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ABSTRACT
The Event Horizon Telescope (EHT) collaboration, an Earth-size sub-millimetre radio interferometer, recently captured the first
images of the central supermassive black hole in M87. These images were interpreted as gravitationally lensed synchrotron
emission from hot plasma orbiting around the black hole. In the accretion flows around low-luminosity active galactic nuclei
such as M87, electrons and ions are not in thermal equilibrium. Therefore, the electron temperature, which is important
for the thermal synchrotron radiation at EHT frequencies of 230 GHz, is not independently determined. In this work, we
investigate the commonly used parametrized ion-to-electron temperature ratio prescription, the so-called R−β model, considering
images at 230 GHz by comparing with electron-heating prescriptions obtained from general-relativistic magnetohydrodynamical
(GRMHD) simulations of magnetized accretion flows in a Magnetically Arrested Disc (MAD) regime with different recipes
for the electron thermodynamics. When comparing images at 230 GHz, we find a very good match between images produced
with the R−β prescription and those produced with the turbulent- and magnetic reconnection-heating prescriptions. Indeed, this
match is on average even better than that obtained when comparing the set of images built with the R−β prescription with either
a randomly chosen image or with a time-averaged one. From this comparative study of different physical aspects, which include
the image, visibilities, broad-band spectra, and light curves, we conclude that, within the context of images at 230 GHz relative
to MAD accretion flows around supermassive black holes, the commonly used and simple R−β model is able to reproduce well
the various and more complex electron-heating prescriptions considered here.

Key words: accretion, accretion discs – black hole physics – MHD – radiative transfer – methods: numerical.

1 IN T RO D U C T I O N

High-frequency very long baseline interferometry (VLBI) on Earth-
sized baselines can resolve the immediate vicinity of nearby su-
permassive black hole (SMBH) event horizons. The Event Horizon
Telescope (EHT) collaboration was established to build a global 1.3-
mm wavelength VLBI network with the aim of capturing images of
its primary targets: Sagittarius A∗ (Sgr A∗), the SMBH at the centre
of our Galaxy, and Messier 87 (M87), the active galactic nucleus
(AGN) at the heart of the Virgo A galaxy (Doeleman et al. 2008;
Goddi et al. 2017). In April 2017, the EHT made the first observations
with a full array capable of imaging with all eight participating
radio telescopes, revealling an asymmetric ring morphology of the
central compact radio source in M87 (Event Horizon Telescope
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Collaboration 2019a, b, c, d, e, f). This image is interpreted as
gravitationally lensed emission surrounding the black hole shadow
(Event Horizon Telescope Collaboration 2019a, e).

The mass-accretion rates of M87 and Sgr A∗ are several
orders of magnitude less than the Eddington limit and, hence, the
corresponding luminosities of M87 and Sgr A∗ are significantly
lower than their respective Eddington luminosities Ho (e.g. 2009);
Prieto et al. (e.g. 2016). Furthermore, recent Faraday-rotation
measurements of Sgr A∗ and M87 have provided indirect evidence
of low mass-accretion rates (e.g. Bower et al. 2003; Marrone et al.
2007; Kuo et al. 2014). In this regime, material accreting on to the
central black hole is understood to be in the radiatively inefficient
accretion flow (RIAF) state, which comprises a geometrically thick
and optically thin accretion disc (e.g. Narayan & Yi 1994; Yuan &
Narayan 2014). RIAF models have been employed to investigate
the innermost accretion flow structures for EHT target objects via
semi-analytical approaches (e.g. Broderick & Loeb 2006; Broderick
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et al. 2009, 2011, 2016; Pu et al. 2016; Pu & Broderick 2018). In the
past, many general-relativistic magnetohydrodynamical (GRMHD)
simulations have been performed for single-fluid RIAFs on to
rotating black holes for the study of event horizon-scale emission
(e.g. Noble et al. 2007; Dexter, Agol & Fragile 2009; Mościbrodzka
et al. 2009, 2012, 2014; Dexter et al. 2010; Shcherbakov, Penna &
McKinney 2012; Chan et al. 2015; Mościbrodzka, Falcke &
Shiokawa 2016; Gold et al. 2017; Porth et al. 2017; Mizuno et al.
2018; Davelaar et al. 2018, 2019).

In hot and low-density accretion flows such as RIAFs, Coulomb
coupling between electrons and ions is inefficient (e.g. Mahadevan &
Quataert 1997; Mahadevan 1998; Yuan & Narayan 2014), and
electrons and ions are not in thermal equilibrium. In most single-fluid
MHD simulations, the ion temperature is dominant and therefore the
electron temperature, which is important for the radiation, cannot be
determined directly.

For modelling the emission from single-fluid GRMHD simula-
tions, the ion-to-electron temperature ratio is typically set man-
ually in radiation post-processing calculations. The simplest pre-
scriptions for the electron temperature take Ti/Te to be constant
(Mościbrodzka et al. 2009), dividing the simulation regions into jet
and disc components, with different temperature ratios in each region
(e.g. Mościbrodzka et al. 2014; Chan et al. 2015). Mościbrodzka
et al. (2016) introduced a simple formula, the so-called ‘R−β’
prescription, which is associated with plasma magnetization. This
ion-to-electron temperature ratio prescription has been used in the
development of theoretical model observations in the image library
of M87 by the EHT (Event Horizon Telescope Collaboration 2019e).
Anantua, Ressler & Quataert (2020) have proposed several new
parametrized prescriptions as a function of the plasma beta or
the magnetic pressure, which are termed: critical beta electron
temperature model, constant electron beta model, and magnetic bias
model. Typically, a high ion-to-electron temperature ratio implies
that the electron heating does not impact the dynamics of the plasma
flows because the electron pressure is low.

Recently, Ressler et al. (2015) presented a new formulation of
GRMHD simulations which allows for the self-consistent evolution
of the electron fluid, including, independent of one another, the
effects of electron heating and conduction of heat flux along magnetic
field lines. This approach is applied to the modelling of Sgr A∗
images and spectra (Ressler et al. 2017). Dexter et al. (2020)
performed a parameter survey of Sgr A∗ using different black hole
spins, electron-heating prescriptions, and different accretion flow
properties. Ryan et al. (2017) and Sądowski et al. (2017) have
extended this formulation to include the effects of radiative feedback.
This has been applied to investigate images and variabilities of Sgr
A∗ (Chael et al. 2018) and M87 (Ryan et al. 2018; Chael, Narayan &
Johnson 2019).

From previous studies, we have two main approaches for the
modelling of ion-to-electron temperature ratio from GRMHD sim-
ulations: either setting the ratio manually in the post-processing
calculation, or calculating the ratio from a more self-consistent
evolution of the electron fluid from GRMHD simulations. However,
so far, direct comparison between these two approaches has not been
explored in detail. Consequently, in this work we seek to compare the
simplified R−β model using 230 GHz EHT images, time variability
at 230 GHz, and the corresponding broad-band spectra with the
results obtained from electron-heating prescriptions of GRMHD
simulations of accretion flows on to a black hole with electron
thermodynamics. In Section 2, we present our numerical approach
and initial setup of GRMHD simulations and general-relativistic
radiative transfer (GRRT) calculations.

In this study, we focus on one accretion scenario, the Magnetically
Arrested Disc (MAD; e.g. Narayan, Igumenshchev & Abramowicz
2003; Tchekhovskoy, Narayan & McKinney 2011). We show our
comparison results in 230 GHz images, time variability of the 230-
GHz flux, and spectra from different black hole spins, different
electron-heating prescriptions, and different inclination angles in
Section 3. In Section 4, we discuss our findings and the limitations
of our approach. We conclude in Section 5.

