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N E U R O S C I E N C E

Dopaminergic organization of striatum is linked 
to cortical activity and brain expression of genes 
associated with psychiatric illness
Robert A. McCutcheon1,2,3*, Kirsten Brown1, Matthew M. Nour1,4,5, Stephen M. Smith6, 
Mattia Veronese7, Fernando Zelaya7, Martin Osugo1,2,3, Sameer Jauhar1,2,3, William Hallett8,  
Mitul M. Mehta7, Oliver D. Howes1,2,3

Dopamine signaling is constrained to discrete tracts yet has brain-wide effects on neural activity. The nature 
of this relationship between local dopamine signaling and brain-wide neuronal activity is not clearly de-
fined and has relevance for neuropsychiatric illnesses where abnormalities of cortical activity and dopamine 
signaling coexist. Using simultaneous PET-MRI in healthy volunteers, we find strong evidence that patterns 
of striatal dopamine signaling and cortical blood flow (an index of local neural activity) contain shared in-
formation. This shared information links amphetamine-induced changes in gradients of striatal dopamine 
receptor availability to changes in brain-wide blood flow and is informed by spatial patterns of gene expres-
sion enriched for genes implicated in schizophrenia, bipolar disorder, and autism spectrum disorder. These 
results advance our knowledge of the relationship between cortical function and striatal dopamine, with 
relevance for understanding pathophysiology and treatment of diseases in which simultaneous aberrations of 
these systems exist.

INTRODUCTION
The cognitive and behavioral effects of striatal dopamine signaling 
are related to its influence on large-scale neural activity. Recent work 
in rodents has begun to characterize the nature of the relationship 
between local striatal signaling and cortex-wide effects (1–3). Striatal 
dopamine release, secondary to optogenetic or chemogenetic acti-
vation of mesolimbic pathways (2, 3) or hypothalamic self-stimulation 
(1), has been shown to affect cortical activity, as has selective over-
expression of striatal D2 receptors (4). This correspondence be-
tween striatal dopamine and cortical activity is of relevance, given 
the frequent simultaneous disruption of striatal dopaminergic func-
tion and cortical function in neuropsychiatric illness (5, 6) and also 
for understanding the broad consequences of dopamine modulating 
pharmacotherapies. The difficulties inherent in the simultaneous 
measurement of neurochemical signaling and neuronal activity mean 
that this “local to global” relationship has not been systematically 
explored in humans.

In the current study, we use combined positron emission tomog-
raphy and magnetic resonance imaging (PET-MRI) to simultaneously 
measure striatal D2/3 receptor availability using the radiotracer 
[11C]-(+)-PHNO, and cerebral blood flow (CBF) using arterial spin 
labeling (ASL) in healthy human volunteers (Fig. 1). [11C]-(+)- PHNO 
PET provides a reliable measure of striatal D2/3 receptors, with intraclass 

correlation coefficients of >0.9 (7, 8). Furthermore, this measure is 
sensitive to physiologically and pharmacologically induced changes 
in synaptic dopamine concentration (9, 10). CBF, as measured by 
ASL, covaries with acute changes in neural activity due to a tight 
neurovascular coupling in the cortex (11). Participants received two 
scans, one after administration of a placebo and the other after 
dexamphetamine; the latter intervention reliably induces increased 
synaptic dopamine levels via blockade of presynaptic dopamine 
transporters and increased firing rates of mesostriatal dopamine 
neurons (12, 13).

We investigate the relationship between the two imaging modali-
ties using canonical correlation analysis (CCA) to show that the 
spatial distribution of striatal dopamine receptor availability is linked 
to patterns of cortical activity. We also find that shared information 
identified using CCA links amphetamine-induced changes in gra-
dients of striatal dopamine receptor availability to changes in brain-
wide blood flow. Last, we show that this shared information between 
striatal dopamine and cortical activity is informed by patterns of 
striatal gene expression, and genes identified in this analysis are 
enriched for genes implicated in schizophrenia, bipolar disorder, 
and autism spectrum disorder.

RESULTS
Relationship between striatal D2/3 receptor 
availability and CBF
Fifty-one simultaneous PET-MRI scans were obtained from 28 
healthy volunteers. Twenty-three of these participants received two 
scans, with one following placebo administration and the other fol-
lowing administration of 0.5 mg of dexamphetamine per kilogram 
of dexamphetamine (randomized order, double-blind design). We 
mean-centered the PET and ASL values for each participant such 
that any emergent PET-ASL relationship was driven by the spatial 
distribution of D2/3 receptor availability and CBF (Fig. 2).
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We sought to determine whether spatial patterns of D2/3 recep-
tor availability across voxels of the bilateral striatum (PET voxel 
vectors) showed a relationship to patterns of CBF across voxels of 
the whole brain (ASL voxel vectors) between participants. We inte-
grated the high-dimensional data from PET and MRI with the use 
of CCA, an analytic approach suited to uncovering many-to-many 
relationships in an unbiased manner (Fig. 1) (14). This extends pre-
vious attempts to uncover similar multimodal relationships, which 
typically reduce measures of dopamine function to a scalar value, 
thereby precluding characterization of the effects of dopaminergic 
spatial variation (15–18).

CCA identifies two canonical weight vectors at the group level 
(one for each modality) that scale the influence of each voxel within 
the PET and ASL vectors, allowing a mapping for each subject from 
that participant’s original vectors to a pair of scalar values for that 
subject. We term these scalar values as “scores” for each participant, 
and across subjects, these scores constitute a pair of vectors, with 
each pair of entries representing the scores for a single participant. 
Each of these vectors is termed as a “canonical variate,” and we refer 

to a pair of canonical variates as a “mode of covariation.” CCA aims 
to identify weight vectors that maximize the correlation between 
these canonical variates.

