and for the bipartite
edges EB : (v, v′) ∈ EB if vRBv

′ (v ∈ V1, v′ ∈ V2). In the

case of R1 and R2, the relation is defined over pairs of the
same specific type of artefact. For example, for code artefacts,
the relation may be similarity, where the vertices representing
two functions satisfy the relation if the code similarity between
the artefacts is above a certain threshold.

The relation RB that constructs the bipartite edge set EB

is over pairs of artefacts of different types and will therefore
be defined in terms of a traceability technique that establishes
links between artefacts of the two types, for example naming
conventions [1] for test-to-function links, or a tracing net-
work for requirement-to-design-element links [2]. The relation
would then be satisfied if the artefacts represented by the two
vertices were identified as linked by the traceability technique.

After E1, E2, and EB have been constructed, RASHID
predicts a set of new edges EP . The edges in EP can
reveal inter-domain artefact connections that could not be
discovered otherwise. The newly revealed connections present
opportunities to reuse artefacts but can also be considered as
predicted traceability links and therefore used as a method for
combating the missing link problem in traceability.

Since the edge prediction is being performed over a bipartite
subgraph, the edge prediction techniques that can be applied
are not limited to only those applicable in strictly bipartite
graphs, as the non-bipartite edges provide extra information.
This means that almost any edge prediction method can be
used, including neighbourhood methods, such as Common
Neighbours and Jaccard’s coefficient [3], path methods, such
as Page Rank [4], or supervised machine learning [5]. The
edge prediction method used in Figure 2 is a neighbourhood
method that predicts a bipartite edge in EP where the addition
of that edge creates a semi-bipartite 3-vertex clique, consisting
of two vertices from the same domain and one vertex from the
other domain. This clique forms an inter-domain triangle and
this method will be referred to as the triangle method hereafter.
Simplified, an edge (v, v′) is added to EP if vR1v

′′RBv
′.

C. RELATEST

Figure 3 shows how the RELATEST approach uses RASHID
to make test recommendations for functions. RELATEST
utilises a code corpus consisting of a set of unit tests T =
{t1, t2, ...tn}, where n is the total number of test functions,
and a set of functions F = {f1, f2, ...fm}, where m is the
total number of functions. This corpus is used to build a set
of traceability links L that maps tests to tested functions:

L = {(t, f) ∈ T × F | t tests f} (1)

When we want to make recommendations for a new func-
tion, hereafter referred to as the query function fq , we instan-
tiate RASHID so that V1 contains a vertex for each function
in F ∪ {fq}, and V2 contains a vertex for each test in T . The
relation R1 for building the edge set E1 is a similarity relation,
where R1 is satisfied by a pair of vertices (v ∈ V1, v′ ∈ V1) if
the function represented by v and the function represented by
v′ are similar to each other above a certain threshold, formally
vR1v

′ if sim(A(v), A(v′)) ≥ τ , where A(v) returns the
artefact represented by vertex v, sim(a1, a2) returns the code



public class Quarter {
…

public RegularTimePeriod next() {
Quarter result;
if (this.quarter < LAST_QUARTER) {

result = new Quarter(this.quarter + 1, this.year);
} else {

if (this.year < 9999) {
result = new Quarter(FIRST_QUARTER, this.year + 1);

} else {
result = null;

}
}
return result;

}
…

public class Month {
…

public RegularTimePeriod next() {
Month result;
if (this.month != MonthConstants.DECEMBER) {

result = new Month(this.month + 1, this.year);
} else {

if (this.year < 9999) {
result = new Month(MonthConstants.JANUARY, this.year + 1);

} else {
result = null;

}
}
return result;

}
…

𝑓!

public class QuarterTest {
…

public void testNext() {
Quarter q = new Quarter(1, 2000);
q = (Quarter) q.next();
assertEquals(new Year(2000), q.getYear());
assertEquals(2, q.getQuarter());
q = new Quarter(4, 9999);
assertNull(q.next());

}
…
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public class MonthTest {
…

public void testNext() {
Month m = new Month(1, 2000);
m = (Month) m.next();
assertEquals(new Year(2000), m.getYear());
assertEquals(2, m.getMonth());
m = new Month(12, 9999);
assertNull(m.next());

}
…
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Fig. 1. Unit Test Recommendation using RELATEST.
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Fig. 2. Artefact Reuse Framework.
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Fig. 3. Example framework instantiation for RELATEST.

similarity between artefacts a1 and a2, and τ is a similarity
threshold. The technique used for implementing the similarity
function is dependent on the implementation and is discussed
in Section III-B. E2 is assigned the empty set as in this
instance we do not use intra-domain edges in the test domain.

The relation RB used to construct the inter-domain edges
EB is defined using the traceability link set L so that a pair
of vertices (v, v′) where v, v′ ∈ V1 ∪ V2 satisfy the relation
if the artefacts represented by those vertices are linked in L,

formally, vRBv
′ if (A(v), A(v′)) ∈ L.

