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A General Method for Calibrating Stochastic Radio
Channel Models with Kernels

Ayush Bharti, François-Xavier Briol, Troels Pedersen

Abstract—Calibrating stochastic radio channel models to new
measurement data is challenging when the likelihood function
is intractable. The standard approach to this problem involves
sophisticated algorithms for extraction and clustering of multi-
path components, following which, point estimates of the model
parameters can be obtained using specialized estimators. We
propose a likelihood-free calibration method using approximate
Bayesian computation. The method is based on the maximum
mean discrepancy, which is a notion of distance between prob-
ability distributions. Our method not only by-passes the need
to implement any high-resolution or clustering algorithm, but
is also automatic in that it does not require any additional
input or manual pre-processing from the user. It also has the
advantage of returning an entire posterior distribution on the
value of the parameters, rather than a simple point estimate. We
evaluate the performance of the proposed method by fitting two
different stochastic channel models, namely the Saleh-Valenzuela
model and the propagation graph model, to both simulated and
measured data. The proposed method is able to estimate the
parameters of both the models accurately in simulations, as well
as when applied to 60 GHz indoor measurement data.

Index Terms—radio channel modeling, machine learning, ap-
proximate Bayesian computation, kernel methods, maximum
mean discrepancy, likelihood-free inference, calibration

I. INTRODUCTION

Stochastic channel models are used to simulate the behavior
of the radio channel in order to test the performance of com-
munication and localization systems. Often models are flexible
enough to be applied to different scenarios, provided that their
parameters can be adjusted accordingly. Adjustment of the
model parameters based on data collected from measurement
campaigns is called calibration (or inference). Calibration is
usually challenging since most state-of-the-art stochastic radio
channel models have intractable likelihood functions. This ren-
ders usual inference techniques such as maximum likelihood
estimation or standard Bayesian inference inapplicable.

Instead of solving the whole calibration problem at once,
it is wide-spread practice (e.g. [1]–[9]) to split the task into
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intermediate steps as outlined in Fig. 1(a). The first step in-
volves resolving the multipath components, i.e. estimating path
parameters including delays, directions, and complex gains.
This task can be carried out using high-resolution algorithms
such as MUSIC, SAGE, and RiMAX, among others, see e.g
[10, Ch. 5] for an overview. The second step is clustering
of the extracted multipath components in the case of cluster-
based models. Clustering is either performed manually, as in
[2], or using automated algorithms such as [11]–[13]. In a final
step, the model parameters are estimated from the extracted
and clustered multipath components.

Despite being widely applied, the multi-step approach suf-
fers from a range of issues, owing to the composite nature of
the methodology. In particular, high-resolution and clustering
methods, although very useful in analyzing and understanding
the radio channel, are problematic when it comes to model
calibration. These methods require implementation of sophis-
ticated and specialized algorithms at each step, which involves
a number of heuristic choices and settings which might be
conflicting. An emblematic example is the assumption of
“well separated” paths while extracting multipath components.
The high-resolution methods are prone to estimation artifacts,
especially if paths are not “well separated”. However, this
conflicts with the inherent assumption in the clustering step
that multipaths arrive “close” to each other. Consequently, even
though the performance of high-resolution and clustering al-
gorithms are thoroughly investigated in isolation, the accuracy
of the applied multi-step calibration techniques is unknown.
Moreover, the calibration technique needs to be tailored to
the particular model at hand. While attempting to calibrate
and compare different ultra-wideband models using a large
database, Greenstein et al. in [14] noted that “the problem
in doing so is that there is no simple, clear and established
method for extracting cluster model parameters from measured
data”. As a result, they were unable to fit the cluster model
to their calibration data.

Calibration methods that by-pass the need to resolve the
multipath components have been recently proposed. They
have been used to calibrate the Turin model [1], the Saleh-
Valenzuela (S-V) model [2] and the polarized propagation
graph (PG) model [15]. These calibration methods rely either
on a Monte Carlo approximation of the likelihood [16],
[17], the method of moments [18], [19], or a summary-
based likelihood-free inference framework [20]–[23] such as
approximate Bayesian computation (ABC). First developed in
the field of population genetics in 1997, ABC has since be-
come a popular method for calibrating models with intractable
likelihoods in various fields, see [24] for an overview. The
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Fig. 1. Methodologies for calibration of stochastic radio channel models: (a) State-of-the-art methodology based on multipath extraction and clustering; (b)
proposed method based on generic summaries (here exemplified by log-temporal moments) and approximate Bayesian computation (ABC).

main drawback of the calibration methods [17]–[19] is their
reliance on equations that explicitly link the moments of the
summaries with the model parameters, or in case of [16],
on the model-specific point process. These methods should
therefore be re-derived for each new model. We encounter this
to be a non-trivial task, and it may not even be possible for
the more elaborate channel models. Similar problems exist in
[20]–[22] where a low-dimensional vector of statistics should
be redesigned or trained using an autoencoder [23] for the
channel model at hand, which is not always trivial and may
not generalize to other models. Moreover, summarizing the
data leads to information loss that can hamper the accuracy of
the parameter estimates.

The aim of the present contribution is to propose a general
method which can be applied to stochastic channel models
of very different mathematical structure. This will be done
without the need for specializing summaries, or extraction
and clustering of multipaths. To achieve this, we follow the
proposed calibration methodology depicted in Fig. 1(b). First,
we map the channel measurements into easily computable
log temporal moments. These moments are then used for
calibration in an ABC framework, where we use the maximum
mean discrepancy (MMD) [25] to compare the distribution
of simulated and measured data. The MMD has previously
been used for frequentist inference in [26], [27], and in a
Bayesian sense in [28]. Specific ABC methods using kernels
include [29]–[32], and the MMD has also been used to train
generative adversarial networks in [33]–[35]. These papers

have shown MMD to be a powerful way to represent either
data-sets or distributions, and as a result calibrate complex
models. They have acted as inspiration for our work, but
our algorithm specializes the approach to the problem of
calibrating stochastic channel models. Our calibration method
is automatic since it can be applied to different models without
the need for further pre- or post- processing. Additionally, the
method is able to account for model misspecification, which
occurs when the model is not able to represent the data for
any parameter setting.