We first sought to investigate whether there existed a mode of 
PET-ASL covariation that captured a significant multimodal rela-
tionship between subjects. Because CCA has the potential to identi-
fy relationships even in noise, we used a cross-validated analysis 
approach in which CCA was performed on a training sample con-
taining 80% of the PET-ASL scan pairs, and the weights estimated 
here were then applied to as test sample containing the remaining 
scan pairs, with the correlation between canonical variates calculat-
ed only for this test sample. To test statistical significance, a null 
distribution was generated by following this same procedure for 
permuted samples in which the mapping between subjects’ ASL and 
PET images was shuffled, and the correlations were calculated for 
the permuted samples compared to that found for the original data.

Out-of-sample cross-validation and significance testing against 
10,000 between subject permutations of the imaging data demon-
strated a highly significant mode of covariation between the pattern 

Fig. 1. Overview of methods. (A) CCA is used to investigate the relationship between D2/3 receptor availability and CBF. The first step involves principal components analysis 
(PCA) to reduce the dimensionality of the data. CCA is then performed on these PCA matrices (number of rows = number of scans; number of columns = number of PCA-derived 
components). CCA calculates the canonical weight vectors U and V that maximize the correlation between canonical variates PU and CV. Each point in the scatter graph 
represents a single scan. (B) A striatal covariation influence map is calculated by correlating the canonical variate PU at each voxel of the maps of striatal D2/3 receptor availability. 
Gene expression data from the Allen Human Brain Atlas (AHBA) is normalized to Montreal Neurological Institute (MNI) space. Partial least squares (PLS) analysis is then used on 
voxels for which gene expression data exist to determine which genes show patterns of gene expression that most closely track the map of covariation influence.
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of D2/3 receptor availability in the striatum and the pattern of CBF 
(mean out of sample rp = 0.51, P < 0.001) (Fig. 3, A and B). This 
remained significant when ensuring that the dependence structure 
between placebo-amphetamine–linked scanning sessions was main-
tained within the permuted data (P = 0.002) (Fig. 3B) (19) and also 
when ensuring that placebo-amphetamine–linked scan pairs were 
not separated across train-test partitions of the data (rp = 0.41, 
P < 0.001) (Fig. 3B). We also repeated this analysis restricting the 
CBF maps to a cortical mask to ensure that the covariation observed 
was not driven by blood flow changes within subcortical structures 
and found that the relationship remained highly significant (mean 
out of sample rp = 0.44, P < 0.001). In a complementary analysis, 
this relationship between striatal dopamine and CBF was also 
demonstrated by the fact that, using a CCA model trained on leave-
two-out data (i.e., two PET-ASL scan pairs left out), PET scans were 
able to predict ASL scans with 79% accuracy [compared to a mean 
null accuracy of 56% (SD of 9%) when CBF scans were permuted 
with dependency structure preserved; P = 0.001]. These findings 
consistently indicate that a mapping exists between patterns of striatal 
dopamine receptor availability indexed using [11C]-(+)-PHNO PET 
and patterns of cortical activity indexed using ASL-derived CBF maps.

Fig. 2.  Striatal D2/D3 receptor availability and CBF measured with simultane-
ous PET-MRI. (A) Mean striatal BPND for placebo session scans. Before averaging 
across individuals, each individual participant scan was corrected for its mean value. 
(B) Mean CBF for placebo session scans. Before averaging across individuals, each 
individual participant scan was corrected for its mean value. (C) Change in mean 
value–corrected BPND, Z scores represent results of a paired t test (amphetamine > 
placebo), and positive values (red) indicate greater relative BPND during the amphet-
amine scan. (D) Change in mean value–corrected CBF, Z scores represent results of 
a paired t test (amphetamine > placebo), and positive values (red) indicate greater 
relative CBF during the amphetamine scan.

Fig. 3. CCA identifies associations between striatal dopamine and cortical 
blood flow. (A) A scatterplot illustrating the mode of covariation between cortical 
blood flow and striatal D2/3 receptor availability, where each point represents an 
individual scan, and CCA has been performed using the entire sample. (B) The out-
of-sample correlation predicted by the mode of covariation is statistically signifi-
cant. The orange coloring represents results, where scan pairs were not allowed 
to split over train test partitions of the data, and the vertical line represents the 
observed correlation coefficient compared to a null distribution generated from 
10,000 random subject-level permutations (rp = 0.41, P < 0.001). The blue line 
represents the case in which permutations of the data used to calculate a null 
distribution maintained the linked dependency structure resulting from repeated 
scans (rp = 0.51, P = 0.002). (C) Striatal voxels were colored according to their asso-
ciation, with the mode of covariation illustrated in (A), red indicates greater D2/3 
receptor availability, and blue indicates lower D2/3 receptor availability, for high-
scoring subjects (and vice versa for low-scoring subjects). (D) Cortical voxels were 
colored according to their association with the mode of covariation illustrated in 
(A); red indicates greater blood flow, and blue indicates lower blood flow, for 
high-scoring subjects (and vice versa for low-scoring subjects). An individual who 
had a pattern of cortical blood flow similar to (D) would be expected to show a 
pattern of striatal D2/3 receptor availability similar to (C). (E) The change in striatal 
D2/3 CCA scores following amphetamine administration is associated with a change 
in CBF CCA scores (rs = 0.49, P = 0.01). (F) Average CCA scores (mean of striatal and 
cortical score) are not associated with the scores on the subjective effects of 
amphetamine scale in the sample as a whole (rs = 0.26, P = 0.07) and when restricted 
to the amphetamine sessions (rs = 0.34, P = 0.11).
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Spatial topography of the D2/3R-CBF relationship
We next sought to characterize the spatial profile of the identified 
mode of covariation. We characterized the strength of association 
between the identified mode of covariation and the CBF and D2/3 
availability maps by correlating CBF and striatal D2/3 receptor 
availability at each voxel with their respective canonical variates 
(Fig. 3, C and D) (20). We term this correlation coefficient the 
“covariation influence,” and this value captures the degree to which 
each voxel influences the resulting canonical variate, thereby indi-
cating the extent to which a voxel contributes to the observed striatal 
D2/3-CBF relationship. When considered at the individual partici-
pant level, participants with high cortical blood flow in an area of 
high cortical covariation influence will tend to show high D2/3 re-
ceptor availability in an area of high striatal covariation influence 
and low receptor availability in an area of low striatal influence 
(Fig. 3, C and D). This characterization of the spatial topography of 
the D2/3 receptor–CBF relationship provides a map of covariation 
influence that we then examine in subsequent analyses. The striatal 
map of covariation influence was distinct from the measure of D2/3 
availability [placebo [11C]-(+)-PHNO nondisplaceable binding 
potential of the ligand (BPND)] with a correlation of only rp = 0.24, 
nor did it show evidence of an organization reflecting canonical 
resting-state connectivity patterns (21, 22).