Now that we have E1, E2, and EB , we apply the triangle
method for bipartite edge prediction, as described in Sec-
tion II-B, to construct our set of predicted edges EP . The
set EP links all functions to the tests of similar functions.

We use the completed artefact relation graph to discover
recommendations by constructing a ranked list of recommen-
dations R(fq) for our query function fq . First, we build a list
S(fq) which ranks the functions that are neighbours of fq in
the graph in descending order of similarity to fq so that:

∀
1≤i<|S(fq)|

sim(fq, S(fq)i) ≥ sim(fq, S(fq)i+1) (2)

Where sim(f1, f2) is the similarity between f1 and f2.
Given the list of similar functions S(fq) and the inter-

domain edges, the recommendation list is built by iterating
through the elements of S(fq) and for each member f ∈ S(fq)
constructing the set of tests Tf that are neighbours with f :

T (f) = {t ∈ T | ∃(V (f), V (t)) ∈ (EB ∪ EP )} (3)

Where V (a) returns the vertex representing artefact a.
The elements in T (f) are added to R(fq) until T (f)

has no more elements or because we also want to place an
upper bound k on the size of the recommendation list, if
|R(fq)| = k. Otherwise, the next element in S(fq) is selected
and the process continues. Once this process terminates, the
recommendation list R(fq) is presented to the user.
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Fig. 4. System diagram. T is all tests from the corpus, F is all functions from the corpus, L is all traceability links, fq is the query function, S(fq) is the
list of functions similar to the query function, and R(fq) is the list of test recommendations for fq .

III. IMPLEMENTATION

Figure 4 shows the overall architecture of RELATEST. The
core of RELATEST is comprised of two component groups;
the data store and the query processing. The data store builds
and maintains the corpus of existing functions and tests,
establishes test-to-function traceability links from the code
corpus, and stores those links in the traceability link database.
Query processing takes the query function, discovers similar
functions, and builds the test recommendations. The UI allows
the user to specify the locations of the existing code to
add to the corpus, input the query function, and view the
recommendations. To discover similar functions, one may rely
on clone detectors that build a clone index over existing code.

One key distinction between the data store and query
processing is that the data store is constructed once and only
updated when the user changes the existing code. The query
processing components are invoked for every individual query.

A. Data Store: Traceability Link Establishment

The correct selection and configuration of the traceability
link establishment method is of high importance as it has a
large impact on the performance of the system. Given this,
we selected a state-of-the-art test-to-code traceability tool,
TCTRACER [6], to generate the traceability links. TCTRACER
implements a set of traceability techniques that use dynamic
information from both the method and class levels gathered
during the execution of test suites to create links between tests
and tested functions along with test classes and tested classes.
In RELATEST, we utilise the method level links produced using
the LCS-B technique which utilises the distances between the
names of tests and the names of executed functions to make
predictions as to which functions are tested functions. The dis-
tance is measured based on the longest common subsequence
(LCS) in both names. We chose to use LCS-B as it has high
recall with good precision and high recall is important for
RELATEST because if we do not have any traceability links
for a test we cannot use it as a recommendation.

The first time RELATEST is run on a new project, the output
from TCTRACER is parsed and then stored in the traceability
link database. The traceability database is refreshed only when
a project is added or removed from the corpus, ensuring that
the expensive operations involved in building the traceability
links are only executed when necessary.

B. Query Processing: Similar Code Discovery

The measure that we have used to implement the similarity
function sim(f1, f2) is based on the Jaccard index [7]. This
measure was selected as the Jaccard index is a widely ac-
cepted language-agnostic measure of similarity and a recent
investigation [8] showed that textual similarity measurements
can perform well on source code with modifications. Using
Ragkhitwetsagul et al.’s framework [8], [9], we have confirmed
that using the Jaccard index over 3-grams as implemented in
the Java String Similarity library [10] performs better than
most of the 30 algorithms as given in the paper (the framework
reports a precision of 0.891 and an accuracy of 0.884).

The pair-wise Jaccard index method finds every existing
function in the corpus that is a member of at least one
traceability link and adds it to S(fq) if the similarity to the
query function is greater than or equal to a certain threshold τ
(function f ∈ L is added to S(fq) if sim(f, fq) ≥ τ ). S(fq)
is then ranked by these similarity scores.

Pair-wise Jaccard index may become too expensive for a
large corpus of many projects so one may substitute the pair-
wise comparison with a scalable clone detector to create a
clone index from which similar functions can be retrieved
instantly. The corpus used in the evaluation is sufficiently small
that the substitution with a clone detector is not necessary.
Moreover, using Jaccard we establish a baseline which is
not affected by implementation details of a clone detector as
different clone detector may produce very different results.

