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A B S T R A C T   

The ongoing COVID-19 pandemic has spotlighted the role of America’s overcrowded prisons as vectors of ill 
health, but robust analyses of the degree to which high rates of incarceration impact population-level health 
outcomes remain scarce. In this paper, we use county-level panel data from 2927 counties across 43 states be
tween 1983 and 2014 and a novel instrumental variable technique to study the causal effect of penal expansion 
on age-standardised cause-specific and all-cause mortality rates. We find that higher rates of incarceration have 
substantively large effects on deaths from communicable, maternal, neonatal, and nutritional diseases in the 
short and medium term, whilst deaths from non-communicable disease and from all causes combined are 
impacted in the short, medium, and long run. These findings are further corroborated by a between-unit analysis 
using coarsened exact matching and a simulation-based regression approach to predicting geographically 
anchored mortality differences.   

Introduction 

The advent of COVID-19 has spotlighted the role of America’s 
overcrowded prisons as vectors of ill health (Akiyama, Spaulding, & 
Rich, 2020; Saloner, Parish, Ward, DiLaura, & Dolovich, 2020). As of 
April 28, 2021, 395,915 prisoners have contracted the disease and 2572 
have died as a result. Amongst prison staff, corresponding figures are 
110,136 and 201, respectively (Marshall, 2021). However, prior to the 
ongoing pandemic, causal evidence of the link between high rates of 
incarceration and infectious disease mortality at the population level has 
been scarce. More generally, despite the historically unprecedented 
expansion of the American penal state since the 1970s, imprisonment 
has rarely been construed as a distal determinant of population health in 
its own right (Wildeman & Wang, 2017). In this paper, we use spatially 
disaggregated time-series data and a novel instrumental variable 
approach to examine how local prison admission rates impact 
age-standardised death rates at the US county level. By drawing on 
extant scholarship on the health impacts of penal expansion, we 
hypothesise a causal association between high imprisonment rates and 
county-level mortality that is operant above and beyond the role of 

factors like income, education, or violent crime. Moreover, we 
hypothesise that high incarceration rates impact not only those who pass 
through the criminal justice system but also local populations at large. 
We provide a comprehensive panel data analysis — to our knowledge, 
the first of its kind — assessing how incarceration affects geographically 
anchored patterns of mortality from communicable and 
non-communicable diseases and all causes combined. 

Background and hypotheses 

Since the early 1970s, the American penal state has undergone a 
historically unprecedented expansion. After 50 years of relative stabil
ity, in 1973 the national jail and prison incarceration rate stood at 161 
residents per 100,000 population. In 2007, the corresponding figure was 
767. In absolute numbers rather than rates, this amounts to a shift from 
just under 400,000 to over 2.3 million individuals behind bars — a 
sevenfold increase in less than four decades (National Research Council, 
2014). Beyond these aggregate numbers, imprisonment has emerged as 
a new stage in the life course of men of colour who find themselves at the 
bottom of the class structure (Pettit & Western, 2004; Western, 2006; 
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Wacquant, 2009). This is evidenced by how the cumulative risk of 
experiencing parental incarceration by age 14 amongst African Amer
ican children born to high-school dropouts exceeds 50% (Wildeman, 
2009). 

A rich body of evidence has related penal expansion to declining 
health and deepening health inequality (for recent reviews, see Masso
glia & Pridemore, 2015; Wildeman & Wang, 2017). In particular, 
overcrowded correctional facilities have been linked to infectious dis
ease transmission (Massoglia, 2008; Ndeffo-Mbah, Vigliotti, Skrip, 
Dolan, & Galvani, 2018) — a linkage that has been further spotlighted 
by the ongoing COVID-19 pandemic (Akiyama et al., 2020; Hooks & 
Sawyer, 2020; Reinhart & Chen, 2020; Saloner et al., 2020). Upon 
release from prison, former inmates experience mortality rates close to 
thirteenfold that of the comparable populace and are especially 
vulnerable during the first two weeks post-release, notably via acute 
stress-related psychosocial mechanisms (Binswanger et al., 2007; Zlodre 
& Fazel, 2012). 