The rest of the paper is organized as follows. Section II
presents the model calibration problem. Section III gives an
overview of the MMD, and Section IV describes the proposed
kernel-based ABC method. We demonstrate the method’s
generality by calibrating the seminal S-V model, which is a
clustered multipath model, and the propagation graph model,
which is based on a different principle, using exactly the
same data and procedure. Indeed, no other method able to
do this is available in the open literature. In Section V, the
performance is evaluated on simulated data and in Section VI
on data from a 60 GHz indoor measurement campaign. We
find that the S-V model is misspecified for the considered
measurements, and hence fails to replicate its characteristics.
Discussion and concluding remarks are given in Sections VII
and VIII, respectively.
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II. STOCHASTIC CHANNEL MODEL CALIBRATION

Consider the transfer function measurement of a linear,
time-invariant radio channel in a single-input, single-output
(SISO) setup using a vector network analyzer (VNA). The
transfer function is measured at Ns equidistant frequency
points in the bandwidth B, resulting in a frequency separation
of ∆f = B/(Ns − 1). The measured complex signal at the
nth frequency point, Yn, is modeled as

Yn = Hn +Wn, n = 0, 1, · · · , Ns − 1, (1)

where Hn is the transfer function sampled at the nth frequency
and Wn is the complex measurement noise. The additive noise
samples are assumed independent and identically distributed
(iid) at each frequency point, and are usually modeled as zero-
mean circular symmetric complex Gaussian variables with
variance σ2

W . The time-domain signal, y(t), is obtained by
taking the discrete-frequency, continuous-time inverse Fourier
transform of Yn as

y(t) =
1

Ns

Ns−1∑
n=0

Yn exp(j2πn∆ft), (2)

periodic with a period of tmax = 1/∆f . Multiple realizations
of the channel can be obtained by repeating the measurements
Nobs times, yielding an Nobs×Ns complex data matrix Y. The
data can be thought of as iid realizations from some unknown
distribution, Y, which is the true state of nature.

A stochastic model can be seen as a parametric family
of distributions {Pθ} with a p-dimensional parameter vector
θ defined on some Euclidean space1. In the case of gen-
erative models such as the stochastic channel models, it is
straightforward to simulate realizations of Y from the model,
even though the distribution Pθ is unknown. Calibration then
amounts to finding the θ for which the model output fits
the observed data Y well, or in other words, to find the θ
such that Pθ is “closest” to Y. Standard calibration techniques
involve the likelihood function of the model given Y. For
iid realizations, the likelihood function, denoted as p(Y|θ), is
the product of the probability density or mass function of Pθ

evaluated at each of the data points in Y.
For most stochastic radio channel models, p(Y|θ) is ei-

ther intractable or cannot be approximated within reasonable
computation time. Intractability here refers to the inability to
numerically evaluate the likelihood function for a given value
of θ. For intractable likelihood, the posterior, p(θ|Y), also
becomes intractable as it is proportional to p(Y|θ)p(θ), where
p(θ) is the prior assumed on the parameters. An intractable
likelihood prevents maximum likelihood estimation of θ as
well as Bayesian inference via sampling of the posterior. This
is the case for stochastic multipath models, such as the Turin
and the S-V model, which were constructed with the ease of
simulation in mind.

Since stochastic channel models are easy to simulate from
given an arbitrary θ value, likelihood-free inference is possible

1The restriction to parameters in Rp is only needed in the adjustment
method described in Section IV-B. The remaining part of the method can
be used for more general parameter spaces, e.g. discrete, complex or subsets
of Rp. In this case, the adjustment algorithm should be modified to either
accommodate or ignore such parameters.

by comparing simulated data-sets to the observed data. There-
fore, we need a method to compute distances between the data-
sets which is challenging as the data-sets are high-dimensional,
and may have possibly different sizes. We tackle this problem
using distance metrics based on kernels, in particular the
maximum mean discrepancy (MMD).

III. THE MAXIMUM MEAN DISCREPANCY BETWEEN
PROBABILITY DISTRIBUTIONS

We now introduce the MMD which is a notion of distance
between arbitrary probability distributions P and Q or data-
sets. We aim to use MMD as a similarity measure within
an ABC framework to compare simulated and observed data-
sets. Note that we can identify any data-set {x1, . . . ,xn}
to an empirical distribution 1

n

∑n
i=1 δxi where δxi denotes a

distribution with mass one at xi and 0 otherwise. We restrict
our discussion to distributions defined on Rd. This section will
provide further details on constructing the MMD [25], [36].

A. Kernels and The Maximum Mean Discrepancy (MMD)

The MMD consists of first mapping the distributions to
a function space Hk, then using the distance in that space
to compare the mapped distributions. See Fig. 2 for an
illustration. The mapping enables the use of distance defined
on Hk.

The spaces of functions to which we will map distribu-
tions are called reproducing kernel Hilbert space (RKHS).
We denote the RKHS with Hk, and 〈·, ·〉Hk and ‖ · ‖Hk
for its inner product and norm, respectively. Associated to
each RKHS, there exists a symmetric and positive definite
function k : Rd × Rd → R called a reproducing kernel [37].
This function satisfies two properties: (i) for all f ∈ Hk,
f(x) = 〈f, k(x, ·)〉Hk (called the reproducing property), and
(ii) k(x, ·) ∈ Hk for all x ∈ Rd.

It is straightforward to map probability distribution P to Hk
through what is called a kernel mean embedding defined as

µP(·) = EX∼P[k(X, ·)] =

∫
Rd
k(x, ·)P(dx), (3)

under mild regularity conditions satisfied for all kernels in this
paper, see [25, Lemma 3]. Here, E[·] denotes the expectation
with respect to the random variable and probability distribution
given in subscript. Note that, µP ∈ Hk. In the case where the
probability distribution P has a probability density function
p, the integral in (3) can be written in the more wide-spread
form

∫
Rd k(x, ·)p(x)dx. Alternatively, when P is an empirical

distribution corresponding to a data-set, then the kernel mean
embedding is given by 1

NX

∑NX
i=1 k(xi,x).

The MMD between probability distributions P and Q em-
bedded in Hk is defined as the supremum taken over the mean
of all functions in the unit ball in an RKHS, i.e. [36]

MMDk[P,Q] = sup
‖f‖Hk≤1

|EX∼P[f(X)]− EX∼Q[f(X)]| .

(4)

As the name suggests, the MMD is the maximum distance
between means of (unit norm) functions computed with respect
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Fig. 2. Given a kernel k, the distributions P and Q are mapped to their kernel
mean embeddings µP and µQ using Equation 3. The MMD is obtained by
computing the distance between µP and µQ in the function space Hk , as
expressed in Equation 5. This figure is inspired by [36].

to the distributions P and Q. As shown in [25], the MMD in
(4) can equivalently be expressed as

MMDk[P,Q] = ‖EX∼P[k(X, ·)]− EY∼Q[k(Y, ·)]‖Hk (5)

= ‖µP − µQ‖Hk
This gives an alternative interpretation of the MMD as the
distance between mean embeddings in Hk as Fig. 2 illustrates.

A third expression for the MMD appears upon expanding
the squared norm in (5) and using the reproducing property
of k which yields an expression in terms of k as

MMD2
k[P,Q] = EX,Y∼P[k(X,Y )]

− 2EX∼P,Y∼Q[k(X,Y )] + EX,Y∼Q[k(X,Y )]. (6)

The latter expression is computationally more appealing than
the two former as it only calls for computation of expectations
of the kernel. Thus, computation of the supremum in (4) is
not required to compute the MMD. As discussed later in
Section III-C, the expression (6) forms the basis for estimation
of the MMD from data.