C. Query Processing: Recommendation List Construction

Given the ranked list of similar functions S(fq) that has
been constructed by the similar code discovery, the recom-
mendation list R(fq) is constructed using the algorithm in
Figure 5. The function append(R(fq), t) appends test t to
the end of the list R(fq) and truncate(R(fq), k) truncates
the list R(fq) to length k. This algorithm uses the ranked
list of similar functions to the target function and the set of
traceability links to build a recommendation list by iterating
through the similar functions and, for each function, adding
the tests linked to that function to the recommendation list. If
necessary, the recommendation list is truncated to the given
maximum length at the end of this process.



Input: The set of traceability links L, The ranked list
of existing similar functions S(fq), The max
length of recommendation list k

Result: A list of recommendations R(fq) for the
query function

R(fq)← ∅;
i← 0;
(s1, ..., sn)← S(fq);
while |R(fq)| < k do

foreach t ∈ {t ∈ T | (si, t) ∈ L} do
append(R(fq), t);

end
i← i+ 1;

end
if |R(fq)| > k then

truncate(R(fq), k);
end

Fig. 5. Recommendation List Construction.

IV. EVALUATION

We now present our research questions, the design of the
experiments carried out to answer them, and the results.

a) Experimental Setup: To carry out the experiments, we
first establish the sets of test-to-function traceability links for
all projects using TCTRACER, as described in Section III-A.
We then take the functions that are a member of at least one
traceability link as the query functions – the functions we are
making recommendations for. The maximum recommendation
list size was set to five as it has been shown that the average
person is only able to reason about five to nine different items
at a given time [11]. We chose to stay at the bottom of that
range as test recommendations can be relatively complex and
may take some time for a developer to assess.

b) Corpus: For our corpus, we selected four well known
open source projects that are written in Java and utilise
the JUnit testing framework as subject projects: Commons
Collections [12], Commons IO [13], Commons Lang [14],
and JFreeChart [15]. These subjects were selected as they are
well known, widely used, and sufficiently large to demonstrate
the applicability of RELATEST to real-world systems. Three
of the subject systems have been used in the TCTRACER
evaluation [6] and we added Commons Collections to increase
the size and diversity of the subject sample. To filter out empty
tests, we define a minimum test length θ in terms of lines of
source code and set it to three.

Table I gives the following information about the subjects:

• Version (Ver.): The version that was used.
• Number of Functions (F): The total number of functions.
• Number of Tests (T): The total number of JUnit tests.
• Instruction Coverage (IC): The total instruction coverage

provided by the JUnit tests – measured with Jacoco [16].
• Branch Coverage (BC): The total branch coverage pro-

vided by the JUnit tests – measured with Jacoco.

TABLE I
SUBJECT STATISTICS.

Project Ver. F T IC BC |FQ|

Commons Collections 4.1 4132 2819 84% 78% 1063
Commons IO 2.4 1187 1430 89% 87% 690
Commons Lang 3.7 3169 3556 95% 90% 2033
JFreeChart 1.0.19 9061 2502 52% 45% 2179

• Number of Queries (|FQ|): Number of query functions
for each project.

A. RQ1 (Intra-project Recommendations):

What performance is achieved by the tool when recommend-
ing tests from the same project as the query function?

We perform an investigation to evaluate the usefulness of
the recommendations in an intra-project scenario, where the
recommendations come from the same project as the query
function. The evaluation uses the token-based Levenshtein edit
distance between the recommendations and the tests linked
to the query function to determine the usefulness of the
recommendations. To compute this, we tokenise the code using
JavaParser [17] and calculate the Levenshtein edit distance
between the two tests being compared.

To perform the evaluation we use the following process
for each project: First we construct the set of test-to-function
traceability links L as shown in Equation (1). We then use
L to construct the set of functions FQ that are a member
of at least one traceability link FQ = {f | ∃(f, t) ∈ L},
these functions are used as the query functions. Then, for
each query function fi ∈ FQ, we construct the set of test
recommendations TR(fi) for that function and the set of linked
tests TL(fi) for that function TL(fi) = {t | (fi, t) ∈ L}. Then
for each member of TR(fi) the average edit distance to the
members of TL(fi) is computed. This provides a measure of
how close to the actual tests each test recommendation is,
and therefore also provides an approximation of the amount
of manual effort that would be required for a developer to
turn the recommendation into a working, useful test. To avoid
biasing the results, we ensure that TR(fi) does not contain
any elements of TL(fi) by skipping any tests in TL(fi) when
we build the recommendation list. Table I shows the number
of query functions (|FQ|) for each project.

Table II presents the results for the following measures:

• Rank (Rank): The rank in the recommendation lists that
the recommendations come from.

• The Number of Recommendations (NR): The number of
test recommendations made.

• Average Recommended Test Length (ARTL): The aver-
age length in tokens of the recommended tests.