Moreover, previous scholarship has documented the ways in which 
high rates of incarceration act in cascading ways upon other social de
terminants, or ‘fundamental causes’ (Link & Phelan, 1995), of health. 
Chief amongst such upstream determinants are the social and economic 
decay of neighbourhoods (Sampson & Loeffler, 2010), the disruption of 
social and family ties (Wildeman & Muller, 2012; Wildeman, Schnittker, 
& Turney, 2012), adverse childhood experiences related to parental 
incarceration (Wildeman, 2009; Turney, 2014), and enduring material 
deprivation and hardship in areas of concentrated disadvantage (West
ern, 2018). For instance, the incarceration of a family member has been 
shown to impair the well-being of non-incarcerated partners and chil
dren, notably due to declining household income, reduced parental in
vestment, and unstable social relationships (Wildeman & Muller, 2012; 
Turney, 2014). At the community level, the criminal justice system plays 
a pivotal role in shaping the trajectories of neighbourhoods by removing 
prime-age men from their local communities, fragmenting family re
lationships, and eroding social ties (Western, 2006; Sampson & Loeffler, 
2010; National Research Council, 2014; Western, 2018). 

Against this backdrop, we hypothesise that high rates of incarcera
tion have a causal impact on a range of mortality outcomes, not only at 
the level of the individual but on a population level. Drawing on the 
extant literature, our argument is that the experience of incarceration 
may prove deeply consequential not only for those who are incarcerated 
but also for their families, friends, and broader social connections (Gil
more, 2007; Wildeman & Muller, 2012; Wildeman & Wang, 2017). Thus 
the causal pathways from imprisonment to mortality most likely involve 
diverse modalities of ‘social sundering’ (Therborn, 2013, pp. 22–28) 
whereby the material and symbolic fabric of social life is eroded, for 
individuals and collectives alike (see also Wilkinson & Pickett, 2010; 
2018). Given this plurality of pathways and mechanisms, we therefore 
expect the hypothesised causal effect to manifest in the form of mortality 
from both communicable and non-communicable diseases, within and 
between units of analysis over time. 

Previous studies have shed light on the effects of incarceration on 
health at the level of individuals and communities. However, robust 
evidence at the population level remains scarce, notably when it comes 
to the geographical patterning of different types of mortality rates, 
although we note two recent associational studies by Kajeepeta, Ruth
erford, Keyes, El-Sayed, and Prins (2020, 2021). Our macroscopic 
approach allows us not only to generate a broad overview of how 
incarceration shapes population health, but also eschews the methodo
logical challenges intrinsic to the use of individual-level survey data 
(however, see Daza, Palloni, & Jones, 2020), such as producing plausible 
causal identification strategies and constructing appropriate comparison 
groups (see Johnson & Easterling, 2012; Wildeman, Wakefield, & 
Turney, 2013). In what follows, we test our hypotheses by using 
county-level panel data and a novel instrumentation technique suited to 
isolating exogenous treatment variation. 

Data and methods 

Outcome and control variables 

The first of our three outcome variables is the county-level age- 
standardised mortality rate from communicable, maternal, neonatal, 
and nutritional diseases per 100,000 county population between 1983 
and 2014. Taken together, these highly correlated causes of death form a 
‘level 1’ category within the framework of the Global Burden of Dis
eases, Injuries, and Risk Factors Study, the methodology of which is 
employed to generate comparable age-standardised mortality metrics 
across county-years. To avoid terminological clutter, however, we 
henceforth use ‘communicable’ as a shorthand for ‘communicable, 
maternal, neonatal, and nutritional’. The second outcome variable is 
mortality from all non-communicable diseases and the third is all-cause 
mortality. All three of these variables are publicly available from the 
Institute for Health Metrics and Evaluation (IHME, 2017). Our treatment 
variable is the county-level annual prison admissions rate, generated by 
the Vera Institute of Justice using state corrections sources and the 
National Corrections Reporting Program by the Bureau of Justice Sta
tistics which are converted into annual county-level rates per 100,000 
residents aged 15–64 (Hinds, Lu, Wallace-Lee, & Kang-Brown, 2020). 
Six states — Alaska, Connecticut, Delaware, Hawaii, Rhode Island, and 
Vermont — are excluded from the analysis due to lack of consistently 
collected prison admissions data. Due to certain discrepancies between 
our data sources in measuring county boundaries and accounting for 
changes to counties over time, the state of Virginia and a handful of 
counties from other states (77 counties in total out of an initial sample of 
3004) are also excluded from the final analysis. We employ a set of 
baseline control variables that are associated with both the treatment 
and the outcome, namely annual rates of violent crime, median house
hold income, high school graduation rates, and the fraction of each 
county population that is African American, Hispanic, or any other 
non-White ethnic minority. These variables are all available from the US 
Census Bureau, except for the measure of violent crime which is 
extracted from the Federal Bureau of Investigation’s Uniform Crime 
Reporting Program. Descriptive statistics are reported in Table 1. 

