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Abstract 8 

The effect of Reynolds number on curves of the transverse-only motion amplitude of a circular 9 

cylinder with the body mass 𝑚∗ = 0.935 and the damping ratio 𝜁 = 0.00502 in the turbulent 10 

flow range is investigated systematically using a two-dimensional in-house code developed 11 

based on lattice Boltzmann method. Large eddy simulation is chosen as the turbulence model 12 

to describe viscous, incompressible and Newtonian fluid and the immersed boundary method 13 

is used to impose the boundary condition on the moving cylinder surface. Multi-block model 14 

is adopted to improve the accuracy and the computational efficiency. It is well established that 15 

when the variation of Reynolds number changes with the reduced velocity, there are three 16 

branches in the motion amplitude curve of a low mass cylinder, including initial, upper and 17 

lower branches connected by two jumps. However, in the present work, Reynolds number and 18 

reduced velocity are considered as independent parameters. Detailed results are provided for 19 

the variations of motion amplitude, motion frequency and lift coefficient against the reduced 20 

velocity in the lock-in region at different fixed Reynolds numbers. The results show that at a 21 

fixed Reynolds number the motion amplitude curve has two branches. At lower range of 22 

Reynolds number calculated, there are only initial and upper branches, and at higher range, 23 

there are only upper and lower branches. Also, the motion amplitude against the Reynolds 24 

number near the jumps is studied when the reduced velocity is fixed. It shows that the values 25 

of amplitude near the jumps are very sensitive to Reynolds number.  26 

 27 
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 30 

1. Introduction 31 

Vortex-induced vibration (VIV) has been applied in many fields of engineering, such as rise 32 

tubes bringing oil or natural gas, the tethered structures in the ocean, the heat exchanger tubes, 33 

columns supporting bridges and high-rise buildings. Reviews of the earlier work were given 34 

by Bearman (1984), Blevins (1990) and Sumer and Fredsoe (1997) and more recent ones by 35 

Williamson and Govardhan (2004) and Bearman (2011). VIV may cause the large-amplitude 36 

vibration of structures and lead to structural damage or even collapse of the whole system, 37 

especially in the lock-in region. As a result, there have been a large number of experimental 38 

and numerical efforts to investigate features of the transverse free vibration in the lock-in 39 

region, including branches of motion amplitude, modes of vortex wake, the importance of body 40 

mass and damping. However, far fewer studies have systematically considered the effect of 41 

Reynolds number on the motion amplitude branches. Thus, this paper uses multi-block lattice 42 

Boltzmann method (LBM) together with large eddy simulation (LES) as the turbulence model 43 

for VIV. The immersed boundary method (IBM) is used to impose the no-slip condition on the 44 

body surface. The aim is to shed some lights on the effect of Reynolds number on free motions 45 

in the lock-in region, especially the motion amplitude branches. 46 

 47 

Most previous experimental studies on the transverse free vibration of a cylinder in the sub-48 

critical turbulent range (Reynolds number𝑅𝑒 = 𝑢0𝐷 𝜈⁄ = 300 − 2 × 105 ) fixed structural 49 

parameters (the body mass 𝑚, structural stiffness 𝑘, damping 𝑏 and diameter 𝐷) and the fluid 50 

medium (the fluid density 𝜌 and kinematic viscosity 𝜈), and varied the incoming fluid velocity 51 

𝑢0. In general, the response of the nondimensional cylinder motion amplitude 𝑌0
∗ =

𝑌0

𝐷
 depends 52 

on the nondimensional mass 𝑚∗ =
𝑚

𝜌𝐷2, damping ratio 𝜁 =
𝑏

2√𝑘(𝑚+𝑀𝑝)
, reduced velocity 𝑈∗ =53 

𝑢0

𝑓𝑛𝐷
 and Reynolds number 𝑅𝑒 , where  𝑀𝑝 =

𝜋

4
𝜌𝐷2  is the potential flow added mass for a 54 

circular cylinder and 𝑓𝑛 =
1

2𝜋
√

𝑘

𝑚+𝑀𝑝
 is the natural frequency of the body. It means that in the 55 

experiment both 𝑈∗ and 𝑅𝑒 could change with 𝑢0. Then simulations tried to capture what was 56 

observed in experiments and thus followed the same practice. These early experimental and 57 

numerical studies assumed that the effect on the results was attributed to the variation of 𝑈∗ 58 
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rather than the Reynolds number. A possible reason may be that in the sub-critical turbulence 59 

range, 𝑓𝑣
∗ = 𝑓𝑣𝐷 𝑢0⁄ , where 𝑓𝑣  is the frequency of lift coefficient 𝐶𝐿  for a fixed cylinder, is 60 

found not to be too much affected by 𝑅𝑒 or to be nearly constant with a value of 0.2, as 61 

discussed in reviews by Williamson (1996) and Sumer and Fredsoe (1997). Also, the amplitude 62 

of 𝐶𝐿 for a fixed cylinder was considered to be not very much affected by 𝑅𝑒 or to be nearly 63 

constant with a value of about 0.3 (Skop and Griffin, 1973; 1975). Then, the early assumption 64 

was that the amplitude of 𝐶𝐿 would not be significantly affected by 𝑅𝑒 for a free body either. 65 

Therefore, as pointed out by Bearman (2011), “there was a popular belief at the time that 66 

Reynolds number plays a minor role and that the flow around a cylinder undergoing large 67 

vortex-induced vibrations is insensitive to Reynolds number changes”. 68 

 69 

Based on the more extensive work (Norberg, 2003; Klamo et al., 2005; Govardhan and 70 

Williamson, 2006; Wanderley and Soares, 2015, Dorogi and Baranyi, 2020) undertaken later 71 

on, it is found that the effect of 𝑅𝑒  is important for various results, as reviewed by Bearman 72 

(2011). For example, Norberg (2003) reviewed data of the root-mean-square lift coefficient 73 

𝐶𝐿𝑟𝑚𝑠 acting on a stationary cylinder in the sub-critical turbulent range. Results indicated that 74 

even though the value of 𝐶𝐿𝑟𝑚𝑠  was usually about 0.27, around 𝑅𝑒 ≈ 1600  it suddenly 75 

dropped to 0.048. This suggested that the effect of 𝑅𝑒 on 𝐶𝐿 for a fixed cylinder could not be 76 

always ignored. For a free body, the variation of 𝐶𝐿 with 𝑅𝑒 should be more complex compared 77 

with that of a fixed cylinder, and thus the 𝑅𝑒 effect on free motions may need to be considered. 78 

Klamo et al. (2005) investigated the effect of Reynolds number in the range 𝑅𝑒 = 525 − 2600 79 

on the maximum amplitude of a cylinder free motion. In their experiments, both 𝑈∗ and 𝑅𝑒 80 

still changed with the incoming fluid velocity 𝑢0  at given 𝑚∗  and 𝜁 . A curve of motion 81 

amplitude 𝑌0
∗  against 𝑈∗  was plotted between 𝑈1

∗ < 𝑈∗ < 𝑈2
∗ ,with 𝑅𝑒1 < 𝑅𝑒 < 𝑅𝑒2 . Then, 82 

values of 𝑚∗ and 𝜁 remained unchanged, while 𝑓𝑛 was varied. To achieve the same range 𝑈∗, 83 

𝑢0  was changed and therefore 𝑅𝑒  too. Another curve of motion amplitude 𝑌0
∗  against 𝑈∗ 84 

between 𝑈1
∗ < 𝑈∗ < 𝑈2

∗ , with 𝑅𝑒3 < 𝑅𝑒 < 𝑅𝑒4  was plotted. Comparing 𝑌0
∗  values from the 85 

two curves at same 𝑈∗, they found that at larger 𝑅𝑒, the peak amplitude of the cylinder motion 86 

was also larger and pointed out that the Reynolds number was an important parameter for the 87 

maximum amplitude. Govardhan and Williamson (2006) extended the 𝑅𝑒  range to 500 −88 

33000 to investigate its effect on the maximum motion amplitude and presented a similar 89 

conclusion to that from Klamo et al. (2005). 90 
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 91 

Later, Wanderley and Soares (2015) did numerical study. For given 𝑚∗ and 𝜁, a curve of 𝑌0
∗ 92 

was plotted against 𝑈∗ at a fixed 𝑅𝑒. Curves 𝑌0
∗ at other 𝑅𝑒 values were also plotted against 93 

the same range of 𝑈∗. Similarly, curves for dominant frequency 𝑓𝑐
∗  of cylinder motion against 94 

𝑈∗ were plotted. In particular, four different 𝑅𝑒 values in the sub-critical turbulence range were 95 

chosen, or 𝑅𝑒 = 300, 400, 1000 and 1200. The body mass was 𝑚∗ = 1.88 and damping ratio 96 

𝜁 = 0.00542. It was found that the effect of 𝑅𝑒 was significant. With the increase in 𝑅𝑒, the 97 

range of 𝑈∗ within which lock-in occurred became much larger. In addition, at the same 𝑈∗, 98 

the value of motion amplitude from higher Reynolds number was higher than that from lower 99 

Reynolds number. 100 

 101 

One of the important features of the motion amplitude curve of a low mass cylinder (𝑂(𝑚∗) =102 

1 − 10) against 𝑈∗  is that it has jumps. Khalak and Williamson (1997) observed that for 103 

𝑂(𝑚∗) = 1 − 10, there were three branches of response in the curve. The curve started with 104 

an initial branch at lower 𝑈∗, then became an upper branch when 𝑈∗ was beyond a critical 105 

value and dropped to a lower branch as 𝑈∗ further increased to be beyond another critical value. 106 

Therefore, there are two jumps in the curve at: (1) the transition between initial-upper branches 107 

and (2) the transition between upper-lower branches. In the initial branch, with the increase of 108 

