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Exploring the Distribution for the Estimator of
Rosenthal’s ‘Fail-Safe’ Number of Unpublished Studies in

Meta-analysis

Abstract

The present paper discusses the statistical distribution for the estimator of Rosenthal’s ‘file drawer’
number Ng, which is an estimator of unpublished studies in meta-analysis. We calculate the probability
distribution function of Nr. This is achieved based on the Central Limit Theorem and the proposition
that certain components of the estimator Nr follow a half normal distribution, derived from the standard
normal distribution. Our proposed distributions are supported by simulations and investigation of

convergence.
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1. Introduction

Meta-analysis refers to methods focused on contrasting and combining results from different studies, in
the hope of identifying patterns among study results, sources of disagreement among those results, or
other interesting relationships that may come to light in the context of multiple studies (Borenstein,
Hedges, Higgins and Rothstein, 2011). In its simplest form, this is normally by identification of a
common measure of effect size, of which a weighted average might be the output of a meta-analysis.
The weighting might be related to sample sizes within the individual studies (Whitehead and
Whitehead, 1991, Hedges and Vevea, 1998). More generally there are other differences between the
studies that need to be allowed for, but the general aim of a meta-analysis isto more powerfully estimate
the true effect size as opposed to a less precise effect size derived in a single study under a given single
set of assumptionsand conditions (Rothman, Greenland and Lash, 2008).

When doing a meta-analysis, there is an increased threat of inflating publication bias (Sutton, Song,
Gilbody and Abrams, 2000). Publication bias refers to the fact that statistically significant results are
more likely to be submitted and published than work with null or non-significant results. Thisis due to
pipeline bias and subjective reporting bias (Thornton and Lee, 2000). Combining published studies in
meta-analysis increases the possibility that the meta-analytic output is over optimistic — and biased by
publication bias (Begg and Berlin, 1988, lyengar and Greenhouse, 1988). Methods for detecting

publication include funnel plots, Begg’s rank correlation test, Egger’s linear regression test, Trim and
Fill Method, Selection Models and Rosenthal’s “file-drawer> N (Thornton and Lee, 2000, Kepes,

Banks and Oh, 2012). Funnel plots are the most frequent method used to assess publication bias

followed by Rosenthal’s N (Ferguson and Brannick, 2012).
Although Rosenthal’s N estimator of publication has been proposed as early as 1979 and is frequently

cited in the literature (Rosenthal, 1979), little attention has been given to the statistical properties of this
estimator. Thus, this is the aim of the present paper. The paper is organized in the following sections:

initially a description of Rosenthal’s N, followed by a statistical proposal for the estimator of

Rosenthal’s N distribution, supported by simulations and concluding remarks.



2. Rosenthal’s ‘file drawer’ N

The original and most commonly used fail-safe calculation was suggested by Rosenthal (1979), who
introduced what he called the file drawer problem. His concern was that some statistically non-
significant studies may be missing from an analysis (i.e., placed in a file drawer) and that these studies,
if included, would nullify the observed effect. By nullify, he meant to reduce the effect to a level not
statistically significantly different from zero. Rosenthal suggested that rather than speculate on whether
the file drawer problem existed, the actual number of studies that would be required to nullify the effect
could be calculated (McDaniel, Rothstein and Whetzel, 2006). This method calculates the significance
of multiple studies by calculating the significance of the mean Z score (the mean of the standard normal
deviates of each study). Rosenthal’s method calculates the number of additional studies N , with mean
null result necessary to reduce the combined significance to a desired a level (usually 0.05).

The necessary prerequisites is that each study examines adirectional null hypothesis such that the effect

sizes ¢; from each study are examined under &, <0 or (6, > 0). Then the null hypothesis of Stouffer’s

(1949, pp. 45) test is

52

The test statistic for thisis Z, = i\/E

>

S‘ , where s, are the standard errors of ;. Under the null hypothesis Z ~ N(O,l)

with Z, =

(Rosenthal, 1978).

The number of additional studies N, with mean null result necessary to reduce the combined

R

significance to a desired a level (usually 0.05) (Rosenthal, 1978, Rosenthal, 1979), is found after solving

k
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Hence, Ny is calculated as
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where Kk is the number of studies and Z, is the one-tailed Z score associated with the desired o .