• Average Known Test Length (AKTL): The average length
in tokens of the known tests for the query functions.

• Median Average Edit Distance (MAED): The median of
the average token-based edit distances between each rec-
ommendation and the known tests for the query function.



TABLE II
RQ1 – INTRA-PROJECT RECOMMENDATIONS RESULTS.

Rank NR ARTL AKTL MAED ARD AEDSD

C
om

m
on

s
C

ol
le

ct
io

ns

1 752 326 326 150 46% 267
2 622 302 319 167 52% 257
3 514 294 314 178 57% 280
4 420 303 300 172 58% 272
5 344 265 296 157 53% 255

All 2652 302 314 164 52% 256

C
om

m
on

s
IO

1 487 266 231 81 35% 245
2 403 243 219 114 52% 261
3 343 240 210 110 52% 348
4 294 220 209 109 52% 306
5 253 196 200 113 56% 170

All 1780 238 216 105 49% 347

C
om

m
on

s
L

an
g

1 1592 264 245 59 24% 313
2 1442 251 240 67 28% 265
3 1340 247 235 70 30% 265
4 1208 249 226 71 31% 272
5 1133 246 223 76 34% 309

All 6715 252 235 68 29% 293

JF
re

eC
ha

rt

1 1669 250 261 85 33% 344
2 1537 241 262 92 35% 447
3 1417 216 263 98 37% 301
4 1285 212 263 101 38% 355
5 1196 238 268 125 47% 327

All 7104 232 263 99 38% 325

• Average Relative Distance (ARD): The median average
token-based edit distance (MAED) divided by the average
length of the known tests (AKTL) for the query functions.

• Average Edit Distance Standard Deviation (AEDSD):
Standard dev. of the average token-based edit distances.

The Median Average Edit Distance (MAED) and the Aver-
age Relative Distance (ARD) can be seen as an approximation
for the effort required by the developer to adapt the recom-
mendations to the desired tests versus writing the tests from
scratch. This is discussed further in Section IV-G.

Findings: The results show that, firstly, the recommenda-
tions at rank 1 in the lists were consistently the best performing
in terms of average relative distance, with a maximum of a
17% improvement over the rank 2 recommendations, and that
the quality (average relative distance) of the recommendations
consistently decreases as the rank increases. As every list has
a rank 1 recommendation, we can say that, in the average
case, if recommendations are found, the developer will only
have to expend 34%2 of the effort required to adapt the
rank 1 recommendation for use, as opposed to writing a
test from scratch. From looking at the number of rank 1
recommendations generated and the total number of query
functions, we can see that 75% of the query functions received
recommendations. Further discussion of the results and their
implications is presented in Section IV-G.

B. RQ2 (Inter-project Recommendations):

What is the effect on the performance of the tool when
incorporating other projects into the corpus?

2the average ARD using rank 1 recommendations

TABLE III
RQ2 – INTER-PROJECT RECOMMENDATIONS RESULTS.

Rank NR ARTL AKTL MAED ARD AEDSD

C
om

m
on

s
C

ol
le

ct
io

ns

1 754 327 326 151 46% 268
2 625 301 319 168 52% 257
3 519 293 314 178 57% 279
4 425 305 300 174 58% 275
5 350 263 296 158 53% 254

All 2673 302 313 164 52% 256

C
om

m
on

s
IO

1 488 266 230 81 35% 246
2 405 242 218 114 52% 260
3 344 240 209 111 53% 348
4 294 220 209 109 52% 306
5 253 195 200 113 56% 170

All 1784 238 215 105 49% 347

C
om

m
on

s
L

an
g

1 1598 245 245 60 25% 313
2 1452 250 239 68 28% 264
3 1347 246 235 71 30% 266
4 1213 249 226 72 32% 272
5 1139 246 223 77 34% 309

All 6749 252 235 68 29% 293

JF
re

eC
ha

rt

1 1669 261 261 85 33% 344
2 1537 241 262 92 35% 447
3 1417 216 263 98 37% 301
4 1285 212 263 101 38% 355
5 1196 238 268 125 47% 327

All 7104 232 263 99 38% 325

For RQ2 we perform the evaluation in the same fashion
as for RQ1 except that, as we are now testing inter-project
recommendations as well, the corpus used by RELATEST
for making recommendations contains all subject projects.
Table III presents the results for the same measures as in RQ1.

Findings: The results show very little difference from the
intra-project recommendations in RQ1 and where differences
do occur the results tend to be slightly worse more often than
they are slightly better. The reasons for this are discussed in
Section IV-G.

C. RQ3 (Recommendation Evaluation):

To what extent does edit distance to known tests predict the
usefulness of a recommendation to a developer?