Table 1 
Descriptive statistics.  

Statistic N Mean St. 
Dev. 

Min Max 

Mortality from 
communicable disease 

65,237 50 13 15 263 

Mortality from non- 
communicable disease 

65,237 841 115 247 1499 

All-cause mortality 65,237 972 140 323 1832 
Incarceration rate per 

100,000 population 
65,237 268 205 0.0 2583 

Violent crime rate per 
100,000 population 

65,237 278 267 0.0 5972 

Median household income 
($) 

65,237 47,105 11,709 17,583 125,705 

High school graduation rate 65,237 0.8 0.1 0.3 1.0 
Fraction African Americans 65,237 0.1 0.1 0.0 0.9 
Fraction Hispanics 65,237 0.1 0.1 0.0 1.0 
Fraction other ethnic 

minority 
65,237 0.02 0.1 0.0 0.9 

Notes: All variables, listed in the first column, are measured at the county level. 
The second column lists the number of observed county-years. The three 
outcome variables — communicable, non-communicable, and all-cause mor
tality rates per 100,000 population — are taken from the Institute for Health 
Metrics and Evaluation US Health Map database (IHME, 2017). The incarcera
tion rate is per 100,000 population aged 16–64 and is constructed by the Vera 
Institute of Justice (Hinds et al., 2020). The measure of violent crime is extracted 
from the Federal Bureau of Investigation’s Uniform Crime Reporting Program. 
All remaining variables are taken from the US Census Bureau. 
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Instrumental variable models 

To empirically assess how incarceration affects county-level mor
tality rates, we posit the following data-generating process: 

Yit ​ = ​ Ti,t− kβ ​ + ​ Xitθ ​ + ​ μi + ​ φt ​ + ​ εit, (1)  

where Yit denotes one of the three alternative outcome variables as 
measured in county i at time t; the treatment variable Ti[t− k] is the 
county-level incarceration rate per 100,000 population, lagged by k 
years to allow for delayed effects; X is a vector of control variables; μ and 
φ capture unit- and time-fixed effects, respectively; and ε is a stochastic 
error term. Our principal quantity of interest is β, which is a causal effect 
parameter to be estimated. By standardising our predictor variables, this 
parameter is interpreted as the excess number of deaths per 100,000 
county population caused by a standard deviation increase in incarcer
ation rates, net of all controls. However, as visualised in SI Figure A1, we 
face a potential identification problem wherein the estimated relation 
between the treatment variable T and the outcome variable Y is biased 
by some unmeasured confounder U, even after controlling for observed 
covariates X. In our case, U might denote unobserved variables that 
simultaneously affect incarceration and mortality, such as locally 
contingent healthcare or welfare-related policy shocks. 

To address this concern, we construct an instrumental variable, Z, 
that is suited to isolating exogenous variation in T. To do this, we adopt a 
compound instrument derived from the interaction between the county- 
specific average exposure to incarceration over the sample period and 
annual nationwide per capita correctional spending. This instrument 
meets the relevance criterion insofar as increasing correctional expen
diture is predictive of higher rates of incarceration. It also meets the 
exclusion criterion insofar as annual aggregate correctional spending is 
independent of any given county, to the effect that unit-specific shocks 
that deviate from a county’s long-run average exposure to imprisonment 
result from a treatment assignment mechanism that is orthogonal to that 
county’s potential outcomes. In other words, the outcome of interest in 
units with varying propensities to incarcerate will not be affected by 
changes in aggregate correctional spending other than through the 
impact of incarceration. 

We believe that this proposed instrumentation method constitutes an 
advance in the study of the incarceration-health nexus. A recent study by 
Weidner and Schultz (2019) uses a cross-sectional design in which 
correctional spending alone is used as an instrumental variable. We 
argue that the methodological framework of the present paper provides 
a more stringent framework for causal inference by virtue of the 
timeseries dimension of our data. Not only are year- and unit-specific 
attributes netted out by de-meaning through entities, but lagged ef
fects are also incorporated into our model design. The two-way fix
ed-effects model thus constitutes a rigorous approach that eliminates 
any confounders that either remain stable over time — such as county- 
or state-level institutional factors — or form part of any aggregate time 
trends, whilst also allowing for dynamic relationships. This combination 
of factors leads us to believe that we are better positioned to isolate 
exogenous shocks that operate above and beyond individual units’ 
default exposure to incarceration. 