Rosenthal further suggested that if NR > b5k +10, the likelihood of publication bias would be minimal.

Cooper (1979, 1980) called this number the failsafe sample size or failsafe N. If this number is relatively
small, then there is cause for concern. If this number is large, one might be more confident that the
effect, although possibly inflated by the exclusion of some studies, is, nevertheless, not zero (Zakzanis,
2001). This approach is limited in two important ways (McDaniel et al., 2006). First, it assumes that
the effect size of the hidden studies is zero, rather than considering the possibility that some of the
studies could have an effect in the reverse direction or an effect that is small but not zero. Therefore,
the number of studies required to nullify the effect may be different than the failsafe N, either larger or
smaller. Second, this approach focuses on statistical significance rather than practical or substantive
significance (effect sizes). That is, it may allow one to assert that the mean effect size is not zero, but it
does not provide an estimate of what the effect size might be (how it has changed in size) after the
missing studies are included (Becker, 1994, Becker, 2005). Other limitations include the assumption
that excluded studies show a null result whereas many may, instead, show a result in the opposite
direction and the lack of a definition regarding what is a tolerable failsafe N value (Mullen, Muellerleile
and Bryant, 2001, Aguinis, Pierce, Bosco, Dalton and Dalton, 2011).

Scargle (2000) and Schonemannand Scargle (2008) point out the fundamental critique of the fail-safe
number: it treats the file drawer of unpublished studies as unbiased by assuming that their average Z
value is zero. But if only 5% of studies that show Type I errors were published, the mean Z value of the
remaining unpublished studies cannot be zero but must be negative. Consequently, the authors advocate
that the fail-safe number is a gross overestimate of the number of unpublished studies required to bring
the mean Z value of published studies to an insignificant level. In contrast to Rosenthal and Rubin
(1978) and Rosenthal (1979), Scargle (2000, pp. 101) found out that the fail-safe number is large only

if the significance level corresponding to Z, of published studies is >2 and the publication bias



probability is close to zero. Hence, the true fail safe number is almost never as large as Rosenthal’s fail-
safe number. Moreover, Schonemann and Scargle (2008) gave a generalization of Scargle’s model, not
being bound to any distributional assumptions of Z resulting in the same conclusions.

When comparing Stouffer’s method with existing methods, it is notable that meta-analysis is usually
done by identification of a common measure of effect size, of which a weighted average might be the
output of a meta-analysis. The weighting might be related to sample sizes within the individual studies
(Whitehead and Whitehead, 1991, Hedges and Vevea, 1998). More generally there are other differences
between the studies that need to be allowed for, but the general aim of a meta-analysis is to more
powerfully estimate the true effect size as opposed to a less precise effect size derived in a single study
under a given single set of assumptions and conditions (Rothman et al., 2008). The two commonest
methods are fixed effects and random effects models, which focus on the effect sizes from each study
rather than the Z values — as Stouffer’s method does. Testing the overall hypothesis of a significant
effect is done with the Wald test on the meta-analytic mean (which is in essence a weighted mean of
the effect sizes).

Stouffer’s method belongs to a group of methods performing meta-analysis by pooling p values. These
methods are summarised in Rosenthal (1978) and most commonly include Winer’s method of adding
the t-test statistics values (Winer, 1962), and Fisher’s method of adding the logged p-values (Fisher,
1948). Combining p-values from multiple studies has two major advantages (e.g. compared with
another popular category of combining effects sizes below), including its simplicity and extensibility to
different kinds of outcome variables. When the outcome variable is not binary (e.g. multi-class,
continuous or censored survival), effects sizes may not be well defined, while association p-values can
still be calculated (Tseng, Ghosh and Feingold, 2012). Limitations of these methods include
vulnerability to criticisms of the individual studies being pooled, difficulty in handling the file drawer
problem, and vague conclusions (Darlington and Hayes, 2000).

Hence, for many fields Rosenthal’s fail-safe number remains the gold standard to assess publication
bias, since its presentation is conceptually simple and eloquent. In addition, it is computationally easy

to perform. In the next section we introduce necessary components to estimate its statistical distribution.



3. Distribution for the estimator of Rosenthal’s Ng
First we give the definition of the folded normal distribution, needed for the estimation of Rosenthal’s

Nr distribution.