Dopamine-CBF relationships predict changes in CBF 
following striatal dopamine release
We next explored the functional relevance of this relationship be-
tween striatal D2/3 receptor availability and CBF using an experi-
mental perturbation of synaptic dopamine concentration. We used 
an amphetamine administration protocol, which reliably induces 
acute increases in synaptic dopamine concentration by increasing 
firing rates of ascending mesostriatal dopamine neurons and block-
ing presynaptic dopamine transporters (12, 13). Striatal dopamine 
release can be quantified by the within-subject reduction in the 
nondisplaceable binding potential of competitive ligands such as 
[11C]-(+)-PHNO using PET. We examined whether the within-
subject amphetamine-induced change in the striatal D2/3 CCA score 
was associated with the change in cortical CBF CCA score and 
found a statistically significant correlation (rs = 0.49, P = 0.017) 
(Fig. 3E). This relationship was also present when using CCA scores 
calculated using a model that was fit solely using placebo data to 
avoid any potential circularity in the analysis (rs = 0.78, P < 0.001) 
(fig. S3).

We examined whether participants’ mean CCA scores correlated 
with the scores on the subjective effects of amphetamine scale (23, 24). 
No significant correlation between CCA score and subjective effects 
was present in either the sample as a whole (rs = 0.26, P = 0.07) or when 
restricted to the amphetamine sessions (rs = 0.34, P = 0.11) (Fig. 3F).

Patterns of striatal gene expression shape the linkage 
between striatal dopamine receptor availability and CBF
We next investigated the genetic basis of the striatal D2/3 receptor–
CBF relationship. To do this, we examined how spatial patterns of 
striatal gene expression relate to the pattern of striatal voxels show-
ing a strong relationship with cortical blood flow (i.e., the covaria-
tion influence map; Fig. 3E). Normalized gene expression data for 
15,633 genes were obtained from samples extracted from the stria-
tum of six deceased human donors from the Allen Human Brain 
Atlas (AHBA). Each sample was matched to the voxel in which it lay 

and, if lying outside the striatal mask, was matched to the closest 
voxel as long as this was within 3 mm, resulting in 153 eligible samples. 
We used partial least squares regression to investigate the relationship 
between patterns of striatal gene expression and striatal covariation 
influence (Fig. 4) (25). Using out-of-sample cross-validation, we found 
that the pattern of striatal gene expression was predictive of the pat-
tern of striatal covariation influence, and this was statistically signifi-
cant when tested against 10,000 random permutations of covariation 
influence values (rp = 0.57, P < 0.001) (Fig. 4, B and C) (26). We 
additionally used a more stringent test in which we preserved the 
spatial autocorrelation present in the map of covariation influence 
(27), and this also showed a statistically significant relationship be-
tween gene expression and covariation influence (P = 0.044) (Fig. 4C). 
We determined that a model using six partial least squares com-
ponents gave the best out-of-sample prediction accuracy of co-
variation influence (Fig. 4D). These findings show that the D2/3-CBF 
relationship identified above is at least partially under genetic  
control.

Genes associated with the linkage between striatal 
dopamine receptor availability and CBF are linked 
to cognition and psychiatric illness
We next sought to shed light on how the relationship between striatal 
dopamine and cortical activity may relate to neuropsychiatric dis-
eases by examining the partial least squares model discussed above. 
We calculated the contribution of each gene to the six component 
partial least squares model using mean VIP [variable importance in 
the projection; (25)] scores from 10,000 bootstrapped runs (resam-
pling with replacement of the 153 striatal samples). Enrichment 
analysis of this VIP ranked gene list demonstrated that genes most 
associated with positive covariation influence were enriched for genes 
implicated in a wide range of synaptic and neuronal processes and 
linked to cognition (Fig. 5A and tables S2 and S3) (28). When examin-
ing specific strongly associated genes, KCNK1 and KCNV1 showed 
the fifth and seventh strongest positive correlation between gene 
expression and covariation influence, respectively. These genes code 
for voltage-gated potassium channel subunits and have been linked 
to motivation deficits, schizophrenia, and autism spectrum disorder 
(29–32). Other strongly associated genes include SYNPO [which is 
involved in the regulation of synaptic plasticity, cognitive flexibility, 
and schizophrenia (33, 34)] (table S2 for further details).

We next investigated whether genes associated with covariation 
influence were enriched for genes showing altered expression in 
schizophrenia, bipolar disorder, autism spectrum disorder, Alzheimer’s 
disease, and epilepsy. Akin to previous analyses (35, 36), we exam-
ined whether the median ranking of disorder associated genes with-
in the VIP ranked gene list was statistically different to the median 
ranking of 10,000 randomly selected gene sets. We found that genes 
negatively associated with covariation influence were enriched for 
genes up-regulated in schizophrenia (P < 0.001) (37), bipolar disor-
der (P = 0.004) (37), and autism spectrum disorder (P < 0.001) (37) 
(Fig. 5B); disorders that are all characterized by aberrant striatal do-
pamine signaling or corticostriatal connectivity (5, 38, 39). Genes 
up-regulated in epilepsy (40) and Alzheimer’s disease (41) did not 
show this association. When examining genes down-regulated in 
these disorders, it was only bipolar disorder that showed an associ-
ation with genes associated with covariation influence (P = 0.005). 
Together, these results provide important convergent evidence that 
the identified relationship between D2/3R availability and CBF in our 
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sample is of relevance to understanding the neurobiology of common 
and debilitating psychiatric disorders and generalizes to neurobio-
logical findings beyond neuroimaging, collected in a separate cohort 
of individuals.