B. Selecting a Kernel

The choice of kernel defines the RKHS and thus the proper-
ties of its distance, the MMD. In addition to being reproducing,
it is a great advantage if the kernel is characteristic [38],
[39]. This implies that the kernel mean embedding is an
injective mapping, meaning that each distribution is mapped to
a unique function. Thus, in the case of characteristic kernels,
the kernel mean embedding captures all the information about
the distribution. As a result, MMDk[P,Q] = ‖µP−µQ‖Hk = 0
if and only if P = Q. In this case, the MMD is capable
of comparing infinitely many moments of two probability
distributions without ever having to compute these moments
explicitly. Consequently, the MMD is able to distinguish prob-
ability distributions even when these coincide in finite number
of moments. This gives a great advantage over methods based
on comparison of finitely many moments which are potentially
blind to differences between distributions.

A very popular characteristic reproducing kernel is the
squared-exponential (or Gaussian) kernel, defined as

kSE(x,x′) = exp

(
−‖x− x′‖22

l2

)
, (7)
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different values of the lengthscale l.

for x,x′ ∈ Rd. Here, ‖·‖2 is the Euclidean norm and l > 0 is a
parameter called the lengthscale of the kernel. The norm inside
the exponent can be chosen based on the specific data and
application. For additional examples of characteristic kernels,
see [38], [39].

We now give a simple example comparing Gaussian distri-
butions, in which case the MMD can be derived analytically.

Example: Let P = N (µ1, σ
2
1) and Q = N (µ2, σ

2
2) be

two Gaussian distributions on R. For the squared-exponential
kernel in (7), the MMD takes the form (see [40, Appendix C]):

MMD2
kSE

[P,Q] =
l

l + 2
√

2σ1
+

l

l + 2
√

2σ2

− 2l

l +
√

2σ1 +
√

2σ2
exp

(
− (µ1 − µ2)2

l2 + 2σ2
1 + 2σ2

2

)
. (8)

It is apparent from (8) that the MMD is zero if and only if
µ1 = µ2 and σ1 = σ2 (as guaranteed by using a characteristic
kernel). Fig. 3 illustrates how the MMD increases as the
parameters of these distributions increasingly differ. Varying
the lengthscale, l, of the kernel scales the overall MMD curve,
but does not affect the point at which the MMD is minimised.
The overall behaviour of the curves do not vary significantly
on changing the lengthscale by an order of the magnitude.

C. Maximum Mean Discrepancy Between Data-sets

Unlike in the previous example, it is, in most realistic
cases, not feasible to analytically calculate (6). Moreover,
numerical integration is problematic, as the dimension of X
and Y may be large and P or Q unavailable. Fortunately, it
is straightforward to estimate the MMD if it is an empirical
distribution, such as in the case of data-sets.

Imagine that we do not have access to P and Q, but that
we instead have two data-sets consisting of realisations from
these distributions. More precisely, suppose we have access to
X = {x1, . . . ,xNX}

iid∼ P and Y = {y1, . . . ,yNY }
iid∼ Q.

Then, an unbiased empirical estimate of MMD2
k[P,Q] can be
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obtained as [25]

M̂MD
2

k[X,Y] =

∑
i6=i′ k(xi,xi′)

NX(NX − 1)

−
2
∑NY
j=1

∑NX
i=1 k(xi,yj)

NYNX
+

∑
j 6=j′ k(yj ,yj′)

NY (NY − 1)
. (9)

Note that NX and NY are permitted to differ, i.e. the two
data-sets are not limited to be of the same size. To use this
estimator with the kernel in (7), the lengthscale should be
specified. Following [25], the lengthscale can be set based on
the data-set X using the median heuristic

l =
√

med/2, (10)

where med denotes the median of the set of squared two-norm
distances ‖xi−xj‖22 for all pairs of distinct data points in X.
This setting of l scales the kernel with the spread of the data,
and is robust to outliers.

Concentration bounds for MMD, such as [26, Lemma 1] or
[36, Theorem 3.4], imply that with high probability,∣∣∣M̂MD

2

k[X,Y]−MMD2
k[P,Q]

∣∣∣ ≤ C ( 1

NX
+

1

NY

)
, (11)

for some C > 0. This tells us that the accuracy of the estimate
converges linearly in both NX and NY . The computational
cost of computing this estimate is O(N2

X + N2
Y ) due to the

need to compute double sums in both NX and NY . In order
to best balance computational cost and accuracy, NX and NY
should be chosen to be commensurate. These two results on
accuracy and computational cost can be used to determine
how to make default choices for the parameters of our ABC
algorithm.

D. Kernels for Radio Channel Measurements
In order to use the MMD for calibrating stochastic radio

channel models, we need a kernel defined on the space of
transfer function measurements: kY : Y × Y → R. Given
such a kernel, we could then estimate the MMD between a
measured data-set Y and a data-set Ysim simulated from the
model.

A significant challenge with this approach is that, in the
context of stochastic radio channel models, Y is usually a
high-dimensional space. This is especially the case for large
bandwidth measurements where Ns can be in the order of
thousands. Such high-dimensional problems are challenging
for kernel methods based on default kernels such as the
squared-exponential kernel [41]. These kernels indeed suffer
from the curse-of-dimensionality, a phenomenon implying that
the distance between points increases exponentially with the
dimension of the space.

To tackle this issue, there exist kernels specialised to certain
time-series or functional data models in the literature [42]–
[47]. These use specific properties of the type of data in
order to avoid the curse-of-dimensionality. In this paper, we
contribute to this literature and construct a kernel specifically
tailored to transfer function measurements. We base the kernel
on the temporal moments of y(t), defined as

m(i) =

∫ tmax

0

ti|y(t)|2dt, i = 0, 1, 2, . . . , I. (12)

The integral in (12) is easy to compute numerically. The
temporal moments can be seen as an expansion of |y(t)|2
into the basis of monomials. Since the monomials form a
complete basis for finite energy time-limited signals [48], no
information is lost compared to |y(t)|2 if I → ∞. Referring
to [49], [50], the first few moments are well modeled by a
log-normal distribution. Thus, taking the entry-wise logarithm
z(i) = lnm(0) brings the moments to the same scale and
gives an approximately Gaussian vector z = [z(0), . . . , z(I−1)].
Multiple channel realizations yield Z = (z1, z2, . . . , zNobs

).
Define the mapping AI : Y → RI from Y to the I-

dimensional space of log temporal moments. We propose to
construct a kernel kY for transfer function data as

kY (y,y′) := kSE (AI(y), AI(y
′)) , for all y,y′ ∈ Y,

(13)
where kSE denotes the squared-exponential kernel in dimen-
sion I . We note that this is the composition of a reproducing
kernel and a map, and thus according to [51, Lemma 4.3]
is a reproducing kernel on Y . We also note that the MMD
with kernel kY computed on the original data can be obtained
through the MMD with kernel kSE on the log temporal mo-
ments. Similarly, the empirical estimators of these quantities
are also identical, i.e.

M̂MD
2

kY [Y,Ysim] = M̂MD
2

kSE
[Z,X], (14)

where X is the simulated log temporal moments data-set.
In practice, we will have to limit ourselves to a finite I for

computational reasons. This, however, is not a problem since
we can expect the signal energy to be concentrated on the
lowest moments. In fact, taking I to be small also allows us
to by-pass issues with the curse-of-dimensionality.