Definition 1:  The folded normal distribution is a probability distribution related to the normal

distribution. Given a normally distributed random variable X with mean & and variance w’,

the random variable Y = |X| has a folded normal distribution (Elandt, 1961, Leone, Nelson and

Nottingham, 1961, Johnson, Kotz and Balakrishnan, 1994, Tsagris, Beneki and Hassani, 2014).
Remark 1: The folded normal distribution has the following properties:

a) Probability density function (PDF):

f,(y)= w\/lg exp{— t ;a_)f)z } t—r eXp[— (yz;f)z} for y>0
b) E[Y]= onf2/mexp(- €2/ 20% )+ ElL- 20(~ &/ )]

Var(Y)= &% + 0 — fo2/mexp(- €2 /202 )+ ElL- 20(~ )|
where @(-) denotes the cumulative distribution function (CDF) of a standard normal distribution.

Remark 2: When & =0, thedistribution of Y is a half-normal distribution, which is identical to

the truncated normal distribution, with left truncation point 0 and no right truncation point. For this
distribution we have

2
V2 exp(— y

N T 20

a) f,(y)= 2],1‘or y>0

b) E[V]=wy2/n, Var(Y)=w?(1-2/7)

Next, we state the following proposition.



Proposition 1: The Z, in Rosenthal’s Ng estimator (expressions 1 and 2) are derived from a half

normal distribution, based on a standard normal distribution.
Support: When a researcher begins to perform a meta-analysis, the sample of studies is drawn from
those studies that are already published. So the sample is most likely biased by some sort of selection

bias, produced via a specific selection process (Mavridis, Sutton, Cipriani and Salanti, 2013). Thus,
although when we study Rosenthal’s Nr assumingthatall Z; are drawn from the normal distribution,

they are in essence drawn from a truncated normal distribution. But at which point is this distribution

truncated? We would like to advocate that the half normal distribution, based on a standard normal
distribution is the one best representing the Z; Rosenthal uses to compute his file drawer Nr. The
reasons for this are:

1. Firstly, to assume that all Z, are of the same sign does not impede the significance of the results
from each study. That is the test is significant when either Z, >Z _,, or Z, <Z, ,, occurs.

2. However, when a researcher begins to perform a meta-analysis of studies, many times Z; can be
either positive or negative. Although this is true, when the researcher is interested in doing a meta-

analysis, usually the Z; that have been published are indicative of a significant effect of the same
direction (thus Z; have the same sign) or are at least indicative of such an association without being

statistically significant; hence, producing Z, of the same sign but not producing significance (e.g. the

confidence interval of the effect might include the null value).

3. There will certainly be studies which produce a totally opposite effect, thus producing an effect of
opposite direction; but these will likely be a minority of the studies. Also there is the case that these
othersigned Z; are not significant.

Hence, we next discuss the statistical estimation of this distribution. We first prove the following

Lemma:



Lemma 1: The sum of K i.i.d. half normal distributions follows an asymptotic normal

distribution.

Proof: Let X, for i=12,...,i,...,k follow a half normal distribution derived from the normal

distribution N(O,oz). Then, according to Definition 1, we have E[X;]=0,2/z and

Var(X,)=o?(1-2/x). According to the Central Limit Theorem we have:
k

"X, > Nlkoy2/z, ko2 (1-2/7))

i=1

Next, we perform the following steps to compute the distribution for the estimator of N :

Step 1. From Proposition 1, Z,,Z,,...,Z;,...,Z, inthe formula of the estimator NR [equation (2)]

are half normally distributed with 62=1. So according to Lemma 1, we have
k

5=>7, 5Nk 2/z. ki-2/7)) @)

i=1

For simplicity let 4 =K\2/7 and 6% = k(1—2/7r). So the PDF of S is

(S—ﬂ)z}

1
fs(s):\/2 2exp{— oo
o

(4)

k
Rosenthal’s expressions (1) and (2) create some ambiguity regarding the sign of S :ZZi . The
i=1

distribution for the estimator of Rosenthal’s N can be retrieved from a truncated version of (4) or

from the folded normal distribution of (4). We describe both approaches below.