We thus obtain an instrument Zit = Ti × Ct, where Ti is county i’s 
average incarceration rate over the sample period and Ct is the aggregate 
per capita expenditure on the construction and maintenance of correc
tional facilities across all states in year t. The latter variable is obtained 
from the Bureau of Justice Statistics’ Justice Expenditure and Employ
ment Series and is measured every few years. A spline function is then 
applied to impute missing values through interpolation between 
observed years, the result of which is visualised in SI Figure A2. Our two- 
stage regression model now has the following selection equation: 

Tit ​ = ​ Zitτ ​ + ​ Xitη ​ + ​ αi ​ + ​ δt ​ + ​ υit (2) 

We then re-specify the model in equation (1) as follows, with T̂ being 

a vector of fitted values from equation (2): 

Yit = T̂ i,t− kβ + Xitθ + μi + φt + εit. (3) 

We set k ∈ {1,5,10} to assess the short-run, medium-run, and long- 
run effects of incarceration. To empirically assess the strength of the 
chosen instrument, we compare the model in equation (2) to a restricted 
first-stage regression in which the effect τ of Z on T is set to be null, 
obtaining a χ2 test statistic of 8057 on 1 degree of freedom (p < 0.001). 
Hence Z comfortably satisfies the benchmark for identifying a strong 
instrument. Our model accounts for (a) any time-invariant confounders, 
even if these are unobserved, by isolating variation within counties over 
time and (b) any aggregate trends that affect all counties simultaneously. 

Matching and between-county models 

We complement our analysis of within-county variation over time 
with a model of long-run mortality differences between counties by 
averaging across units over our sample period. Despite the fact that 
fixed-effects models are typically preferred when seeking to infer 
causation and that between-unit variation rarely yields plausible esti
mates of a causal relationships, we are nevertheless interested in the 
between-county variation because a sole focus on within-county varia
tion over time prevents us from examining a key quantity of interest, 
namely the magnitude of disparity in mortality burdens between 
counties. However, in order to render the corresponding parameter es
timates more plausible, we employ matching as a non-parametric form 
of pre-processing the data (Ho, Imai, King, & Stuart, 2007; Iacus, King, & 
Porro, 2019). 

The goal of matching is to reduce inefficiency, bias, and model 
dependence. It is a non-model-based approach to preparing the data for 
parametric analysis with a view to mimicking experimental research 
designs. In non-technical terms, matching seeks to select units of anal
ysis (counties) that are similar if not identical to one another in all re
spects except for one: whether or not they are exposed to a key variable 
of interest. In the present case, the quantity of interest is the effect of 
high rates of incarceration on mortality rates, above and beyond the 
endogenous associations between incarceration and factors like income, 
education, or crime. Applying a matching algorithm will help ‘match’ 
counties that share key characteristics, except that some have high 
incarceration rates and others have low incarceration rates. This will 
facilitate a more precise account of the link between penal expansion 
and the local mortality burden. In more technical terms, let Yi designate 
the outcome variable of interest (mortality), let Ti ∈ {0,1} designate a 
dichotomous treatment variable (low versus high incarceration rates), 
and let Xi designate a series of pre-treatment covariates (income, edu
cation, crime, demographic composition, etc.). Then the treatment effect 
β on a treated unit i is β = Yi(Ti = 1)− Yi(Ti = 0). However, the last term 
of this equation, Yi(Ti = 0), is an unobserved counterfactual. One can 
estimate this quantity with Yj from control units (indexed by j) that are 
matched on relevant covariates (i.e., Xi ≈ Xj) such that the estimated 
counterfactual quantity, Ŷi(Ti = 0), is equal to Yj (Tj = 0). Unmatched 
units are pruned from the data set to improve empirical covariate bal
ance between treatment and control groups in the sample, and the 
parametric model is applied to the pruned rather than to the raw data. As 
a result, the functional form of the parametric specification is subject to 
less arbitrary model dependence. 

In the analysis below, we employ what is known as coarsened exact 
matching. This form of matching proceeds as follows. For lack of being 
able to match on exact values of continuous covariates, this algorithm 
temporarily ‘coarsens’ the covariates X into subcategories (defined via a 
non-parametric histogram estimator). It then applies exact matching on 
the coarsened X, c(X), before sorting observations into strata, each with 
unique values of c(X). Any stratum with zero treated or control units is 
pruned from the data set. The algorithm then passes the original 
(uncoarsened) units — except for the pruned ones — on to the matched 
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data set that is used in the parametric analysis (for further details, see 
Iacus et al., [2012]). 

