
1 

 

Exploring the Distribution for the Estimator of 

Rosenthal’s ‘Fail-Safe’ Number of Unpublished Studies in 

Meta-analysis 

 

 

Konstantinos C. Fragkos 

University College London, London, United Kingdom 

constantinos.frangos.09@ucl.ac.uk 

 

Michail Tsagris 

Department of Computer Science 

University of Crete, Heraklion, Greece 

mtsagris@yahoo.gr 

 

Christos C. Frangos 

Department of Business Administration 

Technological Educational Institute (T.E.I.) of Athens, Athens, Greece 

cfragos@teiath.gr 

 

Running Title: Distribution for the estimator of Rosenthal’s number 

 

Correspondence to: 

Konstantinos C. Fragkos 

University College London 

109 Brookhill Road 

London SE18 6BJ, United Kingdom 

Tel. +44 (0) 7960340489 

e-mail: constantinos.frangos.09@ucl.ac.uk   

 

mailto:constantinos.frangos.09@ucl.ac.uk
mailto:mtsagris@yahoo.gr
mailto:cfragos@teiath.gr
mailto:constantinos.frangos.09@ucl.ac.uk


2 

 

Exploring the Distribution for the Estimator of 

Rosenthal’s ‘Fail-Safe’ Number of Unpublished Studies in 

Meta-analysis 

 

Abstract 

The present paper discusses the statistical distribution for the estimator of Rosenthal’s ‘file drawer’ 

number NR, which is an estimator of unpublished studies in meta-analysis. We calculate the probability 

distribution function of NR. This is achieved based on the Central Limit Theorem and the proposition 

that certain components of the estimator NR follow a half normal distribution, derived from the standard 

normal distribution. Our proposed distributions are supported by simulations and investigation of 

convergence.  

 

Keywords: half normal distribution; publication bias; meta-analysis; Rosenthal’s fail-safe number; 

probability distribution function; convergence 
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1. Introduction 

Meta-analysis refers to methods focused on contrasting and combining results from different studies, in 

the hope of identifying patterns among study results, sources of disagreement among those results, or 

other interesting relationships that may come to light in the context of multiple studies (Borenstein, 

Hedges, Higgins and Rothstein, 2011). In its simplest form, this is normally by identification of a 

common measure of effect size, of which a weighted average might be the output of a meta-analysis. 

The weighting might be related to sample sizes within the individual studies (Whitehead and 

Whitehead, 1991, Hedges and Vevea, 1998). More generally there are other differences between the 

studies that need to be allowed for, but the general aim of a meta-analysis is to more powerfully estimate 

the true effect size as opposed to a less precise effect size derived in a single study under a given single 

set of assumptions and conditions (Rothman, Greenland and Lash, 2008).  

When doing a meta-analysis, there is an increased threat of inflating publication bias (Sutton, Song, 

Gilbody and Abrams, 2000). Publication bias refers to the fact that statistically significant results are 

more likely to be submitted and published than work with null or non-significant results. This is due to 

pipeline bias and subjective reporting bias (Thornton and Lee, 2000). Combining published studies in 

meta-analysis increases the possibility that the meta-analytic output is over optimistic – and biased by 

publication bias (Begg and Berlin, 1988, Iyengar and Greenhouse, 1988). Methods for detecting 

publication include funnel plots, Begg’s rank correlation test, Egger’s linear regression test, Trim and 

Fill Method, Selection Models and Rosenthal’s ‘file-drawer’ RN  (Thornton and Lee, 2000, Kepes, 

Banks and Oh, 2012). Funnel plots are the most frequent method used to assess publication bias 

followed by Rosenthal’s 
RN  (Ferguson and Brannick, 2012).  

