Effect of Reynolds number on amplitude branches of vortex-induced vibration of a cylinder

Department of Mechanical Engineering, University College London, London WCIE 7JE, UK

Abstract

The effect of Reynolds number on curves of the transverse-only motion amplitude of a circular cylinder with the body mass $m^{*}=0.935$ and the damping ratio $\zeta=0.00502$ in the turbulent flow range is investigated systematically using a two-dimensional in-house code developed based on lattice Boltzmann method. Large eddy simulation is chosen as the turbulence model to describe viscous, incompressible and Newtonian fluid and the immersed boundary method is used to impose the boundary condition on the moving cylinder surface. Multi-block model is adopted to improve the accuracy and the computational efficiency. It is well established that when the variation of Reynolds number changes with the reduced velocity, there are three branches in the motion amplitude curve of a low mass cylinder, including initial, upper and lower branches connected by two jumps. However, in the present work, Reynolds number and reduced velocity are considered as independent parameters. Detailed results are provided for the variations of motion amplitude, motion frequency and lift coefficient against the reduced velocity in the lock-in region at different fixed Reynolds numbers. The results show that at a fixed Reynolds number the motion amplitude curve has two branches. At lower range of Reynolds number calculated, there are only initial and upper branches, and at higher range, there are only upper and lower branches. Also, the motion amplitude against the Reynolds number near the jumps is studied when the reduced velocity is fixed. It shows that the values of amplitude near the jumps are very sensitive to Reynolds number.

Keywords: vortex-induced vibration, motion amplitude branches, multi-block lattice Boltzmann method, immersed boundary method, large eddy simulation.
${ }^{\text {a) }}$ E-mail: g.wu@ucl.ac.uk

1. Introduction

Vortex-induced vibration (VIV) has been applied in many fields of engineering, such as rise tubes bringing oil or natural gas, the tethered structures in the ocean, the heat exchanger tubes, columns supporting bridges and high-rise buildings. Reviews of the earlier work were given by Bearman (1984), Blevins (1990) and Sumer and Fredsoe (1997) and more recent ones by Williamson and Govardhan (2004) and Bearman (2011). VIV may cause the large-amplitude vibration of structures and lead to structural damage or even collapse of the whole system, especially in the lock-in region. As a result, there have been a large number of experimental and numerical efforts to investigate features of the transverse free vibration in the lock-in region, including branches of motion amplitude, modes of vortex wake, the importance of body mass and damping. However, far fewer studies have systematically considered the effect of Reynolds number on the motion amplitude branches. Thus, this paper uses multi-block lattice Boltzmann method (LBM) together with large eddy simulation (LES) as the turbulence model for VIV. The immersed boundary method (IBM) is used to impose the no-slip condition on the body surface. The aim is to shed some lights on the effect of Reynolds number on free motions in the lock-in region, especially the motion amplitude branches.

Most previous experimental studies on the transverse free vibration of a cylinder in the subcritical turbulent range (Reynolds number $R e=u_{0} D / v=300-2 \times 10^{5}$) fixed structural parameters (the body mass m, structural stiffness k, damping b and diameter D) and the fluid medium (the fluid density ρ and kinematic viscosity v), and varied the incoming fluid velocity u_{0}. In general, the response of the nondimensional cylinder motion amplitude $Y_{0}^{*}=\frac{Y_{0}}{D}$ depends on the nondimensional mass $m^{*}=\frac{m}{\rho D^{2}}$, damping ratio $\zeta=\frac{b}{2 \sqrt{k\left(m+M_{p}\right)}}$, reduced velocity $U^{*}=$ $\frac{u_{0}}{f_{n} D}$ and Reynolds number $R e$, where $M_{p}=\frac{\pi}{4} \rho D^{2}$ is the potential flow added mass for a circular cylinder and $f_{n}=\frac{1}{2 \pi} \sqrt{\frac{k}{m+M_{p}}}$ is the natural frequency of the body. It means that in the experiment both U^{*} and $R e$ could change with u_{0}. Then simulations tried to capture what was observed in experiments and thus followed the same practice. These early experimental and numerical studies assumed that the effect on the results was attributed to the variation of U^{*}
rather than the Reynolds number. A possible reason may be that in the sub-critical turbulence range, $f_{v}^{*}=f_{v} D / u_{0}$, where f_{v} is the frequency of lift coefficient C_{L} for a fixed cylinder, is found not to be too much affected by $R e$ or to be nearly constant with a value of 0.2 , as discussed in reviews by Williamson (1996) and Sumer and Fredsoe (1997). Also, the amplitude of C_{L} for a fixed cylinder was considered to be not very much affected by $R e$ or to be nearly constant with a value of about 0.3 (Skop and Griffin, 1973; 1975). Then, the early assumption was that the amplitude of C_{L} would not be significantly affected by $R e$ for a free body either. Therefore, as pointed out by Bearman (2011), "there was a popular belief at the time that Reynolds number plays a minor role and that the flow around a cylinder undergoing large vortex-induced vibrations is insensitive to Reynolds number changes".

Based on the more extensive work (Norberg, 2003; Klamo et al., 2005; Govardhan and Williamson, 2006; Wanderley and Soares, 2015, Dorogi and Baranyi, 2020) undertaken later on, it is found that the effect of $R e$ is important for various results, as reviewed by Bearman (2011). For example, Norberg (2003) reviewed data of the root-mean-square lift coefficient $C_{\text {Lrms }}$ acting on a stationary cylinder in the sub-critical turbulent range. Results indicated that even though the value of $C_{\text {Lrms }}$ was usually about 0.27 , around $R e \approx 1600$ it suddenly dropped to 0.048 . This suggested that the effect of $R e$ on C_{L} for a fixed cylinder could not be always ignored. For a free body, the variation of C_{L} with $R e$ should be more complex compared with that of a fixed cylinder, and thus the $R e$ effect on free motions may need to be considered. Klamo et al. (2005) investigated the effect of Reynolds number in the range $R e=525-2600$ on the maximum amplitude of a cylinder free motion. In their experiments, both U^{*} and $R e$ still changed with the incoming fluid velocity u_{0} at given m^{*} and ζ. A curve of motion amplitude Y_{0}^{*} against U^{*} was plotted between $U_{1}^{*}<U^{*}<U_{2}^{*}$, with $R e_{1}<R e<R e_{2}$. Then, values of m^{*} and ζ remained unchanged, while f_{n} was varied. To achieve the same range U^{*}, u_{0} was changed and therefore $R e$ too. Another curve of motion amplitude Y_{0}^{*} against U^{*} between $U_{1}^{*}<U^{*}<U_{2}^{*}$, with $R e_{3}<R e<R e_{4}$ was plotted. Comparing Y_{0}^{*} values from the two curves at same U^{*}, they found that at larger $R e$, the peak amplitude of the cylinder motion was also larger and pointed out that the Reynolds number was an important parameter for the maximum amplitude. Govardhan and Williamson (2006) extended the Re range to 500 33000 to investigate its effect on the maximum motion amplitude and presented a similar conclusion to that from Klamo et al. (2005).

Later, Wanderley and Soares (2015) did numerical study. For given m^{*} and ζ, a curve of Y_{0}^{*} was plotted against U^{*} at a fixed Re. Curves Y_{0}^{*} at other Re values were also plotted against the same range of U^{*}. Similarly, curves for dominant frequency f_{c}^{*} of cylinder motion against U^{*} were plotted. In particular, four different $R e$ values in the sub-critical turbulence range were chosen, or $R e=300,400,1000$ and 1200 . The body mass was $m^{*}=1.88$ and damping ratio $\zeta=0.00542$. It was found that the effect of $R e$ was significant. With the increase in $R e$, the range of U^{*} within which lock-in occurred became much larger. In addition, at the same U^{*}, the value of motion amplitude from higher Reynolds number was higher than that from lower Reynolds number.

One of the important features of the motion amplitude curve of a low mass cylinder $\left(O\left(m^{*}\right)=\right.$ $1-10$) against U^{*} is that it has jumps. Khalak and Williamson (1997) observed that for $O\left(m^{*}\right)=1-10$, there were three branches of response in the curve. The curve started with an initial branch at lower U^{*}, then became an upper branch when U^{*} was beyond a critical value and dropped to a lower branch as U^{*} further increased to be beyond another critical value. Therefore, there are two jumps in the curve at: (1) the transition between initial-upper branches and (2) the transition between upper-lower branches. In the initial branch, with the increase of U^{*}, Y_{0}^{*} also increased. Further increase of U^{*} to a critical value $U_{I U}^{*}, Y_{0}^{*}$ jumped nearly vertically from initial branch to the upper branch. The peak of the motion amplitude was located in the upper branch. As U^{*} continued to increase to the next critical value $U_{U L}^{*}$, the transition between upper-lower branches occurred, and Y_{0}^{*} dropped nearly vertically. It should be noted that in experiments mentioned above, U^{*} and $R e$ both changed with u_{0} and $R e$ was in the range of 2000-14000. In the work of Wanderley and Soares (2015) mentioned previously, $R e$ was fixed in the curve Y_{0}^{*} against U^{*} and was in the range $R e=300-1200$. With the increase of U^{*}, Y_{0}^{*} increased slowly. Further increase in U^{*}, Y_{0}^{*} jumped to its peak first and then decreased. The curve changed rapidly before its peak, and thus there was only one critical value $U_{I U}^{*}$ connecting initial and upper branches, no $U_{U L}^{*}$ where Y_{0}^{*} dropped nearly vertically. It seems that the effect of $R e$ on the response branches may be important and it may affect the response branches. We shall focus on the case with $R e$, within which the $Y_{0}^{*}-U^{*}$ curve has two jumps and three branches when the variation of Reynolds number changes with the reduced velocity. The range of Reynolds number is chosen as $R e=1524-12192$ where Govardhan and

Williamson (2000) observed that there were three response branches and two jumps in the Y_{0}^{*} U^{*} curve when U^{*} and $R e$ both changed with u_{0}. The large amplitude, including the peak response, and sudden changes of the motion amplitude may be found in the lock-in region, which may lead to the structural damage and have serious implications to the safety of the structure. Thus, it is important to investigate the characters of the motion in the lock-in region, especially response branches. We shall undertake systematic simulations to investigate how the $Y_{0}^{*}-U^{*}$ curve behaves at each fixed $R e$. In particular, we shall investigative how $R e$ will affect both critical values, $U_{I U}^{*}$ and $U_{U L}^{*}$ at which the jump occurs and how it will affect the shape of the curve within each branch. Also, we shall examine how the motion amplitude changes near the jump when the reduced velocity is fixed while the Reynolds number varies. It ought to point out that in order to be consistent with amplitude branches from Govardhan and Williamson (2000), in the present paper a sudden increase is related to $U_{I U}^{*}$ connecting initial and upper branches and a nearly vertical drop occurs at $U_{U L}^{*}$ linking upper and lower branches. The results from Wanderley et al. (2012) indicated that the three-dimensionality had insignificant influence on the motion amplitude and frequency of a relatively long cylinder when $\operatorname{Re} \leq 12000$. Later, in addition to the work by Wanderley and Soares (2015), Pigazzini et al. (2018) extended Reynolds number to 13000. All of them provided the similar conclusion. Thus, 2D simulations are performed in the present study.

