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Abstract Liver resection is the main curative option for liver metas-
tases. While this offers a 5-year survival rate of 50%, only about 20% of
all patients are suitable for laparoscopic resection and thus being able to
take advantage of minimally invasive surgery. One underlying difficulty is
the establishment of a safe resection margin while avoiding critical struc-
tures. Intra-operative registration of patient scan data may provide a so-
lution. However, this relies on fast and accurate reconstruction methods
to obtain the current shape of the liver. Therefore, this paper presents
a method for high-resolution stereoscopic surface reconstruction at in-
teractive rates. To this end, a feature-matching propagation method is
adapted to multi-resolution processing to enable parallelisation, remove
global synchronisation issues and hence become amenable to a GPU-
based implementation. Experiments are conducted on a planar target
for reconstruction noise estimation and a visually realistic silicone liver
phantom. Results highlight an average reconstruction error of 0.6mm
on the planar target, 2.4–5.7mm on the phantom and processing times
averaging around 370 milliseconds for input images of size 1920 x 540.

1 Introduction

Resection of a segment or lobe of the liver in metastatic or primary liver cancer
is the main curative option. This is traditionally done in an open procedure,
resulting in a large wound on the patient’s abdomen to allow access for the
surgeon to palpate and identify important structures within the liver and distin-
guish normal liver from tumour. A minimally invasive approach instead might
reduce trauma, infection risk, post-operative pain and cosmetic issues. However,
difficulties in estimating a safe resection margin, proximity to blood vessels and
tumour size, etc deny more than 80% of patients this option. In order to in-
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crease suitability for the laparoscopic approach, improved surgical guidance and
navigation is required.

To this end, robust registration methods are necessary that need as input
a physically-based deformable model of the liver [1] and an up-to-date estimate
of the organ’s surface geometry serving as a deformation target [2,3]. Recon-
structing the organ surface in real-time and in sufficient detail is a challenging
problem due to view-dependent specular highlights and the relatively uniform
appearance of the liver. This also complicates registration because only a small
part of it is visible. Existing methods [4,5] use natural features like the falciform
ligament and inferior edges along liver segments. As the laparoscope is relatively
easy to navigate looking at these features, recovering their position and shape
from video should be possible using stereoscopic reconstruction methods.

In building a stereo-matching algorithm, a popular choice is to perform a
pyramidal search, reducing the necessary disparity search range. This is be-
cause larger features are captured in lower-resolution pyramid levels without
increasing the disparity range on that level [6]. A common approach is to fil-
ter and subsample the images into Gaussian pyramids first. Then find disparity
on low-resolution levels, upscale these to the next level and refine with higher-
resolution image data. This, however, easily breaks object boundaries and special
care must be taken to consider the effects of down-sampling [7]. Also, while this
approach appears to be easily parallelisable, the output degrades quickly. Other
recent methods allow real-time reconstruction from either low-resolution [8,9,10]
or high-definition video [11].

This paper proposes a stereo-matching strategy based on a coarse-to-fine
pyramidal approach, adapted from sequential local match-propagation [12]. Con-
trary to other approaches that process image pyramid levels in sequence and
upscale the results of a lower-resolution level to the next one, the proposed novel
approach traverses the pyramid vertically by starting on the pyramid tip and
traces out left-right matches to increasing image resolution. This vertical prop-
agation thereby enables correspondence search window sizes to be kept small
as a large high-resolution window is equivalent to a small low-resolution one,
similar to existing coarse-to-fine approaches. However, vertical propagation also
enables bounding of hot-loop data structures in size. This is a prerequisite to ef-
ficient GPU-implementation where low-latency on-chip memory is scarce. Multi-
threaded operation follows naturally, allowing stereoscopic surface reconstruction
at interactive rates from high-resolution video. Recovering the shape of the liver
anatomy can then be used to register a deformable liver model, reducing the time
required for an initial registration, or updating an existing registration during
the procedure.

2 Method

Figure 1 depicts the processing pipeline of the proposed method for an integrated
system. After initial transfer of the laparoscopic video frames to GPU memory,
left and right channels are prepared for processing, followed by a matching kernel.
Highlighted core steps are described in more detail in the following sections.



Disparity filtering and triangulation follow standard procedures and are thus
not described further.
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Figure 1. Pipeline of the proposed method in context for this application. The in-
coming video frames are captured and transferred to GPU memory for stereoscopic
matching and other processing. The highlighted core steps are presented in this paper.