From a theoretical viewpoint, since the squared-exponential
kernel is characteristic, we should be able to recover any
distribution on the space of log temporal moments. However,
since the mapping AI leads to loss of information when I is
finite, kY will not be characteristic on Y , and we may not
be able to uniquely identify the distribution on |y(t)|2. This
however is not an issue for the considered channel models, as
will be shown in Section V.

IV. PROPOSED KERNEL-BASED APPROXIMATE BAYESIAN
COMPUTATION METHOD

ABC methods rely on simulation from the model to ap-
proximate the posterior, and can be used to estimate θ such
that the model fits to the observed data Y. Let ρ(·, ·) be
some notion of distance between data-sets. The basic form
of ABC, called rejection ABC, proceeds by sampling M
parameter values from p(θ) and generating the corresponding
simulated data Ysim from the model. The values of θ for
which ρ(Y,Ysim) is less than some pre-defined threshold ε,
form a sample from the approximate posterior distribution,
p̃(θ|Y) = p(θ|ρ(Y,Ysim) < ε). The tolerance threshold
impacts the degree of approximation in ABC methods. Setting
ε = 0 would lead to exact Bayesian inference, however,
achieving equality for continuous-valued data is not possible.
Hence, ε should be small but non-zero in order to be compu-
tationally feasible.
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We now propose an ABC method based on the MMD
as the distance metric to calibrate stochastic radio channel
models. We employ the Population Monte Carlo (PMC) ABC
method [52] to iteratively refine our approximation of the
ABC posterior. At the end of each iteration, we perform
local-linear regression adjustment [53] to further improve the
posterior approximation. The complete algorithm is depicted
in Fig. 4 and outlined in Alg. 2. Individual steps of this PMC-
ABC algorithm will be highlighted in Sec. IV-A to IV-C. In
Sec. IV-D, we describe how to detect and account for model
misspecification in the algorithm.

A. Rejection based on MMD

The proposed ABC method uses the MMD between data-
sets as a rejection criteria. Instead of setting the threshold ε in
terms of the distance, we specify the proportion of accepted
samples, i.e. ε = Mε/M where Mε is the number of parameter
samples accepted out of M . This is particularly convenient as
it avoids the need to manually find a threshold, which may
lead to unknown run-time of the algorithm.

The method computes M̂MD
2

kSE
[X,Z], where X =

(x1, . . . ,xNsim) is the simulated log temporal moments data-
set, as this is identical to estimating the MMD between Y and
Ysim (see Eq. 14). First, M independent parameter samples
Θ = (θ1, . . . ,θM ) are drawn from the prior p(θ). For each θi,
the log temporal moments data-set, Xi ∼ Pθi , is simulated.
The simulated data-sets are gathered in X = (X1, . . . ,XM ).
The M̂MD

2

kSE
[Xi,Z] is computed for each i using (9), setting

the lengthscale of kSE as per (10). The parameter samples
resulting in the Mε smallest MMD values are then accepted.

In principle, the MMD could be computed between the
samples of the temporal moments instead of their logarithm.
However, the magnitudes of the different temporal moments
may vary strongly and using a single lengthscale may lead to
poor performance. Using a log transformation helps mitigate
this issue. Alternatively, the lengthscale should be defined for
each dimension of θ.

B. Regression Adjustment

As proposed in [53], it is possible improve the posterior
approximation by adjusting the accepted samples using a

model of the relationship between a low-dimensional vector
of statistics and the parameter vector. Let s be a vector
of summary statistics of X such that s = S(X) for a
function S(·). Similarly, the observed summary statistics are
denoted sobs = S(Z). We begin by fitting a function, g,
between the accepted parameters Θ∗ = (θ∗1, . . . ,θ

∗
Mε

) and
the corresponding statistics S∗ = (s1, . . . , sMε

) as [24, Ch. 3]

θi = g(si) + ε, i = 1, . . . ,Mε, (15)

where g(s) is the conditional expectation of θ given s, and
ε is the residual. Here, θ should belong to a subset of Rp.
Considering that the log of the temporal moments are well
modeled by a Gaussian distribution, we take sobs to be the
vector consisting of the sample means and sample covariances
of the elements of z, similar to [22]. In total, sobs consists of
(I2+3I)/2 elements for I temporal moments. The statistics s
is computed in the same manner for X. Note that s and sobs are
normalized by an estimate of their median absolute deviation
to account for the difference in magnitude of the statistics. In
case the prior distributions are bounded, a logit transformation
is applied to the parameters before the adjustment.

For simplicity reasons, we assume g to be linear as in [53]
and adjust the accepted parameters as

θ̃i = θ∗i − (si − sobs)
>
β̂, i = 1, . . . ,Mε, (16)

where β̂ is the solution to the weighted least-squares problem

arg min
α,β

Mε∑
i=1

[
θ∗i −α− (si − sobs)

>
β
]2
W(

M̂MD
2

kSE
[Xi,Z]

).
(17)

The weighting function W applies weights to each θi based
on the estimated MMD value. This guarantees that parameters
which yield simulated log moments “closer to” Z are weighted
more heavily. We take W to be the Epanechnikov function,
W(δ) = 1− (δ/δmax)2 for |δ| ≤ δmax and zero otherwise, as
proposed in [53]. Here, δmax is the maximum estimated MMD
associated to the accepted parameters. Note that choosing a
constant regression function, i.e. β = 0, and assigning equal
weights to all θi’s results in the basic rejection ABC algo-
rithm. The regression adjustment therefore gives the adjusted
parameter values Θ̃ = (θ̃1, . . . , θ̃Mε

).
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Algorithm 1 ABC with MMD and Regression Adjustment
Input: Parameter values Θ, corresponding simulated data X , ob-
served Z & number of accepted samples Mε.

Compute M̂MD
2

kSE (Xi,Z) for all data-sets Xi ∈ X using 9.
Accept the Mε parameters with the smallest MMD distance and
denote these Θ∗ = (θ∗1, . . . ,θ

∗
Mε).

Compute S∗ and sobs = S(Z), then solve the optimisation
problem in (17) with Θ∗, S∗, and sobs to get β̂.
Adjust Θ∗ using (16) to obtain Θ̃.

Output: Adjusted samples Θ̃ from the Rejection-ABC posterior.

sobs

regression 
model

original

adjusted

smaxsmins

q

q

qmin

max

Fig. 5. Local linear regression adjustment of parameter θ inspired from [54].
First, the regression model is fitted based on accepted parameter and statistic
values. Then, the parameters are adjusted based on the fitted model, which
can move them outside the prior range if (si − sobs) is large.

C. Importance Sampling using PMC

As a means to explore the posterior distribution over the
parameter space efficiently, we employ a sequential Monte
Carlo technique called PMC [20], [22], [52]. In PMC, the
current parameter values Θ̃ are used to generate a new set
of parameters for the next iteration of the algorithm through
importance sampling. This is a two-step procedure: (1) sample
from the current parameters based on their importance weights,
and (2) perturb the sampled parameter values using a proposal
density.