The present work on VIV is based on LBM. LBM is based on microscopic models and mesoscopic kinetic equations. Its equations may appear to be very different, but they are in fact equivalent to the NS equations. It has some distinctive features, such as the simple algorithm and the natural parallelism (Chen and Doolen, 1998). It can conveniently incorporate the LES model into its algorithm when turbulence is important and the LES-LBM can recover the incompressible LES-NS equations based on the Chapman-Enskog expansion (Cercignani, 1988) with the order of accuracy proportional to M^{2}, where $M=\frac{u_{0}}{c_{s}}$ is the Mach number, c_{s} is the equivalent sound speed (He and Luo, 1997). Macroscopic flow properties, such as the fluid density, velocity and pressure, can be obtained by the particle distribution function (Chen and Doolen, 1998). In this work, IBM is used to treat the structure-fluid boundary. The body surface is replaced by a layer of distributed force, whose value is determined by the no-slip boundary. It allows a complex boundary to be treated in a simpler way. To improve the numerical efficiency and accuracy, the multi-block grid method is used. The grid is finer near the fluid-
structure boundary, where the flow is usually more complex, while it is coarser away from the body.

The paper is organized as follow. In Section 2, we present the numerical method based on immersed boundary-lattice Boltzmann method with large-eddy simulation and multi-block method for simulation of turbulence flows. This is followed by the mathematical analysis for the free motion in Section 3. Results are provided in Section 4, followed by the conclusions in Section 5.

2. Numerical method

Large-eddy simulation (LES) has become one of most widely used methods for turbulent flow. The turbulent flow of viscous, incompressible and Newtonian fluid is governed by the following continuity equation and Navier-Stokes equation with LES,

$$
\begin{gather*}
\nabla \cdot \overline{\boldsymbol{u}}=0 \tag{1}\\
\frac{\partial \overline{\boldsymbol{u}}}{\partial t}+(\overline{\boldsymbol{u}} \cdot \nabla) \overline{\boldsymbol{u}}=-\frac{\nabla \overline{\boldsymbol{p}}}{\rho}+2 v_{0} \nabla \cdot \overline{\boldsymbol{S}}-\nabla \cdot \boldsymbol{T} \tag{2}
\end{gather*}
$$

where $\overline{\boldsymbol{u}}$ and \bar{p} are filtered fluid velocity \boldsymbol{u} and pressure p, respectively, ρ is the fluid density, v_{0} is the kinematic viscosity. $\overline{\boldsymbol{S}}=\left(\nabla \overline{\boldsymbol{u}}+(\nabla \overline{\boldsymbol{u}})^{T}\right) / 2$ is the filtered strain rate tensor and \boldsymbol{T} is sub-grid-scale stresses due to interaction between the unsolved or SGS eddies defined as $\boldsymbol{T}=$ $\overline{\boldsymbol{u} \boldsymbol{u}}-\overline{\boldsymbol{u}} \overline{\boldsymbol{u}}$.

In one of the common LES models, or the sub-grid-scale (SGS) model due to Smagorinsky (1963), its aim is to reduce the temporal and spatial complexity of \boldsymbol{T}. It is assumed $\boldsymbol{T}=-2 v_{e} \overline{\boldsymbol{S}}$, where $v_{e}=(C \Delta)^{2}\|\overline{\boldsymbol{S}}\|$ is eddy viscosity, C is the Smagorinsky constant and Δ is the filter width, $\|\overline{\boldsymbol{S}}\|=\sqrt{2\left|\sum_{\alpha, \beta} \bar{S}_{\alpha \beta} \bar{S}_{\alpha \beta}\right|}$ and $\bar{S}_{\alpha \beta}=\left(\frac{\partial \bar{u}_{\alpha}}{\partial x_{\beta}}+\frac{\partial \bar{u}_{\beta}}{\partial x_{\alpha}}\right) / 2$, with $\alpha=1,2$ and $\beta=1,2$ corresponding to the lines and rows of $\overline{\boldsymbol{S}}$, respectively. Using this, Eq. (2) can be written as

$$
\begin{equation*}
\frac{\partial \overline{\boldsymbol{u}}}{\partial t}+(\overline{\boldsymbol{u}} \cdot \nabla) \overline{\boldsymbol{u}}=-\frac{\nabla \bar{p}}{\rho}+2 v_{T} \nabla \cdot \overline{\boldsymbol{S}} \tag{3}
\end{equation*}
$$

where $v_{T}=v_{0}+v_{e}$ is the total viscosity. Eqs. (1) and (3) are then combined with the no-slip condition on the solid surface s, or

$$
\begin{equation*}
\overline{\boldsymbol{u}}=\boldsymbol{U}^{d}(s) \tag{4}
\end{equation*}
$$

where \boldsymbol{U}^{d} is the velocity of the solid surface.

2.1. Large-eddy simulation-lattice Boltzmann method (LES-LBM)

The present work is based on LBM with LES for governing equation in the volume coupled with IBM for conditions on the boundary. Equivalent to Eqs. (1) and (3), the lattice Boltzmann equation (LBE) with LES can be written as (Chen and Doolen, 1998; Aidun and Clausen, 2010)

$$
\begin{equation*}
f_{i}\left(\boldsymbol{x}+\boldsymbol{e}_{i} \delta_{t}, t+\delta_{t}\right)=f_{i}(\boldsymbol{x}, t)-\frac{1}{\tau_{T}}\left[f_{i}(\boldsymbol{x}, t)-f_{i}^{e q}(\boldsymbol{x}, t)\right] \tag{5}
\end{equation*}
$$

where f_{i} is the weighted density distribution function corresponding to each discretized velocity \boldsymbol{e}_{i}, and $f_{i}^{e q}$ is the corresponding equilibrium distribution function. \boldsymbol{x} in Eq. (5) is the position vector in the Cartesian coordinate system $O x y$ and δ_{t} is the time step. $\tau_{T}=\frac{1}{2}+\frac{v_{T}}{c_{S}^{2} \delta_{t}}$ is the nondimensional total relaxation time, which is related to the total viscosity v_{T} based on Chapman-Enskog expansion. Here c_{s} is the artificial sound speed. Based on SGS model, the relaxation time can be written as

$$
\begin{equation*}
\tau_{T}=\frac{1}{2}+\frac{1}{c_{s}^{2} \delta_{t}}\left(v_{0}+v_{e}\right)=\frac{1}{2}+\frac{1}{c_{s}^{2} \delta_{t}}\left[v_{0}+(C \Delta)^{2}\|\overline{\boldsymbol{S}}\|\right] \tag{6}
\end{equation*}
$$

For the two-dimension problem, we adopt the nine-discretized velocity, or D2Q9 model, as in the previous applications (Jiao and Wu, 2018a, b). Corresponding to that we have

$$
\boldsymbol{e}_{i}=\left\{\begin{array}{cl}
(0,0) & i=0 \tag{7}\\
c(\cos [(i-1) \pi / 2], \sin [(i-1) \pi / 2]) & i=1-4 \\
\sqrt{2} c(\cos [(2 i-1) \pi / 4], \sin [(2 i-1) \pi / 4]) & i=5-8
\end{array}\right.
$$

where $c=\sqrt{3} c_{s}$ is the lattice speed. The equilibrium distribution function is of the form

$$
\begin{equation*}
f_{i}^{e q}(\boldsymbol{x}, t)=\rho \omega_{i}\left[1+\frac{\boldsymbol{e}_{i} \cdot \bar{u}}{c_{s}^{2}}+\frac{\left(\boldsymbol{e}_{i} \cdot \overline{\boldsymbol{u}}\right)^{2}}{2 c_{s}^{4}}-\frac{\overline{\boldsymbol{u}} \cdot \overline{\boldsymbol{u}}}{2 c_{s}^{2}}\right], \tag{8}
\end{equation*}
$$

where weighting coefficient ω_{i} are given as $\omega_{0}=4 / 9, \omega_{i}=1 / 9$ for $i=1-4$, and $\omega_{i}=$ $1 / 36$ for $i=5-8$.

The fluid domain is then discretized by the structured mesh with $\delta_{x}=\delta_{y}=c \delta_{t}=l$. The solution of Eq. (5) is obtained through the streaming and collision process. From the density distribution function, the fluid density and the fluid velocity at each point can be respectively calculated as follow

$$
\begin{array}{r}
\rho=\sum_{i=0}^{8} f_{i}, \\
\rho \overline{\boldsymbol{u}}=\sum_{i=0}^{8} \boldsymbol{e}_{i} f_{i} . \tag{10}
\end{array}
$$

With the above LBM, Eq. (5) can be found to equivalent to Eqs. (1) and (3) to the order of accuracy of with $O\left(M^{2}\right)$ with $M=\frac{u_{0}}{c_{s}}$.