3.1 1st Approach: Derivation from a Truncated Normal Distribution

Step 2a. From equation (1) we get that
S=Z_Ng+k 5)

In this approach we advocate that Rosenthal’s equations (1) and (2) implicitly impose two conditions

which must be taken into account when we seek to estimate the distribution of N,

9



S>0 (6)
Ng >0 @
Expression (6) is justified by the fact that the right hand side of (5) is positive, so then S>0.
Expression (7) is justified by the fact that N expresses the number of studies, so it must be at least 0

. Hence, expression (6) and (7) are satisfied when S is a truncated normal random variable, let it be

S",suchthat S~ > Za\/E. So the PDF of S™ then becomes
* 2
fo. (s*)= ;exp{—m}, s'>7 Jk (8)

egzﬂ_

o

wher

Then, we have

: = exp
’ ZCD(X)\/ZﬂO'Z (ng +Kk) 20°

fi. (Ng) L —(Z““nR+k_”)2 N, =0 (9)

The characteristic function is

2.
of 4t Z,exp z’uiltz_— kit
o, Z,-2¢°lt

. (t)=ElexplitN; )|= 10
‘//NR() [ p( R)] CD(?») (Zj-ZGZit)w (10)
) 2uoit Z:
where TV S T T 2 e
. ,uz+0'2
From (9) we get E[NR]=T—k+g (11)

a

#2) olu+z.k)
(1) Z?

and ¢(-) is the PDF of the standard normal distribution. Also,

2 2 2
Var(N i ): Mﬂ) s (12)

Z4

a

where € =

10



where 5 94) [03(5u+za&)2 _(qﬁ(z) . ij az(u+za&)2}_
D(A)

For proofs of expressions (10), (11) and (12), see Fragkos, Tsagris and Frangos (2014).

3.2 2nd Approach: Derivation from the Folded Normal Distribution

Step 2b. In this approach we advocate that Rosenthal’s equations (1) and (2) suggest that

S=+7 /N, +k (13)

This leads to

fo(s)= ! . {exp{— %}4—%{— (S;“—‘;)z}} for s>0  (14)

o

Then, we have

fo. () 2o exp{ (Za i +2k _ﬂ)ziJrexp[ (Z“ Ve *K +’U)Z] , Ny >-k (15)

e B 2\/2710'2(nR + k) 20 20°

The characteristic function is

2.
Z, exp(’u'tz_ - kitJ

Z%-26%t
Vi, (t): (22 ] 262“)1/2 (16)
and the expectation and variance are
R 2 + 2
E[NR]zﬂzf —k (17)
- 2(72(2,u2 +0'2)
Var(N R ): 7 (18)

For proofs of expressions (16), (17) and (18), see Fragkos et al. (2014).
The exact PDF of NR for various numbers of studies k is shown in Figure 1. When the number of

studiesis very low, thereis a discrepancy between the two densities. However, for a number of studies

equal to 15 or more, the two densities have very small differences.

11



---Figure 1 here---
3.3 Comments
Each approach has advantages and limitations.

J The first approach truncates in order to satisfy Rosenthal’s conditions.
o The support of NR based on the second approach is (- k,+oo), which is contrary to the

definition of Ny, since it allows for negative values of Nj.

o The PDFs of both approaches are asymptotically identical. This result extends to the
expectation and variance for both approaches.

For a significantly large n we have that q)(l)zl. So (8) becomes

Z k —
fo (ng)= Z, exp —( AL +2 ’u)z , Ny >0 (19)
" 2\/27z0'2 (ng +k) 20
Z .\ k
Also from (15) we observe that exp —( « Ve +2 +ﬂ)2 ~0 for a significantly large K. So

20

expression (15) becomes identical to (19) with n; > -k inthiscase.
. If all the effects are insignificant and equal to zero (Zi = 0), then N, = —k . So, theoretically

it is possible for N, to be negative but in practice we would say it is almost surely impossible.

In the next section we present empirical results which support our results.

4., Simulations

In the present section we present empirical simulations computedin R (see Supplementary Materials),

supporting Lemma 1 and supporting the proposed distribution for Rosenthal’s N R-

4.1 Simulation Results for Lemma 1

12



We examined the validity of Lemma 1 empirically. For a range of sample sizes studies we generated
random values from the half normal distribution. Each time we calculated the sum of these values and
repeated this procedure 10,000,000 times for every chosen sample size. The histogram of these
10,000,000 sumsis shown in Figure 2 along with the curve of the asymptotic normal density. We can
see that the central limit theorem produces reasonable results indicating that it can be used as an

approximation to the distribution of the sum of half normal variables.