The set of parameters in the initial iteration, Θ̃(1) =

(θ̃
(1)

1 , . . . , θ̃
(1)

Mε
), are assigned equal weights. The next set of

parameters is obtained by drawing M values from Θ̃(1) and
perturbing these according to a probability distribution, called
proposal. For simplicity, we perturb independently in each
dimension using a Gaussian distribution, and reject values
outside the prior range. Thus, the proposal reads

ϕ(θ; θ̃,Σ) = 1(θ ∈ R)e−
1
2 (θ−θ̃)

>Σ−1(θ−θ̃) (18)

where 1 is an indicator function, R ⊂ Rp is the prior
range, and Σ is a diagonal matrix with variances σ2

j > 0
corresponding to parameter θj along the diagonal. We set the
diagonal elements of Σ to twice the empirical variance of the
adjusted parameter samples. This is denoted as Σ = 2V̂ar(Θ̃).

The set of M parameter values at iteration t, Θ(t), is then
used to simulate X (t) from the model for MMD computation
and regression adjustment (i.e. Alg. 1). In subsequent itera-

Algorithm 2 PMC-ABC with MMD
Input: Prior p(θ), model Pθ , observed data Z, Mε, M and T .

Initialize t = 1, draw Θ(1) iid∼ p(θ) and simulate X (1) using the
parameters in Θ(1).
Apply Algorithm 1 on {X (1),Θ(1)} to obtain Θ̃(1).
Set w(1)

j = 1 for j = 1, . . . ,Mε, and set Σ(1) = 2V̂ar
(
Θ̃(1)

)
.

for t = 2, . . . , T do
Compute qj = w

(t−1)
j /

∑Mε
i=1 w

(t−1)
i for j = 1, . . . ,Mε.

for i = 1, . . . ,M do
Sample θ∗i from Θ̃(t−1) s.t. θ̃

(t−1)

j is selected with prob qj .
Generate θ

(t)
i ∼ ϕ

(
·;θ∗i ,Σ(t−1)

)
.

Simulate X
(t)
i from the model with parameter θ(t)

i .
end for
Apply Algorithm 1 on {X (t),Θ(t)} to obtain Θ̃(t).
Set w(t)

j using (19) for j = 1, . . . ,Mε.
Set Σ(t) = 2V̂ar

(
Θ̃(t)

)
.

end for
Output: Samples

(
θ̃
(T )

1 , . . . , θ̃
(T )

Mε

)
from the PMC-ABC posterior.

tions, weights are assigned as

w
(t)
j ∝ p

(
θ
(t)
j

)
/

Mε∑
i=1

w
(t−1)
i ϕ

(
θ
(t)
j ; θ̃

(t−1)
i ,Σ(t−1)

)
, (19)

j = 1, . . . ,Mε. The adjusted parameter values after iteration
T are taken as samples from the approximate posterior distri-
bution. Point estimates of θ, such as the approximate posterior
mean,

θ̂
(T )

=
1

Mε

Mε∑
i=1

θ̃
(T )

i , (20)

are straightforward to compute from the samples.

D. Handling Model Misspecification

We have now completed the description of Alg. 2. However,
the framework of ABC relies on the implicit assumption that
there exist parameter values in the prior support that yield
simulated data “close” to the measured data. This assumption
may not always hold if the model parameters cannot be set in
any way to reproduce the data well. In this case, we say that
the model is misspecified for the data. Misspecification can
be detected and accounted for in the algorithm as explained
in this subsection.

Consider a univariate parameter θ in the range [θmin, θmax]
resulting in a univariate statistic s in [smin, smax] simulated
from the model. If the observed statistic sobs /∈ [smin, smax],
then the model is likely to be misspecified. This is a challenge
since under model misspecification, the local-linear regression
adjustment has been shown to concentrate posterior mass on
a completely different value than the rejection ABC [55].
In fact for parameters with bounded support, the regression
adjustment moves the parameter samples outside the prior
range as illustrated in Fig. 5. Hence, if sobs lies outside the
range of statistics that the model can simulate, then there is
no guarantee that the adjusted samples of θ will lie inside the
prior range.

We check for model misspecification by observing whether
each element of sobs lies within the range of corresponding
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Fig. 6. Boxplots of the estimated MMD2 between Xtrue (Nobs = 1000)
and X′ as a function of Nsim computed by repeating the experiment
100 times for each value of Nsim. X′ is generated from θ′ = [2 ×
10−8, 6×107, 108, 2×10−8, 10−9, 5×10−10]> and Xtrue from θtrue =
[5 × 10−8, 2 × 107, 109, 10−8, 2 × 10−9, 10−9]>. The dashed green line
corresponds to the value of the MMD2 being approximated. Since this value
is not available in closed-form, it is approximated by using Nsim = 104.

statistics simulated from the model using Θ(1). If any element
of sobs lies outside the range of values simulated from the
model, then the model is deemed misspecified. In such a case,
we replace sobs by an alternative term, s̆obs, computed from
the model instead of the data using the parameter

θ̆ = arg max
θ

f(θ; Θ∗), (21)

where f(θ; Θ∗) is the kernel density estimate computed from
the samples Θ∗, and θ̆ is the parameter corresponding to the
mode of f(θ; Θ∗). Another choice for θ̆ could be the posterior
mean of rejection ABC [55]. However, we found the mean
estimate to be unstable, especially in the initial iterations of
the algorithm. Hence, in case of model misspecification, we
set sobs = s̆obs in each iteration of the PMC-ABC algorithm,
thus ensuring that the adjustment does not lead to parameter
samples outside the prior range.

V. SIMULATION EXPERIMENTS

We test the performance of the proposed calibration method
on two different channel models, namely the Saleh-Valenzuela
(S-V) and the propagation graph (PG) model. We chose mod-
els which differ significantly in their mathematical structure
to highlight the generality of our approach. We first study
in depth the advantages and drawbacks of our algorithm on
simulated data. Then, in Section VI, we calibrate these models
to data from an indoor measurement campaign [56].

For ease of comparison, we use the same measurement
settings as in [56] for both simulations and measurements,
i.e. B = 4 GHz, Ns = 801, and tmax = 200 ns. We map the
channel measurements to the first I = 4 temporal moments.
In each iteration of the ABC algorithm, M = 2000 parameter
samples are generated, out of which Mε = 100 are accepted
to estimate the posterior distribution.

A. Application to the Saleh-Valenzuela model

The seminal S-V model [2] is widely used as it is easy to
simulate from, but is notoriously difficult to calibrate due to
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Fig. 7. Estimated MMD2 values plotted against parameters of the S-V model.
The parameters are uniformly sampled 200 times from the prior range one at
a time, keeping the others fixed to the true values denoted by the dark green
lines. See Tab. I for the prior ranges.

its structure. Even though the model can be analyzed using
the theory of spatial point processes [57], [58] and moments
derived [59], its likelihood function is unavailable. Recent
discussions of the physical interpretation of the S-V model,
also outlining some difficulties with the model calibration, is
given in [60]–[62]. These difficulties have inspired the use of
many different heuristic calibration methods, as outlined in the
introduction.