To find $\bar{S}_{\alpha \beta}$ required by the eddy viscosity in LES, there are at least two methods which could be conveniently used. The first one is to compute the velocity gradients using the finitedifference approximation, as square mesh will be used in the D2Q9 model. Another way is to evaluate it directly from the weighted density distribution function. In the present study, we have chosen the second method. In such a case, the strain rate tensor $\bar{S}_{\alpha \beta}$ is related to the momentum flux tensor $\bar{Q}_{\alpha \beta}$ detailed in Appendix, or

$$
\begin{equation*}
\bar{S}_{\alpha \beta}=-\frac{1}{2 \tau_{T} \delta_{t} \rho c_{s}^{2}} \bar{Q}_{\alpha \beta}=\sum_{i} e_{i \alpha} e_{i \beta}\left(f_{i}-f_{i}^{e q}\right) . \tag{11}
\end{equation*}
$$

Substituting Eq. (11) into $\|\overline{\boldsymbol{S}}\|=\sqrt{2\left|\sum_{\alpha, \beta} \bar{S}_{\alpha \beta} \bar{S}_{\alpha \beta}\right|}$, we have $\|\overline{\boldsymbol{S}}\|=\frac{1}{2 \tau_{T} \delta_{t} \rho c_{s}^{2}}\|\overline{\boldsymbol{Q}}\|$, where $\|\overline{\boldsymbol{Q}}\|=\sqrt{2\left|\sum_{\alpha, \beta} \bar{Q}_{\alpha \beta} \bar{Q}_{\alpha \beta}\right|}$. Combining this with Eq. (6) and eliminating τ_{T}, we obtain

$$
\begin{equation*}
\|\overline{\boldsymbol{S}}\|=\frac{c_{s}^{2}}{2 C^{2} \Delta^{2}}\left(\sqrt{\tau_{0}^{2} \delta_{t}^{2}+2 C^{2} \Delta^{2} \rho^{-1} C_{s}^{-4}\|\overline{\boldsymbol{Q}}\|}-\tau_{0} \delta_{t}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{T}=\frac{1}{2}+\frac{1}{c_{s}^{2} \delta_{t}}\left[v_{0}+\frac{c_{s}^{2}}{2}\left(\sqrt{\tau_{0}^{2} \delta_{t}^{2}+2 C^{2} \Delta^{2} \rho^{-1} c_{s}^{-4}\|\overline{\boldsymbol{Q}}\|}-\tau_{0} \delta_{t}\right)\right], \tag{13}
\end{equation*}
$$

where $\tau_{0}=\frac{1}{2}+\frac{1}{c_{s}^{2} \delta_{t}} v_{0}$ is related to the kinematic viscosity.

2.2. Multi-block model

The complexity level of the flow in different region is different. In order to improve the computational efficiency and accuracy of LES-LBM, the multi-block method (Yu et al., 2002) is used in the present study. This allows us to use finer grid in a region where flow changes more rapidly. To illustrate the procedure, a two-block system, with a coarser block and a finer block shown in Fig. 1, is considered. δ_{x} and δ_{y} are the space steps in x and y directions, respectively, and δ_{t} is the time step. The subscripts c and f indicate coarser and finer, respectively. Here we have $\delta_{x}=\delta_{y}=c \delta_{t}$, where c is the lattice speed. The ratio of the space steps between coarser and finer blocks (or the ratio of their corresponding time steps) is $m=$ $\frac{\delta_{x c}}{\delta_{x f}}=\frac{\delta_{t c}}{\delta_{t f}}$. It should be noted that that the kinematic viscosity by v_{0} is the same in the two blocks. In this sense, $\tau_{0 c}$ and $\tau_{0 f}$ should be linked by the equation $v_{0}=\left(\tau_{0 c}-0.5\right) c_{s}^{2} \delta_{t c}=$ $\left(\tau_{0 f}-0.5\right) c_{s}^{2} \delta_{t f}$.

Fig. 1. Two blocks of different lattice spacing near their interface

The information exchange between two blocks on the interface is through interpolation. A cubic spline is used to eliminate the possibility of spatial asymmetry (Yu et al., 2002) caused by interpolation,

$$
\begin{equation*}
h(x)=a_{i}+b_{i} x+c_{i} x^{2}+d_{i} x^{3}, x_{i-1} \leq x \leq x_{i}(i=1, \cdots, n) \tag{14}
\end{equation*}
$$

where x_{i} are the blue nodes along AB of the coarser block. Here $h_{i}=h\left(x_{i}\right)$ is known from the value of f in Eq. (5). The procedure to obtain coefficients a_{i}, b_{i}, c_{i} and d_{i} can be summarized as below.
(1) Approaching x_{i} within $x_{i-1} \leq x \leq x_{i}$, we can get the following equations

$$
\begin{gather*}
h_{i}=a_{i}+b_{i} x_{i}+c_{i} x_{i}^{2}+d_{i} x_{i}^{3}, \tag{15}\\
h_{i}^{\prime}=b_{i}+2 c_{i} x_{i}+3 d_{i} x_{i}^{2}, \tag{16}\\
h_{i}^{\prime \prime}=2 c_{i}+6 d_{i} x_{i} . \tag{17}
\end{gather*}
$$

(2) Similarly approaching x_{i} within $x_{i} \leq x \leq x_{i+1}$, we can have

$$
\begin{gather*}
h_{i}=a_{i+1}+b_{i+1} x_{i}+c_{i+1} x_{i}^{2}+d_{i+1} x_{i}^{3}, \tag{18}\\
h_{i}^{\prime}=b_{i+1}+2 c_{i+1} x_{i}+3 d_{i+1} x_{i}^{2}, \tag{19}\\
h_{i}^{\prime \prime}=2 c_{i+1}+6 d_{i+1} x_{i} . \tag{20}
\end{gather*}
$$

(3) Enforcing the continuities of the first and second derivatives at $x=x_{i}$, we can get

$$
\begin{align*}
b_{i}+2 c_{i} x_{i}+3 d_{i} x_{i}^{2} & =b_{i+1}+2 c_{i+1} x_{i}+3 d_{i+1} x_{i}^{2} \tag{21}\\
2 c_{i}+6 d_{i} x_{i} & =2 c_{i+1}+6 d_{i+1} x_{i} \tag{22}
\end{align*}
$$

Using these, together with in Eqs. (15) and (18), we have four equations at node i ($i=$ $1, \cdots, n-1$).
(4) At end nodes $i=0$ and $i=n$, using known h_{0} and h_{n} and also imposing zero second derivatives

$$
\begin{align*}
& 2 c_{1}+6 d_{1} x_{0}=0 \tag{23}\\
& 2 c_{n}+6 d_{n} x_{n}=0 \tag{24}
\end{align*}
$$

This will give 4 additional equations.

In total there are $4(n-1)+4=4 n$ equations and the number is the same as that of the unknowns in Eq. (13). Thus, coefficients a_{i}, b_{i}, c_{i} and $d_{i}(i=1, \cdots, n)$ can be obtained. Then, from Eq. (13), we can calculate the values of $h(x)$ at the red points along AB of the finer block.

The finer grid also corresponds to smaller time step. Therefore, temporal interpolation is also needed. Let t_{1}, t_{2} and t_{3} be the time instants corresponding to the coarser grid. Based on the above spatial interpolation, the values at the finer grid nodes, or on both blue and red points of AB , at these time instants can be obtained. Let $g\left(t_{1}\right), g\left(t_{2}\right)$ and $g\left(t_{3}\right)$ be at a given finer grid node. As a smaller time step $\delta_{t f}$ is used for the fine grid, result at t^{*} between the two instants is needed. Three-point Lagrangian formulation is then adopted for the temporal interpolation

$$
\begin{equation*}
g(t)=\sum_{k=1}^{3} g\left(t_{k}\right)\left(\prod_{j=1, j \neq k}^{3} \frac{t-t_{j}}{t_{k}-t_{j}}\right) \tag{25}
\end{equation*}
$$

For t^{*}, we take one point t_{3} on its right, and two points t_{1} and t_{2} on the left, as shown in Fig. 2, Eq. (25) may be expressed as

$$
\begin{equation*}
g\left(t^{*}\right)=g\left(t_{1}\right) \frac{\left(t^{*}-t_{2}\right)\left(t^{*}-t_{3}\right)}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}+g\left(t_{2}\right) \frac{\left(t^{*}-t_{1}\right)\left(t^{*}-t_{3}\right)}{\left(t_{2}-t_{1}\right)\left(t_{2}-t_{3}\right)}+g\left(t_{3}\right) \frac{\left(t^{*}-t_{1}\right)\left(t^{*}-t_{2}\right)}{\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)} \tag{26}
\end{equation*}
$$

Fig. 2. Sketch for three-point Lagrangian interpolation

The relationship between t^{*} and t_{2} is

$$
\begin{equation*}
t^{*}=t_{2}+j \delta_{t f}(j=1, \ldots, m-1) \tag{27}
\end{equation*}
$$

Based on this equation and $t_{3}-t_{2}=t_{2}-t_{1}=\delta_{t c}=m \delta_{t f}$, Eq. (26) can be rewritten as

$$
\begin{equation*}
g\left(t^{*}\right)=\frac{j(j-m)}{2 m^{2}} g\left(t_{1}\right)+\frac{j^{2}+m^{2}}{m^{2}} g\left(t_{2}\right)+\frac{j(j+m)}{2 m^{2}} g\left(t_{3}\right) . \tag{28}
\end{equation*}
$$

For $m=2$, we can have only $j=1$ in Eq. (27)

$$
\begin{equation*}
t^{*}=t_{2}+\delta_{t f}, \tag{29}
\end{equation*}
$$

Eq. (28) becomes

$$
\begin{equation*}
g\left(t^{*}\right)=-0.125 g\left(t_{1}\right)+0.75 g\left(t_{2}\right)+0.375 g\left(t_{3}\right) . \tag{30}
\end{equation*}
$$

For $m=2$, the detailed exchange between the finer and coarser blocks is summarized as follow.
(1) $f_{i}\left(\boldsymbol{x}, t+2 \delta_{t f}\right)$ in the coarser block can be calculated by collision and streaming of $f_{i}(\boldsymbol{x}, t)$ as in Jiao and Wu (2018a), which provides its values along the blue points of AB ;
(2) $f_{i}\left(\boldsymbol{x}, t+2 \delta_{t f}\right)$ of red points on the AB line for the finer block can be calculated by Eq. (14).
(3) $f_{i}\left(\boldsymbol{x}, t+\delta_{t f}\right)$ in the finer block can be calculated by collision and streaming of $f_{i}(\boldsymbol{x}, t)$;
(4) The values of $f_{i}\left(x, t+\delta_{t f}\right)$ at both blue and red points of AB are obtained from Eq. (30), which are used as the boundary condition for the finer block
(5) $f_{i}\left(x, t+2 \delta_{t f}\right)$ in the finer block can be calculated by collision and streaming of $f_{i}\left(\boldsymbol{x}, t+\delta_{t f}\right)$ with the boundary condition along AB ;
(6) $f_{i}\left(\boldsymbol{x}, t+2 \delta_{t f}\right)$ values on the blue points along CD line obtained from the finer mesh is used as boundary condition for the coarser;
(7) Return to step (1) and start the next time.