DISCUSSION
In the current study, we use simultaneous PET-MRI to demonstrate 
a strong link between the spatial patterns of striatal dopamine D2/3 
receptor availability and spatial patterns of CBF. Our findings are in 
keeping with recent preclinical findings that indicate that the neu-
romodulatory effects of striatal dopamine signaling extend well be-
yond sites of local release and suggest that the dopamine signaling 
in the striatum has effects in distal cortical regions (1–3).

After characterizing this relationship between striatal dopamine 
and CBF, we identified associations with amphetamine-induced effects 
and demonstrated patterns of striatal gene expression, which are 
associated with the striatal dopamine-CBF relationship. Furthermore, 
the genes identified showed enrichment for gene sets implicated 
in neuronal signaling, cognition, and several neuropsychiatric dis-
orders. It is of interest that the identified genes were not enriched 
for Alzheimer’s disease or epilepsy. We are limited, however, in 
drawing inferences regarding the specificity of our findings to dis-
orders with purportedly more neurodevelopmental origins, given 
the differences in methodology used in calculating gene expression 

levels between studies, and other potentially confounding factors 
such as medication exposure.

The relationship between dopamine and global cortical function 
has been studied extensively. This has often focused on the role of cor-
tical dopamine receptors and the function these play in higher-order 
cognitive functions, although it has also been noted that mesostriatal 
dopamine signaling plays a role extending beyond movement gating 
and reward pathways (17, 42, 43). The bidirectional relationship be-
tween striatal dopamine signaling and global cortical function has been 
hypothesized on the basis of well-characterized corticobasal ganglia 
circuits (42), and recent work has provided further empirical support 
(1–3). Earlier attempts have often attempted to simplify investigation 
of this striatal dopamine-cortex relationship by condensing measures 
of dopamine or cortical function to a single dimension (15–18). The 
use of CCA, however, is less vulnerable to bias or to obscure the full 
nature of the relationship, as it is able to capture the many-to-many 
relations between striatum and cortex without artificially condensing 
either region to a single variable or making a priori judgments about 
which links should be prioritized. Simultaneous PET-MR reduces the 
variability that occurs if scans were conducted separately and allows 
for concurrent measurement of amphetamine effects on CBF and 
D2/3 receptor availability. In addition, the use of a pharmacological 
challenge demonstrates the functional relevance of this relationship, 
showing that changes in patterns of striatal dopamine receptor avail-
ability are associated with distal changes in patterns of CBF.

Fig. 4. Gene expression predicts the influence of striatal tissue samples on the corticostriatal mode of covariation. (A) Partial least squares analysis identifies a 
pattern of gene expression associated with striatal D2/3 covariation influence (see Fig. 2C); each point represents a striatal voxel, with predicted striatal D2/3 covariation 
influence plotted against actual influence. (B) Average predicted out-of-sample striatal D2/3 covariation influence across 10 separate fivefold cross-validated partial least 
squares models compared to observed covariation influence; each point represents a striatal voxel. (C) The out-of-sample correlation between observed striatal D2/3 
covariation influence and that predicted by partial least squares analysis of gene expression is represented by the vertical line. This is statistically significant compared to 
null models generated by 10,000 random permutations of striatal voxels (P < 0.001) and permutations where spatial autocorrelation is preserved (P = 0.044). (D) Out-of-
sample prediction accuracy is greatest when using six partial least squares components, and this model is used in subsequent analyses. (E) Heatmap illustrating spatial 
patterns of gene expression for the 200 genes most strongly positively and negatively associated with striatal D2/3 covariation influence (y axis) against striatal voxels 
vectorized and arranged from left to right in order of covariation influence (x axis). Values smoothed with a 3-mm gaussian kernel in the x direction and clustered so as to 
visualize the positive-negative pattern of gene expression.

 on June 16, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


McCutcheon et al., Sci. Adv. 2021; 7 : eabg1512     9 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 12

Fig. 5. Genes associated with the corticostriatal mode of covariation are enriched for genes associated with synaptic proteins and with schizophrenia. (A) Enriched 
Gene Ontology terms associated with genes linked to the corticostriatal mode of covariation. Only terms with FDR-corrected significance at P < 0.05 and REViGO 
dispensability < 0.3 are shown. BP, biological process; CC, cellular component; MF, molecular function. (B) Figure on left shows that genes up-regulated in schizophrenia 
(P < 0.001), bipolar disorder (P = 0.004), and autism spectrum disorder (P < 0.001) are enriched among the genes associated with striatal D2/3 covariation influence. Figure 
on right shows that genes down-regulated in bipolar (P  = 0.005) are enriched among the genes associated with striatal D2/3 covariation influence. Vertical lines indicate 
true median rank of disorder-related genes compared to null distributions representing 10,000 randomly selected gene sets. *P < 0.05.
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Further work of interest includes the use of preclinical models to 
investigate the causal influence of genes highlighted in the current 
study, specifically as to potential manipulation of striatum-cortex 
relationships. In addition, work in humans should include whether 
the striatum-cortex relationships identified in the current study 
predicts the cortical effects of pharmacological compounds that 
show spatially selective modulation of striatal dopamine signaling 
(5). When combined with work in patient populations mapping the 
relationship between striatal dopamine and cortical function, this 
has the potential to aid the development of therapeutics targeted at 
correcting a broad spectrum of neurobiological abnormalities.