𝑈∗ , 𝑌0
∗  also increased. Further increase of 𝑈∗  to a critical value 𝑈𝐼𝑈

∗ , 𝑌0
∗  jumped nearly 109 

vertically from initial branch to the upper branch. The peak of the motion amplitude was located 110 

in the upper branch. As 𝑈∗ continued to increase to the next critical value 𝑈𝑈𝐿
∗ , the transition 111 

between upper-lower branches occurred, and 𝑌0
∗ dropped nearly vertically. It should be noted 112 

that in experiments mentioned above, 𝑈∗  and 𝑅𝑒  both changed with 𝑢0  and 𝑅𝑒  was in the 113 

range of 2000-14000. In the work of Wanderley and Soares (2015) mentioned previously, 𝑅𝑒 114 

was fixed in the curve 𝑌0
∗ against 𝑈∗ and was in the range 𝑅𝑒 = 300 − 1200. With the increase 115 

of 𝑈∗ , 𝑌0
∗  increased slowly. Further increase in 𝑈∗ , 𝑌0

∗  jumped to its peak first and then 116 

decreased. The curve changed rapidly before its peak, and thus there was only one critical value 117 

𝑈𝐼𝑈
∗  connecting initial and upper branches, no 𝑈𝑈𝐿

∗  where 𝑌0
∗ dropped nearly vertically. It seems 118 

that the effect of 𝑅𝑒 on the response branches may be important and it may affect the response 119 

branches. We shall focus on the case with 𝑅𝑒, within which the 𝑌0
∗ − 𝑈∗ curve has two jumps 120 

and three branches when the variation of Reynolds number changes with the reduced velocity. 121 

The range of Reynolds number is chosen as 𝑅𝑒 = 1524 − 12192  where Govardhan and 122 
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Williamson (2000) observed that there were three response branches and two jumps in the 𝑌0
∗ −123 

𝑈∗ curve when 𝑈∗ and 𝑅𝑒 both changed with 𝑢0.  The large amplitude, including the peak 124 

response, and sudden changes of the motion amplitude may be found in the lock-in region, 125 

which may lead to the structural damage and have serious implications to the safety of the 126 

structure. Thus, it is important to investigate the characters of the motion in the lock-in region, 127 

especially response branches. We shall undertake systematic simulations to investigate how 128 

the 𝑌0
∗ − 𝑈∗ curve behaves at each fixed 𝑅𝑒. In particular, we shall investigative how 𝑅𝑒 will 129 

affect both critical values, 𝑈𝐼𝑈
∗  and 𝑈𝑈𝐿

∗  at which the jump occurs and how it will affect the 130 

shape of the curve within each branch. Also, we shall examine how the motion amplitude 131 

changes near the jump when the reduced velocity is fixed while the Reynolds number varies. 132 

It ought to point out that in order to be consistent with amplitude branches from Govardhan 133 

and Williamson (2000), in the present paper a sudden increase is related to 𝑈𝐼𝑈
∗  connecting 134 

initial and upper branches and a nearly vertical drop occurs at 𝑈𝑈𝐿
∗  linking upper and lower 135 

branches. The results from Wanderley et al. (2012) indicated that the three-dimensionality had 136 

insignificant influence on the motion amplitude and frequency of a relatively long cylinder 137 

when Re ≤ 12000. Later, in addition to the work by Wanderley and Soares (2015), Pigazzini 138 

et al. (2018) extended Reynolds number to 13000. All of them provided the similar conclusion. 139 

Thus, 2D simulations are performed in the present study. 140 

 141 

The present work on VIV is based on LBM. LBM is based on microscopic models and 142 

mesoscopic kinetic equations. Its equations may appear to be very different, but they are in fact 143 

equivalent to the NS equations. It has some distinctive features, such as the simple algorithm 144 

and the natural parallelism (Chen and Doolen, 1998). It can conveniently incorporate the LES 145 

model into its algorithm when turbulence is important and the LES-LBM can recover the 146 

incompressible LES-NS equations based on the Chapman-Enskog expansion (Cercignani, 147 

1988) with the order of accuracy proportional to 𝑀2, where 𝑀 =
𝑢0

𝑐𝑠
 is the Mach number, 𝑐𝑠 is 148 

the equivalent sound speed (He and Luo, 1997). Macroscopic flow properties, such as the fluid 149 

density, velocity and pressure, can be obtained by the particle distribution function (Chen and 150 

Doolen, 1998). In this work, IBM is used to treat the structure-fluid boundary. The body surface 151 

is replaced by a layer of distributed force, whose value is determined by the no-slip boundary. 152 

It allows a complex boundary to be treated in a simpler way. To improve the numerical 153 

efficiency and accuracy, the multi-block grid method is used. The grid is finer near the fluid-154 



 

6 
 

structure boundary, where the flow is usually more complex, while it is coarser away from the 155 

body. 156 

 157 

The paper is organized as follow. In Section 2, we present the numerical method based on 158 

immersed boundary-lattice Boltzmann method with large-eddy simulation and multi-block 159 

method for simulation of turbulence flows. This is followed by the mathematical analysis for 160 

the free motion in Section 3. Results are provided in Section 4, followed by the conclusions in 161 

Section 5. 162 

 163 

2. Numerical method 164 

Large-eddy simulation (LES) has become one of most widely used methods for turbulent flow. 165 

The turbulent flow of viscous, incompressible and Newtonian fluid is governed by the 166 

following continuity equation and Navier-Stokes equation with LES, 167 

∇ ∙ �̅� = 0,                                                                 (1) 168 

𝜕�̅�

𝜕𝑡
+ (�̅� ∙ ∇)�̅� = −

∇�̅�

𝜌
+ 2𝜈0∇ ∙ �̅� − ∇ ∙ 𝑻,                                  (2) 169 

where �̅� and �̅�  are filtered fluid velocity 𝒖 and pressure 𝑝, respectively, 𝜌 is the fluid density, 170 

𝜈0 is the kinematic viscosity. �̅� = (∇�̅� + (∇�̅�)𝑇) 2⁄  is the filtered strain rate tensor and 𝑻 is 171 

sub-grid-scale stresses due to interaction between the unsolved or SGS eddies defined as 𝑻 =172 

𝒖𝒖̅̅ ̅̅ − �̅��̅�. 173 

 174 

In one of the common LES models, or the sub-grid-scale (SGS) model due to Smagorinsky 175 

(1963), its aim is to reduce the temporal and spatial complexity of 𝑻. It is assumed 𝑻 = −2𝜈𝑒�̅�, 176 

where 𝜈𝑒 = (𝐶∆)2‖�̅�‖ is eddy viscosity, 𝐶  is the Smagorinsky constant and ∆ is the filter 177 

width, ‖�̅�‖ = √2|∑ 𝑆�̅�𝛽𝑆�̅�𝛽𝛼,𝛽 |  and 𝑆�̅�𝛽 = (
𝜕𝑢𝛼

𝜕𝑥𝛽
+

𝜕𝑢𝛽

𝜕𝑥𝛼
) 2⁄ , with 𝛼 = 1,2  and 𝛽 = 1,2 178 

corresponding to the lines and rows of �̅�, respectively.  Using this, Eq. (2) can be written as 179 

𝜕�̅�

𝜕𝑡
+ (�̅� ∙ ∇)�̅� = −

∇�̅�

𝜌
+ 2𝜈𝑇∇ ∙ �̅�,                                         (3) 180 
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where 𝜈𝑇 = 𝜈0 + 𝜈𝑒 is the total viscosity. Eqs. (1) and (3) are then combined with the no-slip 181 

condition on the solid surface 𝑠, or  182 

�̅� = 𝑼𝑑(𝑠),                                                           (4) 183 

where 𝑼𝑑 is the velocity of the solid surface. 184 

 185 

2.1. Large-eddy simulation-lattice Boltzmann method (LES-LBM) 186 

The present work is based on LBM with LES for governing equation in the volume coupled 187 

with IBM for conditions on the boundary. Equivalent to Eqs. (1) and (3), the lattice Boltzmann 188 

equation (LBE) with LES can be written as (Chen and Doolen, 1998; Aidun and Clausen, 2010) 189 

𝑓𝑖(𝒙 + 𝒆𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝒙, 𝑡) −
1

𝜏𝑇
[𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)],                        (5) 190 

where 𝑓𝑖  is the weighted density distribution function corresponding to each discretized 191 

velocity 𝒆𝑖, and 𝑓𝑖
𝑒𝑞

 is the corresponding equilibrium distribution function. 𝒙 in Eq. (5) is the 192 

position vector in the Cartesian coordinate system 𝑂𝑥𝑦 and 𝛿𝑡 is the time step. 𝜏𝑇 =
1

2
+

𝜈𝑇

𝑐𝑠
2𝛿𝑡

 193 

is the nondimensional total relaxation time, which is related to the total viscosity 𝜈𝑇 based on 194 

Chapman-Enskog expansion. Here 𝑐𝑠 is the artificial sound speed. Based on SGS model, the 195 

relaxation time can be written as 196 

 𝜏𝑇 =
1

2
+

1

𝑐𝑠
2𝛿𝑡

(𝜈0 + 𝜈𝑒) =
1

2
+

1

𝑐𝑠
2𝛿𝑡

[𝜈0 + (𝐶∆)2‖�̅�‖].                         (6) 197 

 198 

For the two-dimension problem, we adopt the nine-discretized velocity, or D2Q9 model, as in 199 

the previous applications (Jiao and Wu, 2018a, b). Corresponding to that we have 200 

𝒆𝑖 = {

(0,0)                                                                              𝑖 = 0 
𝑐(cos[(𝑖 − 1)𝜋 2⁄ ], sin[(𝑖 − 1)𝜋 2⁄ ])                          𝑖 = 1 − 4

√2𝑐(cos[(2𝑖 − 1)𝜋 4⁄ ], sin[(2𝑖 − 1)𝜋 4⁄ ])               𝑖 = 5 − 8

,      (7) 201 

 where 𝑐 = √3𝑐𝑠 is the lattice speed. The equilibrium distribution function is of the form 202 

𝑓𝑖
𝑒𝑞(𝒙, 𝑡) = 𝜌𝜔𝑖 [1 +

𝒆𝑖∙�̅�

𝑐𝑠
2 +

(𝒆𝑖∙�̅�)2

2𝑐𝑠
4 −

�̅�∙�̅�

2𝑐𝑠
2],                          (8) 203 
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 where weighting coefficient 𝜔𝑖  
are given as 𝜔0 = 4 9⁄ , 𝜔𝑖 = 1 9⁄  for 𝑖 = 1 − 4, and 𝜔𝑖 =204 