We perform an investigation to determine the relationship
between edit distances and the perceived usefulness of the rec-
ommendations to a developer. We first establish a range of edit
distances from 0 to 1000 and split this range into ten bands. We
then organised all recommendations into their respective bands
and uniformly sampled 50 recommendations from each band
for manual evaluation. The recommendations were classified
by a judge as either true positive (a useful recommendation),
or false positive (not a useful recommendation). The classified
recommendations were then used to compute the precision
(true positives / number recommendation samples) for each
band. As usefulness is inherently subjective, the judge had
to establish some criteria by which they would determine if
a recommendation would reduce the time/effort of writing a
test or improve the quality of the resulting test. The criteria
included looking for elements in the recommendations that
exactly matched or were close to the elements that would



TABLE IV
RQ3 – MANUAL RECOMMENDATION VALIDATION.

Avg. Edit Distance Samples TP FP Precision

1–99 50 45 5 90%
100–199 50 41 9 82%
200–299 50 32 18 64%
300–399 50 38 12 76%
400–499 50 36 14 72%
500–599 50 37 13 74%
600–699 50 39 11 78%
700–799 50 33 17 66%
800–899 50 33 17 66%
900–1000 50 28 22 56%

be required in a final test. These elements included asserts,
function calls, control flow statements, and object declara-
tions/initialisations. Where an element of the recommendation
did not match exactly a required element, if only a minor
change was required, e.g., simply changing an identifier, type
name, or value, the element was still considered useful. To
cross-validate the judgements, a second judge evaluated a
sample of 100 of the same recommendations and the inter-rater
agreement between the judges was computed using Fleiss’
kappa [18].

Findings: The results, as reported in Table IV, show
firstly that the large majority of recommendations which
achieve an average edit distance of less than 200 are judged
to be useful, with an average precision of 86%. In contrast,
the recommendations which have an average edit distance of
over 900 are less likely to be judged as useful, with only
56% precision. Between these two extremes, the precision of
the recommendations hovers between the mid-sixties and mid-
seventies. The consequences of these results in the context of
the RQ1 and RQ2 results is discussed in Section IV-G. The
inter-rater agreement between the judges was κ = 0.43, which
is interpreted as “moderate agreement”.

D. RQ4 (Benefit of Using RELATEST):

What benefit does using RELATEST provide in real-world
test creation tasks?

For RQ4 we conducted a user study in which we presented
four unit test creation tasks to a set of developers. For each
task, we asked the developers to create a JUnit test for a target
function that was selected randomly from our subject projects
(trivial functions such as getters and setters were ignored).
The participants were provided with a dedicated interface in
which, for each task, the participants were given the fully
qualified name and source of the target function and anywhere
between zero and five RELATEST recommendations for the
target function in the ranked order produced by RELATEST.
The source code for the project of the target function was
also given to the participants to simulate a real development
scenario and the existing tests for the target functions of all
tasks were removed to stop the participants simply copying
the existing tests. The participants were asked to write a test
for the target function and rate any recommendations that had

TABLE V
EXPERIENCE LEVELS OF USER STUDY PARTICIPANTS.

Programming Experience (years) None < 1 1–3 > 3

Total Programming Exp. 0% 7% 40% 53%
Java Programming Exp. 0% 27% 47% 27%
Industrial Programming Exp. 20% 47% 27% 7%

been provided as either useful or not useful. The ability to run
the written tests and receive the output was also provided and
the participants were encouraged to not submit tests that did
not pass. A link to the JUnit documentation was also provided
to the participants and no time limit was imposed on the tasks.

To evaluate the effect of using RELATEST, we split the
participants into two groups and gave group one RELATEST
recommendations for the first and third tasks, while group
two was given RELATEST recommendations for tasks two and
four. The other two tasks had to be done without a provided
recommendation (tasks two and four for the first group and
tasks one and three for the second group). This allowed us to
compare the tests created by the participants when they had
recommendations versus when they had no recommendations.

The participants consisted of 17 computer science students,
16 at masters level and one at undergraduate level, with 9
participants assigned to group one and 8 assigned to group
two. We collected information on the level of experience of
the participants (Table V). For the evaluation, we measured the
median time taken to complete each task both with and without
RELATEST recommendations. We also asked the participants
to rate each recommendation as either useful or not useful.

We conducted the study over multiple sessions, using the
first session as a pilot to determine if we needed to change the
design. We did not deem it necessary to change the design as
the results on four tasks revealed a noticeable difference. The
desired outcomes and the practicalities of conducting a user
study in a lab setting with supervision informed the study
design, e.g., we limited the number of tasks to four to keep
the participant’s time commitment to reasonable 2–3 hours.

TABLE VI
RQ4 – MEDIAN TIME TAKEN IN SECONDS FOR THE TASK COMPLETION.