Throughout this paper, we adopt units where the speed of light,
c = 1, and the gravitational constant, G = 1. Self-gravity arising from
the gas is neglected. We absorb a factor of

√
4π into the definition

of the magnetic field 4-vector, bμ.

2 NUMERI CAL SETUP

We have performed a set of three-dimensional (3D) GRMHD
simulations of magnetized tori in a black hole space-time using the
BHAC code (Porth et al. 2017; Olivares et al. 2019). Simulations
are initialized with a Fishbone–Moncrief hydrodynamic equilibrium
torus (Fishbone & Moncrief 1976) with parameters rin = 20 rg and
rmax = 40 rg, where rg ≡ GM/c2 is the gravitational radius of the
black hole and M is its mass. An ideal-gas equation of state with a
constant relativistic adiabatic index of �g = 4/3 is used (Rezzolla &
Zanotti 2013). We note that some previous studies (Sądowski et al.
2017; Chael et al. 2018, 2019) have used a variable equation of
state in which the adiabatic index depends on the temperature. This
equilibrium torus solution is overlaid with a weak single magnetic
field loop, whose radial distribution of the field profile is designed
to supply enough magnetic flux on to the black hole to reach the
magnetically arrested disc (MAD) state (e.g. Narayan et al. 2003;
Tchekhovskoy et al. 2011). In order to excite the magneto-rotational
instability (MRI) inside the torus, 2 per cent of a random perturbation
is applied to the gas pressure within the torus. In this paper, we choose
three values for the dimensionless spin parameter: a = −0.9375, 0,
and 0.9375.

The simulations are performed in spherical Modified Kerr–Schild
coordinates. The outer radial boundary is located at r = 2500 M .
The inner radial position of the simulation domain is well inside the
black hole horizon in all cases. The grid resolution is 384 × 192 ×
192, including the full 2π azimuthal domain. The simulations are
evolved up to t = 15 000 M in order to reach a quasi-steady state.

We solve the electron thermodynamics during the evolution of
single-MHD fluid separately. For electron variables, we assume both
charge neutrality and that the electron number density and four
velocity are the same as those of the ions, i.e. ne = ni = n and
uμ

e = uμ
i = uμ. However, the electron entropy equation is solved for

the electron temperature separately:

ρTe∂μse = feQ, (1)

where ρ is the fluid rest-mass density, se = (�e − 1)−1 log(pe/ρ
�e )

is electron entropy, �e is adiabatic index for the electrons, pe is the
electron pressure, fe is a fraction of the dissipative heating which
goes into electrons, and Q is the total heating rate per unit volume.
Here, we neglect the energy exchange rate due to Coulomb coupling,
anisotropic thermal heat flux, and radiative cooling which have been
considered in previous works (Ressler et al. 2015, 2017; Chael et al.
2018, 2019).1 The total heating rate, Q, is calculated through direct

1Ressler et al. (2015) have included anisotropic conduction of heat along
magnetic field lines. They reported that this conduction has little effect on the
spectrum and image. Chael et al. (2018) have considered radiative cooling of
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comparison between the internal energy obtained from solving an
electron entropy conservation equation and the total internal energy
of gas as described in Ressler et al. (2015).

In order to apply the electron entropy equation in GRMHD
simulations using the BHAC code, equation (1) has been rewritten as

∂μ(
√−gρuμκe) =

√−g(�e − 1)

ρ�e−1
feQ , (2)

where κe ≡ exp [(�e − 1)se]. Without the heat conduction term,
equation (2) takes a conservative form, with conserved quantities
Uκe ≡ √−gρutκe and flux F i

κe
≡ √−gρuiκe. In order to obtain the

time evolution of κe, we use operator splitting by following Ressler
et al. (2015): (i) solve the conservative equation without a source
term, Sκe , (ii) update κe with the heating in the source term explicitly.

For the evaluation of heating in each time-step, the entropy
conservation equation (Uκg ≡ √−gρutκg, F i

κg
≡ √−gρuiκg, and

Sκg = 0) is introduced as a reference to compare with the energy
conservation equation. The heating update to the electrons is calcu-
lated by the difference between the entropy obtained from the total
energy conservation equation (κg) and the entropy obtained from the
entropy conservation equation (κ̂g) as given by

κn+1
e = κ̂n+1

e + �e − 1

�g − 1

(
ρ�g−�efe

)n+1/2
(κg − κ̂g)n+1 , (3)

where κ̂e is the solution from the electron entropy conservation
equation without a source term.

In GRMHD simulations, the heating is provided by grid-scale
dissipation which is related to magnetic reconnection, shock heating,
Ohmic heating, and turbulent heating. In this work, we consider two
heating prescriptions: turbulent heating and magnetic reconnection,
to determine the heating fraction fe. In the turbulent heating model,
we use the results of numerical simulations of damping of MHD
turbulence by Kawazura, Barnes & Schekochihin (2019):

fe = 1

1 + Qi/Qe
, (4)

where

Qi

Qe
= 35

1 + (β/15)−1.4 exp (−0.1Te/Ti)
, (5)

and where β ≡ pg/pm is the plasma-beta parameter, the ratio between
the fluid pressure and magnetic pressure pm = b2/2. This formula
expresses a transition with increasing β from an electron-dominated
heating to a proton-dominated one; this transition takes place around
the value of β ∼ 1. Howes (2010) has provided fitting formulae de-
rived from the linear theory of damping of MHD turbulence, showing
quantitatively similar behaviour to that described by Kawazura et al.
(2019). Recently, Kawazura et al. (2020) extended their investigation
and provided new fitting formulae of the ion-to-electron heating rate
by turbulence, including the compressive-to-Alfvénic driving power
ratio. In this work, we have not adopted this formula for turbulent
heating model. In the magnetic reconnection model, we employ a fit-
ting function as measured in particle-in-cell simulations of magnetic
reconnection described by Rowan, Sironi & Narayan (2017):

fe = 1

2
exp

[−(1 − β/βmax)

0.8 + σ 0.5
h

]
, (6)

where βmax = σ h/4, σ h = b2/ρh is magnetization as defined with
respect to the fluid specific enthalpy h = 1 + �g pg/(�g − 1). In

electrons and Coulomb coupling of electrons to ions. These effects are mostly
unimportant for low accretion rate systems such as Sgr A∗ and M87.

the formula for the magnetic-reconnection heating prescription, fe

reaches its maximum value, i.e. 1/2, in highly magnetized regions
(σ h � 1) or in regions with large β. On the other hand, in regions
with small β (β � βmax), fe attains small values that depend on
σ h. Finally, in the limit of non-relativistic reconnection, i.e. σ h �
0.1, fe → 0.14. Recently Rowan, Sironi & Narayan (2019) has
provided a new fitting formula for the heating prescription for the
magnetic reconnection model, including the effect of guide fields.
A quantitatively similar behaviour to that found in Rowan et al.
(2017) was demonstrated. We here perform GRMHD simulations
considering two different electron heating prescription – either
turbulent or magnetic-reconnection heating – and three different
black hole spins, for a total six 3D GRMHD simulations.

In the GRMHD simulations, we take the adiabatic index of the
electron fluid to be �e = 4/3 and initially set the electron internal
energy density ue to 10 per cent of the fluid internal energy density
ug. The evaluation of the implementation of the electron-heating
calculations in the BHAC code and its convergence is presented
in Appendix A, where we show its correct implementation and
convergence when �g = �e.