1 36⁄  for 𝑖 = 5 − 8. 205 

 206 

The fluid domain is then discretized by the structured mesh with 𝛿𝑥 = 𝛿𝑦 = 𝑐𝛿𝑡 = 𝑙 . The 207 

solution of Eq. (5) is obtained through the streaming and collision process. From the density 208 

distribution function, the fluid density and the fluid velocity at each point can be respectively 209 

calculated as follow 210 

𝜌 = ∑ 𝑓𝑖
8
𝑖=0 ,                                                   (9) 211 

𝜌�̅� = ∑ 𝒆𝑖𝑓𝑖
8
𝑖=0 .                                                 (10) 212 

With the above LBM, Eq. (5) can be found to equivalent to Eqs. (1) and (3) to the order of 213 

accuracy of with 𝑂(𝑀2) with 𝑀 =
𝑢0

𝑐𝑠
. 214 

 215 

To find 𝑆�̅�𝛽 required by the eddy viscosity in LES, there are at least two methods which could 216 

be conveniently used. The first one is to compute the velocity gradients using the finite-217 

difference approximation, as square mesh will be used in the D2Q9 model. Another way is to 218 

evaluate it directly from the weighted density distribution function. In the present study, we 219 

have chosen the second method. In such a case, the strain rate tensor 𝑆�̅�𝛽  is related to the 220 

momentum flux tensor �̅�𝛼𝛽 detailed in Appendix, or 221 

𝑆�̅�𝛽 = −
1

2𝜏𝑇𝛿𝑡𝜌𝑐𝑠
2 �̅�𝛼𝛽 = ∑ 𝑒𝑖𝛼𝑒𝑖𝛽(𝑓𝑖 − 𝑓𝑖

𝑒𝑞)𝑖 .                           (11) 222 

Substituting Eq. (11) into ‖�̅�‖ = √2|∑ 𝑆�̅�𝛽𝑆�̅�𝛽𝛼,𝛽 | , we have ‖�̅�‖ =
1

2𝜏𝑇𝛿𝑡𝜌𝑐𝑠
2 ‖�̅�‖ , where 223 

‖�̅�‖ = √2|∑ �̅�𝛼𝛽�̅�𝛼𝛽𝛼,𝛽 |. Combining this with Eq. (6) and eliminating 𝜏𝑇, we obtain 224 

‖�̅�‖ =
𝑐𝑠

2

2𝐶2∆2 (√𝜏0
2𝛿𝑡

2 + 2𝐶2∆2𝜌−1𝑐𝑠
−4‖�̅�‖ − 𝜏0𝛿𝑡)                        (12) 225 

and 226 

𝜏𝑇 =
1

2
+

1

𝑐𝑠
2𝛿𝑡

[𝜈0 +
𝑐𝑠

2

2
(√𝜏0

2𝛿𝑡
2 + 2𝐶2∆2𝜌−1𝑐𝑠

−4‖�̅�‖ − 𝜏0𝛿𝑡)],               (13) 227 
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where 𝜏0 =
1

2
+

1

𝑐𝑠
2𝛿𝑡

𝜈0 is related to the kinematic viscosity. 228 

 229 

2.2. Multi-block model  230 

The complexity level of the flow in different region is different. In order to improve the 231 

computational efficiency and accuracy of LES-LBM, the multi-block method (Yu et al., 2002) 232 

is used in the present study. This allows us to use finer grid in a region where flow changes 233 

more rapidly. To illustrate the procedure, a two-block system, with a coarser block and a finer 234 

block shown in Fig. 1, is considered. 𝛿𝑥  and 𝛿𝑦  are the space steps in x and y directions, 235 

respectively, and 𝛿𝑡  is the time step. The subscripts 𝑐  and 𝑓  indicate coarser and finer, 236 

respectively.  Here we have  𝛿𝑥 = 𝛿𝑦 = 𝑐𝛿𝑡, where 𝑐 is the lattice speed. The ratio of the space 237 

steps between coarser and finer blocks (or the ratio of their corresponding time steps) is 𝑚 =238 

𝛿𝑥𝑐

𝛿𝑥𝑓
=

𝛿𝑡𝑐

𝛿𝑡𝑓
. It should be noted that that the kinematic viscosity by 𝜈0 is the same in the two blocks. 239 

In this sense, 𝜏0𝑐  and 𝜏0𝑓  should be linked by the equation  𝜈0 = (𝜏0𝑐 − 0.5)𝑐𝑠
2𝛿𝑡𝑐 =240 

(𝜏0𝑓 − 0.5)𝑐𝑠
2𝛿𝑡𝑓. 241 

 242 

 243 

Fig. 1. Two blocks of different lattice spacing near their interface  244 

 245 

The information exchange between two blocks on the interface is through interpolation. A 246 

cubic spline is used to eliminate the possibility of spatial asymmetry (Yu et al., 2002) caused 247 

by interpolation, 248 



 

10 
 

ℎ(𝑥) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥
2 + 𝑑𝑖𝑥3, 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 (𝑖 = 1, ⋯ , 𝑛)             (14) 249 

where 𝑥𝑖 are the blue nodes along AB of the coarser block. Here ℎ𝑖 = ℎ(𝑥𝑖) is known from the 250 

value of 𝑓 in Eq. (5). The procedure to obtain coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 can be summarized 251 

as below. 252 

(1) Approaching 𝑥𝑖 within 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖, we can get the following equations 253 

ℎ𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖
2 + 𝑑𝑖𝑥𝑖

3,                                  (15) 254 

ℎ𝑖
′ = 𝑏𝑖 + 2𝑐𝑖𝑥𝑖 + 3𝑑𝑖𝑥𝑖

2,                                      (16) 255 

ℎ𝑖
′′ = 2𝑐𝑖 + 6𝑑𝑖𝑥𝑖.                                              (17) 256 

 257 

(2) Similarly approaching 𝑥𝑖 within 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, we can have 258 

ℎ𝑖 = 𝑎𝑖+1 + 𝑏𝑖+1𝑥𝑖 + 𝑐𝑖+1𝑥𝑖
2 + 𝑑𝑖+1𝑥𝑖

3,                       (18) 259 

ℎ𝑖
′ = 𝑏𝑖+1 + 2𝑐𝑖+1𝑥𝑖 + 3𝑑𝑖+1𝑥𝑖

2,                              (19) 260 

ℎ𝑖
′′ = 2𝑐𝑖+1 + 6𝑑𝑖+1𝑥𝑖.                                         (20) 261 

 262 

(3) Enforcing the continuities of the first and second derivatives at 𝑥 = 𝑥𝑖, we can get 263 

𝑏𝑖 + 2𝑐𝑖𝑥𝑖 + 3𝑑𝑖𝑥𝑖
2 = 𝑏𝑖+1 + 2𝑐𝑖+1𝑥𝑖 + 3𝑑𝑖+1𝑥𝑖

2               (21) 264 

2𝑐𝑖 + 6𝑑𝑖𝑥𝑖 = 2𝑐𝑖+1 + 6𝑑𝑖+1𝑥𝑖                              (22) 265 

Using these, together with in Eqs. (15) and (18), we have four equations at node 𝑖  (𝑖 =266 

1, ⋯ , 𝑛 − 1). 267 

 268 

(4) At end nodes 𝑖 = 0 and 𝑖 = 𝑛 , using known ℎ0 andℎ𝑛  and also imposing zero second 269 

derivatives  270 

2𝑐1 + 6𝑑1𝑥0 = 0,                                              (23) 271 

2𝑐𝑛 + 6𝑑𝑛𝑥𝑛 = 0.                                             (24) 272 

This will give 4 additional equations. 273 
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 274 

In total there are 4(𝑛 − 1) + 4 = 4𝑛 equations and the number is the same as that of the 275 

unknowns in Eq. (13). Thus, coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 (𝑖 = 1, ⋯ , 𝑛) can be obtained. Then, 276 

from Eq. (13), we can calculate the values of  ℎ(𝑥) at the red points along AB of the finer block.  277 

 278 

The finer grid also corresponds to smaller time step. Therefore, temporal interpolation is also 279 

needed. Let 𝑡1, 𝑡2 and 𝑡3 be the time instants corresponding to the coarser grid. Based on the 280 

above spatial interpolation, the values at the finer grid nodes, or on both blue and red points of 281 

AB, at these time instants can be obtained. Let 𝑔(𝑡1), 𝑔(𝑡2) and 𝑔(𝑡3) be at a given finer grid 282 

node. As a smaller time step 𝛿𝑡𝑓 is used for the fine grid, result at 𝑡∗ between the two instants 283 

is needed. Three-point Lagrangian formulation is then adopted for the temporal interpolation  284 

𝑔(𝑡) = ∑ 𝑔(𝑡𝑘) (∏
𝑡−𝑡𝑗

𝑡𝑘−𝑡𝑗

3
𝑗=1,𝑗≠𝑘 )3

𝑘=1                                      (25) 285 

For 𝑡∗, we take one point 𝑡3 on its right, and two points 𝑡1 and 𝑡2 on the left, as shown in Fig. 286 

2, Eq. (25) may be expressed as 287 

𝑔(𝑡∗) = 𝑔(𝑡1)
(𝑡∗−𝑡2)(𝑡∗−𝑡3)

(𝑡1−𝑡2)(𝑡1−𝑡3)
+ 𝑔(𝑡2)

(𝑡∗−𝑡1)(𝑡∗−𝑡3)

(𝑡2−𝑡1)(𝑡2−𝑡3)
+ 𝑔(𝑡3)

(𝑡∗−𝑡1)(𝑡∗−𝑡2)

(𝑡3−𝑡1)(𝑡3−𝑡2)
       (26) 288 

 289 

 290 

Fig. 2. Sketch for three-point Lagrangian interpolation 291 

 292 

The relationship between 𝑡∗ and 𝑡2 is  293 

𝑡∗ = 𝑡2 + 𝑗𝛿𝑡𝑓 (𝑗 = 1, … , 𝑚 − 1).                                 (27) 294 

Based on this equation and 𝑡3 − 𝑡2 = 𝑡2 − 𝑡1 = 𝛿𝑡𝑐 = 𝑚𝛿𝑡𝑓, Eq. (26) can be rewritten as 295 
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𝑔(𝑡∗) =
𝑗(𝑗−𝑚)