2.3. Immersed boundary method

The present work uses IBM for boundary condition, which imposes no-slip condition on the structure-fluid boundary by replacing the body surface with a layer of distributed force \boldsymbol{g} into Eq. (3). To combine this IBM with the present LES-LBM, Eq. (5) can be modified as

$$
\begin{equation*}
f_{i}\left(\boldsymbol{x}+\boldsymbol{e}_{i} \delta_{t}, t+\delta_{t}\right)=f_{i}(\boldsymbol{x}, t)-\frac{1}{\tau_{T}}\left[f_{i}(\boldsymbol{x}, t)-f_{i}^{e q}(\boldsymbol{x}, t)\right]+\delta_{t} \frac{\omega_{i} \rho}{c_{s}^{2}} \boldsymbol{e}_{i} \cdot \boldsymbol{g} . \tag{31}
\end{equation*}
$$

The detailed process to obtain \boldsymbol{g} can be found in Jiao and Wu (2018a). The value of the external force \boldsymbol{g} is obtained by the delta function δ_{l}

$$
\boldsymbol{g}(\boldsymbol{x}, t)=\sum_{s} \boldsymbol{G}(s, t) \delta_{l}(\boldsymbol{x}-\boldsymbol{X}(s, t))
$$

where $\boldsymbol{X}(s, t)$ is the position of the body surface and will change with time when the body is in motion. The required body force on the solid boundary is to ensure the no-slip condition through the proper choice of the forcing term, which is given as

$$
\boldsymbol{G}(s, t)=\frac{\boldsymbol{U}^{d}(s, t)-\boldsymbol{U}^{*}(s, t)}{\delta_{t}}
$$

Here \boldsymbol{U}^{*} is the velocity on the boundary without the forcing term. It is obtained from

$$
\boldsymbol{U}^{*}(s, t)=\sum_{\stackrel{\rightharpoonup}{x}} \boldsymbol{u}^{*}(\vec{x}, t) \delta_{l}(\boldsymbol{x}-\boldsymbol{X}(s, t))
$$

where \boldsymbol{u}^{*} is the fluid velocity without the forcing term from Eq. (3). Based on Peskin (2002), the delta function $\delta_{l}(\boldsymbol{x})$ can be written as follow

$$
\delta_{l}(\boldsymbol{x})=\delta_{l}(x) \delta_{l}(y)
$$

where

$$
\delta_{l}(r)=\left\{\begin{array}{l}
\frac{1}{4 l}\left[1+\cos \left(\frac{\pi|r|}{2 l}\right)\right] \begin{array}{c}
|r| \leq 2 l \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

Here l is the grid size of the fluid domain.

3. Free motion of a body

The fluid force on the cylinder is calculated by integrating the external force $\boldsymbol{g}(\boldsymbol{x}, \mathrm{t})=$ $\left(g_{x}(\boldsymbol{x}, t), g_{y}(\boldsymbol{x}, t)\right)$ over the whole fluid domain. The drag and lift forces are given by

$$
\begin{equation*}
F_{D}=\iint g_{x}(\boldsymbol{x}, t) d x d y \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{L}=\iint g_{y}(\boldsymbol{x}, t) d x d y \tag{33}
\end{equation*}
$$

In reality, this integration needs to be performed only over the layer next the body surface because of the delta function $\delta_{l}(\boldsymbol{x})$. The corresponding coefficients are defined by $C_{D}=$ $F_{D} / 0.5 \rho u_{0}^{2} D$ and $C_{L}=F_{L} / 0.5 \rho u_{0}^{2} D$, respectively.

In many engineering problems, the transverse motion of the body or the motion in the y direction due to flow in x direction is the main concern, because the lift (transverse) fluctuation is generally much larger than drag (in-line) fluctuation. If the body mass is m, the structural damping is b and stiffness is k, the governing equation of its motion is

$$
\begin{equation*}
m \ddot{Y}+b \dot{Y}+k Y=F_{L} \tag{34}
\end{equation*}
$$

where Y is the displacement, and the over dot denotes the temporal derivative.

The nondimensionalized form of Eq. (34) based on ρ, u_{0} and D can be written as

$$
\begin{equation*}
m^{*} \ddot{Y}^{*}+\frac{4 \pi \zeta\left(m^{*}+M_{p}^{*}\right)}{U^{*}} \dot{Y}^{*}+\frac{4 \pi^{2}\left(m^{*}+M_{p}^{*}\right)}{U^{* 2}} Y^{*}=\frac{C_{L}}{2} \tag{35}
\end{equation*}
$$

where $M_{p}^{*}=\frac{\pi}{4}$ is the nondimensionalized potential flow added mass.

For a fixed cylinder, $Y^{*}=0 . C_{L}$ will be only a function of Reynolds number including its amplitude $C_{L 0}$ and frequency f_{v}^{*}, or

$$
\begin{align*}
C_{L} & =C_{L}(R e) \tag{36}\\
C_{L 0} & =C_{L 0}(R e) \tag{37}\\
f_{v}^{*} & =f_{v}^{*}(R e) \tag{38}
\end{align*}
$$

As discussed in the Introduction, in the sub-critical range ($R e=300-2 \times 10^{5}$), f_{v}^{*} is almost constant with a value of 0.2 (Williamson, 1996; Sumer and Fredsoe, 1997), and so $C_{L 0}$ is, which is around 0.3 (Skop and Griffin, 1973; 1975), apart from the drop around $R e \approx 1600$ (Norberg, 2003).

For a cylinder in oscillation, one can expect that C_{L} may be affected by the motion amplitude Y_{0}^{*} and motion frequency f_{c}^{*}. Thus, Eq. (35) becomes

$$
\begin{equation*}
C_{L}=C_{L}\left(Y_{0}^{*}, f_{c}^{*}, R e\right) . \tag{39}
\end{equation*}
$$

According to Eq. (35), Y^{*} depends on the body mass, damping ratio, reduced velocity and lift coefficient, or

$$
\begin{equation*}
Y^{*}=Y^{*}\left(m^{*}, \zeta, U^{*}, C_{L}\right) \tag{40}
\end{equation*}
$$

It is then obvious there is some nonlinear interaction between C_{L} and Y^{*}. In such a case, unlike that for a fixed cylinder in Eq. (36), C_{L} in Eq. (39) for a cylinder in oscillation may be more sensitive to $R e$. This will be investigated through extensive simulations below.

4. Results

4.1. Verification through comparison

4.1.1. Cavity

The driven square cavity flow at $R e=1000-5000$ has been carried out first to verify the numerical method. The initial and boundary conditions are the same as those used by Hou et al. (1996). The cavity has 256 lattice units on each side. Initially, the velocities at all nodes, except the top, are set to zero. At the top, the x-velocity of the top is u_{0} and the y-velocity is zero. and no-slip boundary conditions are used at the three stationary walls. Values of the Mach number M and the Smagorinsky constant C are also the same as those used by Hou et al. (1996), or $M=0.17$ and $C=0.1$.

Table 1 shows the comparison of results for the strength and location of the primary vortex, lower left vortex and lower right vortex at $R e=1000$. Figures 3-4 display comparison of streamline and vortex contours at $R e=5000$, respectively. There is an excellent agreement between present results and those published previously, suggesting that the present numerical method is correct and results are accurate.

Table 1

Comparison of results for primary vortex, lower left vortex and lower right vortex at $R e=1000$

	Primary		vortex	Lower left vortex
Reference	Strength	Location	Location	Location
Present	2.0550	$(0.5335,0.5671)$	$(0.0875,0.0813)$	$(0.8643,0.1180)$
Hou et al. (1995)	2.0760	$(0.5333,0.5647)$	$(0.0902,0.0784)$	$(0.8667,0.1137)$
Chen (2009)	-	$(0.5310,0.5700)$	$(0.0901,0.0800)$	$(0.8501,0.1100)$
Ghia et al. (1982)	2.04968	$(0.5313,0.5625)$	$(0.0859,0.0781)$	$(0.8594,0.1094)$

Fig. 3. Streamlines at $T=185$ and $R e=5000$: (a) present and (b) Garcia (2007).

Fig. 4. Vortex contours at $T=185$ and $R e=5000$: (a) present and (b) Hou (1996).