As customary in codes solving the equations of relativistic hydro-
dynamics or those of GRMHD, the occurrence of vacuum is avoided
by introducing a very low density fluid, i.e. an atmosphere, filling
regions that are far from the high-density fluid (Rezzolla & Zanotti
2013). In essence, floor values are applied to the rest-mass density,
ρfl = 10−4r−2 and the gas pressure, pfl = (10−6/3)r−2�g , so that in all
the numerical cells for which ρ ≤ ρfl or p ≤ pfl, we simply set ρ = ρfl

and p = pfl. Similarly, a ceiling is introduced in those regions of high
magnetization, so that we set σ max = 100 in all those cells for which
σ ≥ σ max. Finally, for the electron entropy we apply both a floor and
a ceiling to the electron pressure. More specifically, if the electron
pressure is less than 1 per cent of the floor value of the gas pressure
pfl, we then reset pe = 0.01pfl. At the same time, if the electron
pressure is larger than the gas pressure, we reset pe = 0.99pg. We
note that we re-calculate the gas entropy κg and the electron entropy
κe in those cells where the density is floored.

In order to obtain the synthetic image from GRMHD simulations,
we perform GRRT calculations in post-processing using BHOSS
(Younsi, Wu & Fuerst 2012; Younsi et al. 2016; Younsi et al. 2020).
The BHOSS code performs GRRT calculations of the GRMHD
simulation data in post-processing. The equations of GRRT are
solved along geodesics integrated through this GRMHD data, and
the resultant images, light curves and spectra as seen by a distant
observer for a given viewing angle and observing frequency are
determined.

In this work, we adopt a relativistic thermal Maxwell–Jünttner
electron distribution function for the synchrotron absorption and
emission given by Leung, Gammie & Noble (2011). For the electron–
ion temperature ratio, we consider two different approaches. The first
uses the aforementioned R–β prescription:

Ti

Te
= 1

1 + β2
Rl + β2

1 + β2
Rh . (7)

In the R−β prescription, the temperature ratio in the strongly
magnetized regions (βp � 1) like the jet funnel is Ti/Te ∼ Rl and in
weakly magnetized regions (βp � 1), such as the disc, this tends to
Ti/Te ∼ Rh. In our work, we fix Rl = 1 and vary Rh as Rh = 1, 5, 10, 20,
40, 80, and 160, a similar choice to that of Event Horizon Telescope
Collaboration (2019e). Here, we keep Rl = 1 fixed and vary Rh

from 1 to 160, following the analysis carried out by Event Horizon
Telescope Collaboration (2019e). Nevertheless, in Appendix C, we
investigate the effect of adopting different values for Rl and conclude
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that the image-comparison results do not depend on the choice made
for Rl.

The second approach takes the ion-to-electron temperature ratio
directly from the electron-heating prescription calculated in the
GRMHD simulations. The electron pressure is computed as pe =
κeρ

�e , where the values of κe are updated as in equation (3). The
ion-to-electron temperature ratio is then calculated as Ti/Te = (pg −
pe)/pe.

The dimensionless electron temperature is then given by

	e =
(

pg − pe

ρ

) (
mp/me

Ti/Te

)
, (8)

where mp and me are the proton and electron masses, respectively,
and we assume a fully ionized hydrogen plasma.2 The electron
temperature in c.g.s. units is calculated as Te = mec2	e/kB, where kB

is the Boltzmann constant.
Although GRMHD simulations are scale-free, the GRRT calcu-

lation depends on the physical mass scale. Here, we consider our
target central black hole to be M87 with a mass M = 6.5 × 109 M� at
a distance D = 16.8 Mpc (Event Horizon Telescope Collaboration
2019f). We set the mass scale unit which is the conversion from
simulation density to physical density by normalizing the time-
averaged flux at 230 GHz to the value of 0.5 Jy (Event Horizon
Telescope Collaboration 2019e).

In GRRT calculations, we limit the emission regions in which
we can reasonably trust the fluid thermodynamics by imposing a
threshold on the magnetization σ = b2/ρ. We only consider emission
that originates from the regions where σ < 1. In regions with σ > 1,
the fluid density and temperature may be affected by the simulation
floors and are therefore unreliable. Furthermore, we also adopt the
‘fast light’ approximation. In this approximation, we calculate a
emission on a fixed time slice of fluid quantities which means the
light propagation time across the domain is small compared to the
dynamical time-scale of the system.

3 R ESULTS

3.1 GRMHD simulations with electron thermodynamics

In order to investigate the properties of accretion flows quantitatively,
we calculate the volume-integrated mass-accretion rate and magnetic
flux rate at the black hole horizon. Following Porth et al. (2019) we
define the mass-accretion rate as

Ṁ =
∫ 2π

0

∫ π

0
ρur

√−gdθdφ, (9)

while the magnetic flux rate is written as

�B = 1

2

∫ 2π

0

∫ π

0
|Br |√−gdθdφ. (10)

Fig. 1 shows time evolution of mass-accretion rate (Ṁ) and
dimensionless magnetic flux rate at the black hole horizon
(�B/

√
Ṁ) in black hole spin cases with a = −0.9375 (red), 0

(blue), and 0.9375 (black). The mass-accretion rates have very
similar profiles amongst different black hole spin cases, which
gradually decrease with time after t = 4000 M . The dimensionless
magnetic flux saturates at the maximum values of �B/

√
Ṁ 
 15

2In the R−β parametrization, we use pg instead of pg − pe because it is not
possible to estimate pe from one-temperature GRMHD simulations. This is
equivalent to assuming Ti 
 Tg and Ti � Te (e.g. Mościbrodzka et al. 2016).

Figure 1. (Top) mass-accretion rate and (bottom) magnetic flux rate at the
black hole horizon for a black hole with a = −0.9375 (red), 0 (blue), and
0.9375 (black).

in the cases with a = 0.9375 and 0. In counteR−rotating case with
a = −0.9375, the maximum values of dimensionless magnetic flux
adopt a somehow lower value of 8. These values are consistent with
Tchekhovskoy & McKinney (2012).3 All cases reach the MAD state
after t = 6000 M . As first discussed by Tchekhovskoy & McKinney
(2012), a counter−rotating accretion flow leads generically to a
smaller saturation value of the magnetic flux than in the case of
a co-rotating flow. Furthermore, the results obtained here for the
magnetic flux are systematically smaller than those reported by
Dexter et al. (2020) for co-rotating flows, hinting that the actual
saturation value may depend on the initial disc thickness, which is
different from the one adopted by Dexter et al. (2020).

Azimuthal- and time- averaged dimensionless electron tempera-
tures (	e) are shown in Fig. 2. In the funnel wall region between the
highly magnetized polar funnel and bound disc material, electrons
are efficiently heated in both heating prescriptions, resulting in a
high ion-to-electron temperature ratio. This trend is similarly seen in
Chael et al. (2019) and Dexter et al. (2020), which also used MAD
simulations. We note that our MAD simulations exhibit efficient
heating in the polar and funnel wall regions. This is due to the
difference in the assumed adiabatic index of the fluid between
GRMHD simulations. In our simulations, we assume an identical
adiabatic index between fluid and electrons, i.e. �g = �e = 4/3.
In this case, electron heating occurs more efficiently via dissipation
(see Appendix A). In our simulations, we neglect radiative cooling.
As a consequence, this may lead to an overestimate in cases of high
electron temperature.

As reported by Dexter et al. (2020), we also see a mild dependence
on black hole spin in the electron temperature, which becomes larger
for higher black hole spins. However, both the ion and the electron
temperatures increase, so that the ion-to-electron temperature ratio
does not vary appreciably. As a reference, we present the azimuthal-
and time- averaged dimensionless electron temperature by using
the R–β prescription with Rh = 1 and Rh = 160 in Fig. 3. The

3In our system of units, the dimensionless magnetic flux rate at the black
hole horizon differs from the used definition in Tchekhovskoy et al. (2011),
Tchekhovskoy & McKinney (2012), and McKinney, Tchekhovskoy & Bland-
ford (2012) by a factor of

√
4π .
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Figure 2. Azimuthal and time averaged dimensionless electron temperature 	e for black hole spins with a = −0.9375 (left), 0 (middle), and 0.9375 (right)
using the turbulent heating prescription (left side of the panels) and the magnetic-reconnection heating prescription (right side of the panels). The averaging is
performed over the time interval t = 14 000–15 000 M, which is when the simulations have reached a quasi-steady state. The black solid and dotted lines indicate
σ = 1 and Bernoulli parameter −hut = 1.02, respectively.

