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Invited Discussion

Adam N. Smith∗

The analysis of discrete random structures underlying Bayesian nonparametric models
continues to be a growing area of research. Of particular interest is the way in which
nonparametric priors can be used for model-based clustering. This paper makes an im-
portant and practically useful contribution to this literature by constructing a prior that
can be “centered” around a pre-specified clustering. The elicitation of prior information
is indeed at the core of the Bayesian paradigm and is often facilitated through the use
of priors belonging to a location-scale family: a location parameter encodes what the
belief is while a scale parameter encodes the strength of that belief. Constructing an
analogous prior for a partition parameter is challenging given the complex topology on
which partitions are defined. Consequently, researchers are often left resorting to default
prior settings and lack the ability to bring substantive knowledge (or lack thereof) to
bear on the analysis. This paper fills this gap and, in doing so, adds a nice tool to the
Bayesian clustering toolkit.

The authors propose the centered partition (CP) process for a clustering parameter
c ∈ ΠN . The CP process consists of four components: (1) a baseline exchangeable
partition probability function (EPPF) p0(c); (2) a pre-specified clustering c0; (3) a
function d(c, c0) measuring the distance between c and c0; and (4) a penalty parameter
ψ ≥ 0. The CP process is written as: p(c|c0, ψ) ∝ p0(c)e

−ψd(c,c0), where the limiting
cases of ψ = 0 and ψ = ∞ reveal its location-scale flavor. The idea of a adding structure
through a penalty that multiplies a baseline EPPF is quite parsimonious and is a point of
departure from existing approaches that modify the EPPF directly (Park and Dunson,
2010; Müller and Quintana, 2011; Blei and Frazier, 2011; Dahl et al., 2017; Smith and
Allenby, 2020).

In this discussion, I plan to first review the roles of the various model components
and highlight the practical challenges of prior elicitation in the context of clustering.
I will then comment on posterior computation and conclude with a few open questions
and thoughts on fruitful areas for future work.

1 The Centering Partition and Domain Knowledge

Throughout the paper the authors assume that c0 is a single fixed clustering which
represents the “location” component of the researcher’s beliefs. The CP prior will assign
higher probability to c0 and neighboring clusters as the penalty parameter increases.
But given the complex nature of the space of partitions ΠN , do strong beliefs about c0
necessarily translate into strong beliefs about clusters within some small neighborhood
of c0? For example, if I could enumerate all possible clusterings and then rank order
them based on my prior beliefs, will the first two or three clusters always be “close” as
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defined by an information-based distance metric? Or is it possible that clusters “close”
to c0 (based on the distance metric) are actually less sensible a priori?

Consider the paper’s empirical application to modeling congenital heart defects with
a centered clustering c0 defined based on prior research (Botto et al., 2007). Specifically,
the N = 26 individual heart defects are partitioned into K = 6 groups, where defects
within a group are similar on the basis of various epidemiologic and anatomic factors.
A CP prior with a large penalty term ψ will then place high probability on c0 and
clusters close to c0. Now consider a new clustering c′0 which is equal to c0 but moves
the “atrial septal defect” away from its original cluster (“Septal”) and into another
cluster, say “Conotruncal”. Here c0 and c′0 have the same number of groups and differ
only by one element so d(c0, c

′
0) will be small. But is it sensible, based on relevant

epidemiologic or anatomic factors, that “atrial septal defect” is grouped assigned into
“Conotruncal” while all other “Septal” defects are not? Perhaps a domain expert would
place higher prior probability on clusterings that merge the “Conotruncal” and “Septal”
groups than clusterings that merge individual defects across groups.

Another motivating example stems from the application of nested logit demand
models (McFadden, 1978; Train, 2002) in fields like quantitative marketing and micro-
econometrics. Here, the goal is to model consumer choice among discrete alternatives
such as products. The nested logit model is attractive because of its ability to accom-
modate correlated error structures across products, but it requires the researcher to
first partition the set of products into groups (nests) such that products within a group
are more similar than products across groups. One challenge is that products can have
many attributes (e.g., brand name, size, flavor, package type) and so it is often unclear
how to define this partitioning of goods a priori. In practice, researchers often resort
to testing a few different grouping structures on the data. For example, Allenby (1989)
compare clusters based on price tiers vs. size and Draganska and Jain (2006) compare
clusters based on brand vs. flavor. In each of these examples, the researchers effectively
place prior mass on only two points in the space of partitions. Moreover, while these
clusterings are well-motivated by managerial/economic considerations, they are likely
far away based on any information-based distance metric.