2𝑚2
𝑔(𝑡1) +

𝑗2+𝑚2

𝑚2
𝑔(𝑡2) +

𝑗(𝑗+𝑚)

2𝑚2
𝑔(𝑡3).                 (28) 296 

 297 

For 𝑚 = 2, we can have only 𝑗 = 1 in Eq. (27)  298 

𝑡∗ = 𝑡2 + 𝛿𝑡𝑓,                                                 (29) 299 

Eq. (28) becomes 300 

𝑔(𝑡∗) = −0.125𝑔(𝑡1) + 0.75𝑔(𝑡2) + 0.375𝑔(𝑡3).                (30) 301 

For 𝑚 = 2, the detailed exchange between the finer and coarser blocks is summarized as follow.  302 

 (1)  𝑓𝑖(𝒙, 𝑡 + 2𝛿𝑡𝑓) in the coarser block can be calculated by collision and streaming of 𝑓𝑖(𝒙, 𝑡) 303 

as in Jiao and Wu (2018a), which provides its values along the blue points of AB;  304 

(2) 𝑓𝑖(𝒙, 𝑡 + 2𝛿𝑡𝑓) of red points on the AB line for the finer block can be calculated by Eq. 305 

(14).  306 

(3) 𝑓𝑖(𝒙, 𝑡 + 𝛿𝑡𝑓) in the finer block can be calculated by collision and streaming of 𝑓𝑖(𝒙, 𝑡); 307 

(4) The values of 𝑓𝑖(𝒙, 𝑡 + 𝛿𝑡𝑓) at both blue and red points of AB are obtained from Eq. (30), 308 

which are used as the boundary condition for the finer block  309 

(5)  𝑓𝑖(𝒙, 𝑡 + 2𝛿𝑡𝑓)  in the finer block can be calculated by collision and streaming of 310 

𝑓𝑖(𝒙, 𝑡 + 𝛿𝑡𝑓) with the boundary condition along AB; 311 

(6) 𝑓𝑖(𝒙, 𝑡 + 2𝛿𝑡𝑓) values on the blue points along CD line obtained from the finer mesh is 312 

used as boundary condition for the coarser; 313 

(7) Return to step (1) and start the next time. 314 

 315 

2.3. Immersed boundary method 316 

The present work uses IBM for boundary condition, which imposes no-slip condition on the 317 

structure-fluid boundary by replacing the body surface with a layer of distributed force 𝒈 into 318 

Eq. (3). To combine this IBM with the present LES-LBM, Eq. (5) can be modified as 319 

𝑓𝑖(𝒙 + 𝒆𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝒙, 𝑡) −
1

𝜏𝑇
[𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)] + 𝛿𝑡
𝜔𝑖𝜌

𝑐𝑠
2 𝒆𝑖 ∙ 𝒈.        (31) 320 
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The detailed process to obtain 𝒈 can be found in Jiao and Wu (2018a). The value of the external 321 

force 𝒈 is obtained by the delta function 𝛿𝑙 322 

𝒈(𝒙, 𝑡) = ∑ 𝑮(𝑠, 𝑡)𝛿𝑙(𝒙 − 𝑿(𝑠, 𝑡))𝑠 ,                                 323 

where 𝑿(𝑠, 𝑡) is the position of the body surface and will change with time when the body is 324 

in motion. The required body force on the solid boundary is to ensure the no-slip condition 325 

through the proper choice of the forcing term, which is given as 326 

𝑮(𝑠, 𝑡) =
𝑼𝑑(𝑠,𝑡)−𝑼∗(𝑠,𝑡)

𝛿𝑡
. 327 

Here 𝑼∗ is the velocity on the boundary without the forcing term. It is obtained from 328 

𝑼∗(𝑠, 𝑡) = ∑ 𝒖∗(�⃑�, 𝑡)𝛿𝑙(𝒙 − 𝑿(𝑠, 𝑡))�⃑� , 329 

where 𝒖∗ is the fluid velocity without the forcing term from Eq. (3). Based on Peskin (2002), 330 

the delta function 𝛿𝑙(𝒙) can be written as follow 331 

𝛿𝑙(𝒙) = 𝛿𝑙(𝑥)𝛿𝑙(𝑦), 332 

where 333 

𝛿𝑙(𝑟) = {
1

4𝑙
[1 + cos (

𝜋|𝑟|

2𝑙
)]

0                               
 

|𝑟| ≤ 2𝑙
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 334 

Here 𝑙 is the grid size of the fluid domain. 335 

 336 

3. Free motion of a body 337 

The fluid force on the cylinder is calculated by integrating the external force 𝒈(𝒙, 𝑡) =338 

(𝑔𝑥(𝒙, 𝑡), 𝑔𝑦(𝒙, 𝑡)) over the whole fluid domain. The drag and lift forces are given by  339 

𝐹𝐷 = ∬ 𝑔𝑥(𝒙, 𝑡)𝑑𝑥𝑑𝑦                                                       (32) 340 

and 341 

𝐹𝐿 = ∬ 𝑔𝑦(𝒙, 𝑡)𝑑𝑥𝑑𝑦.                                                 (33) 342 
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In reality, this integration needs to be performed only over the layer next the body surface 343 

because of the delta function 𝛿𝑙(𝒙) . The corresponding coefficients are defined by 𝐶𝐷 =344 

𝐹𝐷 0.5𝜌𝑢0
2𝐷⁄  and 𝐶𝐿 = 𝐹𝐿 0.5𝜌𝑢0

2𝐷⁄ , respectively. 345 

 346 

In many engineering problems, the transverse motion of the body or the motion in the y 347 

direction due to flow in x direction is the main concern, because the lift (transverse) fluctuation 348 

is generally much larger than drag (in-line) fluctuation. If the body mass is 𝑚, the structural 349 

damping is 𝑏 and stiffness is 𝑘, the governing equation of its motion is 350 

𝑚�̈� + 𝑏�̇� + 𝑘𝑌 = 𝐹𝐿,                                               (34) 351 

where 𝑌 is the displacement, and the over dot denotes the temporal derivative.  352 

 353 

The nondimensionalized form of Eq. (34) based on 𝜌, 𝑢0 and 𝐷 can be written as 354 

𝑚∗�̈�∗ +
4𝜋𝜁(𝑚∗+𝑀𝑝

∗ )

𝑈∗ �̇�∗ +
4𝜋2(𝑚∗+𝑀𝑝

∗ )

𝑈∗2 𝑌∗ =
𝐶𝐿

2
,                        (35) 355 

where 𝑀𝑝
∗ =

𝜋

4
 is the nondimensionalized potential flow added mass. 356 

 357 

For a fixed cylinder, 𝑌∗ = 0. 𝐶𝐿  will be only a function of Reynolds number including its 358 

amplitude 𝐶𝐿0 and frequency 𝑓𝑣
∗, or  359 

𝐶𝐿 = 𝐶𝐿(𝑅𝑒),                                                        (36) 360 

𝐶𝐿0 = 𝐶𝐿0(𝑅𝑒),                                                     (37) 361 

𝑓𝑣
∗ = 𝑓𝑣

∗(𝑅𝑒).                                                       (38) 362 

As discussed in the Introduction, in the sub-critical range (𝑅𝑒 = 300 − 2 × 105), 𝑓𝑣
∗ is almost 363 

constant with a value of 0.2 (Williamson, 1996; Sumer and Fredsoe, 1997), and so 𝐶𝐿0 is, which 364 

is around 0.3 (Skop and Griffin, 1973; 1975), apart from the drop around 𝑅𝑒 ≈ 1600 (Norberg, 365 

2003).  366 

 367 
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For a cylinder in oscillation, one can expect that 𝐶𝐿 may be affected by the motion amplitude 368 

𝑌0
∗ and motion frequency 𝑓𝑐

∗. Thus, Eq. (35) becomes 369 

𝐶𝐿 = 𝐶𝐿(𝑌0
∗ , 𝑓𝑐

∗, 𝑅𝑒).                                                (39) 370 

According to Eq. (35), 𝑌∗ depends on the body mass, damping ratio, reduced velocity and lift 371 

coefficient, or 372 

𝑌∗ = 𝑌∗(𝑚∗, 𝜁, 𝑈∗, 𝐶𝐿 ).                                        (40) 373 

It is then obvious there is some nonlinear interaction between 𝐶𝐿 and 𝑌∗. In such a case, unlike 374 

that for a fixed cylinder in Eq. (36), 𝐶𝐿 in Eq. (39) for a cylinder in oscillation may be more 375 

sensitive to 𝑅𝑒. This will be investigated through extensive simulations below. 376 

 377 

4. Results 378 

4.1. Verification through comparison 379 

4.1.1. Cavity 380 

The driven square cavity flow at 𝑅𝑒 = 1000 − 5000 has been carried out first to verify the 381 

numerical method. The initial and boundary conditions are the same as those used by Hou et 382 

al. (1996). The cavity has 256 lattice units on each side. Initially, the velocities at all nodes, 383 

except the top, are set to zero. At the top, the x-velocity of the top is 𝑢0 and the y-velocity is 384 

zero. and no-slip boundary conditions are used at the three stationary walls. Values of the Mach 385 

number 𝑀 and the Smagorinsky constant 𝐶 are also the same as those used by Hou et al. (1996), 386 

or 𝑀 = 0.17 and 𝐶 = 0.1. 387 

 388 

Table 1 shows the comparison of results for the strength and location of the primary vortex, 389 

lower left vortex and lower right vortex at 𝑅𝑒 = 1000. Figures 3 - 4 display comparison of 390 

streamline and vortex contours at 𝑅𝑒 = 5000, respectively. There is an excellent agreement 391 

between present results and those published previously, suggesting that the present numerical 392 

method is correct and results are accurate. 393 

 394 

Table 1 395 
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Comparison of results for primary vortex, lower left vortex and lower right vortex at 𝑅𝑒 = 1000 396 

 Primary vortex Lower left vortex Lower right vortex 

Reference Strength Location Location Location 

Present 2.0550 (0.5335, 0.5671) (0.0875, 0.0813) (0.8643, 0.1180) 

Hou et al. (1995) 2.0760 (0.5333, 0.5647) (0.0902, 0.0784) (0.8667, 0.1137) 