Figure 3. Same as Fig. 2, but when using Rh = 1 (upper) and Rh = 160 (lower) in the R−β parametrized prescription.

dimensionless electron temperature in the disc region becomes cooler
for higher values of Rh.

We note that the region near the poles is highly magnetized and
may be affected by the numerical floor treatment. Therefore, the ion-
to-electron temperature ratio may be unreliable in this region and we
omit the contribution of these regions in the GRRT calculations of
images at 230 GHz (the threshold is set with σ ≥ 1).

Fig. 4 presents azimuthal- and time- averaged polar-angle profiles
of the ion-to-electron temperature ratio of the MAD model with a =
0.9375 on a polar slice at r = 20M. Both the R−β (dashed lines) and
the electron-heating prescriptions (solid lines) produce a high ion-
to-electron temperature ratio around the equatorial plane, although
the R−β generally yield larger temperatures than the reconnection-
heating or the turbulent-heating prescriptions; similar plots have
been shown by Chael et al. (2018). We note that the reconnection-
heating prescription employed by Chael et al. (2018) leads to Te

< Ti everywhere along the polar section, while in our calculations
this is true only in the highly magnetized region. Because in this
region radiative cooling would be effective, the electron heating
computed in our simulations may be overestimated. Also, it should
be noted that around the equatorial plane, both electron-heating
prescription have a profile similar to that of the R−β prescriptions.
Large differences are seen around the funnel region, where most
of the electron heating takes place, so that Ti � Te there for both
electron-heating prescriptions.

3.2 GRRT calculations

In order to compare radiative signatures using different ion-to-
electron temperature ratio prescriptions, we have calculated 230-GHz
images using the GRRT code BHOSS (Younsi et al. 2012, 2020).
Figs 5 and 6 show the time-averaged GRRT images at i = 163◦ of
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Figure 4. Azimuthal and time-averaged polar-angle profiles of the ion-to-
electron temperature ratio of the MAD-accretion case with a = 0.9375 at r =
20 M . Solid lines indicate turbulent (black) and magnetic reconnection (red)
heating prescription. Dashed lines present R−β parametrized prescription
with different Rh value, Rh = 1 (blue), 10 (magenta), and 160 (cyan). The
green dotted line shows the magnetization.

MAD simulations with different black hole spins: a = −0.9375 (top
panels), 0 (middle panels), and 0.9375 (bottom panels) using the
turbulent heating prescription, the magnetic-reconnection heating
prescription, and the R−β model with Rh = 1 and Rh = 160, in a
linear and logarithmic scale, respectively. Images are averaged from
t = 14 000 M to 15 000 M . All averaged images have the same total
flux of 0.5 Jy. The camera field of view is set to be 640 × 640 μas,
which is a four times larger field of view than the one used by the
Event Horizon Telescope Collaboration (2019e). For the black hole
in M87, 100 rg corresponds to 382 μas. Our choice of field of view
corresponds to 167 rg. We rotate the image to 252◦(72◦) North-to-
East in co-rotating case (counter-rotating case) to set the bright-spot
position to be in the South. In the co-rotating case, the approaching
jet orientation is in a similar direction to the large-scale jet (e.g. Hada
et al. 2017; Kim et al. 2018; Walker et al. 2018).

In the time-averaged images, we effectively suppress the time-
dependent turbulent features of the individual GRRT images, thus
allowing for more generic and persistent features of the GRRT images
to emerge. In high black hole spin cases, the asymmetry of the
brightness distribution of the bright photon ring becomes stronger
than the non-rotating black hole case, which is almost uniform. GRRT
images at 230 GHz in different ion-to-electron temperature ratio
prescriptions are morphologically very similar, i.e. bright photon ring
emission with some faint extended emission around it. However, the
brightness distribution of the photon ring differs with the chosen
heating prescriptions. In the turbulent heating prescription, the
brightness distribution of the photon ring is more uniform than
the magnetic reconnection heating prescription. A similar trend is
seen for higher Rh values in the R−β model. In the images with
a logarithmic scale, these trends are more clear. Both turbulent
and magnetic heating prescriptions have more extended diffused
emission than the R−β models. This is because both electron-heating
prescriptions have higher ion-to-electron temperature ratios at the
funnel wall region. In the turbulent heating prescription model,
the maximum flux at 230 GHz is lower than other models due to
contributions from large extended diffused emission regions. This
leads to a region representing the 1 per cent level of the maximum
flux (white dashed contour in Fig. 6) that is a little larger than in
the R − β models. On the other hand, the magnetic-reconnection
heating prescription model has a higher maximum flux even though
it has a more diffused extended emission region, which may not

contribute much to the total flux. This is indicated by the position of
the 1 per cent level of maximum flux.

Figs 7 and 8 show the time-averaged GRRT images of MAD
simulations at i = 60◦ with different black hole spins in different ion-
to-electron temperature ratio prescriptions, in linear and logarithmic
scales, respectively. At i = 60◦, the asymmetry of the bright photon
ring is more prominent than the i = 163◦ case due to stronger
Doppler beaming by the emitting plasma. The general trends of
different ion-to-electron ratio prescriptions are unchanged. Images
of turbulent heating prescriptions have a more uniform distribution
over the bright photon ring than other models with lower maximum
fluxes. In the logarithmic scale images, both turbulent heating and
magnetic-reconnection heating prescriptions have a little widely
extended diffused emission regions than the R−β prescription, even
though the R−β prescription at i = 60◦ has a more extended emission
region than i = 163◦. Considering the threshold of the 1 per cent of
the maximum flux, this region is marginally larger for the electron-
heating model.

3.3 Image comparisons

In order to provide a more quantitative comparison between electron-
heating prescription models and R−β models, we computed three
image-comparison metrics: the mean square error (MSE), structural
dissimilarity (DSSIM) (Wang et al. 2004), and difference of normal-
ized cross-correlation coefficient (NCCC) from 1 (see e.g. Mizuno
et al. 2018; Fromm et al. 2020). The MSE is a pixel-by-pixel
comparison metric calculated by averaging the squared intensity
difference between two image pixels, namely

MSE :=
∑N

j=1 |Ij − Kj |2∑N

j=1 |Ij |2
, (11)

where Ij and Kj are the j-th pixels of the images I and K with N pixels.
The DSSIM is computed in terms of the human visual-perception
metric, also called the structural similarity index (SSIM), so that
DSSIM = 1/|SSIM| − 1. Given a pair of images referred to as I and
K, the SSIM can be calculated as

SSIM(I, K) :=
(

2μIμK

μ2
I + μ2

K

) (
2σIK

σ 2
I + σ 2

K

)
, (12)

where μI := ∑N

j=1 Ij /N , σ 2
I = ∑N

j=1(Ij − μj )2/(N − 1), and

σIK := ∑N

j=1(Ij − μI )(Kj − μK )/(N − 1). For two images, I and
K, the NCCC is computed as

NCCC := 1

N

∑
j

(Ij − 〈I 〉)(Kj − 〈K〉)

I
K

, (13)

where 〈I〉 and 〈K〉 are the mean pixel values in the images, and

I and 
K are the standard deviations of the pixel values in the two
images (e.g. Event Horizon Telescope Collaboration 2019d). In other
words, the NCCC quantifies the similarity between two images, so
that NCCC = 1 corresponds to a perfect correlation between the two
images.