After obtaining a matched data set, we regress Y on T alone using 
simple ordinary least squares regression, since covariate balance is ob
tained through matching. We then adopt a simulation-based approach to 
presenting key quantities of interest (King, Tomz, & Wittenberg, 2000). 
We collect our model estimates in the stacked column vector ψ̂ = {β̂,
σ̂2

}, which forms the mean of a multivariate Normal distribution with 
variance equal to the model covariance matrix, V̂(ψ̂ ). We reduce model 
dependence by drawing tens of thousands of numbers from this distri
bution and averaging uncertainty across the simulated parameter esti
mates. This further allows us to simulate counterfactuals by comparing 
expected values of each of the outcome variables across treatment states, 
with T = 0 for counties below mean exposure and T = 1 for counties with 
above mean exposure to incarceration. The simulated expected values 
are used to visualise uncertainty surrounding model parameters and to 
directly compare the distributions of E (Y |T = 0) and E (Y |T = 1). 

Sensitivity analyses 

Given the lack of instrumentation in this cross-sectional setting, we 
refrain making causal claims. However, we conduct a simple non- 
parametric sensitivity analysis that allows us to precisely quantify the 
amount of unmeasured confounding that would in theory be required to 
eliminate our estimated treatment effect β∧. For (theoretically dicho
tomised) treatment and control units, let U denote an unmeasured 
confounder. Then the bias factor, B, is defined as the difference between 
β∧ and what β∧ would have been had we controlled for U as well, net of 
our other control variables. We assume that U is binary and that the 
effect of U on Y is the same across both treatment states (i.e., no U-by-T 
interaction). We then define 

γ ​ = ​ E(Y ​ | ​ U ​ = ​ 1, ​ T, ​ X) ​ – ​ E(Y ​ | ​ U ​ = ​ 0, ​ T, ​ X)

As the effect of the unmeasured confounder on the outcome, net of 
the treatment and control variables. We also define 

δ ​ = ​ P(U ​ = ​ 1 ​ | ​ T ​ = ​ 1, ​ X) ​ – ​ P(U ​ = ​ 1 ​ | ​ T ​ = ​ 0, ​ X)

As the difference in the prevalence of the unmeasured confounder 
between the treatment and control groups. Then it can be shown that B 
= γ × δ (VanderWeele & Arah, 2011; VanderWeele, 2015, pp. 68–69). In 
assessing the sensitivity of our model coefficients to unmeasured con
founding, we ask how large γ would have to be in order to reduce our 
estimated effect size β∧ to zero. We address this question by visualising 
how B changes as the two sensitivity parameters (co-)vary across a range 
of possible values. 

As a final robustness check, we run a series of cross-sectional re
gressions with data from 2014 alone (the year with the best data 
coverage), without matching. For this particular year, we have access to 
additional control variables that help inform the sensitivity analysis, 
including residential segregation by race, unemployment and poverty 
rates, and intergenerational income mobility. These additional data and 
their sources are described in SI Table A1. Due to issues of multi
collinearity, we present a series of regression models in which the con
trol variables are added and removed one at a time. We then assess how 
the coefficient for incarceration changes in response to each new co
variate. All analyses are conducted in R version 4.0.2 (R Core Team, 
2020). 

Findings 

Panel data regressions 

Table 2 shows results for a set of two-way fixed-effects regressions 
wherein the incarceration variable is instrumented as described above. 
The outcome and treatment variables are residualised with respect to the 

control variables listed above, but to avoid redundant clutter, we only 
display our key quantities of interest, namely the lagged treatment ef
fects. All model specifications in Table 2 yield Wald test statistics for 
joint significance of more than 500 on 7 degrees of freedom. We find, as 
shown in the second column, that a standard deviation increase in rates 
of imprisonment in one year causes 2.9 excess deaths from communi
cable diseases per 100,000 county population in the following year 
(95% CI: 2.1, 3.7; p < 0.001). Expressed as a percentage change, this 
amounts to a 7.2% increase in the local communicable death rate — a 
substantively large effect size. Five years later, as shown in the same 
column of the second row, the corresponding number is 0.8 (95% CI: 
0.2, 1.4; p < 0.01), or a 5.6% increase. However, we find no robust effect 
a decade later, as shown in the same column of the last row. The third 
column shows that higher incarceration leads to 26 excess deaths from 
non-communicable diseases (95% CI: 22.0, 30.0; p < 0.001) in the short 
run, 20 excess deaths (95% CI: 16.0, 24.0; p < 0.001) in the medium run, 
and 13 excess deaths (95% CI: 9.0, 17.0; p < 0.001) in the long run per 
100,000 population. In percentage terms, these effects are equivalent to 
a rise in non-communicable deaths by 3.4%, 3.2%, and 2.8%, respec
tively. Finally, as shown in the last column, the treatment effects for 
mortality from all causes is 26 excess deaths (95% CI: 22.0, 30.0; p <
0.001) in the short run, 20 excess deaths (95% CI: 16.0, 24.0; p < 0.001) 
in the medium run, and 15 excess deaths (95% CI: 11.0, 19.0; p < 0.001) 
in the long run per 100,000 population, corresponding to increases of. 