4.1.2. Free motion of a cylinder

A sketch of the computational domain for free motions of a circular cylinder with diameter D is shown in Fig. 5(a). The same domain is used in the rest of this work. The incoming flow is from the left-hand side of the body. The cylinder is located in the flow field. $L \mathrm{e}=22 \mathrm{D}, L \mathrm{~s}=$ $5 D$ and $L r=40 D$, which is similar to that used by Pigazzini et al. (2018). A Dirichlet boundary condition $\left(\vec{u}=\left(u_{0}, 0\right)\right)$ is adopted at the inflow and outlet boundaries. $p=c_{s}^{2}$ is adopted at the inflow and outlet boundaries. On the upper and lower boundaries, y-velocity and the component of stress vector along these two boundaries are prescribed zero value. Initially, the velocities at all nodes, except inflow and outlet boundaries, are set to zero. There are three levels of grids in the calculation shown in Fig. 5(b). The ratio of space steps between Grid 2 and Grid 1 is 2 and the ratio between Grid 3 and Grid 1 is 4 . The grid parameter in Grid 1 is $s=D / \delta_{x}=400$. The ratio between the arc length $\left(\delta_{s}\right)$ of the boundary element and the structured mesh $\left(\delta_{x}\right)$ in Grid 1 is $\delta_{s x}=\frac{\delta_{s}}{\delta_{x}}=1.67$, which is similar to that of the minimum value adopted in Chen et al. (2018). The Mach number is taken as $M=0.02$. Yu et al. (2005) indicated that in LES-LBM, the value of the Smagorinsky constant $C=0.1$ yielded better results than the value of $C=0.17$ which is always used in LES-NS, and thus $C=0.1$ is used in the present study. For analyses, the fluctuating force history is collected for a sufficiently long period of time $\left(T=u_{0} t / D>1200\right)$.

Fig. 5. (a) Computational configuration and (b) schematic diagram of grid levels

To further validate our method, we compare our numerical results with the experimental data from Govardhan and Williamson (2000) for a cylinder in free motion. In such a case, body mass is taken as $m^{*}=0.935$ and accordingly damping ratio as $\zeta=0.00502$. The reduced velocity U^{*} varies from 3 to 24 and corresponding Reynolds number from 1524 to 12192. It is found in our simulations that lock-in where the dominant frequency of the lift coefficient is
equal to that of cylinder motion occurs in the region of $U^{*}=3.5-17.5$, which is similar to that in Govardhan and Williamson (2000). Spectra of cylinder motion and lift coefficient in the lock-in region are not purely sinusoidal, but still discrete, which is the same as that in Pigazzini et al. (2018). In addition to the dominant frequency component, there are multiple intricate frequencies in spectra. It should be noted that in in Jiao and Wu (2018b) and Kumar et al.(2016), the system can be regarded as the state of the lock-in when (a) the dominant frequency in the power spectrum of the lift coefficient is equal to the forced oscillation frequency f_{c} and (b) other components in its power spectrum, if any, are only at integer multiples of f_{c}. Compared with that mentioned in Jiao and Wu (2018b) and Kumar et al. (2016), the definition of lock-in here has been extended to account for the turbulent flow effect on the result. Figure 6 shows motion amplitude Y_{0}^{*} and frequency ratio $f^{*}=f_{c}^{*} / f_{n}^{*}$ in the lock-in region, where f_{c}^{*} is the dominant frequency of the cylinder motion. It can be seen that in the Y_{0}^{*} curve, there are two jumps and three amplitude branches, including initial ($3.5 \leq U^{*} \leq U_{I U}^{*}$), upper ($U_{I U}^{*}<U^{*} \leq$ $U_{U L}^{*}$) and lower branches ($U_{U L}^{*}<U^{*} \leq 17.5$), as defined by Khalak and Williamson (1997). In the initial branch, with the increase of U^{*}, Y_{0}^{*} also increases. Further increase of U^{*} to $U_{I U}^{*}, Y_{0}^{*}$ jumps nearly vertically from initial value to the upper branch within which the peak of the motion amplitude $Y_{0 \max }^{*}=0.91$ is located at $U^{*}=8.0(R e=4064)$. As U^{*} continues to increase to $U_{U L}^{*}$, the transition between upper-lower branches occurs, and Y_{0}^{*} drops nearly vertically. In the present study with smaller incremental increase of U^{*} than that from Govardhan and Williamson (2000), $U_{I U}^{*}$ is found to be in the range from 5.0 to 5.1 , and $U_{U L}^{*}$ from 10.5 to 10.6 . Figure 7 shows displacement and lift coefficient histories at $U_{I U}^{*}$ and $U_{U L}^{*}$. At the lower end of $U_{I U}^{*}$, lift coefficient and displacement are almost in phase, while at the higher end of $U_{U L}^{*}$, they become nearly anti-phase. These phenomena are consistent with that observed in the experiment by Govardhan and Williamson (2000). The result in Fig. 6 are generally in good agreement with those from Govardhan and Williamson (2000), although the peak of the motion amplitude $Y_{0 \text { max }}^{*}=0.91$ at $U^{*}=0.75$ is a bit smaller than $Y_{0 \max }^{*}=1.01$ in Govardhan and Williamson (2000). Figure 8 shows the amplitude $C_{L 0}$ of lift coefficient in the lock-in region. It can be seen that when $U^{*}=U_{U L}^{*}$, there is also a sudden drop in $C_{L 0}$, about from 0.70 to 0.37 .

(b)

Fig. 6. Comparison of motion amplitude and frequency ratio between experimental data from Govardhan and Williamson (2000) and present results.

Fig. 7. Displacement and lift coefficient near critical reduced velocity between initial and upper branches ((a),(b), and near that between upper and lower branches ((c), (d)) (a) $U^{*}=5.0(R e=2540)$, (b) $U^{*}=5.1$ ($R e=2590)$, (c) $U^{*}=10.5(R e=5334)$ and (d) $U^{*}=10.6(R e=5385)$.

Fig. 8. Amplitude of lift coefficient.

4.2. Variation of body motion with reduced velocities at different fixed Reynolds numbers

If we assume

$$
\begin{equation*}
C_{L}=C_{L 0} \sin \left(2 \pi f_{c}^{*} T+\phi\right) \text { or } C_{L}=\operatorname{Re}\left[i C_{L 0} e^{-i\left(2 \pi f_{c}^{*} T+\phi\right)}\right], \tag{41}
\end{equation*}
$$

and the motion of the cylinder can then be written as

$$
\begin{equation*}
Y^{*}=Y_{0}^{*} \sin \left(2 \pi f_{c}^{*} T\right) \text { or } Y^{*}=\operatorname{Re}\left[i Y_{0}^{*} e^{-i\left(2 \pi f_{c}^{*} T\right)}\right], \tag{42}
\end{equation*}
$$

where ϕ is the phase angle between the lift coefficient and cylinder motion, we can have

$$
\begin{equation*}
Y_{0}^{*}=\frac{U^{* 2}}{8 \pi^{2}} \sqrt{\frac{1}{\left[\left(m^{*}+M_{p}^{*}\right)-m^{*} f^{* 2}\right]^{2}+4 \zeta^{2}\left(m^{*}+M_{p}^{*}\right)^{2} f^{* 2}}} C_{L 0} . \tag{43}
\end{equation*}
$$

In the following computations of this section, we may fix m^{*} and ζ, as well as $R e$, and vary only U^{*}. Equation (43) shows that Y_{0}^{*} will be directly affected by the term of U^{*}. It will also be affected implicitly by f^{*} which will change with U^{*}. When Y_{0}^{*} and f^{*} change with $U^{*}, C_{L 0}$
will also change, which further affects Y_{0}^{*}. Therefore, there is a complex nonlinear interaction. The process of interaction will be different when $R e$ is different. We shall undertake extensive simulations to have a better understanding of the force and motion behaviour. To investigate the effects of Reynolds number $R e$ and reduced velocity U^{*} individually, Re changes with kinematic viscosity v and U^{*} with natural frequency f_{n} in the following simulations.

We first choose $R e=1778$ which is the low end of lock-in region in the previous case shown in Fig. 6, and simulations have been undertaken for reduced velocity in the range of $U^{*}=3.5-$ 17.5. It is found that lock-in occurs at $U^{*} \leq 12.0$. Figure 9 shows (a) the motion amplitude Y_{0}^{*} and (b) frequency ratio f^{*} in the lock-in region. Within the range of $U^{*}=3.5-12.0$, the variation of the frequency ratio f^{*} is from 0.70 to 1.31 . For this Reynolds number $R e=1778$, $Y_{0 \max }^{*}=0.59$ at $U^{*} \approx 6.0$ is the peak of motion amplitude in the lock-in region. It can be seen that the motion amplitude Y_{0}^{*} changes rapidly before its peak similar to that from Wanderley and Soares (2015), and two sides of the peak correspond to the initial and upper branches. With the increase of U^{*}, the motion amplitude Y_{0}^{*} in the initial branch also increases while Y_{0}^{*} in the upper branch has the opposite trend. This may be partly explained by amplitude $C_{L 0}$ of lift coefficient in Fig. 10. It can be seen that the shape of the Y_{0}^{*} curve is the similar to that of $C_{L 0}$. When U^{*} increases, $C_{L 0}$ increases slowly first and then jumps to its peak value at $U^{*} \approx 6.0$, where $Y_{0 \max }^{*}$ occurs. As U^{*} continues to increase, $C_{L 0}$ decreases.

Fig. 9. Motion amplitude and frequency ratio at $R e=1778$.

Fig. 10. Amplitude of lift coefficient at $R e=1778$.