CBF is a marker of neuronal activity that has reduced temporal 
resolution compared to the more commonly used blood oxygen level-
dependent (BOLD) signal. CBF is, however, preferable for this 
study as the signal originates from capillaries without the contribu-
tion of draining veins, which results in greater spatial specificity 
compared to BOLD (44). Although BOLD may be preferable for the 
investigation of task-based activity connectivity, ASL is ideally suited 
to obtaining a measure of tonic neural activity. As with BOLD, 
although strongly coupled to neural activity, CBF is a proxy measure, 
and hence, there exists the possibility for confounds to influence the 
observed findings. However, the fact that we controlled for global 
changes to both receptor availability and blood flow indicate that 
our findings are independent of global cerebral blood circulation. 
It is also a possibility that factors other than underlying neuro-
biology, e.g., image preprocessing steps, may influence downstream 
results.

The current findings raise the possibility that aberrant cortical 
functioning observed in several neuropsychiatric disorders may, in 
some cases, reflect abnormalities in striatal dopamine signaling. This 
interpretation is supported by our finding that the striatal regions 
most strongly associated with the mode of covariation were enriched 
for genes overexpressed in several psychiatric disorders. Furthermore, 
it suggests that pharmacological interventions that are able to modulate 
striatal dopamine signaling in a regionally specific manner may also 
have the potential to selectively modulate cortical activity, and further 
research may investigate the therapeutic possibilities available here.

MATERIALS AND METHODS
Experimental design
Fifty-one simultaneous PET-MRI scans were obtained from 28 partici-
pants. Twenty-three of these participants received two scans, with 
one following placebo administration and the other following ad-
ministration of dexamphetamine (0.5 mg/kg). The relationship be-
tween PET measures of striatal dopamine receptor availability and 
ASL measures of CBF was analyzed using CCA. We then investigated 
the relationship between the CCA measures and the effects of am-
phetamine. The CCA analysis produces a map of striatal covaria-
tion influence, and we investigated whether this map was informed 
by underlying patterns of striatal gene expression. We characterized 
genes implicated by this analysis using Gene Ontology (GO) en-
richment analysis and also investigated whether an association 
existed with genes implicated in several psychiatric disorders.

Participants
Participants were recruited via online advertising. All participants 
gave informed written consent. Inclusion criteria were age above 
18 years and capacity to give written informed consent. Exclusion 

criteria were (i) any past or current major medical condition, (ii) history 
of a neurological or psychiatric disorder (including substance abuse/
dependence) as determined by the Structured Clinical Interview for 
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and 
medical review, (iii) history of head injury with a loss of conscious-
ness, (iv) a family history of any psychiatric disorder in first-degree 
relatives, and (v) contraindications to PET or MRI scanning (signif-
icant prior exposure to radiation, pregnancy, or breast feeding) or 
amphetamine.

Participants attended for a scan on two separate occasions, sep-
arated by a minimum of 3 days. On one occasion, participants re-
ceived an oral placebo (101 mg of lactose/sucrose tablets; number of 
tablets matched to number administered when receiving dexam-
phetamine) before scanning, and on the other, they received a dose 
(0.5 mg/kg) of oral dexamphetamine. The order of drug/placebo 
scans was randomized. Dosing occurred 3 hours before scanning so 
that in the case of dexamphetamine, peak drug levels coincided with 
scan time (45). The order of scans (i.e., dexamphetamine/placebo 
order) was randomized, and participants and staff involved in as-
sessment were blinded to this order. The subjective effects of am-
phetamine scale (23, 24) was given to participants at baseline for 1.5 
and 3 hours to assess the psychological effects of amphetamine. The 
scale involves ranking each of 10 possible drug effects on a five-point 
scale ranging from “least” to “most.” Positive effects include “high,” 
“rush,” “good effects,” “liking,” and “desire for drug”; negative 
effects included “fidgety,” “anxious,” “dizziness,” “dry mouth,” and 
“distrust.” Measures obtained at the 1.5-hour time point were used 
in subsequent analysis, as this was the time point with the most data 
obtained and at which subjective effects were greatest. The study 
was approved by the local National Health Service (NHS) Research 
Ethics Committee (12/LO/1955) and the Administration of Radio-
active Substances Advisory Committee.

Image acquisition
Neuroimaging data were acquired using a GE SIGNA simultaneous 
PET-MRI scanner. [11C]-(+)-PHNO (0.020 to 0.029 g/kg) was injected 
immediately before the commencement of scanning as a smooth 
bolus injection over 30 s. During the initial minutes of data acquisi-
tion, the PET signal changes rapidly, and PET modeling will be par-
ticularly sensitive to the integrity of the data. The heat generated by 
the gradient coils during MRI acquisition was noted to have a small 
effect upon the PET signal, so a 10-min MRI-free period at scan start 
was used. This initial 10-min period of PET-only data collection was 
followed by simultaneous PET-MRI acquisition. Mean injected ac-
tivity was 140 megabecquerel.
Structural MRI
A three-dimensional (3D) BRAVO T1-weighted (T1w) structural 
scan was obtained with the following parameters: flip angle = 12°, 
inversion time (TI) = 400 ms, echo time (TE) = 3.2 ms, repetition 
time (TR) = 8.5 ms, matrix = 256 × 256, number of slices = 188, and 
1-mm isotropic voxels.
Arterial spin labeling
Images were acquired using a 3D pseudo-continuous ASL sequence, and 
38 slices of a 128 × 128 matrix were obtained, resulting in a spatial 
resolution of 1.88 mm by 1.88 mm by 4 mm. Parameters were as follows: 
TE/TR = 10.7/4854 ms, labeling duration = 1450 ms, postlabeling 
delay = 2025 ms, interslice gap = 0, bandwidth = 62.5 kHz, flip angle = 
111°, and number of acquisitions = 4. A proton density image was 
acquired using the same parameters to compute the CBF map in 
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standard physiological units (milliliters of blood per 100  g of 
tissue/min).