3.5%, 3.1%, and 3.0%, respectively. 
These findings provide strong evidence in favour of our principal 

hypothesis, namely that high rates of incarceration impact population- 
level mortality outcomes in short, medium, and long run. The fact that 
our estimated coefficients for communicable and non-communicable 
disease deaths — insofar as they partition the outcome space — do 
not add up mechanically to the coefficient for all-cause mortality is most 
likely due to differences in age-specific mortality rates by cause of death, 
to the effect that the two categories do not sum (exactly) to unity when 
age-standardised on a separate basis. 

For the sake of comparison, we also run non-instrumented versions of 
the two-way fixed-effects models. As shown in SI Table A2, these 
consistently produce smaller parameter estimates, but remain robust. 
We surmise that the discrepancy in effect sizes derives from attenuation 
bias in the non-instrumented panel regression — possibly due to mea
surement error or omitted variable bias — or from differences between 
the local average treatment effect estimated by the instrumented models 
and the population average treatment effect estimated by the non- 
instrumented models (see Card, 2001). 

Table 2 
Instrumented two-way fixed effects regression models.   

Communicable Non-Communicable All-Cause 

Incarceration rate (t − 1) 2.9 26.0 26.0  
(2.1, 3.7) (22.0, 30.0) (22.0, 30.0) 

Incarceration rate (t − 5) 0.8 20.0 20.0  
(0.2, 1.4) (16.0, 24.0) (16.0, 24.0) 

Incarceration rate (t − 10) − 0.6 13.0 15  
(− 1.1, 0.01) (9.0, 17.0) (11.0, 19.0) 

Notes: The outcome variables are age-standardised mortality rates from 
communicable diseases in the second column, from non-communicable diseases 
in the third column, and from all causes in the fourth column. The incarceration 
variable, lagged by one, five, and ten years, is instrumented as described in the 
Data and methods section. The corresponding parameter estimates are inter
preted as the excess number of deaths per 100,000 county population caused by 
a standard deviation increase in incarceration rates, after adjusting for violent 
crime, median household income, high school graduation rates, fraction African 
Americans, fraction Hispanics, and fraction other ethnic minority (not dis
played). 95% confidence intervals derived from robust standard errors are 
shown in parentheses below each parameter estimate. 
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Between-county matched regressions 

We proceed to the between-county analysis by applying a matching 
algorithm to time-averaged versions of all our covariates after splitting 
counties into those with above versus below mean exposure to incar
ceration. The matching procedure results in a pruned data set composed 
of 1694 counties. As reported in SI Table A3, the diagnostics reveal a 
high degree of balance improvement since the empirical covariate dis
tributions in both the treatment and control groups are now similar, 
meaning the smaller sample size strengthens rather than undermines the 
subsequent statistical inference. We then regress our three outcome 
variables on the treatment variable using simple ordinary least squares, 
the results of which are displayed in Table 3. A standard deviation in
crease in incarceration rates is associated with 4.3 excess communicable 
deaths (95% CI: 3.7, 4.9; p < 0.001), 44.2 excess non-communicable 
deaths (95% CI: 39.7, 48.7; p < 0.001), and 56.1 excess all-cause 
deaths (95% CI: 50.8, 61.4; p < 0.001). Expressed in terms of semi- 
elasticities, this amounts to a 8.9%, 5.3%, and 5.9% increase in mor
tality, respectively. We note that the larger between-unit effect sizes are 
expected insofar as they reflect greater inter-county (as opposed to intra- 
county) variation in mortality outcomes. 

To get a more intuitive sense of what these numbers mean in sub
stantive terms, we predict and plot the conditional expectation of each 
outcome variable by treatment status using a simulation-based 
approach, as described in the Data and methods section. Fig. 1 shows 
that in counties with low rates of incarceration, mortality from 
communicable diseases is expected to be 44.4 deaths per 100,000 pop
ulation (95% CI: 43.8–45.0; p < 0.001). In counties with high rates of 
incarceration, the corresponding number is 52.0 (95% CI: 51.4–52.7; p 
< 0.001). For non-communicable diseases, a shift from control to 
treatment increases the expected mortality rate from around 800 (95% 
CI: 795–806; p < 0.001) to around 879 deaths per 100,000 population 
(95% CI: 873–884; p < 0.001). For all-cause mortality, the corre
sponding numbers are 917 (95% CI: 910–923; p < 0.001) and 1016 
(95% CI: 1009–1022; p < 0.001), respectively. 