The examples described above demonstrate that domain knowledge may lead to prior
beliefs that are spread across fairly disparate regions of ΠN , and so an application of the
“vanilla” CP prior may be inconsistent with such beliefs. How can location-scale-type
priors like the CP process better account for prior uncertainty around c0?

• Point mass mixture priors. One approach is to enlarge the space of possible cen-
tering partitions and directly model prior uncertainty in c0. For example, consider
the following two-stage prior:

c|c0, ψ ∼ CP(c0, ψ, p0(c))

c0 ∼
L∑

	=1

w	δc̄�

where c̄1, . . . , c̄L are pre-specified partitions, δc̄�
is a point mass at c̄	, and

w1, . . . , wL are weights satisfying
∑L

	=1 w	 = 1. This point mass mixture prior
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on c0 can induce a marginal prior p(c) that exhibits a more global dispersion
of probability mass across ΠN , while also retaining the ability to deviate locally
around each fixed location c̄	. This approach could also allow the researcher to
incorporate information from a more general classification hierarchy, which can be
common in clustering problems (including the three-level hierarchy presented in
Botto et al., 2007). For example, one could define the set of partitions c̄1, . . . , c̄L
to include an initial guess as well as variants that are derived by merging groups
according to the next level in the hierarchy.

• Pairwise information. The distance function d(c, c0) inside the CP process is
implicitly defined over N -vectors of group membership indices. One drawback
with this measure of distance is that the domain knowledge driving prior co-
clustering probabilities is reduced to whether the two items belong to the same
group within c0. Another approach is to define distances over an N ×N pairwise
information matrix (Blei and Frazier, 2011; Dahl et al., 2017). The benefit is that
prior co-clustering probabilities can depend on a more flexible measure of pairwise
distance, including other item-level characteristics (e.g., the various epidemiologic
and anatomic factors of heart defects). To see where this flexibility comes from,
note that the information contained within a centering partition c0 can also be
represented as a block-diagonal N × N matrix (after re-ordering items) with 1’s
within each block and 0’s on the off-diagonals. A pairwise information approach
will allow for richer sources of variation to enter the “within-group” and “across-
group” elements of this matrix and thus more control over the spread of prior
probability mass over ΠN .

2 The Penalization Parameter

The dispersion of probability mass under the CP process is largely governed by the
penalization parameter ψ. All else equal, as ψ → ∞, mass will concentrate on c0 and
its close neighbors while as ψ → 0, mass will be dispersed according the baseline EPPF.
Given that ψ captures the “strength” of the prior belief and that the dimension of
ΠN grows exponentially in the number of items N , care must be taken when choosing
ψ across analyses with varying N . For example, choosing ψ = 1 will imply a very
different strength of belief about c0 when N = 5 (B5 = 52) than it does when N = 50
(B50 > 1.8× 1047). The same issue is acknowledged by Smith and Allenby (2020) in the
context of tuning random-walk Metropolis-Hastings proposals with their location-scale
partition (LSP) distribution.

I appreciate that the authors address this point and propose a method that does not
elicit ψ directly, but is instead based on choosing a probability q and a distance δ∗ that
together induce a penalty ψ. Their novel idea is to choose the pair (q, δ∗) such that the
CP process places probability of at least q on partitions within distance δ∗ from c0. The
authors use the variation of information (VI) distance metric throughout, which has the
key property of being N -invariant (Meilă, 2007). Therefore, eliciting a prior through q
and δ∗ is in principle more straightforward because the (q, δ∗) pair is invariant to the
size of the clustering problem.
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However, given the heavy computation involved with calibrating the CP prior (i.e.,
tracing out the values of ψ corresponding to different combinations of q and δ∗), I wonder
what the trade-off is between investing time to get the prior “exactly right” vs. letting
ψ be an estimated model parameter? Are there significant computational challenges
associated with adding a step to the sampler which, say, cycles through a grid of possible
ψ values? Within the context of the paper’s empirical application, integrating over the
uncertainty in ψ should lead to improved estimates of the regression coefficients and
could even help guard against misspecification of c0.