In these image comparisons, we use 101 snapshot GRRT images
from t = 14 000 M to t = 15 000 M (a 10M cadence) using both the
aforementioned electron-heating prescriptions and the R−β model
at identical simulation times. We then check the variation of each
image-comparison metric. In all image-comparison metrics, smaller
values mean better matching in compared images. These image
comparison results for the 230-GHz GRRT images at i = 163◦

are presented in Fig. 9. In general, as seen in Fig. 5, the R−β

prescription in the range of Rh = 1 to 160 yields a good match
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Comparison of the temperature ratio prescription 747

Figure 5. Time-averaged GRRT images at i = 163◦ of MAD simulations with different black hole spin cases, a = −0.9375 (top panels), 0 (middle panels),
and 0.9375 (top panels). From left to right: images using turbulent heating prescription, magnetic-reconnection heating prescription, the R−β model with Rh =
1, and R−β model with Rh = 160. The image is averaged with GRRT images from t = 14 000 M to 15 000 M . All averaged images have the same total flux
with 0.5 Jy at 230 GHz.

Figure 6. Same as Fig. 5, but plotting logarithmic scale. Dashed lines are indicated the 1 per cent of maximum intensity in each images.
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748 Y. Mizuno et al.

Figure 7. Same as Fig. 5, but i = 60◦.

Figure 8. Same as Fig. 6, but i = 60◦.
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Comparison of the temperature ratio prescription 749

Figure 9. Image comparison distributions with different ion-to-electron ratio
prescriptions using MSE (top), DSSIM (middle), and 1-NCCC (bottom). Left-
hand panels: comparison between turbulent heating and R−β prescriptions
with different black hole spins, a = 0.9375 (black), 0 (red), and −0.9375
(blue). Right-hand panels: comparison between magnetic-reconnection heat-
ing and R−β prescriptions with different black hole spins, a = 0.9375
(magenta), 0 (orange), and 0.9375 (green). Solid lines indicate the average
value and same colour bands are the standard deviation of variation within
each model. In all image-comparison metrics, a smaller value corresponds to
a greater similarity between compared images.

for both electron-heating prescriptions, as is reflected in the small
values for all three comparison metrics. As reference cases, we have
performed two additional comparisons. The first one is between a
randomly chosen GRRT image which is compared with each of the
models considered. The second case makes a comparison between
the time-averaged GRRT images and the individual snapshot GRRT
images. Both results are summarized in Appendix B.

From the distribution of the image-comparison metrics, we do
not see a clear dependence of different black hole spin cases
in either comparison with different electron-heating prescriptions,
although specific average values and the variance between models
are different. For the turbulent-heating prescription, the cases with
Rh = 1 and Rh = 5 have the smallest values of MSE, DSSIM,
and 1-NCCC. Increasing the Rh value gives rise to an increase
in the image-comparison metrics. For the magnetic-reconnection
heating prescription, the Rh = 5 case has the smallest value of MSE,
DSSIM, and 1-NCCC. From Rh = 5, both metrics become larger
with increasing Rh value. The smallest value of MSE (∼0.004) and
1-NCCC (∼0.05) is more than a factor 2 smaller than the vales of
the comparison with a randomly chosen GRRT image (see Fig. B1).
The smallest value of DSSIM is also a factor of 2 smaller than
that in the comparison with a randomly chosen GRRT image in
both electron-heating prescription (see Fig. B1). Note that in the
majority of cases, the comparison between different ion-to-electron

Figure 10. Distribution of comparison of different ion-to-electron ratio
prescriptions in visibility amplitude (top) and phase (bottom). Left-hand
panels: comparison between turbulent heating and R−β prescriptions with
different black hole spins, a = 0.9375 (black), 0 (red), and −0.9375 (blue).
Right-hand panels: comparison between magnetic-reconnection heating and
R−β prescriptions with different black hole spins, a = 0.9375 (magenta), 0
(orange), and −0.9375 (green). Solid lines indicate average value and same
colour bands indicate the standard deviation of each model.

ratio prescriptions yields image metrics that are below those obtained
from the comparison with a randomly chosen or an average image.

However, variations for each case are large. It is therefore difficult
to determine which cases are best matched with a given electron-
heating prescription on the basis of image-domain comparisons
alone. We note that we have also applied the same image-domain
comparison for the i = 60◦ case, obtaining similar results.

The EHT observations of a black hole shadow image are effectively
limited by the finite angular resolution. To reproduced such a
limitation, we have convolved the GRRT images with a 20 μas
Gaussian beam and proceeded carrying out the same comparison
discussed above. Obviously, the convolved GRRT images smear out
the details of the images and, as a result, the difference between
the images becomes intrinsically smaller. Hence, the values of all
image-comparison metrics are reduced and less dependent on value
chose for Rh, although they still maintain the general trend seen in
Fig. 9.

Additionally, we compare the different ion-to-electron ratio pre-
scriptions in the visibility domain. As for the image domain compari-
son, we again use 101 snapshot GRRT images from t = 14 000 M to
t = 15 000 M . For every image, we computed the Fourier transform,
where we limited the baseline length to 10 Gλ.4 From the Fourier
transform, we compute the 2D distribution of the visibility amplitude
(VA) and of the visibility phase (VP). Next, we calculate the mean VA
and VP using all of our 101 Fourier-transformed GRRT snapshots.
Finally, we compute the MSE between the mean and the individual
VAs and VPs. Using this procedure, we do not limit our analysis
to the specific baselines (and their orientation) of current observing
arrays and thus we provide an array-independent comparison of our
models in Fourier space. Fig. 10 shows the distribution of comparison
between turbulent heating and R−β prescriptions (right-hand panels)
and between magnetic-reconnection heating and R−β prescriptions
(left-hand panels) in terms of visibility amplitude and phases at i =

4Roughly the scale the longest EHT baselines probe.
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750 Y. Mizuno et al.

Figure 11. The spectral energy distributions (SEDs) of different ion-to-
electron temperature ratio prescriptions: electron-heating model (black) and
Rh = 1 (red), 10 (blue), and 160 (green). These are for R−β model with
different black hole spin cases (top: a = −0.9375, middle: 0, and bottom:
0.9375) at i = 163◦. Solid lines indicate the average value and same colour
bands denote the standard deviation of time variation of the spectrum. Vertical
lines indicate frequencies of 43 (dash–dotted), 86 (dotted), and 230 GHz
(dashed).

163◦. The general trends are the same as those seen in the image-
domain comparison (see Fig. 9). A dependence on different black
hole spin cases is again not present. In the turbulent heating model,
lower Rh cases have smaller differences in visibility amplitude and
phase. The differences in visibility amplitude and phase become
larger for larger Rh cases. In the magnetic reconnection heating
prescription, the Rh = 5 case has a minimum in the differences
of visibility amplitudes and phases.

From these quantitative comparisons of electron-heating prescrip-
tions and R−β prescriptions in both the image and visibility domains,
the R−β prescriptions are well matched to both the turbulent heating
and magnetic-reconnection heating models in 230-GHz images.
In general, smaller Rh values are better matched to both heating
prescriptions, but variations within each model are large. It can
therefore not be said which model is better matched from the current
quantitative comparisons.