Fig. 2 visualises the sensitivity analysis using the parameter esti
mates from Table 3, with δ denoting the degree of selection on the un
measured confounder across the two treatment states (ranging from 0 to 
1, with higher values indicating a higher prevalence of the confounder in 
the treatment group — i.e., in counties with high rates of incarceration), 
and γ denoting the magnitude of the effect of U on the outcome, above 
and beyond that of the treatment and other controls, that would be 
required to completely eliminate the effect of incarceration on the three 
outcome variables. The reader will note that even for unusually high 
levels of selection on the unmeasured confounder, the effect of U on the 
outcome would have to be large in order to nullify that of incarceration, 
especially for non-communicable disease deaths and all-cause mortality. 
For instance, even when the difference in the prevalence of the 

confounder between the treatment and control groups is as high as 0.8 
— an unlikely scenario — U would have to cause around half a dozen 
excess communicable deaths, over 50 non-communicable deaths, and 
almost 75 all-cause deaths per 100,000 population — above and beyond 
the effects of T and X — to eliminate our model estimates. We believe it 
is plausible that most relevant confounders are already included in our 
matrix of covariates. As such, a more plausible value of δ would be at the 
lower end of the X-axis in Fig. 2. At, say, δ = 0.2, the effect of U on Y 
would have to be nearly 25 excess communicable deaths, around 225 
non-communicable deaths, and around 275 all-cause deaths, which 
seems highly improbable. In short, an unusually large amount of un
measured confounding would be needed to explain away the estimated 
impact of incarceration on between-county mortality patterns. 

Cross-sectional regressions 

Finally, we assess the robustness of the hypothesised relation be
tween incarceration and mortality by running a series of cross-sectional 
regressions with additional data from 2014, without pre-processing the 
data via matching. Additional control variables include the local un
employment and poverty rates, a measure of absolute income mobility 
at the county level, income inequality as measured by a local Gini index, 
residential segregation by race, and the percentage of the county pop
ulation with no health insurance. To avoid over-specification, we add 
and remove one control variable at a time. However, we adjust for state- 
fixed effects in all models. As reported in SI Tables A4–A6, the estimated 
association between incarceration and each of the outcome variables 
remains stable across all specifications, which further confirms the 
robustness of our principal findings. 

Concluding discussion 

Our findings confirm the hypothesis that high rates of incarceration 
exert a substantively large impact on county-level mortality rates. Our 
joint usage of variation within and between units demonstrates that 
penal expansion can be construed as a distal determinant of declining 
health and deepening health inequality across the United States. We 
view our paper as a contribution to a growing literature on the health 
impacts of incarceration. The novelty of our approach is the combina
tion of a new methodological design with previously unavailable 
county-level data to study dynamic changes in cause-specific mortality 
rates. To our knowledge, this is the first analysis to adopt this threefold 
approach to generate novel empirical evidence at the population level, 
at a high level of geographical resolution. 

However, we acknowledge the limitations of this study. First of all, as 
we are unable to empirically verify that our models capture exogenous 
treatment variation, we recognise that our parameter estimates may 
suffer from residual confounding or other sources of bias. Nevertheless, 
in the panel data analysis, the use of a novel instrumentation technique 
coupled with unit- and time-fixed effects provides a stringent framework 
for causal inference that minimises the likelihood of obtaining spurious 
associations. In the cross-sectional analysis, we have sought to adjust for 
the most important and likely confounders of the relevant relationships 
and we have used matching as a means of mimicking an experimental 
research design. Both analyses yield robust parameter estimates and are 
not subject to high levels of model dependence. Our sensitivity analysis 
suggests that an inordinate amount of unmeasured confounding would 
be required to explain away the estimated effect of incarceration on 
mortality outcomes. 

Second, although our findings provide meaningful quantitative es
timates of the hypothesised causal associations, we do not have the data 
to flesh out the relevant pathways or to detail the precise mechanisms by 
which high rates of incarceration exert the kinds of effects that we 
propose. We are also not able to capture the broader correctional pop
ulation, such as those on probation or parole, nor potentially relevant 
patterns of migration or other demographic changes. Moreover, our data 

Table 3 
Between-county matched regression models.   