When $R e=3556$, simulations were made in the range of $U^{*}=3.5-17.5$. It is found that here lock-in occurs when $U^{*} \leq 13.0$, whose range is larger than that in the previous case of $R e=1778$. Figure 11 shows the motion amplitude Y_{0}^{*} and frequency ratio f^{*} in the lock-in region. The peak $Y_{0 \max }^{*}=0.89$ at $R e=3556$ is much larger than $Y_{0 \max }^{*}=0.59$ at $R e=$ 1778 in Fig. 9. It seems that with the increase of $R e$, the value of the peak $Y_{0 \max }^{*}$ also increases, which was also observed in Klamo et al. (2005) and Govardhan and Williamson (2006), whose work focused only on the effect of $R e$ on $Y_{0 \max }^{*}$. In addition, for $R e=3556$, the free motions against reduced velocity are very different from that in the previous cases in Fig. 9. Here, with the increase of U^{*}, Y_{0}^{*} also increases first. At $U^{*} \approx 5.0-6.0$, it increases rapidly and at $U^{*} \approx$ 7.0, it reaches its peak value in the lock-in region. The motion amplitude Y_{0}^{*} drops steeply after its peak, while it drops smoothly at $R e=1778$. As U^{*} further increases, Y_{0}^{*} still decreases. It means that there is a critical value $U_{U L}^{*}$ which connects the upper and lower branches, instead of $U_{I U}^{*}$ in the previous case. At $R e=3556$, the sudden drop at $U_{U L}^{*}$ is similar to that in Fig. 6. But here the drop occurs at the peak, while in Fig. 6 it is away from the peak location. There is a rapid variation of Y_{0}^{*} before its peak. However, this is not like the almost vertical jump in Figs. 6 and 9 before Y_{0}^{*} arrives to its peak. Figure 12 shows the amplitude of lift coefficient in the lock-in region. It can be seen that the shape of the Y_{0}^{*} curve may be similar to that of $C_{L 0}$ in the lock-in region, which is also found at $R e=1778$ in Fig. 10.

Fig. 11. Motion amplitude and frequency ratio at $R e=3556$.

Fig. 12. Amplitude of lift coefficient at $R e=3556$.

Simulations at $R e=5334$ have been carried out in the range of $U^{*}=3.5-17.5$. It is found that when Reynolds number is fixed at $R e=5334$, lock-in occurs when $U^{*} \leq 15.0$, whose range is larger than that in the previous two cases of $R e=1778$ and 3556. Figure 13 shows the motion amplitude Y_{0}^{*} and frequency ratio f^{*} in the lock-in region. At $U^{*}=8.0, Y_{0 \max }^{*}=$ 0.92 is the peak of motion amplitude in the lock-in region. Compared with the two previous cases at $R e=1778$ and 3556, there is an increase in the value of reduced velocity where the peak $Y_{0 \text { max }}^{*}$ occurs. At $R e=5334$, there is still a critical value, $U_{U L}^{*}$ where Y_{0}^{*} drops nearly vertically from upper branch to lower branch, similar to that in the previous case of $R e=3556$. The drop at $U_{U L}^{*}=10.5-10.6$ does not occur at the peak, which is similar to that in Fig. 6 and is different from that in Figs. 9 and 11. Figure 14 shows the amplitude of lift coefficient in the lock-in region. Here, the peak of $C_{L 0}$ is at $U^{*} \approx 7.0$ smaller than $U^{*}=8.0$ where $Y_{0 \max }^{*}$ occurs, which is different from that in $R e=1778$ and 3556. It may be because within about the range of $U^{*}=7.0-8.0$, the amplitudes of C_{L} at more frequency components become visible and significant, even though the C_{L} history is still periodic with respect to time.

Fig. 13. Motion amplitude and frequency ratio at $R e=5334$.

Fig. 14. Amplitude of lift coefficient at $R e=5334$.

We also provide the case in the range of $U^{*}=3.5-17.5$ at $R e=8890$ which is the high end of lock-in region in the previous case shown in Fig. 6. At this Reynolds number, lock-in is found when $U^{*} \leq 17.5$ Compared with previous cases in Figs. 9-14, the lock-in range here is larger, or with the increase of $R e$, the range of lock-in also increases. Figure 15 shows the motion amplitude Y_{0}^{*} and frequency ratio f^{*} in the lock-in region. At $U^{*}=9.0, Y_{0 \max }^{*}=0.94$ is the peak of motion amplitude in the lock-in region. There is a critical value, $U_{U L}^{*}=10.7-$ 10.8 , connecting upper and lower branches. Here a sudden drop occurs after the peak of motion amplitude, which is similar to that in the previous case of $R e=5334$. After the sudden drop, the decrease of Y_{0}^{*} at $R e=8890$ is slower than that at $R e=5334$. From the analysis of the curves of Y_{0}^{*} in Figs. 9-15, it can be seen that none of them is similar to that in Fig. 6. It suggests that the behaviour in Fig. 6 is due to both U^{*} and $R e$, not just U^{*} as assumed. The effect of $R e$ on free motion should be considered. Figure 16 shows the amplitude $C_{L 0}$ of lift coefficient in
the lock-in region. It is interesting to see that at $R e=8890$, the value of $C_{L 0}$ after the sudden drop is smaller than that with the same U^{*} at $R e=5334$.

Fig. 15. Motion amplitude and frequency ratio at $R e=8890$.

Fig. 16. Amplitude of lift coefficient at $R e=8890$.
4.3. Body motion at $U_{I U}^{*}$ and $U_{U L}^{*}$ shown in Fig. 6

From the discussion on Section 4.2, it can be found that none of the Y_{0}^{*} curves is similar to that in Fig. 6. It means that the behaviour in Fig. 6 is due to variations of both U^{*} and $R e$, not just U^{*} only, as assumed. In order to have some insight into the effect of $R e$ on the jump of the Y_{0}^{*} curve, we will run further simulations at values of $R e$ corresponding to positions of two jumps in Fig. 6. The body mass and the damping ratio are the same as those used in Fig. 6, or $m^{*}=$ 0.935 and $\zeta=0.00502$.

The first jump in Fig. 6 occurs at $U_{I U}^{*}=5.0-5.1$ (or $R e=2540-2590$), and thus cases at $R e=2540$ and $R e=2590$ are chosen. Figure 17 shows the motion amplitude Y_{0}^{*} against U^{*} at $R e=2540$ and 2590. It can be seen that for $R e=2540$ and 2590, the curves of Y_{0}^{*} against U^{*} are very close and their shapes similar to that from the case with $R e=1778$. There is still one critical value $U_{I U}^{*}$ connecting the initial and upper branches. For $R e=2540-2590, U_{I U}^{*}$ is in the range from 5.0 to 5.1 similar to that of the first jump shown in Fig. 6. Figure 18 shows Y_{0}^{*} against $R e$ at $U^{*}=5.0$ and $U^{*}=5.1$. It can be found that the curves of the Y_{0}^{*} at $U^{*}=5.0$ and $U^{*}=5.1$ are generally close. Both have a nearly vertical jump at $R e_{I U}=2540-2590$, where there is an obvious difference between the two curves. It means that when $R e=2540-$ 2590 and $U^{*}=5.0-5.1$, the value of Y_{0}^{*} is sensitive to both the reduced velocity U^{*} and Reynolds number $R e$, or Y_{0}^{*} increases sharply with a small change of U^{*} or $R e$. Therefore, the first jump in Fig. 6 is very much related to variations of both U^{*} and $R e$.

Fig. 17. Motion amplitude at $R e=2540$ and $R e=2590$ as well as that from Fig. 6(a).

Fig. 18. Motion amplitude at $U^{*}=5.0$ and $U^{*}=5.1$.

Figure 19 shows Y_{0}^{*} against U^{*} at $R e=5334$ and 5385 where the second jump in Fig. 6 occurs. The curve of Y_{0}^{*} at $R e=5385$ is quite close to that at $R e=5334$. These two curves have two branches, upper and lower branches connected by $U_{U L}^{*}$, which is approximately between 10.5 and 10.6. Even though both have only one nearly vertical jump, they are quite close to $U_{U L}^{*}$ in Fig.6. Figure 20 shows Y_{0}^{*} against $R e$ at $U^{*}=10.5$ and $U^{*}=10.6$. It can be seen that the curve of Y_{0}^{*} at $U^{*}=10.5$ is quite different from that at $U^{*}=10.6$. Based on the step of Reynolds number used in the calculation, there is only one branch of response in the Y_{0}^{*} curve at $U^{*}=10.5$, while there are two branches, upper and lower branches connected by one nearly vertical drop at $U^{*}=10.6$. Before the drop, the curve at $U^{*}=10.6$ nearly coincides with that at $U^{*}=10.5$ and both increase with $\operatorname{Re} . Y_{0}^{*}$ at $U^{*}=10.6$ drops suddenly at a critical value of $R e=R e_{I L}=5334$, while at $U^{*}=10.5$ it continues to increase although the rate of increase is reduced. After that Y_{0}^{*} at $U^{*}=10.6$ increases more rapidly and the curve then almost merges with that of $U^{*}=10.5$. Thus, the difference between these two cases occurs only in a small region after the drop occurs in the case of $U^{*}=10.6$. It suggests that when $R e=5334-5385$ and $U^{*}=10.5-10.6, Y_{0}^{*}$ is sensitive to both the reduced velocity U^{*} and the Reynolds number Re. Therefore, the reason for the second jump shown in Fig. 6 is also related to both variations of U^{*} and $R e$. In such a case, the effect of $R e$ on Y_{0}^{*} is significant and cannot be ignored.

Fig. 19. Motion amplitude at $R e=5334$ and $R e=5385$.

Fig. 20. Motion amplitude at $U^{*}=10.5$ and $U^{*}=10.6$.

5. Conclusions

The effect of Reynolds number on free motions of a circular cylinder in the lock-in region was investigated through a two-dimensional in-house code developed based on multi-block LBM together with LES as the turbulence model and IBM for the boundary condition. The focus has been on how the Reynolds number affects the motion amplitude curve against the reduced velocity, including branches and jumps. Simulations have been performed at the different $R e$ in the range of $1524-12192$, with the body mass $m^{*}=0.935$ and the damping ratio $\zeta=$ 0.00502 . From the results, the following conclusions can be drawn.