In the S-V model, the multipath components are assumed
to arrive in clusters. The arrival time of the clusters and that
of the rays within the clusters are modeled as one-dimensional
homogeneous Poisson point processes with arrival rates Λ and
λ, respectively. The gains of the multipath components are
modeled as iid zero-mean complex Gaussian random variables
with conditional variance that depends on three parameters; the
average power of the first arriving multipath component Q, and
the cluster and ray power decay constants Γ, γ, respectively.
We refer the readers to [2] and [57] for a detailed description of
the model. Including the noise variance, the parameter vector
becomes θ = [Q,Λ, λ,Γ, γ, σ2

W ]>.
We begin by finding a reasonable value of Nsim. Here we

rely on simulations as the distribution of the MMD estimates
is unknown for finite Nsim. To that end, we generate pseudo-
observed log moments, Xtrue, with Nobs = 1000 realizations
from the model by setting θ to a “true” value. Using another
value of the parameter vector, say θ′, we simulate X′ from the
model with varying Nsim and compute the estimated MMD
between X′ and Xtrue. This process is repeated 100 times to
create boxplots as shown in Fig. 6. Although the MMD esti-
mate gets more accurate as Nsim increases, the improvement
however is small. Choosing a higher Nsim improves the MMD
estimate, but increases the run-time of the of the algorithm
significantly (since the computational cost is quadratic in Nsim,
and simulating from the model can also be slow). Therefore,
we set Nsim = 100 as a reasonable compromise considering
the trade-off between accuracy and computational cost.

We first verify that the MMD computed from the temporal
moments reacts to changes in the S-V model parameters.
To that end, we generate simulated data-sets by varying one
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TABLE I
PARAMETER ESTIMATES OBTAINED FOR MEASURED DATA. THE

STANDARD DEVIATION OF THE APPROXIMATE POSTERIOR SAMPLES IS
GIVEN IN PARENTHESIS.

θ Prior range Estimate (std. deviation)

S-
V

m
od

el

Q [10−9, 10−7] 4.7× 10−8 (4.6× 10−9)
Λ [5× 106, 108] 8.6× 107 (9.8× 106)
λ [5× 10−9, 3× 109] 1.5× 108 (4.2× 107)
Γ [5× 10−9, 5× 10−8] 8.2× 10−9 (2.7× 10−10)
γ [5× 10−10, 5× 10−9] 4.4× 10−9 (4.7× 10−10)
σ2
W [2× 10−10, 2× 10−9] 3.5× 10−10 (2.5× 10−11)

PG
m

od
el g [0,1] 0.50 (0.019)

Nscat [5,35] 18 (1.73)
Pvis [0,1] 0.99 (7.9× 10−4)
σ2
W [2× 10−10, 2× 10−9] 4.4× 10−10 (4.3× 10−12)

parameter uniformly in the prior support while keeping the
others fixed to their true value. As can be seen from Fig. 7,
the estimated MMD values increase as each of the parameters
move away from their true value, and the minimum is (ap-
proximately) achieved when both the data-sets are generated
from approximately the same parameters. The MMD reacts
to changes in all the parameters, albeit more for some than
others, as can be seen from the different scales of the y-axis.
We therefore conclude that the distribution of the first four
log temporal moments is informative about the S-V model
parameters.

We now use the proposed method to calibrate the S-V model
using Xtrue. We assume uninformative (flat) priors in the
range given in Tab. I for all the parameters to ensure that their
marginal posteriors are unaffected by any prior beliefs. The
prior ranges were set according to the measurement settings as
done in [20]. The plots indicating convergence of the algorithm
and the marginal posterior distributions for T = 10 iterations
are shown in Fig. 8. The approximate posterior samples
concentrate around the true value for all the parameters. The
algorithm converges rather quickly and the posteriors taper
as the iterations proceed. In principle, the iterations could be
stopped after four or five iterations, but we let it run till T = 10
for clarity. The algorithm gives a reasonable estimate for the
parameters even in the first iteration. The proposed method is
able to estimate Λ accurately as well, unlike in [20] where
some post-processing was required to estimate Λ.

B. Application to the Propagation Graph model

As our second example, we demonstrate the performance
of our proposed method on the PG model. The PG model was
first introduced in [63], and since then has been applied to a
wide range of scenarios in [64]–[67]. Recently, it has been ex-
tended to account for polarization in [15], [68], [69]. Although
the model is easy to simulate from, its likelihood function is
unknown. A method of moments based estimator was applied
to calibrate the model in [15], but the moments equations were
based on approximation and it required manually fixing one
of the parameters.

The PG model [63] represents the radio channel as a
directed graph with the transmitters, receivers and scatterers as
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Fig. 8. Violin plots of ABC posterior samples of S-V model parameters as a
function of PMC iterations. Note that a violin plot is similar to a box plot with
the addition of a rotated kernel density plot on each side. The dark green lines
denote the true parameter values θtrue = [5×10−8, 2×107, 109, 10−8, 2×
10−9, 10−9]>.

vertices. Edges model the wave propagation between the ver-
tices. Edges are defined randomly depending on the probability
of visibility, Pvis. Other parameters of the model include the
number of scatterers, Nscat, and the reflection gain, g, resulting
in the parameter vector θ = [g,Nscat, Pvis, σ

2
W ]>. Note that

Nscat is assumed to be real-valued during the regression
adjustment, following which, its adjusted samples are rounded
off to the nearest integer. We used the antenna positions and
room geometry for the model according to the measurement
conditions given in [56]. Hence, Nobs = Nsim = 625 for the
PG model. For each call of the model, the scatterer positions
are drawn uniformly across the room, and all 625 realizations
are generated based on those positions.

We again use uniform priors for the parameters (see Tab. I)
and apply T = 10 iterations of the proposed method to cali-
brate the PG model to the pseudo-observed data-set generated
from θtrue. To prevent biased results due to a particular con-
figuration of the scatterers, we generate the pseudo-observed
data by combining data from four different calls of the model
using θtrue. From Fig. 11, we observe that the algorithm
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Fig. 9. Averaged power delay profiles simulated from the PG model for
different SNR levels.

converges very quickly, and gives posteriors which are highly
concentrated around the true value for Pvis, Nscat, and σ2

W .
The approximate posterior for g starts off very wide and
then gets narrower as the iterations proceed. The method is
therefore able to accurately calibrate the PG model.

To asses how the performance of the proposed algorithm is
affected by the presence of noise, we now repeat this simu-
lation experiment for different noise levels. We fix g = 0.6,
Pvis = 0.5, Nscat = 15 and vary σ2

W from 10−10 to 10−6.
The signal-to-noise ratio (SNR), is defined as

SNR = 10 log10(m̄0B/σ
2
W ) [dB], (22)

where m̄0 is the sample mean of of the zeroth temporal
moment computed by setting σ2

W = 0 in the PG model. The
resulting averaged power delay profile (APDP) is shown in
Fig. 9. We run T = 10 iterations of the algorithm for each
of the SNR values. The prior for σ2

W is adjusted according to
the true value in each run of the algorithm. The violin plots
of the approximate posterior after the tenth iteration in each
case is shown in Fig. 10.