Although Rosenthal’s 
RN  estimator of publication has been proposed as early as 1979 and is frequently 

cited in the literature (Rosenthal, 1979), little attention has been given to the statistical properties of this 

estimator. Thus, this is the aim of the present paper. The paper is organized in the following sections: 

initially a description of Rosenthal’s RN  followed by a statistical proposal for the estimator of 

Rosenthal’s RN  distribution, supported by simulations and concluding remarks. 
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2. Rosenthal’s ‘file drawer’ 
RN  

The original and most commonly used fail-safe calculation was suggested by Rosenthal (1979), who 

introduced what he called the file drawer problem. His concern was that some statistically non-

significant studies may be missing from an analysis (i.e., placed in a file drawer) and that these studies, 

if included, would nullify the observed effect. By nullify, he meant to reduce the effect to a level not 

statistically significantly different from zero. Rosenthal suggested that rather than speculate on whether 

the file drawer problem existed, the actual number of studies that would be required to nullify the effect 

could be calculated (McDaniel, Rothstein and Whetzel, 2006). This method calculates the significance 

of multiple studies by calculating the significance of the mean Z  score (the mean of the standard normal 

deviates of each study). Rosenthal’s method calculates the number of additional studies 
RN , with mean 

null result necessary to reduce the combined significance to a desired a level (usually 0.05).   

The necessary prerequisites is that each study examines a directional null hypothesis such that the effect 

sizes iθ  from each study are examined under 0iθ  or ( 0iθ ). Then the null hypothesis of Stouffer’s 

(1949, pp. 45) test is  

0: k10 ===  H  

The test statistic for this is   
k

Z

Z

k

i

i

S


== 1

 

with 
i

i

s

̂
=iZ , where is  are the standard errors of i̂ . Under the null hypothesis ( )10,N~ZS  

(Rosenthal, 1978).  

The number of additional studies 
RN , with mean null result necessary to reduce the combined 

significance to a desired a level (usually 0.05) (Rosenthal, 1978, Rosenthal, 1979), is found after solving 

k

Z

Z

k

i

i

+
=
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=

R
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N
      (1) 

Hence, RN  is calculated as  
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where k  is the number of studies and Z  is the one-tailed Z  score associated with the desired α . 

Rosenthal further suggested that if 105ˆ + kNR , the likelihood of publication bias would be minimal. 

Cooper (1979, 1980) called this number the failsafe sample size or failsafe N. If this number is relatively 

small, then there is cause for concern. If this number is large, one might be more confident that the 

effect, although possibly inflated by the exclusion of some studies, is, nevertheless, not zero (Zakzanis, 

2001). This approach is limited in two important ways (McDaniel et al., 2006). First, it assumes that 

the effect size of the hidden studies is zero, rather than considering the possibility that some of the 

studies could have an effect in the reverse direction or an effect that is small but not zero. Therefore, 

the number of studies required to nullify the effect may be different than the failsafe N, either larger or 

smaller. Second, this approach focuses on statistical significance rather than practical or substantive 

significance (effect sizes). That is, it may allow one to assert that the mean effect size is not zero, but it 

does not provide an estimate of what the effect size might be (how it has changed in size) after the 

missing studies are included (Becker, 1994, Becker, 2005). Other limitations include the assumption 

that excluded studies show a null result whereas many may, instead, show a result in the opposite 

direction and the lack of a definition regarding what is a tolerable failsafe N value (Mullen, Muellerleile 

and Bryant, 2001, Aguinis, Pierce, Bosco, Dalton and Dalton, 2011).  

Scargle (2000) and Schonemann and Scargle (2008) point out the fundamental critique of the fail-safe 

number: it treats the file drawer of unpublished studies as unbiased by assuming that their average Z 

value is zero. But if only 5% of studies that show Type I errors were published, the mean Z value of the 

remaining unpublished studies cannot be zero but must be negative. Consequently, the authors advocate 

that the fail-safe number is a gross overestimate of the number of unpublished studies required to bring 

the mean Z value of published studies to an insignificant level. In contrast to Rosenthal and Rubin 

(1978) and Rosenthal (1979), Scargle (2000, pp. 101) found out that the fail-safe number is large only 

if the significance level corresponding to Zα of published studies is ≥2 and the publication bias 
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probability is close to zero. Hence, the true fail safe number is almost never as large as Rosenthal’s fail-

safe number. Moreover, Schonemann and Scargle (2008) gave a generalization of Scargle’s model, not 

being bound to any distributional assumptions of Z resulting in the same conclusions. 