Chen (2009) - (0.5310, 0.5700) (0.0901, 0.0800) (0.8501, 0.1100) 

Ghia et al. (1982) 2.04968 (0.5313, 0.5625) (0.0859, 0.0781) (0.8594, 0.1094) 

 397 

(a)  (b)  398 

Fig. 3. Streamlines at 𝑇 = 185 and  𝑅𝑒 = 5000: (a) present and (b) Garcia (2007). 399 

 400 

(a)  (b)  401 

Fig. 4. Vortex contours at 𝑇 = 185 and  𝑅𝑒 = 5000: (a) present and (b) Hou (1996). 402 

 403 

4.1.2. Free motion of a cylinder 404 
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A sketch of the computational domain for free motions of a circular cylinder with diameter 𝐷 405 

is shown in Fig. 5(a). The same domain is used in the rest of this work. The incoming flow is 406 

from the left-hand side of the body. The cylinder is located in the flow field. 𝐿e = 22𝐷, 𝐿s =407 

5𝐷  and  𝐿r = 40𝐷 , which is similar to that used by Pigazzini et al. (2018). A Dirichlet 408 

boundary condition (�⃑⃑� = (𝑢0, 0)) is adopted at the inflow and outlet boundaries. 𝑝 = 𝑐𝑠
2 is 409 

adopted at the inflow and outlet boundaries. On the upper and lower boundaries, y-velocity and 410 

the component of stress vector along these two boundaries are prescribed zero value. Initially, 411 

the velocities at all nodes, except inflow and outlet boundaries, are set to zero. There are three 412 

levels of grids in the calculation shown in Fig. 5(b). The ratio of space steps between Grid 2 413 

and Grid 1 is 2 and the ratio between Grid 3 and Grid 1 is 4. The grid parameter in Grid 1 is 414 

𝑠 = 𝐷 𝛿𝑥⁄ = 400. The ratio between the arc length (𝛿𝑠 ) of the boundary element and the 415 

structured mesh (𝛿𝑥) in Grid 1 is 𝛿𝑠𝑥 =
𝛿𝑠

𝛿𝑥
= 1.67, which is similar to that of the minimum 416 

value adopted in Chen et al. (2018). The Mach number is taken as 𝑀 = 0.02. Yu et al. (2005) 417 

indicated that in LES-LBM, the value of the Smagorinsky constant 𝐶 = 0.1 yielded better 418 

results than the value of 𝐶 = 0.17 which is always used in LES-NS, and thus 𝐶 = 0.1 is used 419 

in the present study. For analyses, the fluctuating force history is collected for a sufficiently 420 

long period of time (𝑇 = 𝑢0𝑡 𝐷⁄ > 1200).  421 

 422 

(a)  (b)  423 

Fig. 5. (a) Computational configuration and (b) schematic diagram of grid levels 424 

 425 

To further validate our method, we compare our numerical results with the experimental data 426 

from Govardhan and Williamson (2000) for a cylinder in free motion. In such a case, body 427 

mass is taken as 𝑚∗ = 0.935 and accordingly damping ratio as 𝜁 = 0.00502. The reduced 428 

velocity 𝑈∗ varies from 3 to 24 and corresponding Reynolds number from 1524 to 12192. It is 429 

found in our simulations that lock-in where the dominant frequency of the lift coefficient is 430 
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equal to that of cylinder motion occurs in the region of 𝑈∗ = 3.5 − 17.5, which is similar to 431 

that in Govardhan and Williamson (2000). Spectra of cylinder motion and lift coefficient in the 432 

lock-in region are not purely sinusoidal, but still discrete, which is the same as that in Pigazzini 433 

et al. (2018). In addition to the dominant frequency component, there are multiple intricate 434 

frequencies in spectra. It should be noted that in in Jiao and Wu (2018b) and Kumar et al.(2016), 435 

the system can be regarded as the state of the lock-in when (a) the dominant frequency in the 436 

power spectrum of the lift coefficient is equal to the forced oscillation frequency 𝑓𝑐 and (b) 437 

other components in its power spectrum, if any, are only at integer multiples of 𝑓𝑐. Compared 438 

with that mentioned in Jiao and Wu (2018b) and Kumar et al. (2016), the definition of lock-in 439 

here has been extended to account for the turbulent flow effect on the result. Figure 6 shows 440 

motion amplitude 𝑌0
∗ and frequency ratio 𝑓∗ = 𝑓𝑐

∗ 𝑓𝑛
∗⁄  in the lock-in region, where 𝑓𝑐

∗ is the 441 

dominant frequency of the cylinder motion. It can be seen that in the 𝑌0
∗ curve, there are two 442 

jumps and three amplitude branches, including initial (3.5 ≤ 𝑈∗ ≤ 𝑈𝐼𝑈
∗ ), upper (𝑈𝐼𝑈

∗ < 𝑈∗ ≤443 

𝑈𝑈𝐿
∗ ) and lower branches (𝑈𝑈𝐿

∗ < 𝑈∗ ≤ 17.5), as defined by Khalak and Williamson (1997). In 444 

the initial branch, with the increase of 𝑈∗, 𝑌0
∗ also increases. Further increase of 𝑈∗ to 𝑈𝐼𝑈

∗ , 𝑌0
∗ 445 

jumps nearly vertically from initial value to the upper branch within which the peak of the 446 

motion amplitude 𝑌0𝑚𝑎𝑥
∗ = 0.91  is located at 𝑈∗ = 8.0  (𝑅𝑒 = 4064 ). As 𝑈∗  continues to 447 

increase to 𝑈𝑈𝐿
∗ , the transition between upper-lower branches occurs, and 𝑌0

∗  drops nearly 448 

vertically. In the present study with smaller incremental increase of 𝑈∗  than that from 449 

Govardhan and Williamson (2000), 𝑈𝐼𝑈
∗  is found to be in the range from 5.0 to 5.1, and 𝑈𝑈𝐿

∗  450 

from 10.5 to 10.6. Figure 7 shows displacement and lift coefficient histories at 𝑈𝐼𝑈
∗  and 𝑈𝑈𝐿

∗ . 451 

At the lower end of 𝑈𝐼𝑈
∗ , lift coefficient and displacement are almost in phase, while at the 452 

higher end of 𝑈𝑈𝐿
∗ , they become nearly anti-phase. These phenomena are consistent with that 453 

observed in the experiment by Govardhan and Williamson (2000). The result in Fig. 6 are 454 

generally in good agreement with those from Govardhan and Williamson (2000), although the 455 

peak of the motion amplitude 𝑌0𝑚𝑎𝑥
∗ = 0.91 at 𝑈∗ = 0.75 is a bit smaller than 𝑌0𝑚𝑎𝑥

∗ = 1.01 456 

in Govardhan and Williamson (2000). Figure 8 shows the amplitude 𝐶𝐿0 of lift coefficient in 457 

the lock-in region. It can be seen that when 𝑈∗ = 𝑈𝑈𝐿
∗ , there is also a sudden drop in 𝐶𝐿0, about 458 

from 0.70 to 0.37. 459 
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(a)  460 

(b)  461 

Fig. 6. Comparison of motion amplitude and frequency ratio between experimental data from Govardhan and 462 
Williamson (2000) and present results. 463 

 464 

(a)  (b)  465 
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(c)  (d)  466 

Fig. 7. Displacement and lift coefficient near critical reduced velocity between initial and upper branches 467 
((a),(b), and near that between upper and lower branches ((c), (d) ) (a) 𝑈∗ = 5.0 (𝑅𝑒 = 2540), (b) 𝑈∗ = 5.1 468 

(𝑅𝑒 = 2590), (c) 𝑈∗ = 10.5 (𝑅𝑒 = 5334) and (d) 𝑈∗ = 10.6 (𝑅𝑒 = 5385). 469 

 470 

 471 

Fig. 8. Amplitude of lift coefficient. 472 

 473 

4.2. Variation of body motion with reduced velocities at different fixed Reynolds numbers  474 

If we assume 475 

𝐶𝐿 = 𝐶𝐿0𝑠𝑖𝑛(2𝜋𝑓𝑐
∗𝑇 + 𝜙) or 𝐶𝐿 = Re[𝑖𝐶𝐿0𝑒−𝑖(2𝜋𝑓𝑐

∗𝑇+𝜙)],                (41) 476 

and the motion of the cylinder can then be written as 477 

𝑌∗ = 𝑌0
∗𝑠𝑖𝑛(2𝜋𝑓𝑐

∗𝑇) or 𝑌∗ = Re[𝑖𝑌0
∗𝑒−𝑖(2𝜋𝑓𝑐

∗𝑇)],                          (42) 478 

where 𝜙 is the phase angle between the lift coefficient and cylinder motion, we can have  479 

𝑌0
∗ =

𝑈∗2

8𝜋2 √
1

[(𝑚∗+𝑀𝑝
∗ )−𝑚∗𝑓∗2]

2
+4𝜁2(𝑚∗+𝑀𝑝

∗ )
2

𝑓∗2
𝐶𝐿0.                    (43) 480 

In the following computations of this section, we may fix 𝑚∗ and 𝜁, as well as 𝑅𝑒, and vary 481 

only 𝑈∗.  Equation (43) shows that 𝑌0
∗ will be directly affected by the term of 𝑈∗. It will also 482 

be affected implicitly by 𝑓∗ which will change with 𝑈∗. When 𝑌0
∗ and 𝑓∗ change with 𝑈∗, 𝐶𝐿0 483 
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will also change, which further affects 𝑌0
∗. Therefore, there is a complex nonlinear interaction. 484 

The process of interaction will be different when 𝑅𝑒 is different. We shall undertake extensive 485 

simulations to have a better understanding of the force and motion behaviour. To investigate 486 

the effects of Reynolds number 𝑅𝑒  and reduced velocity 𝑈∗  individually, Re changes with 487 

kinematic viscosity ν and 𝑈∗ with natural frequency 𝑓𝑛 in the following simulations. 488 

 489 

We first choose 𝑅𝑒 = 1778 which is the low end of lock-in region in the previous case shown 490 

in Fig. 6, and simulations have been undertaken for reduced velocity in the range of 𝑈∗ = 3.5 −491 