3 Computation

The posterior sampling strategy for the CP process borrows from the usual suite of sam-
pling methods for Dirichlet process mixture (DPM) models – specifically, Algorithm 2
of Neal (2000) where item-group indicators are iteratively sampled from their respective
full conditional distributions p(ci = k|c−i, else). One potential concern is that these “lo-
cal moves” do not allow the sampler to sufficiently traverse the posterior and can lead
to underestimated posterior uncertainty in estimates of c. There is no real discussion of
the sampler’s mixing properties in the paper, and I wonder whether the imposition of
strong prior information on c exacerbates this issue.

It is certainly true that more informative priors will lead to more concentrated
posteriors. However, the real challenge is that the regions of high posterior probability
may still be separated by sizable peaks and valleys due to the complex topology of ΠN ,
creating problems for samplers relying on incremental moves. As it becomes feasible
to incorporate prior information on clustering problems, I believe it is also useful to
ensure that this information does not mechanically lead to samplers getting stuck in
small neighborhoods of high probability mass induced by the prior. To this end, more
radical split-merge Metropolis-Hastings proposal mechanisms can be attractive (Dahl,
2003; Jain and Neal, 2004, 2007). Another option is to rely on the CP process itself to
construct random-walk-style Metropolis-Hastings proposals (akin to Smith and Allenby,
2020), which would also have applicability beyond the class of DPM models.

4 Closing Thoughts

The CP process adds to a growing set of partitioning models designed to help researchers
incorporate prior information in clustering problems (Park and Dunson, 2010; Müller
and Quintana, 2011; Blei and Frazier, 2011; Dahl et al., 2017; Smith and Allenby,
2020). There are many nice features of the CP process – in particular, the user can
directly input a “best guess” of the grouping structure and has the ability to control
the dispersion of prior probability mass. However, the complex topology of the clustering
space can create challenges in the prior elicitation process, especially relative to the more
familiar case of location-scale priors with support over the real line. I conclude with a
few closing thoughts, open questions, and ideas for future work.

• On the role of directing shrinkage. Many modern statical problems are high-
dimensional in nature and so shrinkage estimators are becoming indispensable
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tools (especially for those working outside of the Bayesian paradigm!). Applied
scientists often have prior information about these “shrinkage points” which can
improve estimators that would otherwise rely on more ad-hoc default settings
(for recent applications in economics, for example, see Fessler and Kasy 2019 or
Smith et al. 2019). The paper’s empirical application nicely highlights the often
underappreciated role that model-based clustering can offer in this process.

• What is the best way to compare and select models? In the paper’s empirical
application, four different versions of the CP process are fit to the data with
varying degrees of the penalty: ψ ∈ {0, 40, 80, 120}. The authors report distances
from each model’s MAP estimate ĉ and the centered clustering c0 and find that
d(ĉ, c0) is monotonically decreasing in ψ. However, this seems to be driven by
the mechanics of the prior itself and does not necessarily reflect which model
is best supported by the data. I was left wondering how the inclusion of prior
information here leads to improved measurements or insights? More generally,
how should model fit should be assessed so that researchers can learn the extent
to which the data supports or contradicts prior beliefs?

• What happens for large N? Many of the modeling decisions are motivated by the
specific dimensions of the empirical application where N = 26. However, as the
authors note, many aspects of their suggested prior elicitation and calibration pro-
cesses become infeasible as N gets large. I am personally very excited about the
opportunities to scale partitioning methods to much larger problems. For example,
I work on applications in marketing and economics where the goal is measure com-
petition between brands. The growth of e-commerce has led to massive product
assortments and so in practice, retailers have a partitioning problem with N in the
hundreds or thousands! One option for scaling existing methods in the short term
is to impose more dogmatic prior assumptions. For example, we could impose the
restriction that a subset of items must always be grouped together and so even if
N is very large, the partitioning problem lives in a lower-dimensional space. I look
forward to seeing the authors make future developments in this area.

In closing, I congratulate the authors for an exciting paper and a notable contribution
to the field. I also thank the Editor-in-Chief of Bayesian Analysis for the opportunity
to participate in this discussion.
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