When comparing Stouffer’s method with existing methods, it is notable that meta-analysis is usually 

done by identification of a common measure of effect size, of which a weighted average might be the 

output of a meta-analysis. The weighting might be related to sample sizes within the individual studies 

(Whitehead and Whitehead, 1991, Hedges and Vevea, 1998). More generally there are other differences 

between the studies that need to be allowed for, but the general aim of a meta-analysis is to more 

powerfully estimate the true effect size as opposed to a less precise effect size derived in a single study 

under a given single set of assumptions and conditions (Rothman et al., 2008). The two commonest 

methods are fixed effects and random effects models, which focus on the effect sizes from each study 

rather than the Z values – as Stouffer’s method does. Testing the overall hypothesis of a significant 

effect is done with the Wald test on the meta-analytic mean (which is in essence a weighted mean of 

the effect sizes). 

Stouffer’s method belongs to a group of methods performing meta-analysis by pooling p values. These 

methods are summarised in Rosenthal (1978) and most commonly include Winer’s method of adding 

the t-test statistics values (Winer, 1962), and Fisher’s method of adding the logged p-values (Fisher, 

1948). Combining p-values from multiple studies has two major advantages (e.g. compared with 

another popular category of combining effects sizes below), including its simplicity and extensibility to 

different kinds of outcome variables. When the outcome variable is not binary (e.g. multi-class, 

continuous or censored survival), effects sizes may not be well defined, while association p-values can 

still be calculated (Tseng, Ghosh and Feingold, 2012). Limitations of these methods include 

vulnerability to criticisms of the individual studies being pooled, difficulty in handling the file drawer 

problem, and vague conclusions (Darlington and Hayes, 2000). 

Hence, for many fields Rosenthal’s fail-safe number remains the gold standard to assess publication 

bias, since its presentation is conceptually simple and eloquent. In addition, it is computationally easy 

to perform. In the next section we introduce necessary components to estimate its statistical distribution. 
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3. Distribution for the estimator of Rosenthal’s NR 

First we give the definition of the folded normal distribution, needed for the estimation of Rosenthal’s 

NR distribution. 

 

Definition 1: The folded normal distribution is a probability distribution related to the normal 

distribution. Given a normally distributed random variable X  with mean   and variance 
2 , 

the random variable XY =  has a folded normal distribution (Elandt, 1961, Leone, Nelson and 

Nottingham, 1961, Johnson, Kotz and Balakrishnan, 1994, Tsagris, Beneki and Hassani, 2014). 

Remark 1: The folded normal distribution has the following properties: 

a) Probability density function (PDF): 

( )
( ) ( )
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 −
−+






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2

2

2

2
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2

1

2
exp

2

1











yy
yfY , for 0y   

b)    ( ) ( )  ξ212ξexpπ2 22 −−+−=YE   

( ) ( ) ( )  22222 ξ212ξexpπ2  −−+−−+=YVar  

where ( )  denotes the cumulative distribution function (CDF) of a standard normal distribution. 

Remark 2: When 0= , the distribution of Y  is a half-normal distribution, which is identical to 

the truncated normal distribution, with left truncation point 0 and no right truncation point. For this 

distribution we have 

a) ( ) 







−=

2

2

2
exp

2



y
yfY , for 0y   

b)   π2=YE ,  ( ) ( ) 212 −=YVar  

 

Next, we state the following proposition. 
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Proposition 1: The iZ  in Rosenthal’s NR estimator (expressions 1 and 2) are derived from a half 

normal distribution, based on a standard normal distribution. 