3.4 Spectral energy distribution

Broad-band spectral energy distributions (SEDs) generated from
different ion-to-electron ratio prescriptions with different black hole
spin cases at i = 163◦ are presented in Fig. 11. In this calculation,
we fix the mass and distance to correspond to M87, and the mass-
accretion rate is fixed so that the average total flux at 230 GHz is
0.5 Jy. Therefore, all cases have the same averaged value at 230 GHz
(vertical dashed line). In each model, solid lines indicate average
values and shaded regions denote the standard deviation of time

variation. In the R−β prescription, smaller Rh value cases have
higher peak frequencies, shifted to lower frequencies. In both lower
and higher frequencies, the flux typically increases with lower Rh

values. This trend is generally seen in all black hole spin cases. Time
variation of SEDs is smaller in higher Rh value cases, especially
at higher frequencies. For the electron-heating prescription cases,
both the turbulent and the reconnection-heating prescriptions behave
similarly to the Rh = 1 case in the R−β prescription at high fre-
quencies, with the SED being peaked at 86 GHz. Furthermore, when
comparing with the R−β model, the electron-heating prescriptions
have a slightly higher flux at higher frequencies. This is reflected in
the fact that electrons are hotter than ions. In the time variation of the
SED, the reconnection electron-heating prescription exhibits larger
time variations than turbulent electron heating at higher frequencies.
From these results, we conclude that electron-heating prescriptions
yield similar SED profiles to lower Rh values of the R−β prescription
at millimetre wavelengths. However, it will be possible to distinguish
using SEDs at higher wavelengths than the sub-mm.

3.5 Image size

We compute the image size of the GRRT images at different fre-
quencies (43–880 GHz) using image moments. The semimajor and
semiminor axes of the images are computed from the eigenvalues λ1,2

of the covariance matrix formed by the second-order central-image
moments. The final full width at half-maximum of an equivalent
elliptical Gaussian is computed as 	major/minor = √

8 ln(2)λ1,2 (see
e.g. Davelaar et al. 2019). The result of this analysis can be found
in Fig. 12. The different panels show the size of the major axis of
the ellipse enclosing the image structure for different heating models
(left: turbulent heating and right: reconnection heating) for different
black hole spins (top: a = −0.9375, middle: a = 0 and bottom:
0.9375). In each panel, the black curve indicates the heating model
and the other colours correspond to the R−β model. In particular, for
a = −0.94, the electron-heating prescriptions yield a larger image
size, especially at high frequencies, due to the diffused extended
emission seen in Fig. 6. This result also agrees well with the larger
flux densities at higher frequencies which is shown in the SED (see
Fig. 11).

3.6 Time variability

Fig. 13 shows the light curve of the total flux at 230 GHz for
different ion-to-electron ratio prescriptions with different black hole
spin cases, at i = 163◦. Although we see some small differences
in variability at short time-scales, all cases follow a trend of large
variations in the light curves. The quantitative measurement of the
fraction of total flux variation at 230 GHz is shown in Fig. 14.
In the comparison with different ion-to-electron temperature ratio
prescriptions, dependence on the fraction of total flux variation at
230 GHz is not seen. However, we see some dependence in different
black hole spin cases. This shows that retrograde spins have larger
fractions of total flux variation at 230 GHz than non-rotating and
prograde spin cases. The non-rotating black hole case has the smallest
total flux variation. This may be a consequence of the activity of
orbiting flux tubes which are violent episodes of flux escape from the
black hole magnetosphere (Porth et al. 2021), requiring a modestly
spinning black hole. The counter-rotating black hole case typically
has a larger amount of magnetic energy contained within orbiting
flux tubes.
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Comparison of the temperature ratio prescription 751

Figure 12. Image size (major axis) measured from the GRRT images at
different frequencies (43–880 GHz) using image moments in different ion-
to-electron temperature ratio prescriptions with black hole spin a = −0.9375
(top), 0 (middle), and 0.9375 (bottom) at i = 163◦. Different colour lines
indicate different ion-to-electron ratio prescriptions: turbulent heating model
(black), R−β model with Rh = 1 (red), 10 (blue), and 160 (green). Solid
lines indicate the average value and same colour bands denote the standard
deviation of time variation of the spectrum.

3.7 Exclusion of magnetized region

Due to the uncertainty of the results of the numerical simulations
in the highly magnetized region of the polar funnels, we have
necessarily excluded regions with σ = 1 for the calculation of the
GRRT images. Chael et al. (2019) have investigated the dependence
of the different σ thresholds on the 230-GHz images and broad-band
spectra for M87 in two-temperature radiative GRMHD simulations
of a MAD model. It was found that incorporating radiative feedback
from regions with σ > 25 makes the images more compact. For
broad-band spectra, the difference in the images produced from
different choices in the σ threshold is rather small, at least for
frequencies up to 230 GHz.

Here, we investigate the impact of the exclusion of different
portions of the highly magnetized regions on the image comparison.
The results on the comparison for the 230-GHz GRRT images
at i = 163◦ using different criteria for the exclusion of highly
magnetized regions are presented in Fig. 15. In essence, it is clear
that similar images are obtained when using different values of the
cut-off σ . For both the turbulent- and the magnetic-reconnection
heating prescriptions, the case with Rh = 5 has the smallest values of
MSE, DSSIM, and 1-NCCC, so that the image-comparison metrics
increase with larger values of Rh. Increasing the value of the cut-off
σ leads to smaller values of the image metrics, but the difference
is very small. As a result, we can conclude that choosing different
sigma cut-off values such as σ = 5 does not significantly affect our
results.

Figure 13. Light curve of total flux at 230 GHz in different ion-to-electron
temperature ratio prescriptions with black hole spin a = −0.9375 (top), 0
(middle), and 0.9375 (bottom) at i = 163◦. Different colour lines indicate
different ion-to-electron ratio prescriptions: turbulent heating model (black),
R−β model with Rh = 1 (red), 10 (blue), 40 (magenta), and 160 (green).

4 D ISCUSSION

In this study, we have focused on 230-GHz images with two
different inclination angles (i = 60◦ and 163◦). Although the
emission morphology is not much different when viewed in a linear
scale, the electron-heating prescriptions have a more extended and
diffused emission than the R−β prescription. Because of the limited
dynamical range of the 2017 EHT observations, the images produced
do not allow us to distinguish the presence of and extend jet structure,
thus preventing from a clear identification of the electron-heating
mechanisms at play in M87∗. Such an extended emission component
will be more clearly seen at lower frequencies such as 43 and
86 GHz (e.g. Chael et al. 2019; Davelaar et al. 2019; Chatterjee et al.
2021). Therefore, the difference between electron heating and R−β

prescriptions may be greater at longer wavelengths. Some indications
of this have already been seen in the broad-band SEDs for different
ion-to-electron temperature ratio prescription values. Near future
observations 230 GHz – performed either by the next-generation
EHT (ngEHT) or from space (Doeleman et al. 2019; Raymond et al.
2021; Roelofs et al. 2021) – are expected to improve the both the
coverage in the (u, v) plane and the dynamical range, thus allowing
for the detection of a diffused extended-jet structure and, in turn,
providing the evidence to distinguish the different potential electron-
heating mechanism.

Using a relativistic thermal electron distribution function is one
of the limitations of this study, which will break down in regions
where non-ideal effects for magnetic fields are important. These
non-ideal effects are expected to be strong in highly magnetized
regions such as the jet funnel, where they can be associated with
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752 Y. Mizuno et al.

Figure 14. Fraction of total flux variation at 230 GHz in different ion-to-electron temperature ratio prescriptions (top: turbulent heating model, bottom:
reconnection heating model). Dotted point is averaged value and error bar is standard deviation of variance. Different colour indicates different black hole spin
cases, a = −0.9375 (red), 0 (black), and 0.9375 (blue).

Figure 15. Same as Fig. 9 but different exclusion of magnetized region,
σ cut = 1 (black and magenta), 2 (red and orange), and 5 (blue and green).

electron acceleration mechanisms such as magnetic reconnection or
turbulence. Davelaar et al. (2018, 2019) use a κ electron distribution
function, which is a combination of a thermal core with a power-law
tail at larger electron Lorentz factors, for GRMHD simulations of
M87. Although images at 230 GHz do not show much difference,
non-thermal emission will produce more prominent and extended
emission at lower frequencies such as 43 and 86 GHz or at a higher
frequencies as 1.1 THz (Petersen & Gammie 2020). Distributions like
the κ electron distribution function yield a better fit of the broad-band
spectrum of M87 (Davelaar et al. 2019), which we will investigate in
the context of the present electron-heating prescription for thermal
core in a future work.