Task 1 2 3 4

With Recommendations 1766 549 795 708
Without Recommendations 2769 808 1324 1082

Findings: The results for the task timings in Table VI
show that there is a clear difference in the median time taken
to complete the task when recommendations are provided.
On average, there is a 541 second difference in the median
time taken to complete a task, representing a saving of
almost 10 minutes to create a test when recommendations
are provided. We performed a Wilcoxon signed-rank test
(α < 0.05) to assess if the time-to-complete the user study
tasks with RELATEST recommendations is significantly lower
than the time-to-complete them without recommendations; the
difference is significant with a p-value of 0.034. The results



TABLE VII
RQ4 – DEVELOPER RATINGS OF RELATEST RECOMMENDATIONS.

Rank 1 2 3 4 5

Total Rec. 34 34 26 26 18
Useful Rec. 31 21 13 16 11
Percent Useful 91% 62% 50% 62% 61%

for the participants ratings of recommendations, as reported
in Table VII, show that at rank 1, the recommendation that
RELATEST judges to be best, we achieve a 91% useful rating.
At lower ranks we see that percentage drop to between 50%
and 62%, demonstrating that the majority of recommendations
are still seen as useful at lower ranks.

E. RQ5 (Developer Opinions of RELATEST):

What are the opinions of developers that use RELATEST?
For RQ5, we conducted a questionnaire with fifteen of

the seventeen developers that participated in the RQ4 user
study. As part of this questionnaire, we asked the participants
to state if they believed that the recommendations helped
them complete the task and if they would use RELATEST
in their typical development workflow were it to be freely
available (Table IX). We also asked if the developers were
already using existing tests as templates when creating a new
test to determine how easily RELATEST could be adopted
by developers (Table VIII). The intuition for this question
is that if developers are already searching for existing tests
to use as templates, it would not be a big change for them
to use RELATEST and they would be more likely to adopt
it. The questionnaire was administered immediately after the
participants completed the user study tasks so that they were
fresh in their mind. Two of the participants did not complete
the questionnaire and thus were not included in the results.

Findings: The results for the questionnaire (shown in
Tables VIII and IX) show that all participants believed that
the recommendations were useful and that 74% would use
RELATEST in normal development at least some of the time,
with 47% saying they would use it most or all of the time.
As for their current development practices, 74% used existing
tests in some capacity when creating new tests.

F. Real-world Applicability Example

To help demonstrate applicability, we used RELATEST to
create a set of new tests for a large open source system. We
measured the reduction in effort achieved by using RELATEST
versus writing the tests from scratch using the token-based edit
distance, in the same way as the research questions. To select
a suitable system to generate tests for, we used SonarCloud to
create a set of projects which fulfilled the criteria of being
currently active (last analysed within the previous week),
having the appropriate level of test coverage (30% to 70%),
and being of adequate size (over 100k lines of Java code). We
then randomly selected and inspected the projects from this
set to find an appropriate untested class as a target to generate
new tests for. Our criteria for target class selection included

looking for a class that contained approximately ten uncovered
methods that were neither trivial, such as getters/setters, nor
overly complex, such as graphics rendering methods. Using
this process we selected the SmsUtils class from the District
Health Information Software 2 (DHIS2) [19] project, which
contains 12 such methods. RELATEST was used to generate
the recommendation lists for each of these methods and the
best recommendation was selected and transformed into a
test for that method. These new tests were submitted to
the project in a pull request, which has been merged. We
computed the absolute and relative token-based edit distance,
in the same manner as the research questions, between the
recommendations and the final tests. This showed an average
absolute edit-distance of 12 tokens and an average relative
edit-distance of 0.55.

G. Discussion

We use the average relative distance (ARD) as a proxy for
relative effort as there is no established method for accurately
measuring required developer effort [20]. While there are
instances where token-based edit distance may not translate
into effort, we believe that token-based edit distance is an
adequate proxy (not requiring correlation). Our user study
showed no results that would invalidate our assumption.

When comparing the results from RQ1 and RQ2 to examine
the impact of inter-project recommendations, the minimal
difference and slight worsening of results from RQ1 to RQ2
can be accredited to the fact that the shared lexicon between
functions from the same project is much larger than between
functions from different projects, where the purpose and
formatting of the code often differ greatly. This means that
firstly, RELATEST is far more likely to make recommendations
from the same system as the query function since it is using
the similarity between functions to find recommendations.
Secondly, this factor means that in the instances where RE-
LATEST does make inter-project recommendations, the average
edit distances are likely to be larger than for intra-project
recommendations.

Another useful observation provided by the RQ1 and RQ2
results is that the performance of the rank 1 recommendations
is always the best rank and the performance almost always
decreases as the rank increases. This is a positive result as
rank 1 always has the most recommendations and demon-
strates that our approach is correct in assuming that the more
similar two functions are, the better the recommendations that
they generate for each other will be.

A further notable observation emerges from the average
relative distance in RQ1 and RQ2:q Commons Lang has
only a small reduction in performance as the rank of the
recommendations increases, compared to the other projects.
This indicates the number of high-quality recommendations is
higher in Commons Lang, which may be indicative of a high
number of similar functions in the project.