Support: When a researcher begins to perform a meta-analysis, the sample of studies is drawn from 

those studies that are already published. So the sample is most likely biased by some sort of selection 

bias, produced via a specific selection process (Mavridis, Sutton, Cipriani and Salanti, 2013). Thus, 

although when we study Rosenthal’s NR assuming that all iZ  are drawn from the normal distribution, 

they are in essence drawn from a truncated normal distribution. But at which point is this distribution 

truncated? We would like to advocate that the half normal distribution, based on a standard normal 

distribution is the one best representing the iZ  Rosenthal uses to compute his file drawer NR. The 

reasons for this are: 

1. Firstly, to assume that all iZ  are of the same sign does not impede the significance of the results 

from each study. That is the test is significant when either 2/αi ZZ   or 21 /αi ZZ −  occurs.  

2. However, when a researcher begins to perform a meta-analysis of studies, many times iZ  can be 

either positive or negative. Although this is true, when the researcher is interested in doing a meta-

analysis, usually the iZ  that have been published are indicative of a significant effect of the same 

direction (thus iZ  have the same sign) or are at least indicative of such an associat ion without being 

statistically significant; hence, producing iZ  of the same sign but not producing significance (e.g. the 

confidence interval of the effect might include the null value).  

3. There will certainly be studies which produce a totally opposite effect, thus producing an effect of 

opposite direction; but these will likely be a minority of the studies. Also there is the case that these 

other signed iZ  are not significant.  

Hence, we next discuss the statistical estimation of this distribution. We first prove the following 

Lemma: 
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Lemma 1: The sum of k  i.i.d. half normal distributions follows an asymptotic normal 

distribution. 

Proof: Let iX  for kii ,,,,2,1 =  follow a half normal distribution derived from the normal 

distribution ( )20 σ,N . Then, according to Definition 1, we have   πσXE i 2=  and 

( ) ( )πσXVar i 212 −= . According to the Central Limit Theorem we have: 

( )( ) 21k,2kσ 2
d

1

−→
=

NX
k

i

i  

 

Next, we perform the following steps to compute the distribution for the estimator of 
RN : 

Step 1.  From Proposition 1, k21 Z,,Z,,Z,Z  i  in the formula of the estimator RN̂  [equation (2)] 

are half normally distributed with σ2=1. So according to Lemma 1, we have  

( )( ) 21k,2k
d

1

−→=
=

NZS
k

i

i     (3) 

For simplicity let  2k=  and ( ) 21k2 −= . So the PDF of S  is  

( )
( )








 −
−=

2

2

2 2
exp

2

1







s
sfS     (4) 

Rosenthal’s expressions (1) and (2) create some ambiguity regarding the sign of 
=

=
k

i

iZS
1

. The 

distribution for the estimator of Rosenthal’s 
RN  can be retrieved from a truncated version of (4) or 

from the folded normal distribution of (4). We describe both approaches below. 

 

3.1 1st Approach: Derivation from a Truncated Normal Distribution 

Step 2a. From equation (1) we get that 

kZS += RN̂      (5) 

In this approach we advocate that Rosenthal’s equations (1) and (2) implicitly impose two conditions 

which must be taken into account when we seek to estimate the distribution of RN  
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0S         (6) 

0N̂ R       (7) 

Expression (6) is justified by the fact that the right hand side of (5) is positive, so then 0S  . 

Expression (7) is justified by the fact that 
RN  expresses the number of studies, so it must be at least 0

. Hence, expression (6) and (7) are satisfied when S  is a truncated normal random variable, let it be 

*S , such that k*

ZS  . So the PDF of *S  then becomes 

( )
( )

( )

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where 



  kZ−
= .  