2.1 Frame Preparation

Prior to matching, frame preparation is necessary. Input images left I0 and right
I1 are cropped to a size that is a multiple of 32. This is necessary to ensure
a well-formed 2:1 image pyramid with sufficient levels. Cropping is centred so
that only a few pixels along the border, which rarely contain usable features,
are lost. Afterwards, the cropped RGBA images are converted to greyscale and
each resampled with a box filter into an image pyramid, P0 and P1 respectively,
at successively lower resolutions. For each level l of each pyramid P l, quantities
required for fixed-window-size zero-mean normalised cross correlation (ZNCC)
are precomputed. In addition, a bit mask is computed for textureless areas by
checking for a non-zero horizontal and vertical pixel gradient, preventing gross
mismatches in the correspondence propagation.

2.2 Match Propagation – Single-threaded

While the proposed method is motivated by a multi-threaded GPU-amenable de-
sign and implementation, it appears reasonable to describe the matching process
for a single thread first.

The overall left-to-right matching strategy takes advantage of an existing
match and propagates more matches around this initial “seed” position, avoiding
a large amount of false matches that could occur otherwise. Matching starts from
the lowest-resolution pyramid level l that is large enough to contain the various
pixel windows described below. At this resolution, the disparity for intended
stereoscopic cameras is sufficiently close to 1 or 2 pixels, removing the need for
explicit feature match initialisation between left and right views for the initial



seed. Thus, at the very beginning, an initial seed k := {x0, y0, x1, y1} is set to
the image centres. Figure 2 illustrates key elements.

Broadly speaking, each iteration of matching performs:

1. Generation of a list of candidate matches around the current seed.
2. Establishment of global uniqueness per level.
3. Initialisation of a new seed for pyramid level l + 1 from the established

matches and jump to l + 1, starting at (1).
4. On the highest-resolution level, keep matching horizontally.
5. Once the list of candidate matches is exhausted, jump back to previous level

l − 1 and continue at (1).

More specifically, for step (1): Around each seed k, compute ZNCC [13] for a c×c
pixel sized correlation window C in P0 and P1, shifted by the neighbourhood
window N of up to n× n pixels in either dimension (allowing matching to skip
across poorly defined areas) in both left and right image simultaneously. In
the right image only, the correlation window is shifted by an additional search
window S of s × s pixels (this adapts the computed disparity to changes with
perspective). This produces a list of up to n × n × s × s left-right coordinate
pairs q := {x0, y0, x1, y1, b} ∈ Ql

0, each with a corresponding correlation b. If b is
smaller than a certain threshold b< then that entry is dropped.

Entries in Ql are sorted according to numerical value b, highest first. Each
entry is read, and its left-right-coordinates written to the disparity map d :=
{x0, y0, x1, y1} ∈ Dl (implemented as a 2-channel image, storing x1, y1 at each
x0, y0) for level l if no other match has been recorded for either x0, y0 or x1, y1
already. If instead an entry already exists in Dl then that particular q is removed
from Ql. Once Ql has been processed (leaving its entries intact; these will serve
as new seeds later), its top entry is used to initialise a new seed for level l + 1 by
multiplying its coordinates by two (step (3) in the list above). Processing then
continues with step (1) again at the next level.

Once the highest-resolution level is reached, match propagation continues
horizontally (step (4)). Eventually, the processing in step (1) will not add new
entries to Ql due to poor correlation between left and right pixel patches. At
this point, propagation stops at the current level and returns to l−1, continuing
with Ql−1 at step (1) where it left off (step (5) in the list above).

2.3 Multi-threaded Matching

The matching strategy described above can easily be run multi-threaded. In-
stead of a single starting position, many are chosen with pseudo-random offsets.
Each thread processes P0 and P1 from its assigned seed, independently of other
threads. However, as many threads would start off from effectively the same
starting conditions they would also produce exactly the same result yielding no
improvement in performance or match coverage. Therefore, divergence is trig-
gered by employing a “permissible thread map” T , a bitmap the size of the input
images, labelling each pixel for which thread is allowed to process it. The map T
is generated once at start-up time representing a simple block structure of 4 x 2
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Figure 2. Illustration of how match propagation proceeds vertically across the pyra-
mid. Symbols are further explained in the text of Sec. 2.2.

partitions, yielding 8 different blocks that map onto an 8-bit thread-ID bit pat-
tern. It is then filtered and downsampled into the remaining pyramid levels T l

by OR-ing thread-ID bits from the higher-resolution level, effectively blurring
the boundaries between blocks as the pyramid level resolution decreases.