The RQ3 results give important context to the RQ1 and RQ2
results as they provide an indication as to how average edit
distances translate into the usefulness of the recommendations



TABLE VIII
QUESTIONNAIRE – PREVIOUS TEST DEVELOPMENT STRATEGY QUESTION.

While developing without a test recommendation I usually write tests from scratch 27%
tool, do you typically write tests from scratch or I usually use an existing test as a template 47%
use existing tests as a template? I usually write tests from scratch, but I look at other tests before 27%

TABLE IX
QUESTIONNAIRE – RELATEST USAGE QUESTION.

Overall, did the recommendations Yes 100%
help you complete the tasks? No 0%

If freely available, Always 13%
how often would you use Most of the time 34%
RELATEST or a similar tool Some of the time 27%
in normal development? Rarely 13%

Never 13%

to the developer and can, therefore, give us a more complete
picture of the value of using RELATEST as opposed to writing
tests from scratch. For example, when considering the rank 1
results from RQ1 we can see that all of the median average
edit distances for recommendations at rank 1 fall into the first
and second bands (0–200), which have an average precision
of 86% in the RQ3 results. Given the 75% rate of at least one
recommendation being made, and the 34% average relative
distance for rank 1, we can state that in 86% of the 75%
of cases where at least one recommendation was generated,
the developer saved 66% of development effort on average.
This gives us a final figure of a 43% reduction in effort
to create tests overall, even when only considering rank 1
recommendations. This represents a large amount of effort,
especially over the full development cycle of a large project.

The RQ4 results reveal that the average task completion
time was 36% less when recommendations were given, indi-
cating a reduced amount of effort required to create the tests.
This result is complemented by the developer ratings of the
recommendations which show that 91% of the rank 1 recom-
mendations were seen as useful and, on average, 59% of the
lower-ranked recommendations were also seen as useful. The
RQ5 results further demonstrate that the developers believed
the recommendations, and RELATEST in general, to be useful.

The real-world applicability example demonstrated that it
was possible to use the recommendations to create useful tests
even when the test author has no previous expertise in the
system. This is not the usual scenario in which the recommen-
dations would be used, however, the recommendations will
still be useful when used by developers for their own systems.

One important consideration to bear in mind when consid-
ering the results is the that the traceability technique used to
build the test-to-function links and the used similarity measure
have a direct impact on the results and if the same experiments
were to be conducted with a better traceability technique or
a better similarity measure, we would expect the results to
improve as there will be less noise in the recommendations.

H. Threats To Validity

As the evaluation was done on a small set of projects, the
results may not generalise to other projects. Moreover, only
Java projects have been analysed. As the implementation relies
on a third-party traceability technique, the evaluation results
depend on the accuracy of the links generated by TCTRACER
because developers rarely annotate their tests with the methods
it is supposed to test [21].

The main threat comes from the reliance on a manual
investigation for the RQ3 results. Firstly, the manual evaluation
is a very time-consuming process which limited the size of the
sample that we could evaluate. This is an external threat to va-
lidity as we have no clear evidence as to the representativeness
of this sample. However, the fact that the subjects are large
and diverse projects helps to ameliorate this threat. The use
of manual investigation for evaluation also poses an internal
threat to validity as there is some amount of subjectivity for
what constitutes a useful recommendation. However, this risk
is mitigated by our approach of firstly, establishing criteria
for how recommendations should be judged and secondly,
computing an inter-rater agreement between two judges using
Fleiss’ kappa, which shows statistically significant agreement.

There is also an external threat to validity created by the
sample of participants for the user study who are all students
and may not be representative of the wider developer commu-
nity. However, given that all but one of the participants were
graduate students at the masters level, there is a reasonably
diverse range of experience levels and the majority (80%) had
at least one year of industry experience, as shown in Table V.

The user study underwent Ethics Review and was approved
by the UCL Research Ethics Committee. The participation was
anonymous.

V. RELATED WORK

The related work breaks down into two distinct sections:
recommendation systems and similarity of functions.

A. Code Recommender Systems

Code reuse is a common practice in software development
as developers look to solve problems and save time by using
pre-existing code from other projects and the web. Most of
this reuse comes from libraries, APIs, and code snippets [22].
Due to the prevalence of reuse, a number of tools have been
developed to discover and reuse existing code. Early examples
of these tools include SCRUPLE [23], which locates code
features using a simple pattern-based query processor.

One recent approach is Test-Driven Code Search (TDCS)
which uses test suites to define the desired behaviour and
ensure that the code fragments returned by a code search



engine can be tested in the context of the target system.
CodeGenie [24] utilises this approach by taking the designated
test as input and performing a Sourcerer [25] code search using
keywords, identifiers, and interface definitions. Discovered
candidate functionality is extracted via slicing and presented
in the plugin for testing. However, CodeGenie and TDCS, in
general, cannot be used directly with RELATEST as they are
geared towards a Test Driven Development (TDD) scenario
where a new test is used to find an existing function.