Our choice of accretion model, the MAD model, is the extreme
limit of high magnetic flux accretion on to a black hole horizon.
Another typical model is so-called Standard Accretion and Normal
Evolution (SANE; Narayan et al. 2012; Sądowski et al. 2013).
As seen in Event Horizon Telescope Collaboration (2019e), GRRT
images of SANE models at 230 GHz have a greater dependence
on Rh values than MAD models. Differences between electron-
heating prescriptions and R−β models may be larger than the
current comparisons in MAD models and these considerations
prevent us from making here more general statements that may
be falsified under different accretion conditions. We will perform
a similar investigation of the comparison of different ion-to-electron
temperature ratio prescriptions to extended SANE models in an
upcoming paper.

In the theoretical comparison of the observations of M87∗ by the
Event Horizon Telescope Collaboration (2019e), the large majority
of the GRMHD models produced were considered compatible
with the observed shadow image. At the same time, a class of
these models was rejected when three additional constraints were
imposed, namely: a consistent radiative efficiency, no overpro-
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duction of X-ray emission, and jet power compatible with large-
scale radio observations. More specifically, the radiative efficiency
was calculated as ε ≡ Lbol/Ṁc2, where Lbol is the bolometric
luminosity. If such an efficiency was found to be larger than that
of a thin, radiatively efficient disc (Novikov & Thorne 1973),
i.e. ε > 0.2, then the model was rejected. In this way, a number
of MAD-accretion models with low values of Rh were ruled-out
because they were found to be radiatively inconsistent. This result,
however, was mostly due to the very low mass-accretion rates of
these models, which had Ṁ/ṀEdd ≤ 10−6 and thus resulted in
being radiatively inefficient. However, the mass-accretion rate in
our MAD-model simulations with a low Rh is around 10−5 ṀEdd

(see Appendix D), i.e. one order of magnitude greater than that
found by the Event Horizon Telescope Collaboration (2019e). As
a result, the corresponding radiative efficiency of all of our MAD
models – even those with a low Rh – is still compatible with the
constraints from a thin disc, and hence they can all be considered
compatible with the observations. There are a number of potential
sources for the different mass-accretion rates measured both here
and those considered by Event Horizon Telescope Collaboration
(2019e), but the different adiabatic index (�g = 4/3 versus �g =
13/9 in the previous work) is likely the element most responsible for
this difference.

We also note that a value of �g = 4/3 reflects the assumption
that the plasma is relativistic. The initial gas torus might be cooler
and have a higher adiabatic index, e.g. �g 
 5/3. As seen in
Appendix A, differences in adiabatic index between gas and electrons
affect the efficiency of the electron heating. This effect is seen in the
dimensionless electron temperature distribution seen in Fig. 2 and
in previous studies (Chael et al. 2019; Dexter et al. 2020) However,
the GRRT images we calculate have the same general trend as those
seen in Chael et al. (2019). We therefore conclude that our results
are not affected appreciably by our choice of adiabatic index, but
they may be affected by the measurement of the mass-accretion
rate.

5 C O N C L U S I O N S

In this paper, we have investigated the commonly used ion-to-
electron temperature ratio prescription, the R−β model, by com-
puting GRRT images at 230 GHz which serve to facilitate compari-
son between electron-heating prescriptions obtained from GRMHD
simulations with electron thermodynamics. From the comparison
of GRRT images, the R−β prescription in the range of Rh from
1 to 160 with fixed Rl = 1 is well-matched by both turbulent
heating and magnetic-reconnection heating prescriptions, although
images of electron-heating prescriptions have a more extended and
diffused emission region. From this comparison study of different
physical aspects, including images, visibilities, broad-band spectra,
and light curves, we conclude that the commonly used R−β model
favourably reproduces the ion-to-electron temperature prescription
obtained from electron thermodynamics calculations of accretion
flows on to a black hole at 230 GHz. In general, smaller Rh values
yield a better match to both heating prescriptions. For observations
at longer wavelengths, such as 43 or 86 GHz, a greater difference
in the images due to the more extended and diffused emission in
the electron-heating prescription cases is expected, in particular for
the counter-rotating accretion. We note that our conclusions apply to
MAD accretion models, and it is expected that greater differences will
be found for SANE models, which exhibit much greater variability
than MAD models.
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Jonas Köhler, Roman Gold, Mariafelicia de Laurentis, and Avery
Broderick, for useful discussions. This research is supported by the
ERC synergy grant ‘BlackHoleCam: Imaging the Event Horizon
of Black Holes’ (grant number 610058). CMF is supported by the
Black Hole Initiative at Harvard University, which is supported by
a grant from the John Templeton Foundation. ZY is supported by a
UKRI Stephen Hawking Fellowship and acknowledges support from
a Leverhulme Trust Early Career Fellowship. HO was supported
by a Virtual Institute of Accretion (VIA) postdoctoral fellowship
from the Netherlands Research School for Astronomy (NOVA). The
simulations were performed on GOETHE at the CSC-Frankfurt,
Iboga at ITP Frankfurt, and Pi2.0 at Shanghai Jiao Tong University.
This research has made use of NASA’s astrophysics data system
(ADS).

DATA AVAI LABI LI TY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Anantua R., Ressler S., Quataert E., 2020, MNRAS, 493, 1404
Bower G. C., Wright M. C. H., Falcke H., Backer D. C., 2003, ApJ, 588, 331
Broderick A. E. et al., 2016, ApJ, 820, 137
Broderick A. E., Fish V. L., Doeleman S. S., Loeb A., 2009, ApJ, 697, 45
Broderick A. E., Fish V. L., Doeleman S. S., Loeb A., 2011, ApJ, 735, 110
Broderick A. E., Loeb A., 2006, ApJ, 636, L109
Chael A., Narayan R., Johnson M. D., 2019, MNRAS, 486, 2873
Chael A., Rowan M., Narayan R., Johnson M., Sironi L., 2018, MNRAS,

478, 5209
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APPENDI X A : 1 D N OH SHOCK TEST

We demonstrate the validity and convergence properties of our
implementation of the electron-heating prescription using a 1D Noh
shock test problem. The Noh shock test examines the problem of
shock reflection. The time-dependent solution consists of two shocks
originating at the initial discontinuity and travelling to the left and
right boundaries.

Figure A1. 1D Noh shock results for an electron heating fraction fe = 0.5 using 2000 cells with (top) �e = 5/3 and (bottom) �e = 4/3. Left-hand panels show
density, right-hand panels present ue/ug. Red dashed lines indicate analytical solutions.
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Figure A2. L1 norm of the error in the ratio of the electron-to-gas internal
energies between the numerical and the analytical solutions shown as a
function of the number N of cells used.

In high Mach number shocks, the electrons receive a constant
fraction of the viscous heating by the shock. As seen in Ressler et al.
(2015), the post-shock electron internal energy uf

e is given by

uf
e

u
f
g

= fe

2
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)�e
(

1 − �g

�e
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+ 1 + �g
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, (A1)

where uf
g is post-shock internal energy of the fluid. When �g = �e,

uf
e /uf

g is equal to fe. When we choose �g = 5/3 and �e = 4/3, uf
e /uf

g
becomes ∼0.76fe.

In our simulations, we assume an unmagnetized, non-relativistic
(�g = 5/3) cold fluid with uniform density and gas pressure as an
initial condition. The initial velocities have discontinuities at the
half of computational domain (left and right states) and are directed
towards the discontinuous boundary with non-relativistic speed |v| =
0.001c. This creates a strong shock (M � 1) propagating in the left
and right directions. In this test, fe is fixed as 0.5 and the test is
performed for both �e = 5/3 and �e = 4/3.