Automatic CBF map reconstruction used the following quantifi-
cation algorithm

​​CBF  =  6000 *  ​ 
​(​​1 − exp​(​​ − ​ ST(s) _ ​T​ 1I​​(s)

​​)​​​)​​exp​(​​ ​PLD (s) _ ​T​ 1b​​(s)
 ​​)​​
   ──────────────────────   

2 ​T​ 1b​​(s ) ​(​​1 − exp​(​​ − ​ LT(s) _ ​T​ 1b​​(s)
​​)​​​)​​ * ​NEX​ PW ​​

 ​​
(

​​ ​  PW ─ SF ​PW​​ P​​​ D ​​
)

​​​​	

T1b is the T1 of blood (1.6 s at 3 T). The partial saturation of the 
proton density image (PD) is corrected using a typical gray matter 
value for T1t of 1.2 s. The partition coefficient  is set to the whole-
brain average of 0.9. Efficiency, , is set to 0.6. PLD refers to the post
labeling delay, and labelling time (LT) refers to the labeling duration. 
PW is the perfusion-weighted image. SFPW is the scaling factor of 
the sequence, and NEXPW is the number of excitations. As only a final 
label-control difference image is produced by the scanner, motion 
correction cannot be applied retrospectively. However, this should 
not markedly affect the data quality because background suppres-
sion and the alternation between control and labeled phases reduce 
motion artifact [see (46) for full details].
Positron emission tomography
Dynamic emission data were acquired for 90 min following radio-
tracer administration. A zero echo time (ZTE)–based MR attenuation 
correction map with the following parameters was obtained: flip 
angle = 0.8°, matrix = 110 × 110 × 116, voxel size = 2.4-mm isotro-
pic, number of averages = 4, bandwidth = ±62.5 kHz, and acquisi-
tion time = 42 s.

Dynamic PET images were reconstructed on the PET/MR scanner 
using VPFX-S, a fully 3D ordered subset expectation maximization 
algorithm with time-of-flight information and resolution recovery, 
six iterations, 16 subsets, no postreconstruction smoothing, matrix 
of 128 × 128 × 89, and voxel size of 2 mm by 2 mm by 2.78 mm, with 
corrections applied for detector normalization, randoms, scatter, 
dead time, and radioactive decay. Attenuation correction was per-
formed using the ZTE map implemented using GE scanner soft-
ware (47).

Image processing
Structural MRI
Normalization of the structural T1w to MNI space was implemented 
using fMRIPrep 20.0.5 (48), which is based on Nipype 1.4.2 (49). All 
available T1w images were corrected for intensity nonuniformity 
(INU) with N4BiasFieldCorrection (50) distributed with Advanced 
Normalization Tools (ANTs) 2.2.0 (51). The T1w reference was then skull-
stripped with a Nipype implementation of the antsBrainExtraction.
sh workflow (from ANTs) using OASIS30ANTs as target template. Brain 
tissue segmentation of cerebrospinal fluid, white matter, and gray 
matter was performed on the brain-extracted T1w using fast (52). A 
T1w reference map was computed after registration of T1w images 
(after INU correction) using mri_robust_template (53). Brain surfaces 
were reconstructed using recon-all [FreeSurfer 6.0.1; (54)], and the 
brain mask estimated previously was refined with a custom variation of 
the method to reconcile ANT-derived and FreeSurfer-derived segment
ations of the cortical gray matter of Mindboggle (55). Volume-based 
spatial normalization to MNI standard spaces [MNI152NLin2009cAsym; 
(56)] was performed through nonlinear registration with antsRegistration 
(ANTs 2.2.0) using brain-extracted versions of both T1w reference 
and the T1w template.

Arterial spin labeling
Proton density maps were linearly coregistered to structural T1w 
images, and this transform subsequently applied to the CBF maps. 
A nonlinear transform from T1w native space to MNI space (derived 
from the normalization of the structural T1w described above), was 
then applied to the CBF maps. Global CBF was calculated by calcu-
lating the mean CBF for voxels within a brain mask, and relative 
maps were then derived by dividing all voxels by this figure to 
account for peripheral (global) drug effects and between-subject 
variability in global perfusion. Subsequent analyses used these un-
smoothed relative maps after masking with a group mask computed 
using the nilearn function “compute_multi_gray_matter_mask” (57). 
This resulted in 51 images each containing 229,007 voxels.
Positron emission tomography
PET images were analyzed using the Molecular Imaging And Kinetic 
Analysis Toolbox (version 4.3.13). A frame-by-frame registration pro-
cess on a single frame of reference was used for motion correction. 
Time activity curves for each voxel were generated, and the simpli-
fied reference tissue model with cerebellum gray matter as a reference 
region was applied to these curves to estimate the nondisplaceable bind
ing potential of the ligand (BPND) (58, 59).

Unsmoothed voxel-wise BPND maps in native space were then 
coregistered to the structural T1w images, and the nonlinear trans-
form from T1w native space to MNI space (described above) was 
applied to these BPND maps. A previously defined mask was used to 
restrict the images to striatal voxels (60), and as with CBF, each voxel 
within a participant BPND map was divided by that participant’s 
mean striatal BPND to account for global effects. This resulted in 51 
images, each containing 2847 voxels.

Canonical correlation analysis
CCA is a technique ideally suited to the simultaneous evaluation of 
two highly multidimensional sets of variables. CCA allows the iden-
tification of many-to-many relations in contrast to techniques such 
as multiple linear regression that requires one set of variables to be 
condensed to a single variable. For an intuitive understanding, CCA 
can be understood as an extension of principal components analysis 
(PCA). PCA decomposes a single set of variables to a smaller number 
of components that capture the variables’ latent sources of variation, 
while CCA seeks to simultaneously decompose two sets of variables 
to maximize the correlation between these two sets (see Fig. 1) (14). 
For a full description of the technique, with an emphasis on appli-
cations in neuroimaging, please see the review by Wang et al. (14).