We observe that the noise variance σ2
W is estimated ex-

tremely accurately at each SNR level. The estimation accuracy
for Pvis and Nscat seems to suffer only at the lowest SNR
level. Reducing the SNR impacts the estimation accuracy of
g the most, with its approximate posterior converging to the
prior as SNR decreases. This is expected as the higher the
noise variance, the less visible the slope of the power delay
profile which is determined by g. In conclusion, the algorithm
performs well at SNR values encountered in measurements.

VI. APPLICATION TO MEASURED DATA

We now attempt to fit both the S-V and the PG models to
millimetre-wave radio channel measurements obtained from
[56]. The measurements of the channel transfer function were
performed in the bandwidth 58 GHz to 62 GHz with a
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Fig. 10. Violin plots of ABC posterior samples of PG model parameters after
T = 10 iterations for different SNR levels. The APDP corresponding to each
SNR is shown in Fig. 9.
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Fig. 11. Violin plots of ABC posterior samples of PG model parameters
as a function of PMC iterations. A violin plot is similar to a box plot
with the addition of a rotated kernel density plot on each side. θtrue =
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and [(log s)2], respectively. The observed summary lies in the point cloud
generated by the model. In contrast, the S-V model is not able to replicate the
higher moments of the data, as seen from the variance plot (right), indicating
model misspecification. Each of the 2000 simulated summaries correspond to
one parameter drawn from the prior.

VNA, using Ns = 801 equally spaced frequency points. The
bandwidth of B = 4 GHz means the frequency separation was
∆f = 5 MHz and tmax = 200 ns. We use measurements taken
in a small conference room of dimension 3×4×3 m3 in a non-
line-of-sight scenario. At both transmitter and receiver sides,
5×5 antenna arrays were used. Although the antenna elements
used in the measurement were dual polarized, we focus on the
vertical-vertical polarization since both the models are uni-
polarized. This gives Nobs = 5 × 5 × 5 × 5 = 625. We keep
the settings M = 2000 and Mε = 100 of the algorithm same
as in the simulation experiments.

A. Calibrating the Saleh-Valenzuela model

Upon applying Alg. 2 to the measured data, regression
adjustment yielded parameter samples outside the prior range.
This indicated that the model is misspecified. That is indeed
evident from Fig. 12 where we plot elements of the vector s,
namely the mean and variance of z0 and z1, obtained from the
measurements and the S-V model. The simulated summaries
correspond to 2000 parameter values drawn from the prior.
We observe that varying the parameters of the S-V model in
the prior range generated mean values that overlap the mean
value from the measurements. However, the variance values
from the S-V model does not capture the value observed in
the measurements. That is, there exists no such θ in the prior
range that leads to s “close” to sobs in terms of the variance
of the temporal moments. Hence, the model is misspecified
for this data and so we obtain sobs from the model as per
Sec. IV-D.

The posteriors obtained from the measured data are shown
in Fig. 13 for T = 15 iterations. The marginal approximate
posteriors for λ, Γ, and σ2

W are highly concentrated. Posteriors
for Γ and σ2

W appear to converge from the second iteration
itself, indicating that these parameters affect the MMD the
most. The posterior for λ becomes narrow and converges
after the first few iterations. The posteriors for Q, Λ and γ
take around eight or nine iterations to converge to a different

location in the prior range than where they began from, unlike
the simulation experiment. This is potentially due to the model
being misspecified for the data, and so parameters that affect
the distribution of the log temporal moments the most converge
first. The approximate estimates after 15 iterations are reported
in Tab. I. Considering that the regression adjustment in the
first few iterations are done based on a coarse estimate of
sobs from the model, the algorithm seems to work very well.
The estimate of Λ is high, indicating arrival of around 17
clusters on an average, while that of λ is quite low. The
model is therefore forced to the case with many clusters having
very few multipath components each, thus approaching the
“unclustered” Turin model with constant rate.

The misspecification of the S-V model for the measured
data is not surprising, as the measurement conditions are not
replicated in the model. The virtual array measurements are
from a single array position in the room, hence the same
clusters are observed in each transmit-receive antenna pair.
On the other hand, each realization out of the S-V model is
an independent realization from the underlying point process.
As a result, we hardly see any variance in the log temporal
moments of the data, which is not achieved in the S-V model
for any configuration of the parameters.

B. Calibrating the Propagation Graph model

The results obtained on calibration of the PG model on
measured data after T = 10 iterations is shown in Fig. 14.
In this case, the model is not misspecified for the considered
data. The approximate marginal posterior distributions for all
the parameters start off wide and then seem to converge after
around four or five iterations. The posteriors are also quite
concentrated for all the four parameters, especially Pvis and
σ2
W . Overall, the results are similar to what is observed in the

simulation experiment. See Tab. I for approximate estimates
of the parameters after T = 10 iterations. The estimates are
very similar to the ones reported in [22] where the polarized
PG model was calibrated on data from the same measurement
campaign. The estimate of Pvis is almost one, indicating that
nearly all scatterers are connected. The estimates of g and Pvis

are consistent with the values reported from measurements
[15] in other in-room scenarios for the PG model. Moreover,
these values are close to those used in simulations with the
PG model in [63], [70].

C. Model Validation

While the proposed method easily calibrates both the S-V
and the PG models to measured data, there is no guarantee
that the fitted models replicate the data well. This effect is
of course not specific to the proposed method, but pertains to
any calibration method. Thus, an extra step, termed model
validation, should be performed where predictions of the
calibrated models are compared to the data, and possibly other
data-sets not used in the calibration process. Performing a full
model validation is out of scope of this paper, as our focus
is on the calibration method itself. Instead, as a final step we
check how well the two calibrated models fit the input data-set.
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Fig. 13. Violin plots of ABC posterior samples of S-V model parameters as
a function of PMC iterations for measured data.

To this end, we simulate 625 channel realizations from both
models with parameters set according to Tab. I. We compare
the outputs from the models to the measured data in terms of
the APDP and the empirical cumulative distribution function
(cdf) of root mean square (rms) delay spread τrms, mean delay
τ̄ , and received power P0 computed per channel realization,
according to

P0 = m0, τ̄ =
m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2

.

(23)
It appears from Fig. 15 that both the models are able to fit
the APDP of the measurements well. The slope is captured
well by both the models, along with the noise floor, although
the S-V model slightly underestimates it. The S-V model,
however, is not able to replicate the peaks in the APDP of
the measurements, while the PG model represents the initial
peaks better. This effect is to be expected for the particular
settings of the S-V model with many clusters and very few
within-cluster components. The peaks from the S-V model are
averaged out since the channel realizations are independent.
This is unlike the PG model where positions of the antennas
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Fig. 14. Violin plots of the ABC posterior samples of PG model parameters
as a function of PMC iterations for measured data.

in the virtual array are included, thus simulating correlated
channel realizations.

Even though the APDPs are similar, the two models yields
very different empirical cdfs of τrms, τ̄ , and P0 as reported in
Fig. 15. The PG model captures the behavior of the cdfs very
well, while the S-V model clearly fails to do so, especially
for the mean delay and the received power. The means of
the rms delay spread from both the models are fairly close to
the measured data, but the spread differs for the S-V model.
As noticed theoretically in [61], [62], multipath models can
yield temporal moments with similar means while differing
vastly in variance. Indeed, for a stochastic multipath model,
the covariance structure of the temporal moments depends on
both first- and second-order properties of the underlying point
process [71].