When Reynolds number $R e$ is fixed, there are generally two branches in the curve of the motion amplitude Y_{0}^{*} against the reduced velocity U^{*}, instead of the usual three branches (Govardhan and Williamson, 2000) when $R e$ changes with U^{*} from $R e=1524\left(U^{*}=3.0\right)$ to $R e=$ $12192\left(U^{*}=24.0\right)$. The shape of Y_{0}^{*} curve varies when $R e$ varies. At $R e=1778$ there are only initial and upper branches, which are connected by $U_{I U}^{*}$. When approaching $U_{I U}^{*}$ from the initial branch, Y_{0}^{*} increases rapidly or nearly vertically. When $R e \geq 3556$, there are only upper and lower branches linked by $U_{U L}^{*}$, and there is no $U_{I U}^{*}$ where a nearly vertical increase of Y_{0}^{*} occurs. At $R e=3556$, the motion amplitude Y_{0}^{*} drops steeply just after its peak, which corresponds to the start of the lower branch. At $R e=5334$, in the upper branch, with the increase of U^{*}, Y_{0}^{*} increases first and then drops, and thus the sudden drop occurs away from the peak of Y_{0}^{*}. At $R e=8890$, after the sudden drop, the decrease of Y_{0}^{*} becomes slower.

In the usual motion amplitude curve (Govardhan and Williamson, 2000), Re changes with U^{*}. When U^{*} approaches $U_{I U}^{*}$ from the initial branch at $U_{I U 1}^{*}$ and from the upper branch at $U_{I U 2}^{*}$, the corresponding Reynolds numbers are $R e_{I U 1}$ and $R e_{I U 2}$. It is found that when $R e$ is fixed at either $R e_{I U 1}$ or $R e_{I U 2}$, the Y_{0}^{*} curves against U^{*} are very close to each other. While their Y_{0}^{*} curves in the initial branches are very similar to that in Govardhan and Williamson (2000) where $R e$ changes with U^{*}, they are very different when $U^{*}>U_{I U 2}^{*}$. When U^{*} is fixed at $U_{I U 1}^{*}$ or $U_{I U 2}^{*}$, the two Y_{0}^{*} curves against $R e$ are very different when $R e$ is around $R e_{I U 1}$ to $R e_{I U 2}$. Away from this region, the curves are close. Similarly at $U_{U L}^{*}$, corresponding to $U_{U L 1}^{*}$ and $U_{U L 2}^{*}$, we have $R e_{U L 1}$ and $R e_{U L 2}$. The two Y_{0}^{*} curves against U^{*} at $R e=R e_{U L 1}$ and $R e=R e_{U L 2}$ are very close. In the upper branch, they are very close to that in Govardhan and Williamson (2000), where $R e$ changes with U^{*}, but very different in the lower branch. When U^{*} is fixed, the Y_{0}^{*} curve against $R e$ has a jump around $R e_{U L 1}$ to $R e_{U L 2}$ at $U^{*}=U_{U L 2}^{*}$, but is smooth at $U^{*}=U_{U L 1}^{*}$. All these show that the effect of $R e$ on the Y_{0}^{*} curve, including the branches, is far more complex than previously thought.

Appendix

The Chapman-Enskog expansion is used to get the relationship between the strain rate tensor $\bar{S}_{\alpha \beta}$ and the momentum flux tensor $\bar{Q}_{\alpha \beta}$ shown in Eq. (11). It assumes the following multiscale expansion of time and space derivative in the small parameter ϵ,

$$
\begin{gather*}
\frac{\partial}{\partial t}=\epsilon \frac{\partial}{\partial t_{1}} \tag{A.1}\\
\nabla=\epsilon \nabla^{1}\left(\text { or } \frac{\partial}{\partial x}=\epsilon \frac{\partial}{\partial x^{1}}\right) . \tag{A.2}
\end{gather*}
$$

Likewise, the distribution function is assumed as

$$
\begin{equation*}
f_{i}=f_{i}^{e q}+\epsilon f_{i}^{1} \tag{A.3}
\end{equation*}
$$

The equilibrium distribution function $f_{i}^{e q}$ satisfies the following constraints (Wolf-Gladrow, 2000):

$$
\begin{gather*}
\sum_{i} f_{i}^{e q}=\rho, \tag{A.4}\\
\sum_{i} \boldsymbol{e}_{i} f_{i}^{e q}=\rho \overline{\boldsymbol{u}} \tag{A.5}
\end{gather*}
$$

and has the following properties (Aidun and Clausen, 2010)

$$
\begin{array}{lr}
\sum_{i} e_{i \alpha} e_{i \beta} f_{i}^{e q}=\rho \bar{u}_{\alpha} \bar{u}_{\beta}+\rho c_{S}^{2} \delta_{\alpha \beta}=\rho \bar{u}_{\alpha} \bar{u}_{\beta}+\bar{p} \delta_{\alpha \beta} & (\alpha, \beta=1,2), \\
\sum_{i} e_{i \alpha} e_{i \beta} e_{i \gamma} f_{i}^{e q}=\rho c_{S}^{2}\left(\bar{u}_{\alpha} \delta_{\beta \gamma}+\bar{u}_{\beta} \delta_{\alpha \gamma}+\bar{u}_{\gamma} \delta_{\alpha \beta}\right) & (\alpha, \beta, \gamma=1,2), \tag{A.7}
\end{array}
$$

where $\bar{p}=\rho c_{s}^{2}$. In Eq. (A.6), the subscripts of α, β and γ of e_{i} and $\overline{\boldsymbol{u}}$ indicate that they are components of \boldsymbol{e}_{i} and $\overline{\boldsymbol{u}}$ in α, β and γ directions with 1 and 2 indicating x and y, respectively. As f_{i} should also satisfy Eqs. (A.4) and (A.5), f_{i}^{1} should then satisfy the following constraints:

$$
\begin{equation*}
\sum_{i} f_{i}^{1}=0, \sum_{i} \boldsymbol{e}_{i} f_{i}^{1}=0 \tag{A.8}
\end{equation*}
$$

Through Taylor expansion with respect to δ_{t}, we rewrite Eq. (5) up to second order in δ_{t}

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\boldsymbol{e}_{i} \cdot \nabla\right) f_{i}(\boldsymbol{x}, t)+\frac{\delta_{t}}{2}\left(\frac{\partial}{\partial t}+\boldsymbol{e}_{i} \cdot \nabla\right)^{2} f_{i}(\boldsymbol{x}, t)=-\frac{1}{\tau_{T} \delta_{t}}\left[f_{i}(\boldsymbol{x}, t)-f_{i}^{e q}(\boldsymbol{x}, t)\right] \tag{A.9}
\end{equation*}
$$

Here, δ_{t} is treated as the same order of ϵ. Substituting Eqs. (A.1) - (A.3) into Eq. (A.9), the equation of the first order in ϵ is written as

$$
\begin{equation*}
\left(\frac{\partial}{\partial t_{1}}+e_{i} \cdot \nabla^{1}\right) f_{i}^{e q}=-\frac{1}{\tau_{T} \delta_{t}} f_{i}^{1} \tag{A.10}
\end{equation*}
$$

The continuity equation to the first order in ϵ is obtained by summing Eq. (A.10) over the i velocities and using Eqs. (A.4), (A.5) and (A.8)

$$
\begin{equation*}
\frac{\partial \rho}{\partial t_{1}}+\nabla^{1} \cdot(\rho \overline{\boldsymbol{u}})=0 \tag{A.11}
\end{equation*}
$$

The momentum equation to the first order in ϵ is obtained by multiplying Eq. (A.10) by \boldsymbol{e}_{i}, summing it over the i velocities and using Eqs. (A.5), (A.6) and (A.8)

$$
\begin{equation*}
\frac{\partial \rho \bar{u}_{\alpha}}{\partial t_{1}}+\frac{\partial}{\partial x_{\beta}^{1}}\left(\rho \bar{u}_{\alpha} \bar{u}_{\beta}\right)=-\frac{\partial \bar{p}}{\partial x_{\alpha}^{1}}, \tag{A.12}
\end{equation*}
$$

where the summation with respect to β is implied. The momentum flux tensor $\bar{Q}_{\alpha \beta}$ is

$$
\begin{equation*}
\bar{Q}_{\alpha \beta}=\sum_{i} e_{i \alpha} e_{i \beta} f_{i}^{1} . \tag{A.13}
\end{equation*}
$$

Substituting Eq. (A.10) to Eq. (A.13), we have

$$
\begin{equation*}
\bar{Q}_{\alpha \beta}=-\tau_{T} \delta_{t}\left[\frac{\partial}{\partial t_{1}}\left(\sum_{i} e_{i \alpha} e_{i \beta} f_{i}^{1}\right)+\frac{\partial}{\partial x_{\gamma}^{1}}\left(\sum_{i} e_{i \alpha} e_{i \beta} e_{i \gamma} f_{i}^{1}\right)\right], \tag{A.14}
\end{equation*}
$$

where the summation with respect to γ is implied. Inserting Eqs. (A.6) - (A.7) into Eq. (A.14), the following equation can be found

$$
\begin{equation*}
\bar{Q}_{\alpha \beta}=-\tau_{T} \delta_{t}\left\{\frac{\partial}{\partial t_{1}}\left(\rho \bar{u}_{\alpha} \bar{u}_{\beta}+\rho c_{s}^{2} \delta_{\alpha \beta}\right)+\frac{\partial}{\partial x_{\gamma}^{1}}\left[\rho c_{s}^{2}\left(\bar{u}_{\alpha} \delta_{\beta \gamma}+\bar{u}_{\beta} \delta_{\alpha \gamma}+\bar{u}_{\gamma} \delta_{\alpha \beta}\right)\right]\right\} \tag{A.15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t_{1}}\left(\rho \bar{u}_{\alpha} \bar{u}_{\beta}+\rho c_{s}^{2} \delta_{\alpha \beta}\right)=\bar{u}_{\alpha} \frac{\partial \rho \bar{u}_{\beta}}{\partial t_{1}}+\bar{u}_{\beta} \frac{\partial \rho \bar{u}_{\alpha}}{\partial t_{1}}-\bar{u}_{\alpha} \bar{u}_{\beta} \frac{\partial \rho}{\partial t_{1}}+c_{s}^{2} \frac{\partial \rho}{\partial t_{1}} \delta_{\alpha \beta} \tag{A.16}
\end{equation*}
$$