A potential performance bottleneck is the priority queue Q used to store
match candidates. While each thread has its own instance per level, it is initially
unbounded in size, posing a challenge for an efficient GPU implementation where
access patterns to memory are critical. With the proposed method however,
it turns out that maximum observed queue sizes are short in practice, only
slightly larger than the number of newly arriving candidates in match-step (1).
Therefore, constraining the size of Q for each thread allows the fitting of hot
data in performance-critical shared memory and registers.

3 Experiments & Results

For all experiments described below, Table 1 lists the parameter values used for
the propagation. All experiments are performed on an NVIDIA Quadro K5000
card. Stereo-pairs were recorded with a Viking 3DHD Vision System Dual Chan-
nel 30º laparoscope (formerly Viking Systems, Inc., USA). It provides two SDI
outputs at 1080i at 59.9Hz. The bottom field was discarded from both channels
as interlacing interferes heavily with matching. Intrinsic and extrinsic camera
calibration were determined using functions implemented in OpenCV. Video
frames were then undistorted. No further preprocessing was performed.

3.1 Plane Experiment

In stereo-matching, small errors can be amplified easily by the stereo-rig geom-
etry. This manifests in large spread in the z-coordinate. To assess this effect in
combination with the above mentioned laparoscope, a flat piece of paper was



Table 1. Propagation parameters used for experimental results. They were determined
empirically.

Parameter Symbol(s) Value Units
Search window size S: s× s s = 3 pixels

Correlation window size C: c× c c = 5 pixels
Neighbourhood window size N : n× n n = 3 pixels

Correlation threshold b< b< = 0.6 —

printed with a noise pattern and filmed at an angle of approximately 30 degrees
by pointing the laparoscope straight down. The distance from lens to surface was
in the range of 4–7 cm. The resulting stereo-pair was then processed by sequen-
tial matching [12] (with a correlation window 19 x 19 pixels) and the proposed
method (with parameters in Table 1), yielding two disparity maps. Figure 3 il-
lustrates these. The disparity maps were triangulated into a point cloud using
previously obtained camera parameters, and a plane was fitted through each.
These planes serve as a silver standard regarding reconstruction noise: comput-
ing an RMS distance of reconstructed points to estimated plane yields 0.42mm
for sequential and 0.67mm for the proposed method.

(a) (b) (c)

(d) (e)

Figure 3. Textured plane imaged at a 30 degree angle for estimating reconstruction
noise. (a) shows the left channel of the stereo pair used to reconstruct the disparity
maps for (b) the sequential method and (c) the proposed method. Brighter colour
corresponds to higher disparity. The corresponding point clouds and fitted planes are
shown in (d) and (e), respectively. The axis icon signifies the camera location.

3.2 Phantom Experiment

To evaluate the proposed method in a more realistic scenario, a flexible visually
realistic human liver phantom (Healthcuts, London, UK) was custom-made. It



consists of a deformable main organ body made of silicone and a rigid carbon
fibre base with nine rigid “prongs” holding the body in place, allowing it to be
taken off and put back on repeatably (Fig. 4a-b). The phantom was CT-scanned
at 0.98 x 0.98 x 0.6mm voxel resolution, an ISO-intensity surface extracted using
Marching Cubes, and edited to remove irrelevant geometry.

The endoscope was positioned at a surface distance of 4–7 cm, making sure
at least three prong tips were visible. The tips were marked in the left and right
images, triangulated to 3D and aligned to the CT-scan with a least-squares
optimisation. This registration was used as the gold standard location of the
phantom relative to the camera lens. The corresponding fiducial registration er-
ror (FRE) for this alignment is reported in Table 2. The silicone phantom was
then replaced onto the prongs and imaged. The left and right image were undis-
torted, and processed by the sequential method and the proposed one, yielding
a point cloud. For each point in the output point cloud, the closest distance to
the phantom surface was computed and aggregated into a root-mean-squared
error (RMSE) for each method. These steps were repeated for three individual
data sets, taken from different angles of the same phantom. Table 2 shows that
the proposed method produces slightly higher errors compared to the sequential
method, however at a fraction of the run time. Figure 4c-d show unfiltered re-
constructed point clouds, overlaying the two methods for comparison. The red
point cloud is the sequential method, and the yellow cloud the proposed method.
As can be seen, the latter is slightly more noisy. Most of these mismatches are
caused by view-dependent specular highlights, which the sequential method can
match around more easily as its propagation queue has a global view on all
possible match candidates.