Then, we have 
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




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+
=

2

2
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ˆ

2
exp

2λ2 




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knZ
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Z
nf R

R

RNR
, 0nR   (9) 

The characteristic function is 

( ) ( ) 
( ) ( ) 2122

22

2
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1
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it
exp

λ
expt

itZ
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where   1−=i , 
itσZ

itμσ
μ

22
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2
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itσZ

Z
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α

2

α

2
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From (9) we get      εkˆ
2

22
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=
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2
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

Z
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


=  and ( )  is the PDF of the standard normal distribution. Also,  

( ) ( )






+
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222 22ˆ
Z
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For proofs of expressions (10), (11) and (12), see Fragkos, Tsagris and Frangos (2014). 

 

3.2  2nd Approach: Derivation from the Folded Normal Distribution 

Step 2b. In this approach we advocate that Rosenthal’s equations (1) and (2) suggest that 

kZ += RN̂S       (13) 

This leads to 

( )
( ) ( )
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Then, we have 
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The characteristic function is 
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










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


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and the expectation and variance are 

  k
Z

NE R −
+

=
2

22

ˆ




     (17) 

( ) ( )
4

222 22ˆ





Z
NVar R

+
=     (18) 

For proofs of expressions (16), (17) and (18), see Fragkos et al. (2014). 

The exact PDF of RN̂  for various numbers of studies k is shown in Figure 1. When the number of 

studies is very low, there is a discrepancy between the two densities. However, for a number of studies 

equal to 15 or more, the two densities have very small differences. 
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---Figure 1 here--- 

3.3 Comments 

Each approach has advantages and limitations. 

• The first approach truncates in order to satisfy Rosenthal’s conditions.  

• The support of RN̂  based on the second approach is ( )+k,- , which is contrary to the 

definition of RN , since it allows for negative values of RN . 

• The PDFs of both approaches are asymptotically identical. This result extends to the 

expectation and variance for both approaches. 

For a significantly large n  we have that ( ) 1  . So (8) becomes 

( )
( )

( )












 −+
−

+
=
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2

2
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22 






knZ
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Z
nf R

R

RNR

, 0nR   (19) 

Also from (15) we observe that 
( )

0
2

exp
2

2














 ++
−



 knZ R
 for a significantly large k . So 

expression (15) becomes identical to (19) with -kn R
 in this case. 

• If all the effects are insignificant and equal to zero ( )0=iZ , then kNR −= . So, theoretically 

it is possible for 
RN  to be negative but in practice we would say it is almost surely impossible. 

In the next section we present empirical results which support our results. 

 

4. Simulations 

In the present section we present empirical simulations computed in R (see Supplementary Materials), 

supporting Lemma 1 and supporting the proposed distribution for Rosenthal’s RN̂ . 

 

4.1 Simulation Results for Lemma 1 
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We examined the validity of Lemma 1 empirically. For a range of sample sizes studies we generated 

random values from the half normal distribution. Each time we calculated the sum of these values and 

repeated this procedure 10,000,000 times for every chosen sample size. The histogram of these 

10,000,000 sums is shown in Figure 2 along with the curve of the asymptotic normal density. We can 

see that the central limit theorem produces reasonable results indicating that it can be used as an 

approximation to the distribution of the sum of half normal variables.  

 

---Figure 2 here--- 

 

4.2 Simulation Results for the Distribution of Rosenthal’s RN̂  

We examined the two distributions based on simulated values of RN̂ . For a selection of sample sizes 

we simulated 1,000,000 values of this estimator based on the first approach and based on the second 

approach. The assumption of the first approach is the condition imposed by Rosenthal; the estimator 

cannot take negative values. For this reason, we kept only the sums of simulated values greater than 

kZ . This leads to expression (8). The results are plotted in Figure 3. When the number of studies 

used in the meta-analysis is as low as 5, both distributions do not seem to provide an adequate fit for 

the simulated values. The first approach however seems to perform better than the second approach. 

Both approaches agree as the number of studies increases, starting from 15.  