According to Eqs. (A.11) - (A.12), Eq. (A.16) can be written as

$$
\begin{equation*}
=-\bar{u}_{\alpha} c_{s}^{2} \frac{\partial \rho}{\partial x_{\beta}^{1}}-\bar{u}_{\beta} c_{s}^{2} \frac{\partial \rho}{\partial x_{\alpha}^{1}}-\frac{\partial}{\partial x_{\gamma}^{1}}\left(\rho \bar{u}_{\alpha} \bar{u}_{\beta} \bar{u}_{\gamma}\right)-c_{s}^{2} \frac{\partial \rho \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}} \delta_{\alpha \beta} \tag{A.17}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t_{1}}\left(\rho \bar{u}_{\alpha} \bar{u}_{\beta}+\rho c_{s}^{2} \delta_{\alpha \beta}\right)=-\bar{u}_{\alpha} c_{s}^{2} \frac{\partial \rho}{\partial x_{\beta}^{1}}-\bar{u}_{\beta} c_{s}^{2} \frac{\partial \rho}{\partial x_{\alpha}^{1}}-\bar{u}_{\alpha} \frac{\partial \rho \bar{u}_{\beta} \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}}-\bar{u}_{\beta} \frac{\partial \rho \bar{u}_{\alpha} \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}}+\bar{u}_{\alpha} \bar{u}_{\beta} \frac{\partial \rho \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}}- \\
& c_{s}^{2} \frac{\partial \rho \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}} \delta_{\alpha \beta}
\end{aligned}
$$

$\frac{\partial}{\partial x_{\gamma}^{1}}\left[\rho c_{s}^{2}\left(\bar{u}_{\alpha} \delta_{\beta \gamma}+\bar{u}_{\beta} \delta_{\alpha \gamma}+\bar{u}_{\gamma} \delta_{\alpha \beta}\right)\right]$ in Eq. (A.15) can be re-written as

$$
\begin{align*}
\frac{\partial}{\partial x_{\gamma}^{1}}\left[\rho c _ { s } ^ { 2 } \left(\bar{u}_{\alpha} \delta_{\beta \gamma}+\bar{u}_{\beta} \delta_{\alpha \gamma}+\right.\right. & \left.\left.\bar{u}_{\gamma} \delta_{\alpha \beta}\right)\right]=c_{s}^{2} \frac{\partial \rho \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}} \delta_{\alpha \beta}+c_{s}^{2} \frac{\partial \rho \bar{u}_{\beta}}{\partial x_{\alpha}^{1}}+c_{s}^{2} \frac{\partial \rho \bar{u}_{\alpha}}{\partial x_{\beta}^{1}} \\
& =c_{s}^{2} \frac{\partial \rho \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}} \delta_{\alpha \beta}+\rho c_{s}^{2}\left(\frac{\partial \bar{u}_{\alpha}}{\partial x_{\beta}^{1}}+\frac{\partial \bar{u}_{\beta}}{\partial x_{\alpha}^{1}}\right)+c_{s}^{2} \bar{u}_{\beta} \frac{\partial \rho}{\partial x_{\alpha}^{1}}+c_{s}^{2} \bar{u}_{\alpha} \frac{\partial \rho}{\partial x_{\beta}^{1}} . \tag{A.18}
\end{align*}
$$

Substituting Eqs. (A.17) - (A.18) into Eq. (A.15), we have

$$
\begin{equation*}
\bar{Q}_{\alpha \beta}=-\tau_{T} \delta_{t}\left[\rho c_{S}^{2}\left(\frac{\partial \bar{u}_{\alpha}}{\partial x_{\beta}^{1}}+\frac{\partial \bar{u}_{\beta}}{\partial x_{\alpha}^{1}}\right)-\frac{\partial}{\partial x_{\gamma}^{1}}\left(\rho \bar{u}_{\alpha} \bar{u}_{\beta} \bar{u}_{\gamma}\right)\right] . \tag{A.19}
\end{equation*}
$$

Here as in Qian and $\operatorname{Orszag}(1993), \frac{\partial \rho \bar{u}_{\alpha} \bar{u}_{\beta} \bar{u}_{\gamma}}{\partial x_{\gamma}^{1}} /\left[\rho c_{s}^{2}\left(\frac{\partial \bar{u}_{\alpha}}{\partial x_{\beta}^{1}}+\frac{\partial \bar{u}_{\beta}}{\partial x_{\alpha}^{1}}\right)\right]=O\left(M^{2}\right)$, and thus if $M^{2} \ll$ 1, the second term in Eq. (A.19) can be neglected, which is consistent with the order of accuracy of Eq. (5) for the Navier-Stokes equations. We have

$$
\begin{equation*}
\bar{Q}_{\alpha \beta}=-2 \tau_{T} \delta_{t} \rho c_{S}^{2} \bar{S}_{\alpha \beta} \tag{A.20}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\bar{S}_{\alpha \beta}=-\frac{1}{2 \tau_{T} \delta_{t} \rho c_{s}^{2}} \bar{Q}_{\alpha \beta}=\sum_{i} e_{i \alpha} e_{i \beta}\left(f_{i}-f_{i}^{e q}\right) \tag{A.21}
\end{equation*}
$$

Acknowledgements

The first author is sponsored by the scholarship of China Scholarships Council, to which she is most grateful. The authors also gratefully acknowledge financial support from the Lloyd's Register Foundation (LRF). The LRF helps to protect life and property by supporting engineering-related education, public engagement and the application of research.

References

Aidun, C.K., Clausen, J.R., 2010. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics 42, 439-472.

Bearman, P.W., 1984. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics 16, 195222.

Bearman, P.W., 2011. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures 27, 648-658.

Blevins, R.D., 1990. Flow-induced Vibrations. Van Nostrand Reinhold, New York.
Cercignani, C., 1998. The Boltzmann Equation and Its Application. Spring, New York.
Chen, S., 2009. A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Applied Mathematics and Computation, 215, 591-598.

Chen, S., Doolen, G., 1998. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30, 329-364.

Chen, Z., Shu, C., Tan, D., 2018. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows. Physics of Fluids 30, 053601.

Dorogi, D., Baranyi, L., 2020. Identification of upper branch for vortex-induced vibration of a circular cylinder at $\operatorname{Re}=300$. Journal of Fluids and Structuures 98: 103135.

Garcia, S., 2007. The lid-driven square cavity flow: from stationary to time periodic and chaotic. Communications in Computational Physics 2, 900-932.

Ghia, U., Ghia, K.N., Shin, C.T., 1982. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physic 48, 387-411.

Govardhan, R., Williamson, C.H.K., 2000. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics 420, 85-130.

Govardhan, R., Williamson, C.H.K., 2006. Defining the 'modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics 561, 147-180.

He, X., Luo, L., 1997. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of Statistical Physics 88 927-944.

Hou, S., Sterling, J., Chen, S., Doolen, G.D., 1996. A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Institute Communication 6,151-66.

Hou, S., Zou, Q., Chen, S., Doolen, G.D., Cogley, A.C., 1995. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics 118, 329-347.

Jiao, H., Wu, G.X., 2018a. Analysis of fluctuating force acting on two cylinders in different arrangements through Lattice Boltzmann Method. Journal of Fluids and Structures 82, 101-120.

Jiao, H., Wu, G.X., 2018b. Free vibration predicted using forced oscillation in the lock-in region. Physics of Fluids 30, 113601.

Khalak, A., Williamson, C.H.K., 1997. Fluid forces and dynamics of a hydroelastic structure with very low mass dan damping. Journal of Fluids and Structures 11, 973-982.

Klamo, J.T., Leonard, A., Roshko, A., 2005. On the maximum amplitude for a freely vibrating cylinder in crossflow. Journal of Fluids and Structures 21, 429-434.

Kumar, S., Novrose, Mittal, S., 2016. Lock-in in forced vibration of a circular cylinder. Physics of Fluids 28, 113605.

Norberg, C., 2003. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures 17, 57-96.

Pigazzini, R., Contento, G., Martini, S., Puzzer, T., Morgut, M., Mola, A., 2018. VIV analysis of a single elastically-mounted 2D cylinder: parameter identification of a single-degree-of-freedom multi-frequency model. Journal of Fluids and Structures 78, 299-313.

Peskin, C.S., 2002. The immersed boundary method. Acta Numerica 11, 479-517.
Qian, Y.H., Orszag, S.A., 1993. Lattice BGK models for the Navier-Stokes equation: nonlinear deviation in compressible regime. Europhysics Letters 21(3), 255-259.

Skop, R.A., Griffin, O.M., 1973. A model for the vortex-excited resonant response of bluff cylinders. Journal of Sound and Vibration 27(2), 225-233.

Skop, R.A., Griffin, O.M., 1975. On a theory for the vortex-excited oscillations of flexible cylindrical structures. Journal of Sound and Vibration 41(3), 263-274.

Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiments. Monthly Weather Review 91, 99-164.

Sumer, B.M., Fredsoe, J., 1997. Hydrodynamics around Cylindrical Structures. World Scientific, Singapore.
Wanderley, J.B.V., Soares, L.F.N., 2015. Vortex-induced vibration on a two-dimensional circular cylinder with low Reynolds number and low mass-damping parameter. Ocean Engineering 97, 156-164.

Wanderley, J.B.V., Sphaier, S.H., Levi, C.A., 2018. A number investigation of vortex induced vibration on an elastically mounted rigid cylinder. In: $27^{\text {th }}$ International Conference on Offshore Mechanics and Arctic Engineering-OMAE, ASME, Lisboa.

Williamson, C.H.K., 1996. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics 28, 477539.

Williamson, C.H.K., Govardhan, R., 2004. Vortex-induced Vibrations. Annual Review of Fluid Mechanics 36, 413-455.

Wolf-Gladrow, D.A., 2000. Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, New York.

Yu, D., Mei, R., Shyy, W., 2002. A multi-block lattice Boltzmann method for viscous fluid flows. International Journal for Numerical Methods in Fluids 39, 99-120.

Yu, H., Girimaji, S.S., Luo, L., 2005. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. Journal of Computational Physics 209, 599-616.