For both CBF data (229,007 voxels × N) and PET data (2847 voxels × N), 
where there are data from N = 51 scans, dimensionality reduction 
via PCA was undertaken before running CCA (see figs. S1 and S2) 
so as to avoid the overfitting that occurs if the number of features is 
significantly greater than the number of subjects. As PCA is affected 
by the relative scaling of each variable, standardization of each vari-
able was performed by subtracting its mean and dividing by its SD. The 
optimal number of components is unclear, and PCA was therefore 
performed to give between K ∈ [2,3,4, …,10] components for both 
CBF and PET measures. This results in nine pairs of [N, K] matrices 
C and P, where C contains features derived from the CBF data and 
P contains features derived from the PET data. For each pair, the 
number of rows is equal to the number of scans (N = 51), while the 
number of columns is equal to the number of PCA components. For 
the PET data, the first 10 components explained 61% of the vari-
ance, while for CBF data, 42% were explained.
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CCA was implemented using the python library “scikit-learn” (61). 
CCA calculates a pair of [1, K] canonical weight vectors U and V 
(which are each the length of the number of components), which 
maximize the correlation between PU and CV. PU and CV are vec-
tors termed canonical variates, and each will be the length of the 
total number of scans. A pair of canonical variates is termed a mode 
of covariation. Given that CCA intentionally maximizes the cor-
relation between canonical variates, statistical significance cannot 
be determined solely on the basis of the magnitude of a correlation 
coefficient between these canonical variates.

An out-of-sample cross-validation testing approach was used to 
test the statistical significance of the mode of covariation identified 
between striatal dopamine receptor availability and CBF. For each 
choice of PCA dimensionality, K, the data were randomly split 
100 times into sets where 80% of the data were used for training and 
20% for testing. For each train-test split, we conducted PCA with K 
components followed by CCA on the training data. The PCA and 
CCA models that were fit on the training data were then applied to 
the test data, and the correlation between the resulting test data ca-
nonical variates for the first CCA component was calculated. We 
used the mean correlation coefficient over 100 train-test splits as an 
estimate of the true out-of-sample performance for that PCA di-
mensionality. An overall correlation coefficient was then calculated 
by taking the mean correlation coefficient for the nine (K ∈[2,3,4, 
…,10]) dimensionalities. We used this method to avoid potential 
biases that could result from manually setting the number of PCA 
dimensions. The statistical significance of this correlation coeffi-
cient was calculated by comparing it to a null distribution generated 
by following the same procedure 10,000 times but after permuting 
CBF images to shuffle the mapping between CBF images and par-
ticipant identity (i.e., instantiating the null that there is no shared 
information between striatal D2/3R availability and cortical CBF 
within subjects).

For most of the participants, there exist two scans (one following 
placebo, and the other following amphetamine). There, therefore, 
exists the potential for information leakage between training and 
test sets, which could erroneously inflate the statistical significance 
of results. We used two strategies to address this. First, we used a 
well-established approach in which the same dependency structure 
was kept when generating a null distribution (19). As a result, while 
the observed out-of-sample correlation coefficient may be inflated 
secondary to dependency structure, an equal inflation will also 
apply to the null distribution and therefore the P value will be un-
affected. Second, in a complementary analysis, we restricted the 
shuffling of participants when partitioning the data into train and 
test sets so that placebo and amphetamine scans for a single subject 
remain together for each subject and are not separated across test 
and train sets, meaning that no dependency exists between test 
and train sets. To ensure that the observed relationship reflected 
cortex-wide relationships and was not driven by subcortical changes 
in blood flow, we also performed the above analysis while restricting 
the analysis to CBF data from cortical regions defined using the 
Harvard-Oxford cortical atlas (62).

In a complementary analysis, CCA (and PCA) was performed as 
on a training sample that randomly left out two pairs of PET-ASL 
scans. This model was then used to perform CCA on the two pairs of 
left out test scans. If the CCA scores for CBF and PET were ranked 
identically, e.g., the first pair of scans having higher scores for both 
CBF and PET, then this indicates that the CCA has been able to 

correctly match the pairs of scans and that this was counted as a 
successful match. If the ranking differed between modalities, then 
this indicated an unsuccessful match. Accuracy was quantified as 
the percentage of successful matches out of 100 samples. This was 
compared to null distributions generated as above by both random-
ly selecting subjects and selections in which the pair structure was 
maintained.

After establishing a statistically significant relationship between 
cortical activity and striatal dopamine, we then sought to investigate 
the nature of this relationship in greater depth. To do this, we first 
set the number of PCA components to eight as that had gave the 
most predictive out of sample relationship between the PET and 
CBF measure. We then fit CCA on the entire sample (resulting full 
loading matrices in table S1) and calculated the contribution of each 
voxel to by correlating CBF and PET measures with their respective 
canonical variate at each voxel (i.e., CBF voxels to the CBF canoni-
cal variate and PET voxels to the PET canonical variate). This is 
illustrated by the maps of covariation influence in Fig. 3 (C and D), 
where the intensity of shading represents the magnitude of correla-
tion coefficient.

Overlap of covariation influence maps with canonical 
functional connectivity networks
We investigated the overlap between known functional connectivi-
ty networks and the map of covariation influence. For the striatum, 
we investigated the overlap with the seven network parcellation de-
scribed by Choi et al. (21), while for the cortex we used the seven 
network parcellation described by Yeo et al. (22). For each network, 
we calculated the observed overlap by averaging the value of covari-
ation influence map voxels that were within that network. We then 
compared this observed value to a null distribution generated from 
1000 null covariation influence maps. In the case of the striatum, 
these were generated using the BrainSMASH (brain surrogate maps 
with autocorrelated spatial heterogeneity) python toolbox so as to 
account for patterns of spatial autocorrelation (27). In the case of 
the cortex, the same approach was too computationally intensive to 
be undertaken so the null covariation influence maps were generated 
by permuting CBF and PET maps before running the CCA.