 

---Figure 3 here--- 

 

The second approach gives a range of values of RN̂  from ( )+k,- . The second approach does not 

have the non-negative values constraint, so we kept all of the simulated values. The results are shown 

in Figure 4, where we can see that when the number of published studies is equal to 5, the second 

approach fits the simulated values better. When the number of studies though is 15 or more, the two 

densities become indistinguishable. 
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---Figure 4 here--- 

 

5. Convergence 

Simulations were conducted to calculate the estimator’s rate of convergence numerically. For a range 

of values of k, from 10 up to 5000 increasing by steps of 10, we performed 10,000 simulations 

estimating the value of 
RN . Then, their mean value was calculated along with the absolute error    

 
 R

RR

NE

NEN

ˆ

ˆˆ −
      (20) 

where  RNE ˆ  is the true value of the estimator as calculated using (17) and the ‘hat’ indicates its 

estimated value. It does not matter whether equation (11) or (17) is used for the true value of the 

estimator because the two distributions (9) and (15) become identical after 20 or 25 number of studies. 

The reason for using the absolute relative error and not simply the absolute error is that the estimator 

depends on the number of studies. The logarithm of the relative absolute error (20) against the logarithm 

of the number of studies is presented in Figure 5. The least squares equation is  

 
 

( )k
NE

NEN

R

RR log539.0662.4
ˆ

ˆˆ
log −−=

−
   (21) 

where k is the number of studies. The slope of the decreasing line is equal to -0.539 and its 95% 

confidence interval is (-0.642, -0.436). Thus, we have grounds to assert that the rate of convergence of 

the absolute relative error is of order ( )21−kO . Figure 6 presents the ratio of the mean of the 10,000 

estimated values from their true value 
 R

R

NE

N

ˆ

ˆ
 as a function of the number of studies, clearly depicting 

that the ratio is very close to 1.  

 

---Figure 5 here--- 

---Figure 6 here--- 

 

6. Concluding Remarks 
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In the present we described the statistical distribution for the estimator of Rosenthal’s file drawer 

number. This is the first paper to provide such a description which is supported by empirical results 

from simulations. The estimator seems to perform efficiently when a meta-analysis includes over 15 

studies, while it doesn’t seem to perform optimally in meta-analyses with small number of studies 

analysed. The convergence of the estimator is also satisfactory and is shown (numerically) to be of order 

( )21−kO . 

The present approach however has certain limitations. We based our analysis on Proposition 1, that the 

Zis in Rosenthal’s estimator are half normally distributed. First of all, this might inflate the estimator, 

since it considers only the positive values of Zi. Secondly this might not be most optimal distribution to 

sample from. We are currently performing research considering that the Zis are retrieved from a skew 

normal distribution (Azzalini and Dalla Valle, 1996, Azzalini and Capitanio, 1999). This approach 

might require fewer assumptions and the dynamic properties of the skew normal distribution might 

allow for more general results.  
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Figures 
 

 

Figure 1. Exact distributions of approaches 1 and 2 for the PDFs of Rosenthal’s NR. The dashed line 

represents the PDF for approach 1 (9) and the solid line indicates the PDF for approach 2 (15). 
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Figure 2. Histograms of the sums of half normal variables from 10,000,000 simulations. The solid line 

corresponds to the asymptotic normal distribution (3). 

 

 
 

 



20 

 

Figure 3. Histograms of 1,000,000 simulated values with 0nR  . The dashed line represents the exact 

PDF for approach 1 (9) and the solid line indicates the exact PDF for approach 2 (15). 
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Figure 4. Histograms of 1,000,000 simulated values with kR -n  . The dashed line represents the 

exact PDF for approach 1 (9) and the solid line indicates the exact PDF for approach 2 (15). 
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Figure 5. Logarithm of the relative absolute error (20) against the logarithm of the number of studies.  
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Figure 6. The ratio 
 R

R

NE

N

ˆ

ˆ
against the number of studies.  

 

 

 

 

 