17.5. It is found that lock-in occurs at 𝑈∗ ≤ 12.0. Figure 9 shows (a) the motion amplitude 𝑌0
∗ 492 

and (b) frequency ratio 𝑓∗ in the lock-in region. Within the range of 𝑈∗ = 3.5 − 12.0, the 493 

variation of the frequency ratio 𝑓∗ is from 0.70 to 1.31. For this Reynolds number 𝑅𝑒 = 1778, 494 

𝑌0𝑚𝑎𝑥
∗ = 0.59 at 𝑈∗ ≈ 6.0 is the peak of motion amplitude in the lock-in region. It can be seen 495 

that the motion amplitude 𝑌0
∗ changes rapidly before its peak similar to that from Wanderley 496 

and Soares (2015), and two sides of the peak correspond to the initial and upper branches. With 497 

the increase of 𝑈∗, the motion amplitude 𝑌0
∗ in the initial branch also increases while 𝑌0

∗ in the 498 

upper branch has the opposite trend. This may be partly explained by amplitude 𝐶𝐿0 of lift 499 

coefficient in Fig. 10. It can be seen that the shape of the 𝑌0
∗ curve is the similar to that of 𝐶𝐿0. 500 

When 𝑈∗ increases, 𝐶𝐿0 increases slowly first and then jumps to its peak value at 𝑈∗ ≈ 6.0, 501 

where 𝑌0𝑚𝑎𝑥
∗  occurs. As 𝑈∗ continues to increase, 𝐶𝐿0 decreases.  502 

 503 

 (a)  (b)  504 

Fig. 9. Motion amplitude and frequency ratio at 𝑅𝑒 = 1778. 505 

 506 
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 507 

Fig. 10. Amplitude of lift coefficient at 𝑅𝑒 = 1778. 508 

 509 

When 𝑅𝑒 = 3556, simulations were made in the range of 𝑈∗ = 3.5 − 17.5. It is found that 510 

here lock-in occurs when 𝑈∗ ≤ 13.0, whose range is larger than that in the previous case of 511 

𝑅𝑒 = 1778. Figure 11 shows the motion amplitude 𝑌0
∗ and frequency ratio 𝑓∗ in the lock-in 512 

region. The peak 𝑌0𝑚𝑎𝑥
∗ = 0.89  at 𝑅𝑒 = 3556  is much larger than 𝑌0𝑚𝑎𝑥

∗ = 0.59  at 𝑅𝑒 =513 

1778 in Fig. 9. It seems that with the increase of 𝑅𝑒, the value of the peak  𝑌0𝑚𝑎𝑥
∗  also increases, 514 

which was also observed in Klamo et al. (2005) and Govardhan and Williamson (2006), whose 515 

work focused only on the effect of 𝑅𝑒 on 𝑌0𝑚𝑎𝑥
∗ . In addition, for 𝑅𝑒 = 3556, the free motions 516 

against reduced velocity are very different from that in the previous cases in Fig. 9. Here, with 517 

the increase of  𝑈∗, 𝑌0
∗ also increases first. At 𝑈∗ ≈ 5.0 − 6.0, it increases rapidly and at 𝑈∗ ≈518 

7.0, it reaches its peak value in the lock-in region. The motion amplitude 𝑌0
∗ drops steeply after 519 

its peak, while it drops smoothly at 𝑅𝑒 = 1778. As 𝑈∗ further increases, 𝑌0
∗ still decreases. It 520 

means that there is a critical value 𝑈𝑈𝐿
∗  which connects the upper and lower branches, instead 521 

of 𝑈𝐼𝑈
∗  in the previous case. At 𝑅𝑒 = 3556, the sudden drop at 𝑈𝑈𝐿

∗ is similar to that in Fig. 6. 522 

But here the drop occurs at the peak, while in Fig. 6 it is away from the peak location. There is 523 

a rapid variation of 𝑌0
∗ before its peak. However, this is not like the almost vertical jump in 524 

Figs. 6 and 9 before 𝑌0
∗ arrives to its peak. Figure 12 shows the amplitude of lift coefficient in 525 

the lock-in region. It can be seen that the shape of the 𝑌0
∗ curve may be similar to that of 𝐶𝐿0 in 526 

the lock-in region, which is also found at 𝑅𝑒 = 1778 in Fig. 10. 527 

 528 
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(a)  (b)  529 

Fig. 11. Motion amplitude and frequency ratio at 𝑅𝑒 = 3556. 530 

 531 

 532 

Fig. 12. Amplitude of lift coefficient at 𝑅𝑒 = 3556. 533 

 534 

Simulations at 𝑅𝑒 = 5334 have been carried out in the range of 𝑈∗ = 3.5 − 17.5. It is found 535 

that when Reynolds number is fixed at 𝑅𝑒 = 5334, lock-in occurs when 𝑈∗ ≤ 15.0, whose 536 

range is larger than that in the previous two cases of 𝑅𝑒 = 1778 and 3556. Figure 13 shows 537 

the motion amplitude 𝑌0
∗ and frequency ratio 𝑓∗ in the lock-in region. At 𝑈∗ = 8.0, 𝑌0𝑚𝑎𝑥

∗ =538 

0.92 is the peak of motion amplitude in the lock-in region. Compared with the two previous 539 

cases at 𝑅𝑒 = 1778 and 3556, there is an increase in the value of reduced velocity where the 540 

peak 𝑌0𝑚𝑎𝑥
∗  occurs. At 𝑅𝑒 = 5334, there is still a critical value, 𝑈𝑈𝐿

∗  where 𝑌0
∗ drops nearly 541 

vertically from upper branch to lower branch, similar to that in the previous case of 𝑅𝑒 = 3556. 542 

The drop at 𝑈𝑈𝐿
∗ = 10.5 − 10.6 does not occur at the peak, which is similar to that in Fig. 6 543 

and is different from that in Figs. 9 and 11. Figure 14 shows the amplitude of lift coefficient in 544 

the lock-in region. Here, the peak of 𝐶𝐿0 is at 𝑈∗ ≈ 7.0 smaller than 𝑈∗ = 8.0 where 𝑌0𝑚𝑎𝑥
∗  545 

occurs, which is different from that in 𝑅𝑒 = 1778 and 3556. It may be because within about 546 

the range of 𝑈∗ = 7.0 − 8.0, the amplitudes of 𝐶𝐿  at more frequency components become 547 

visible and significant, even though the 𝐶𝐿 history is still periodic with respect to time. 548 
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 549 

(a)  (b)  550 

Fig. 13. Motion amplitude and frequency ratio at 𝑅𝑒 = 5334. 551 

 552 

 553 

Fig. 14. Amplitude of lift coefficient at 𝑅𝑒 = 5334. 554 

 555 

We also provide the case in the range of 𝑈∗ = 3.5 − 17.5 at 𝑅𝑒 = 8890 which is the high end 556 

of lock-in region in the previous case shown in Fig. 6. At this Reynolds number, lock-in is 557 

found when 𝑈∗ ≤ 17.5  Compared with previous cases in Figs. 9-14, the lock-in range here is 558 

larger, or with the increase of 𝑅𝑒, the range of lock-in also increases.  Figure 15 shows the 559 

motion amplitude 𝑌0
∗ and frequency ratio 𝑓∗ in the lock-in region. At 𝑈∗ = 9.0, 𝑌0𝑚𝑎𝑥

∗ = 0.94 560 

is the peak of motion amplitude in the lock-in region. There is a critical value, 𝑈𝑈𝐿
∗ = 10.7 −561 

10.8, connecting upper and lower branches. Here a sudden drop occurs after the peak of motion 562 

amplitude, which is similar to that in the previous case of 𝑅𝑒 = 5334. After the sudden drop, 563 

the decrease of 𝑌0
∗ at 𝑅𝑒 = 8890 is slower than that at 𝑅𝑒 = 5334. From the analysis of the 564 

curves of 𝑌0
∗ in Figs. 9-15, it can be seen that none of them is similar to that in Fig. 6. It suggests 565 

that the behaviour in Fig. 6 is due to both 𝑈∗ and 𝑅𝑒, not just 𝑈∗ as assumed. The effect of 𝑅𝑒 566 

on free motion should be considered. Figure 16 shows the amplitude 𝐶𝐿0 of lift coefficient in 567 
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the lock-in region. It is interesting to see that at 𝑅𝑒 = 8890, the value of 𝐶𝐿0 after the sudden 568 

drop is smaller than that with the same 𝑈∗ at 𝑅𝑒 = 5334. 569 

 570 

(a) (b)  571 

Fig. 15. Motion amplitude and frequency ratio at 𝑅𝑒 = 8890. 572 

 573 

 574 

Fig. 16. Amplitude of lift coefficient at 𝑅𝑒 = 8890. 575 

 576 

4.3. Body motion at 𝑈𝐼𝑈
∗  and 𝑈𝑈𝐿

∗  shown in Fig. 6 577 

From the discussion on Section 4.2, it can be found that none of the 𝑌0
∗ curves is similar to that 578 

in Fig. 6. It means that the behaviour in Fig. 6 is due to variations of both 𝑈∗ and 𝑅𝑒, not just 579 

𝑈∗ only, as assumed. In order to have some insight into the effect of 𝑅𝑒 on the jump of the 𝑌0
∗ 580 

curve, we will run further simulations at values of 𝑅𝑒 corresponding to positions of two jumps 581 

in Fig. 6. The body mass and the damping ratio are the same as those used in Fig. 6, or 𝑚∗ =582 

0.935 and 𝜁 = 0.00502. 583 

 584 



 

26 
 

The first jump in Fig. 6 occurs at 𝑈𝐼𝑈
∗ = 5.0 − 5.1 (or 𝑅𝑒 = 2540 − 2590), and thus cases at 585 

𝑅𝑒 = 2540 and 𝑅𝑒 = 2590 are chosen. Figure 17 shows the motion amplitude 𝑌0
∗ against 𝑈∗ 586 

at 𝑅𝑒 = 2540 and 2590. It can be seen that for 𝑅𝑒 = 2540 and 2590, the curves of 𝑌0
∗ against 587 

𝑈∗ are very close and their shapes similar to that from the case with 𝑅𝑒 = 1778. There is still 588 

one critical value 𝑈𝐼𝑈
∗  connecting the initial and upper branches. For 𝑅𝑒 = 2540 − 2590, 𝑈𝐼𝑈