All runtime measurements in Table 2&3 were conducted on a PC running
Windows 7, 16GB RAM, NVIDIA Quadro K5000 with 4GB RAM and Intel
Xeon E5-2609 at 2.4GHz dual socket, four cores each.

Table 2. Reconstruction error on the liver phantom, using RMSE between recon-
structed points and CT phantom surface as the metric. Input stereo pairs have a
resolution of 1920 x 540 pixels. The data set number refers to Fig. 4.

Data set Fiducial Registration Error Proposed GPU Sequential CPU [12]
1 1.3mm 2.4mm, 330 ms 1.8mm, 2855 ms
2 2.1mm 5.3mm, 409 ms 4.5mm, 3333 ms
3 2.6mm 5.7mm, 397 ms 2.5mm, 2875 ms

Existing literature [11,8] compares reconstruction results on the Hamlyn Heart
phantom data set [12]. The proposed method reconstructs the surface with an
RMSE of 3.2mm and an average error of 2.1mm. In comparison, the sequential
method, as implemented, reconstructs an RMSE of 3.0mm and an average error
of 2.1mm (compared to 3.9 and 2.4mm respectively, as reported previously [8]).



(c) (e)(d)

(a) (b)

1
2 3

1 2 3

Figure 4. Silicone phantom of a human liver, manufactured to be visually realistic,
with carbon fibre prongs holding the deformable main body in position. (a) shows the
main body, mounted on its base; (b) shows the mesh derived from a CT-scan including
the prongs inside it. (c)-(d) show laparoscope images and corresponding unfiltered
reconstructions for three different view points, overlaying both sequential and parallel
method, displayed top-down.

3.3 Runtime Evaluation

The proposed method has been integrated with the NVIDIA Digital Video
Pipeline, allowing direct transfer of SDI-supplied high resolution video to GPU
memory. Once stereoscopic video frames have arrived in texture memory as
RGBA arrays, the frame preparation process is started, followed by the match-
ing kernel described above. Table 3 shows average processing times on a NVIDIA
Quadro K5000 at different input resolutions. Timing resolution is in the order
of one millisecond. The frame preparation step is dependent only on image res-
olution, image content has no impact on timing, hence variation is effectively
zero given the timer resolution. The actual matching step however does depend
on image content as the presence of gradients determine propagation. The time



required to copy the result back to host memory is specifically excluded because
it is expected that a streamlined registration system will perform triangulation,
point cloud filtering, etc on the GPU too. Table 3 compares the runtime of the
sequential method on the aforementioned Xeon CPU, highlighting a performance
increase of 3–9 fold.

Table 3. Runtime of the proposed algorithm, averaged over a number of different
sequences, compared to the sequential method. All reported times are in milliseconds,
with µ being the mean and σ the standard deviation.

Image size Prepare Match Total Seq. CPU Speed up
input cropped to µ σ time µ σ

360 x 288 352 x 288 1.1 73.2 11.3 74.3 253.6 8.4 3.4
1920 x 540 1920 x 512 4.9 373.9 45.6 378.8 2879.9 225.3 7.6
1920 x 1080 1920 x 1056 9.5 481.2 79.0 490.7 4447.9 260.4 9.1

4 Discussion & Conclusions

The proposed method is able to perform stereo-matching at interactive frame
rates with an accuracy suitable for laparoscopic applications. Contrary to many
existing methods, the proposed one does not rely on stereo-rectified images; it
performs a 2D search instead of a 1D search along the epipolar line. While this
increases processing cost significantly, it increases the number of successfully
matched pixels as each seed is free to propagate along image structures in any
direction. However, stepping the neighbourhood window N simultaneously for
both left and right ensures that matches will not criss-cross (observing a local
2D ordering constraint). Also, ZNCC is a very expensive cost function. However,
it was chosen for its robustness against radiometric changes between different
views. It was found to be reliable [13] on the Middlebury data set, however, not
the top performer. Contrary to a controlled lab environment, minimally invasive
surgery exhibits severe radiometric issues due to uncontrollable auto-gain in
the camera, non-uniform lighting and inter-tissue reflections. As the algorithm
is effectively a variant of winner-takes-all in the match propagation phase and
first-come-first-served with respect to multi-threading, its output depends on
timing and scheduling details. While this sounds bad from a computational point
of view, it has no impact in practice and relaxing a strict no-race-condition
requirement allows for significant improvements to execution speed. A particular
problem not addressed yet is related to object segmentation: the camera views
the abdominal cavity, possibly with many unrelated structures in view. This will
be addressed in future work.
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