Other approaches use textual IR methods to search code and
make suggestions. One example of this is Prompter, an IDE
plug-in that searches Stack Overflow discussions and recom-
mends code fragments for developers [26]. Prompter uses the
IDE context, such as the currently displayed code, to formulate
a query for a Stack Overflow search with are presented to
the developer. The weakness of this system in comparison to
RELATEST is that the user must manually extract the code
snippets and there is a high probability the snippets will not
be executable without extensive modification. In comparison,
RELATEST returns whole functions from existing projects.

Erfani et al.’s work [27] is related to RELATEST as their
system also recommends unit tests based on the similarity
between tested code. This can be shown to be an instantiation
of RASHID as it is also based on the principle of utilising
the relationships between artefacts in one domain (functions)
to make recommendations of artefacts from another domain
(tests). However, the results presented by Erfani et al. show
that they were only able to make a recommendation for 8.6%
of untested functions and the quality of these recommendations
was not evaluated. In contrast, RELATEST makes at least one
recommendation 75% of the time, saving at least 43% of
developer effort in total.

Landhäußer and Tichy [28] utilises the idea of using existing
tests for similar functions, with the difference that they attempt
to programmatically transform the tests instead of providing
them as recommendations. However, given the limited eval-
uation and the acknowledged issues with the approach to
test transformation, we believe that RELATEST has greater
applicability.

Makady and Walker [29] explore the concept of aiding
the reuse of existing tests when the corresponding tested
code is reused. This provides an alternative scenario in which
RELATEST could be used where the reused tested function is
provided as the query function instead of a new function.

Recently, machine learning techniques have been utilised
to generate code recommendations by learning from existing
code. TESTNMT [30] and REASSERT [31] use recurrent and
transformer neural networks respectively to generate code
recommendations, specifically unit tests, by learning from
existing tests.

B. Similarity Measurements

Like traceability, code similarity measures have received a
great deal of interest from the community. The tasks for which
code similarity is useful include refactoring, fixing a bug, or
performing plagiarism detection [8].

Natural language processing (NLP) can be used for mea-
suring the similarity between code, such as in recent work by
Zilberstein and Yahav [32]. Their tool, SIMON, uses NLP to
establish similarity between snippets of code. Finding code
snippets that are similar to a query snippet involves searching
a database of code snippet to natural language description
pairs to find a snippet that is semantically similar to the query
snippet. The similarity of the natural language descriptions is
then used to establish similarity between their respective code
snippets.

The approach utilised by SIMON can also be shown to be
an instantiation of RASHID defined in Section II-B as it utilises
inter-domain relationships between artefacts to discover other
relationships between artefacts, specifically using the two
domains of code snippets and natural language descriptions to
find similar code snippets. The way that SIMON instantiates
RASHID is slightly different from RELATEST and [27] in
that the relationships that are being searched for are intra-
domain (code-snippet-to-code-snippet). In this instance EB is
the first set of edges constructed, by using a relation defined
by a database of code snippet to natural language description
mappings. This database is used for the RB relation such that
vRBv

′ (v, v′ ∈ (V1 ∪ V2)) if the code snippet represented
by v and the natural language description represented v′ are
linked in the database. The intra-domain edges in the natural
language description domain E2 are constructed using textual
similarity as the relation, such that vR2v

′ (v, v′ ∈ V2) if the
descriptions represented by v and v′ have a textual similarity
above a certain threshold. The predicted edges are not the
new inter-domain edges EP , as is the case for RELATEST,
but are the intra-domain edges in the code snippet domain
E1. The prediction method uses squares, specifically that an
edge (v, v′), v, v′ ∈ V1, is added to E1 if there exists a path
(v, n1, n2, v

′) of length three from v to v′, where n1 ∈ E2

and n2 ∈ E2.
The advantage that RELATEST has over this system for

building recommendations is that RELATEST does not require
a database of code snippet to natural language description
pairs, which is difficult to build and maintain.

VI. CONCLUSION

We have presented RASHID, an abstract framework for
assisting the reuse of existing artefacts, and RELATEST, an
instantiation of RASHID that discovers existing tests which
can be recommended to developers to test new functions. We
have also presented an empirical evaluation of RELATEST with
four real-world open source projects in two possible usage
scenarios (intra and inter-projects) and through a user study.
The results show that overall RELATEST can make reductions
of 43% of the total amount of developer effort required to
test new functions. The user study shows that, on average,
developers needed 10 minutes less to develop a test when given
RELATEST recommendations and all developers reported that
the recommendations were useful. The results demonstrate the
potential power of discovering and exploiting connections be-
tween artefacts to improve the software development process.
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