The misspecification of the S-V model arises from disre-
garding the dependencies between the measurements obtained
from different antennas in the array. This in turn leads to the
discrepancy in the variance of the log temporal moments as
observed in Fig 12. Thus, to alleviate the misspecification,
the array structure should be incorporated in the model, as is
done inherently in the PG model. This could be a contributing
reason why other authors [72] have found fully stochastic
models inadequate and instead recommended using geometry-
based and fully deterministic approaches for millimetre-wave
data. Irrespective of the cause, such misspecifications can be
detected by the proposed method, thereby assisting in the
modeling process.
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Fig. 15. S-V and PG model fit to the measured data in terms of the APDP
and empirical cdfs for rms delay spread, mean delay, and received power.
Note that the first multipath component of the S-V model arrives at t = 0 as
in [2].

VII. DISCUSSION

The proposed method makes certain choices such as the
number of temporal moments to use. We found that using the
I = 4 temporal moments, (m0,m1,m2,m3), gives accurate
estimates with narrow posteriors after the first couple of
iterations itself, while slight degradation in the performance is
observed with I = 3 moments m0, m1 and m2. Although the
method permits the use of arbitrarily many moments, we did
not see significant improvements in performance when includ-
ing more than four moments. Although the temporal moments
seem adequate for calibration, the channel measurements could
in principle be summarized into other statistics as long as they
are informative about the model parameters.

Other choices for the method include the prior distribution
and the settings of the ABC algorithm. We used uninformative
priors to demonstrate the accuracy of the method based on data
alone. However, including informative priors would speed up
the convergence of the algorithm. For a reasonable approxi-
mation to the posterior distribution from samples, we suggest
setting Mε = 100 or more. Depending on the computational
budget, ε can be set around 5% or less. Our chosen settings
seem to work well for both the models, and hence, they can be
a good starting point for initial experiments. We do not provide
a stopping criterion for the algorithm, but instead encourage
monitoring the posterior distributions for convergence, as
the number of iterations required may vary across different
parameters and models. Potentially a stopping criterion could
be implemented where the iterations are stopped if the MMSE
estimate changes less than some tolerance over iterations.

To calibrate a new channel model using our method, we
suggest the following sequence of steps. Start by setting up
priors for the model parameters based on available knowledge.
Taking J = 4 temporal moments as a starting point, perform
the simulation study of computing the MMD2 by varying one
parameter at a time as done in Fig. 7. This experiment is
informative in qualifying the required number of temporal
moments. If the MMD is clearly impacted by varying the
parameters, apply the method to calibrate the new model
with the proposed settings of M and Mε. If not, then adjust
the number of temporal moments J and repeat the process.
Finally, monitor the posterior distributions for convergence and
terminate the algorithm accordingly.

As the MMD compares infinitely many summaries of the
two data-sets, it works better than comparing only the low-
order moments such as the means and covariances of the
temporal moments as in [19], [20], [22]. When choosing a
characteristic kernel, the MMD also guarantees that distri-
butions are uniquely identified by these moments, unlike the
case when comparing a finite number of moments. The MMD
is a strong notion of distance in the sense that recovery of
the true parameter value is guaranteed as the number of data
points grows. The MMD also leads to robust estimators; i.e.
estimators which will return reasonable estimates even in the
presence of outliers in the data or mild model misspecification
[26], [27]. The median heuristic is a reasonable choice for
balancing robustness and efficiency as discussed in [26].
The choice of kernel is not as impactful as the choice of
the lengthscale, and the proposed squared-exponential kernel
seems to work well.

The proposed method is computationally lightweight and
can be run on standard laptops with reasonable run-time. In
the experiments, the algorithm ran on a Lenovo ThinkPad with
Intel Core i7 processor having 24 GB RAM. This gave a run-
time of 5.5 hours for the PG model and around 2 days for
the S-V model for ten iterations of the algorithm. In our tests,
the computation time is dominated by the particular model
evaluation time, while computation of temporal moments and
the MMD is negligible. Thus, the computational cost depends
heavily on the specific model and its implementation. Further-
more, the run-time is impacted by specific settings of some
parameters, e.g. Λ and λ in S-V model and Nscat in PG model.
For higher “true” values of these parameters, the model, and
in turn, the calibration algorithm, takes considerably longer
time to run. An obvious way to reduce the run-time is to run
the algorithm on hardware with more processing power or by
making parallel calls to the model during each iteration.

The proposed method relies solely on the ability to simulate
from the model being calibrated, and not on the tractability
of the likelihood or moment functions. Moreover, the method
does not depend on the particular mathematical construction of
the model, which enables calibration of very different models
using the exact same procedure. This presents the opportunity
to compare and select the best fitting model for a given data-
set. Additionally, the proposed method inherently estimates
the uncertainty of the fitted parameters, which is lacking
in the state-of-the-art calibration approaches. In contrast to
the rather complex state-of-the-art calibration methods, the
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proposed method is simple to implement in R, MATLAB or
Python and requires very few settings such as M and Mε. This
has the clear advantage that results obtained from the method
are easy to reproduce. Moreover, the method can detect and
calibrate misspecified models as well. This is usually ignored
or treated heuristically in standard algorithms.

The proposed method can be used for a broad class of
models where the likelihood is not known or difficult to
compute. This is a great advantage in the model development
as models can potentially be calibrated before their derivation
is finalized. If the model is deemed worthy of further study,
effort may be devoted to derive its likelihood function. The
proposed method may also be used in cases where such
a likelihood is in fact available, or available up to some
intractable normalization constant. In such cases the ABC
approach may, however, be less effective than methods based
on the likelihood. In those cases, other distances could be
used; see for example Stein discrepancies for cases where the
likelihood is unnormalised [73]. Similarly, if factorization of
the likelihood is possible and some factors can be evaluated,
more efficient inference methods than ABC may be derived
relying e.g. on message passing techniques. Such methods rely
extensively on the particular models and the structure of their
likelihoods. Thus, the gain in efficiency comes at a cost in
the form of a loss in generality compared to the proposed
ABC method. Finally, we remark that distance metrics such as
the Wasserstein or the Hellinger distance could potentially be
used instead of the MMD. However, future studies are required
to assess their applicability for calibrating stochastic channel
models.

VIII. CONCLUSION

The proposed ABC method based on MMD is able to
accurately calibrate wideband radio models of very different
mathematical structure. The proposed method relies on com-
puting temporal moments of the received signal, and thereby
circumvents the need for multipath extraction or clustering. As
a result, the method is automatic as no pre- or post-processing
of the data and estimates are required. We find that the method
is able to fit models to both simulated and measured data.
This work opens possibilities of developing similar methods
for calibrating directional and time-dependent channel models.
Potentially, maximum mean discrepancy could be used for
other problems in propagation and communication studies that
involve comparing data-sets.
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