Linking CCA measures and the effects of amphetamine
We next examined whether the amphetamine-induced change in 
the striatal D2/3 CCA score was associated with the change in cor-
tical CBF CCA score, and we also performed a complementary 
analysis in which the PCA and CCA models were fit solely on place-
bo scans so as to avoid any potential circularity in the analysis. We 
also examined whether mean CCA scores were associated with par-
ticipant scores on the subjective effects of amphetamine scale (23, 24). 
In both cases, we used spearman’s correlation coefficient so that 
outliers would not unduly influence any potential association.

Gene expression data
Gene expression data were obtained from six post mortem adult 
brains from the AHBA transcriptomic dataset (http://human.brain-
map.org; RRID: SCR_007416) (63). Since the AHBA only includes 
data relating to two subjects for the right hemisphere, right-sided 
striatal samples were limited, and in keeping with similar analyses, 
we only consider left hemisphere samples (36).

The AHBA microarray expression data need to be both linked to 
regions of interest and combined across donors. To ensure robust 
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and replicable results, we used the “abagen” (version 0.0.5) python 
toolbox, an externally developed and validated pipeline, which un-
dertakes the steps described below (64).

The original MNI coordinates provided with the AHBA do not 
account for nonlinear deformations in their transformation from 
native to MNI space. We therefore used “corrected” MNI coordinates 
to match tissue samples to MNI space; this involves using ANTs to 
perform a more accurate nonlinear coregistration of each donor’s 
scan to an MNI template as opposed to the AHBA default based on 
an affine coregistration of a single donor brain.

Probe-to-gene mappings were reannotated with information 
from Arnatkevic̆iūtė et al. (64). This was followed by intensity-based 
filtering to remove probes that did not exceed background noise in 
50% of all tissue samples. A representative probe was selected for multi-
ple probes indexing the same gene based on which probe had the 
highest differential stability among donors. Each sample was matched 
to the voxel in which it lay and, if lying outside the striatal mask, was 
matched to the closest voxel as long as this was within 3 mm. This 
resulted in 153 eligible samples. Before aggregation across donors, 
expression values were normalized for each sample across genes for 
each donor using a scaled robust sigmoid normalization function.

Genes associated with covariation influence
We used partial least squares regression to investigate associations 
between the pattern of striatal covariation influence illustrated in 
Fig. 3C and the pattern of striatal gene expression derived from the 
AHBA. Partial least squares regression is closely related to CCA in 
that it seeks to identify latent variables (the partial least squares com-
ponents) that maximize correlation between collinear predictor 
variables (gene expression values in this case) and response variables 
(the covariation influence maps). Partial least squares incorporates 
dimensionality reduction directly and is suitable for predicting a 
univariate outcome variable. For model fitting, we used the Nonlinear 
Iterative Partial Least Squares “NIPALS” algorithm implemented in 
the python package scikit-learn. Out-of-sample prediction accuracy 
was determined by calculating the Pearson correlation between co-
variation influence predicted on the basis of gene expression and 
true covariation influence. For each component, accuracy was aver-
aged across five sets of fivefold cross-validation. As with the use of 
CCA above, there is effectively a hyperparameter in that flexibility 
exists when choosing the number of components for dimensionali-
ty reduction. As above, to avoid bias, we fit models using 2 to 10 
components and calculated the mean score of results.

Statistical significance of out-of-sample prediction accuracy was 
first tested by comparing these results to those obtained after ran-
domly permuting the covariation influence values 10,000 times. 
This approach to significance testing is often used in studies linking 
gene expression data to neuroimaging measures (26, 65) but does 
not account for the typically high degree of spatial autocorrelation 
observed in the brain maps under investigation (27). We therefore 
used the BrainSMASH python toolbox to generate 10,000 surrogate 
maps of covariation influence in which spatial autocorrelation was 
preserved and compared the accuracy of the gene expression data in 
predicting these surrogate maps to the original true map.

Gene enrichment analysis
The contribution of each gene to the striatal covariation influence 
was calculated on the basis of that gene’s VIP score. The error in 
estimating each gene’s VIP score was assessed by bootstrapping 

(resampling with replacement of the 153 striatal voxels), z scores 
were then calculated as the ratio of each gene’s VIP to its bootstrap 
standard error, and this was used to rank the genes according to 
their level of influence on the striatal covariation influence map.

GO enrichment analysis was used to characterize the nature of 
the genes associated with the striatal covariation influence. To avoid 
artefactual elevation of GO terms for brain expression, we used pre-
viously reported methods (35) to first subset the VIP ranked gene 
list to include only genes showing above zero expression in cerebral 
cortex, amygdala, basal ganglia, cerebellum, cerebral cortex, hippo-
campal formation, and hypothalamus as listed within Human Protein 
Atlas RNA GTEx brain region gene expression database (www.
proteinatlas.org/download/rna_brain_gtex.tsv.zip; table S3). Enrich-
ment analysis was then performed for this brain refined, and VIP 
score ordered list was inputted to GOrilla (separately in increasing 
and decreasing order) (28). Resulting gene categories were considered 
significant if meeting a threshold of false discovery rate (FDR)–
corrected P < 0.05 and showed a minimum of three overlapping 
genes. REViGO (http://revigo.irb.hr) was then used to cluster cate-
gories using the SimREl algorithm (66).

Using previously reported methods (35, 36), we next explored 
whether the VIP ranked gene list was enriched for genes associ-
ated with neuropsychiatric illnesses. We used the findings of the 
psychENCODE consortium to identify genes that are up-regulated 
or down-regulated in autism spectrum disorder, schizophrenia, and 
bipolar disorder (37) and also genes differentially expressed in 
temporal lobe epilepsy (40) and Alzheimer’s disease (41). We first 
calculated the median rank of the disease-associated gene set within 
the VIP gene list and took the absolute value of how far this lay from 
the center of the list. We then compared this value to 10,000 ran-
domly selected gene sets of the same size.

Statistical analysis
Permutation testing of cross-validated out-of-sample association 
measures was the primary means of significance testing. These 
methods are described in detail above.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/24/eabg1512/DC1
View/request a protocol for this paper from Bio-protocol.
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