∗  589 

is in the range from 5.0 to 5.1 similar to that of the first jump shown in Fig. 6. Figure 18 shows 590 

𝑌0
∗ against 𝑅𝑒 at 𝑈∗ = 5.0 and 𝑈∗ = 5.1. It can be found that the curves of the 𝑌0

∗ at 𝑈∗ = 5.0 591 

and 𝑈∗ = 5.1 are generally close. Both have a nearly vertical jump at 𝑅𝑒𝐼𝑈 = 2540 − 2590, 592 

where there is an obvious difference between the two curves. It means that when 𝑅𝑒 = 2540 −593 

2590 and 𝑈∗ = 5.0 − 5.1, the value of 𝑌0
∗  is sensitive to both the reduced velocity 𝑈∗  and 594 

Reynolds number 𝑅𝑒, or 𝑌0
∗ increases sharply with a small change of 𝑈∗ or 𝑅𝑒. Therefore, the 595 

first jump in Fig. 6 is very much related to variations of both 𝑈∗ and 𝑅𝑒.  596 

 597 

 598 

Fig. 17. Motion amplitude at 𝑅𝑒 = 2540 and 𝑅𝑒 = 2590 as well as that from Fig. 6(a). 599 

 600 

 601 

Fig. 18. Motion amplitude at  𝑈∗ = 5.0 and 𝑈∗ = 5.1. 602 

 603 
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Figure 19 shows 𝑌0
∗  against 𝑈∗  at 𝑅𝑒 = 5334  and 5385  where the second jump in Fig. 6 604 

occurs. The curve of 𝑌0
∗ at 𝑅𝑒 = 5385 is quite close to that at 𝑅𝑒 = 5334. These two curves 605 

have two branches, upper and lower branches connected by 𝑈𝑈𝐿
∗ , which is approximately 606 

between 10.5 and 10.6.  Even though both have only one nearly vertical jump, they are quite 607 

close to 𝑈𝑈𝐿
∗  in Fig.6. Figure 20 shows 𝑌0

∗ against 𝑅𝑒 at 𝑈∗ = 10.5 and 𝑈∗ = 10.6. It can be 608 

seen that the curve of 𝑌0
∗ at 𝑈∗ = 10.5 is quite different from that at 𝑈∗ = 10.6. Based on the 609 

step of Reynolds number used in the calculation, there is only one branch of response in the 𝑌0
∗ 610 

curve at 𝑈∗ = 10.5, while there are two branches, upper and lower branches connected by one 611 

nearly vertical drop at 𝑈∗ = 10.6. Before the drop, the curve at 𝑈∗ = 10.6 nearly coincides 612 

with that at 𝑈∗ = 10.5 and both increase with 𝑅𝑒. 𝑌0
∗ at 𝑈∗ = 10.6 drops suddenly at a critical 613 

value of 𝑅𝑒 = 𝑅𝑒𝐼𝐿 = 5334, while at 𝑈∗ = 10.5  it continues to increase although the rate of 614 

increase is reduced. After that 𝑌0
∗  at 𝑈∗ = 10.6 increases more rapidly and the curve then 615 

almost merges with that of 𝑈∗ = 10.5. Thus, the difference between these two cases occurs 616 

only in a small region after the drop occurs in the case of 𝑈∗ = 10.6. It suggests that when 617 

𝑅𝑒 = 5334 − 5385 and 𝑈∗ = 10.5 − 10.6, 𝑌0
∗  is sensitive to both the reduced velocity 𝑈∗ 618 

and the Reynolds number 𝑅𝑒. Therefore, the reason for the second jump shown in Fig. 6 is also 619 

related to both variations of 𝑈∗ and 𝑅𝑒. In such a case, the effect of 𝑅𝑒 on 𝑌0
∗ is significant and 620 

cannot be ignored. 621 

 622 

 623 

 624 

Fig. 19. Motion amplitude at 𝑅𝑒 = 5334 and 𝑅𝑒 = 5385. 625 

 626 
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 627 

Fig. 20. Motion amplitude at  𝑈∗ = 10.5 and 𝑈∗ = 10.6. 628 

 629 

5. Conclusions 630 

The effect of Reynolds number on free motions of a circular cylinder in the lock-in region was 631 

investigated through a two-dimensional in-house code developed based on multi-block LBM 632 

together with LES as the turbulence model and IBM for the boundary condition. The focus has 633 

been on how the Reynolds number affects the motion amplitude curve against the reduced 634 

velocity, including branches and jumps. Simulations have been performed at the different 𝑅𝑒 635 

in the range of 1524 − 12192, with the body mass 𝑚∗ = 0.935 and the damping ratio 𝜁 =636 

0.00502. From the results, the following conclusions can be drawn. 637 

 638 

When Reynolds number 𝑅𝑒 is fixed, there are generally two branches in the curve of the motion 639 

amplitude 𝑌0
∗ against the reduced velocity 𝑈∗, instead of the usual three branches (Govardhan 640 

and Williamson, 2000) when 𝑅𝑒  changes with 𝑈∗  from 𝑅𝑒 = 1524  ( 𝑈∗ = 3.0 ) to 𝑅𝑒 =641 

12192 (𝑈∗ = 24.0). The shape of 𝑌0
∗ curve varies when  𝑅𝑒  varies. At 𝑅𝑒 = 1778 there are 642 

only initial and upper branches, which are connected by 𝑈𝐼𝑈
∗ . When approaching 𝑈𝐼𝑈

∗  from the 643 

initial branch, 𝑌0
∗ increases rapidly or nearly vertically. When 𝑅𝑒 ≥ 3556, there are only upper 644 

and lower branches linked by 𝑈𝑈𝐿
∗ , and there is no 𝑈𝐼𝑈

∗  where a nearly vertical increase of 𝑌0
∗ 645 

occurs. At 𝑅𝑒 = 3556  ,the motion amplitude 𝑌0
∗  drops steeply just after its peak, which 646 

corresponds to the start of the lower branch. At 𝑅𝑒 = 5334, in the upper branch, with the 647 

increase of 𝑈∗, 𝑌0
∗ increases first and then drops, and thus the sudden drop occurs away from 648 

the peak of 𝑌0
∗. At 𝑅𝑒 = 8890, after the sudden drop, the decrease of 𝑌0

∗ becomes slower. 649 

 650 
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In the usual motion amplitude curve (Govardhan and Williamson, 2000), 𝑅𝑒 changes with 𝑈∗. 651 

When 𝑈∗ approaches 𝑈𝐼𝑈
∗  from the initial branch at 𝑈𝐼𝑈1

∗  and from the upper branch at 𝑈𝐼𝑈2
∗ , 652 

the corresponding Reynolds numbers are 𝑅𝑒𝐼𝑈1 and 𝑅𝑒𝐼𝑈2. It is found that when 𝑅𝑒 is fixed at 653 

either 𝑅𝑒𝐼𝑈1 or 𝑅𝑒𝐼𝑈2, the 𝑌0
∗ curves against 𝑈∗ are very close to each other. While their 𝑌0

∗ 654 

curves in the initial branches are very similar to that in Govardhan and Williamson (2000) 655 

where 𝑅𝑒 changes with 𝑈∗, they are very different when 𝑈∗ > 𝑈𝐼𝑈2
∗ . When 𝑈∗ is fixed at 𝑈𝐼𝑈1

∗  656 

or 𝑈𝐼𝑈2
∗ , the two 𝑌0

∗ curves against 𝑅𝑒 are very different when 𝑅𝑒 is around 𝑅𝑒𝐼𝑈1 to 𝑅𝑒𝐼𝑈2. 657 

Away from this region, the curves are close. Similarly at 𝑈𝑈𝐿
∗ , corresponding to 𝑈𝑈𝐿1

∗  and 𝑈𝑈𝐿2
∗ , 658 

we have 𝑅𝑒𝑈𝐿1 and 𝑅𝑒𝑈𝐿2. The two 𝑌0
∗ curves against 𝑈∗ at 𝑅𝑒 = 𝑅𝑒𝑈𝐿1 and 𝑅𝑒 = 𝑅𝑒𝑈𝐿2 are 659 

very close. In the upper branch, they are very close to that in Govardhan and Williamson (2000), 660 

where 𝑅𝑒 changes with 𝑈∗, but very different in the lower branch. When 𝑈∗ is fixed, the 𝑌0
∗ 661 

curve against 𝑅𝑒 has a jump around 𝑅𝑒𝑈𝐿1 to 𝑅𝑒𝑈𝐿2 at 𝑈∗ = 𝑈𝑈𝐿2
∗ , but is smooth at 𝑈∗ = 𝑈𝑈𝐿1

∗ . 662 

All these show that the effect of 𝑅𝑒  on the 𝑌0
∗  curve, including the branches, is far more 663 

complex than previously thought. 664 

 665 

Appendix 666 

The Chapman-Enskog expansion is used to get the relationship between the strain rate tensor 667 

𝑆�̅�𝛽 and the momentum flux tensor �̅�𝛼𝛽 shown in Eq. (11). It assumes the following multi-668 

scale expansion of time and space derivative in the small parameter 𝜖, 669 

𝜕

𝜕𝑡
= 𝜖

𝜕

𝜕𝑡1
 ,                                                       (A.1) 670 

 ∇= 𝜖∇1 (or 
𝜕

𝜕𝒙
= 𝜖

𝜕

𝜕𝒙1
).                                         (A.2) 671 

Likewise, the distribution function is assumed as 672 

𝑓𝑖 = 𝑓𝑖
𝑒𝑞 + 𝜖𝑓𝑖

1.                                               (A.3) 673 

The equilibrium distribution function 𝑓𝑖
𝑒𝑞

 satisfies the following constraints (Wolf-Gladrow, 674 

2000): 675 

∑ 𝑓𝑖
𝑒𝑞

𝑖 = 𝜌,                                                         (A.4) 676 

∑ 𝒆𝑖𝑓𝑖
𝑒𝑞

𝑖 = 𝜌�̅�,                                                    (A.5) 677 

and has the following properties (Aidun and Clausen, 2010) 678 
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∑ 𝑒𝑖𝛼𝑒𝑖𝛽𝑓𝑖
𝑒𝑞