Communicable Non-Communicable All-Cause 

Incarceration rate 4.3 44.2 56.1  
(3.7, 4.9) (39.7, 48.7) (50.8, 61.4) 

Multiple R2 14.8% 18.4% 20.2% 
Observations 1694 1694 1694 

Notes: The outcome variables are age-standardised mortality rates from 
communicable diseases in the second column, from non-communicable diseases 
in the third column, and from all causes in the fourth column. The association 
between treatment and outcome is estimated by applying a simple linear 
regression model to a pruned data set that is pre-processed using coarsened exact 
matching. Counties are matched on the variables listed in the Data and methods 
section (see also SI Table A3). All variables are time-averaged over the sample 
period. Parameter estimates are interpreted as the number of excess deaths 
associated with a standard deviation increase in incarceration rates. 95% con
fidence intervals are shown in parentheses below each parameter estimate. 
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do not allow us to estimate how much of the excess mortality is due to 
high death rates amongst former prisoners and how much is due to 
spillover effects on local areas. With the data at hand, we cannot explain 
in detail why deaths from communicable, maternal, neonatal, and 
nutritional diseases are affected in the short and medium run, whilst 
non-communicable disease deaths are also impacted in the long run. We 
note that the lag between exposure and outcome for communicable 
diseases is, in almost all cases, short, whereas non-communicable dis
eases involve distributed lags that can extend over a prolonged period. 
We suspect that our results reflect the ways in which incarceration acts 
upon and activates the broader determinants of health by corroding 
social ties and the collective efficacy of neighbourhoods and commu
nities, a process which in turn becomes durably embodied by local 
populations in ways that manifest as chronic ill health in the longer run, 
for example by influencing behaviours, both health promoting (for 
example, we know that strong social ties are associated with improved 
blood pressure control) and harming (unhealthy behaviours such as 
smoking). Of course it would require longitudinal data at the individual 
and community level to tease this out but we believe that our findings 
are consistent with the known causal pathways (see Nosrati & King, 
2021 for further theoretical discussion). We note, furthermore, that the 
size of our parameter estimates — although consistent in sign and 
overall robustness — vary somewhat across model specifications. This 
most likely reflects differences in variation within and between units 
over time. To better address all these points, future research should seek 
to integrate multilevel data that account for the complex in
terconnections between individuals, neighbourhoods, local commu
nities, and the criminal justice system across time and space. 

Third, we estimate an average treatment effect, yet existing research 
on incarceration shows that the penal state disproportionately targets a 

Fig. 1. Density plots of expected outcome values 
conditional on treatment state. In the top panel, the 
outcome variable is mortality from communicable 
disease, in the middle panel the outcome variable is 
mortality from non-communicable diseases, and in 
the bottom panel the outcome variable is all-cause 
mortality per 100,000 population. Each model com
pares counties with incarceration rates at one stan
dard deviation below the mean (‘Control’) to those 
with incarceration rates at one standard deviation 
above the mean (‘Treatment’). The association be
tween treatment and outcome is estimated by 
applying a simple linear regression model to a pruned 
data set that is pre-processed using coarsened exact 
matching. Counties are matched on the variables lis
ted in the Data and methods section (see also SI 
Table A3). All variables are time-averaged over the 
sample period. N = 1694.   

Fig. 2. Sensitivity analysis plot to assess unmeasured confounding of the esti
mated effect β∧ of incarceration on each of the outcomes in Table 3. Values of δ 
(X-axis) and γ (Y-axis) that lie on the lines would completely eliminate the 
corresponding effect estimates. Values above the plotted curve would reverse 
the sign of the estimated effect. 
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specific fraction of the American population, namely African Americans 
at the bottom of the social structure (Wacquant, 2009). With our current 
data and ecological approach, we are unable to assess any potential 
treatment effect heterogeneity — that is, whether incarceration is more 
harmful to some than to others. We are also unable to offer a more 
refined investigation of social and economic factors such as income, 
education, or ethno-racial division, all of which are imperfectly 
measured at an aggregate level in our data set. 

These limitations do not prevent us from concluding that high rates 
of incarceration shape unequal life chances in the United States and can 
harm population health. We provide evidence for a robust and sub
stantively large net causal linkage between incarceration and commu
nicable, non-communicable, and all-cause mortality rates. This implies 
that protective rather than punitive criminal justice policies may help to 
shield vulnerable populations from premature mortality and to reduce 
regional inequalities in health and well-being. 
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