Fig. A1 shows the distribution of density and the ratio of internal
energy between electrons and gas at t = 700. Two shocks propagate
at x ≈ 0.25 and 0.75. After the shock, the density jumps to a value

four times larger than the pre-shock region, which indicates a strong
shock has been created. In the �e = 5/3 case, the ratio of internal
energy between electrons and gas at the post-shock region is in good
agreement with the analytical solution. However, for the �e = 4/3
case there is not as close a match with the analytical solution and
differs by ∼4 per cent. Similar results are also seen in Ressler et al.
(2015). This is because the correct heating by the shock needs the
shock structure to be well-resolved. In our numerical scheme, the
shock structure is still resolved with a few grid points. We therefore
cannot resolve the shock completely, even at higher grid resolutions
than those adopted in this study. For the �g = �e case, the density
term is cancelled out in the time evolution of the electron entropy,
and its dependence on the shock structure may be neglected.

The simulation convergence for the electron heating calculations
is shown in Fig. A2. As expected, the �e = 5/3 case converges at
first order (i.e. as 1/N, where N is the number of cells used), but
the �e = 4/3 case does not converge to the analytical solution, as
seen in Fig. A1 (numerical results differ by ∼4 per cent). In order to
reach the analytical solution in the �g �= �e case, we would need to
introduce dissipative effects and in particular a bulk viscosity Ressler
et al. (2015). Given that we are concerned primarily with synthetic
230-GHz images, a ≤4 per cent error is acceptable for this study.

A P P E N D I X B: IM AG E C O M PA R I S O N T E S T

In order to provide a reference value of the image-comparison
metrics, we consider the comparison between each prescription
model (different Rh value of R − β parametrized prescriptions) and
a randomly chosen single image. For the latter, we consider the
230 GHz GRRT image of a black hole with spin a = 0 using the
R−β parametrized prescription with Rh = 40 at t = 15 000 M .

Fig. B1 shows the results of the image comparison for the 230 GHz
GRRT images at i = 163◦ with a black hole spin a = 0.9375. From the
distribution of the image-comparison metrics, no evidence emerges
for a clear dependence on the different heating prescriptions. In other
words, all models match the chosen reference image equally poorly
or favourably. The average values of the metrics MSE, DSSIM, and
1-NCCC are 0.08–0.09, 0.01, and 0.25–0.3, respectively. Note that
the MSE has a slightly larger variance for larger values of Rh. More
importantly, these average values are around a factor of 2 larger than
the smallest value in Fig. 9. We also note that the correlation time of
images in GRMHD simulations has been found to be around 50 M ,

Figure B1. Image-comparison distributions at an inclination angle i = 163◦ for different values of Rh of the R–β prescription for a black hole with spin a =
0.9375 and a single image relative to a black hole with spin a = 0 with Rh = 40 at t = 15 000 M . The different panels refer to the different metrics: MSE (right),
DSSIM (middle), and 1-NCCC (left). Solid lines indicate the average values and the shaded bands are the standard deviation of the variation within each model.
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Figure B2. Same as in Fig. B1 but with the addition of the comparison with averaged images for black holes with different spins: blue for a = −0.9375, red
for a = 0, and black for a = 0.9375.

that is, any two random images of a GRMHD simulation do not show
a correlation if the corresponding time separation is larger than 50 M .
Beyond this window in time, the differences can be very significant.

Another reference value of the image-comparison metrics is
obtained by the comparison between time-averaged GRRT images
and individual snapshot GRRT images in each prescription model
with different black hole spin. This is shown in Fig. B2. Note that all
distributions are essentially flat, indicating a very weak dependence
on the value of Rh. When Rh increases, the values of the MSE and
1-NCCC metrics also increase, although only slightly. Note also that
the distribution of the MSE metric has a large variance in the case of
counter-rotating black holes, indicating that each individual image
can have a large variation from the averaged one. This behaviour
was already encountered in the fraction of the total-flux variation in
Fig. 14.

APPENDIX C : D IFFERENT RL CASE

We recall that the parametrized R – β prescription for the electron–
ion temperature ratio has two parameters, Rl and Rh. As mentioned
in the main text, we have kept Rl = 1 fixed and varied Rh. In this
appendix, we investigate the effect of actually using different values

of Rl. In particular, Fig. C1 presents the time-averaged GRRT images
at i = 163◦ relative to MAD simulations with a black hole spin a =
0.9375 using the R − β prescription with Rh = 1 and Rl = 0.1, 1,
and 10, both in a linear and in a logarithmic scale. Following Figs 5
and 6, the images are averaged from t = 14 000 to 15 000 M , and
all averaged images have the same total flux of 0.5 Jy. Note that for
values of Rl the bright photon ring becomes dimmer and a larger
amount of an extended and diffused emission is seen. On other hand,
for large values of Rl the emission is more concentrated near the
photon ring and the extended emission less pronounced.

The image comparison results for the 230 GHz GRRT images at
i = 163◦ are shown in Fig. C2. Overall, when Rl is large, all of
the three image-comparison metrics become worse, in particular for
the Rh = 1 case. This occurs since the emission structure differs
significantly from the heating-prescription case. On the other hand,
if Rl � 1, all of the three metrics increase. This could be understood
as due to the extended emission, which is even more extended than in
the electron-heating prescriptions. This behaviour does not change
considerably when considering different values of Rh. Hence, from
these results we conclude that our default value Rl = 1 effectively
provides a very good match with the electron-heating prescriptions.
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Figure C1. Time-averaged GRRT images at i = 163◦ of MAD simulations with a black hole spin a = 0.9375 using the R − β prescription with Rh = 1 and
Rl = 0.1, 1, and 10. Upper and lower panels show linear and logarithmic scale, respectively. The image is averaged with GRRT images from t = 14 000 to
15 000 M . All averaged images have the same total flux with 0.5 Jy at 230 GHz.

Figure C2. Image-comparison distributions between the turbulent-heating prescription and the parametrized ion-to-electron ratio prescription with different
values of Rl and a fixed Rh = 1 (black) and 160 (red) for a black hole with spin a = 0.9375. Different points indicate the mean value and the shading the standard
deviation in the variation.

APPEN D IX D : MASS-ACCRETION R ATE

We recall that although the GRMHD simulations are scale-free, the
GRRT calculations depend on the physical scale set by the mass of
the black hole. In this work, our reference black hole is M87∗. A

mass-scale unit is needed in the conversion from the value of the rest-
mass employed in the simulations to a physical rest-mass density;
this is done by normalizing the time-averaged flux at 230 GHz to
the value of 0.5 Jy. Once a physical value for the rest-mass density is
obtained, we can calculate a physical mass-accretion rate.
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Figure D1. Mass-accretion rate normalized by the Eddington mass-accretion
rate for different Rh values when considering different black hole spins. The
mass-accretion rate is computed employing the mass and distance in M87∗
and by setting the time-averaged flux at 230 GHz to the value of 0.5 Jy.

Fig. D1 shows the mass-accretion rates normalized by the Ed-
dington mass-accretion rate in different models. Clearly, the mass-
accretion rate increases monotonically with the values of Rh value
and decreases as the black hole spin goes from maximally counter-
rotating to maximally co-rotating; this latter behaviour is possibly
due to the increase of the ISCO in the counter-rotating case, which
allows larger-density material to be accreted. Overall, the mass-
accretion rate is in the range from 10−6 to 10−4 times Eddington
accretion rate. Interestingly, higher σ cutoffs lead to lower mass-
accretion rates; this is probably because when using a larger σ cutoff
we are including larger regions with high magnetization, where the
rest-mass densities are small but contribute to reaching the same
reference flux.
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