𝑖 = 𝜌�̅�𝛼�̅�𝛽 + 𝜌𝑐𝑠
2𝛿𝛼𝛽 = 𝜌�̅�𝛼�̅�𝛽 + �̅�𝛿𝛼𝛽        (𝛼, 𝛽 = 1,2),     (A.6) 679 

∑ 𝑒𝑖𝛼𝑒𝑖𝛽𝑒𝑖𝛾𝑓𝑖
𝑒𝑞

𝑖 =  𝜌𝑐𝑠
2(�̅�𝛼𝛿𝛽𝛾 + �̅�𝛽𝛿𝛼𝛾 + �̅�𝛾𝛿𝛼𝛽)        (𝛼, 𝛽, 𝛾 = 1,2),    (A.7) 680 

where �̅� = 𝜌𝑐𝑠
2. In Eq. (A.6), the subscripts of 𝛼, 𝛽 and 𝛾 of 𝑒𝑖 and �̅� indicate that they are 681 

components of 𝒆𝑖 and �̅� in 𝛼, 𝛽 and 𝛾 directions with 1 and 2 indicating x and y, respectively. 682 

As 𝑓𝑖 should also satisfy Eqs. (A.4) and (A.5), 𝑓𝑖
1 should then satisfy the following constraints:  683 

∑ 𝑓𝑖
1

𝑖 = 0,  ∑ 𝒆𝑖𝑓𝑖
1

𝑖 = 0.                                           (A.8) 684 

 685 

Through Taylor expansion with respect to 𝛿𝑡, we rewrite Eq. (5) up to second order in 𝛿𝑡 686 

 (
𝜕

𝜕𝑡
+ 𝒆𝑖 ∙ ∇) 𝑓𝑖(𝒙, 𝑡) +

𝛿𝑡

2
(

𝜕

𝜕𝑡
+ 𝒆𝑖 ∙ ∇)

2

𝑓𝑖(𝒙, 𝑡) = −
1

𝜏𝑇𝛿𝑡
[𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)],       (A.9) 687 

Here, 𝛿𝑡 is treated as the same order of 𝜖.  Substituting Eqs. (A.1) - (A.3) into Eq. (A.9), the 688 

equation of the first order in 𝜖 is written as 689 

(
𝜕

𝜕𝑡1
+ 𝒆𝑖 ∙ ∇1) 𝑓𝑖

𝑒𝑞 = −
1

𝜏𝑇𝛿𝑡
𝑓𝑖

1.                                   (A.10) 690 

The continuity equation to the first order in 𝜖 is obtained by summing Eq. (A.10) over the i 691 

velocities and using Eqs. (A.4), (A.5) and (A.8) 692 

𝜕𝜌

𝜕𝑡1
+ ∇1 ∙ (𝜌�̅�) = 0.                                                (A.11) 693 

The momentum equation to the first order in 𝜖 is obtained by multiplying Eq. (A.10) by 𝒆𝑖, 694 

summing it over the i velocities and using Eqs. (A.5), (A.6) and (A.8) 695 

 
𝜕𝜌𝑢𝛼

𝜕𝑡1
+

𝜕

𝜕𝑥𝛽
1 (𝜌�̅�𝛼�̅�𝛽) = −

𝜕�̅�

𝜕𝑥𝛼
1,                                       (A.12) 696 

where the summation with respect to 𝛽 is implied. The momentum flux tensor �̅�𝛼𝛽 is 697 

�̅�𝛼𝛽 = ∑ 𝑒𝑖𝛼𝑒𝑖𝛽𝑓𝑖
1

𝑖 .                                             (A.13) 698 

Substituting Eq. (A.10) to Eq. (A.13), we have  699 

�̅�𝛼𝛽 = −𝜏𝑇𝛿𝑡 [
𝜕

𝜕𝑡1
(∑ 𝑒𝑖𝛼𝑒𝑖𝛽𝑓𝑖

1
𝑖 ) +

𝜕

𝜕𝑥𝛾
1 (∑ 𝑒𝑖𝛼𝑒𝑖𝛽𝑒𝑖𝛾𝑓𝑖

1
𝑖 )],              (A.14) 700 

where the summation with respect to 𝛾 is implied. Inserting Eqs. (A.6) – (A.7) into Eq. (A.14), 701 

the following equation can be found  702 
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�̅�𝛼𝛽 = −𝜏𝑇𝛿𝑡 {
𝜕

𝜕𝑡1
(𝜌�̅�𝛼�̅�𝛽 + 𝜌𝑐𝑠

2𝛿𝛼𝛽) +
𝜕

𝜕𝑥𝛾
1 [𝜌𝑐𝑠

2(�̅�𝛼𝛿𝛽𝛾 + �̅�𝛽𝛿𝛼𝛾 + �̅�𝛾𝛿𝛼𝛽)]}.  (A.15) 703 

𝜕

𝜕𝑡1
(𝜌�̅�𝛼�̅�𝛽 + 𝜌𝑐𝑠

2𝛿𝛼𝛽) in Eq. (A.15) can be re-written as 704 

𝜕

𝜕𝑡1
(𝜌�̅�𝛼�̅�𝛽 + 𝜌𝑐𝑠

2𝛿𝛼𝛽) = �̅�𝛼
𝜕𝜌𝑢𝛽

𝜕𝑡1
+ �̅�𝛽

𝜕𝜌𝑢𝛼

𝜕𝑡1
− �̅�𝛼�̅�𝛽

𝜕𝜌

𝜕𝑡1
+ 𝑐𝑠

2 𝜕𝜌

𝜕𝑡1
𝛿𝛼𝛽.        (A.16) 705 

According to Eqs. (A.11) – (A.12), Eq. (A.16) can be written as 706 

𝜕

𝜕𝑡1
(𝜌�̅�𝛼�̅�𝛽 + 𝜌𝑐𝑠

2𝛿𝛼𝛽) = −�̅�𝛼𝑐𝑠
2 𝜕𝜌

𝜕𝑥𝛽
1 − �̅�𝛽𝑐𝑠

2 𝜕𝜌

𝜕𝑥𝛼
1 − �̅�𝛼

𝜕𝜌𝑢𝛽𝑢𝛾

𝜕𝑥𝛾
1 − �̅�𝛽

𝜕𝜌𝑢𝛼𝑢𝛾

𝜕𝑥𝛾
1 + �̅�𝛼�̅�𝛽

𝜕𝜌𝑢𝛾

𝜕𝑥𝛾
1 −707 

𝑐𝑠
2 𝜕𝜌𝑢𝛾

𝜕𝑥𝛾
1 𝛿𝛼𝛽  708 

= −�̅�𝛼𝑐𝑠
2 𝜕𝜌

𝜕𝑥𝛽
1 − �̅�𝛽𝑐𝑠

2 𝜕𝜌

𝜕𝑥𝛼
1 −

𝜕

𝜕𝑥𝛾
1 (𝜌�̅�𝛼�̅�𝛽�̅�𝛾) − 𝑐𝑠

2 𝜕𝜌𝑢𝛾

𝜕𝑥𝛾
1 𝛿𝛼𝛽.        (A.17) 709 

𝜕

𝜕𝑥𝛾
1 [𝜌𝑐𝑠

2(�̅�𝛼𝛿𝛽𝛾 + �̅�𝛽𝛿𝛼𝛾 + �̅�𝛾𝛿𝛼𝛽)] in Eq. (A.15) can be re-written as 710 

𝜕

𝜕𝑥𝛾
1 [𝜌𝑐𝑠

2(�̅�𝛼𝛿𝛽𝛾 + �̅�𝛽𝛿𝛼𝛾 + �̅�𝛾𝛿𝛼𝛽)] = 𝑐𝑠
2 𝜕𝜌𝑢𝛾

𝜕𝑥𝛾
1 𝛿𝛼𝛽 + 𝑐𝑠

2 𝜕𝜌𝑢𝛽

𝜕𝑥𝛼
1 + 𝑐𝑠

2 𝜕𝜌𝑢𝛼

𝜕𝑥𝛽
1   711 

= 𝑐𝑠
2 𝜕𝜌𝑢𝛾

𝜕𝑥𝛾
1 𝛿𝛼𝛽 + 𝜌𝑐𝑠

2 (
𝜕𝑢𝛼

𝜕𝑥𝛽
1 +

𝜕𝑢𝛽

𝜕𝑥𝛼
1 ) + 𝑐𝑠

2�̅�𝛽
𝜕𝜌

𝜕𝑥𝛼
1 + 𝑐𝑠

2�̅�𝛼
𝜕𝜌

𝜕𝑥𝛽
1 . (A.18) 712 

Substituting Eqs. (A.17) – (A.18) into Eq. (A.15), we have 713 

�̅�𝛼𝛽 = −𝜏𝑇𝛿𝑡 [𝜌𝑐𝑠
2 (

𝜕𝑢𝛼

𝜕𝑥𝛽
1 +

𝜕𝑢𝛽

𝜕𝑥𝛼
1 ) −

𝜕

𝜕𝑥𝛾
1 (𝜌�̅�𝛼�̅�𝛽�̅�𝛾)].                (A.19) 714 

Here as in Qian and Orszag (1993), 
𝜕𝜌𝑢𝛼𝑢𝛽𝑢𝛾

𝜕𝑥𝛾
1 [𝜌𝑐𝑠

2 (
𝜕𝑢𝛼

𝜕𝑥𝛽
1 +

𝜕𝑢𝛽

𝜕𝑥𝛼
1 )]⁄ = 𝑂(𝑀2), and thus if 𝑀2 ≪715 

1, the second term in Eq. (A.19) can be neglected, which is consistent with the order of 716 

accuracy of Eq. (5) for the Navier-Stokes equations. We have 717 

�̅�𝛼𝛽 = −2𝜏𝑇𝛿𝑡𝜌𝑐𝑠
2𝑆�̅�𝛽.                                              (A.20) 718 

This gives 719 

𝑆�̅�𝛽 = −
1

2𝜏𝑇𝛿𝑡𝜌𝑐𝑠
2 �̅�𝛼𝛽 = ∑ 𝑒𝑖𝛼𝑒𝑖𝛽(𝑓𝑖 − 𝑓𝑖

𝑒𝑞)𝑖 .                    (A.21) 720 
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