---Figure 2 here---

4.2 Simulation Results for the Distribution of Rosenthal’s N R

We examined the two distributions based on simulated values of NR . For a selection of sample sizes

we simulated 1,000,000 values of this estimator based on the first approach and based on the second
approach. The assumption of the first approach is the condition imposed by Rosenthal; the estimator

cannot take negative values. For this reason, we kept only the sums of simulated values greater than

Za\/E. This leads to expression (8). The results are plotted in Figure 3. When the number of studies

used in the meta-analysis is as low as 5, both distributions do not seem to provide an adequate fit for
the simulated values. The first approach however seems to perform better than the second approach.

Both approaches agree as the number of studies increases, starting from 15.

---Figure 3 here---

The second approach gives a range of values of NR from (— k,+oo). The second approach does not
have the non-negative values constraint, so we kept all of the simulated values. The results are shown
in Figure 4, where we can see that when the number of published studies is equal to 5, the second
approach fits the simulated values better. When the number of studies though is 15 or more, the two

densities become indistinguishable.

13



---Figure 4 here---

5. Convergence
Simulations were conducted to calculate the estimator’s rate of convergence numerically. For a range
of values of k, from 10 up to 5000 increasing by steps of 10, we performed 10,000 simulations

estimating the value of N . Then, theirmean value was calculated along with the absolute error

(20)

where E[NRJ is the true value of the estimator as calculated using (17) and the ‘hat’ indicates its

estimated value. It does not matter whether equation (11) or (17) is used for the true value of the
estimator because the two distributions (9) and (15) become identical after 20 or 25 number of studies.
The reason for using the absolute relative error and not simply the absolute error is that the estimator
depends on the number of studies. The logarithm of the relative absolute error (20) against the logarithm
of the number of studies is presented in Figure 5. The least squares equation is

N, —E[N, ]

log
EIN,

= -4.662—-0.539l0g(k) (21)

where k is the number of studies. The slope of the decreasing line is equal to -0.539 and its 95%

confidence interval is (-0.642, -0.436). Thus, we have grounds to assert that the rate of convergence of
the absolute relative error is of order O(k’w). Figure 6 presents the ratio of the mean of the 10,000
. . N, . . -
estimated values from their true value E[m as a function of the number of studies, clearly depicting
R

that theratiois very close to 1.

---Figure 5 here---

---Figure 6 here---

6. Concluding Remarks

14



In the present we described the statistical distribution for the estimator of Rosenthal’s file drawer
number. This is the first paper to provide such a description which is supported by empirical results
from simulations. The estimator seems to perform efficiently when a meta-analysis includes over 15
studies, while it doesn’t seem to perform optimally in meta-analyses with small number of studies
analysed. The convergence of the estimator is also satisfactory and is shown (numerically) to be of order
o(k ).

The present approach however has certain limitations. We based our analysis on Proposition 1, that the
Zis in Rosenthal’s estimator are half normally distributed. First of all, this might inflate the estimator,
since it considers only the positive values of Zi. Secondly this might not be most optimal distribution to
sample from. We are currently performing research considering that the Zis are retrieved from a skew
normal distribution (Azzalini and Dalla Valle, 1996, Azzalini and Capitanio, 1999). This approach
might require fewer assumptions and the dynamic properties of the skew normal distribution might

allow for more general results.
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Figures

Figure 1. Exact distributions of approaches 1 and 2 for the PDFs of Rosenthal’s Nr. The dashed line
represents the PDF for approach 1 (9) and the solid line indicates the PDF for approach 2 (15).
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Figure 2. Histograms of the sums of half normal variables from 10,000,000 simulations. The solid line
corresponds to the asymptotic normal distribution (3).

o~
o = 7] *
] o
= A o | A 8 _ r
o o
0
s ] 8 | 0
S) S A
o
2 2 o 2
G o 5 o - G
§ S § < £ 3
g s =
O_ —
o
w0
3 o S
o - IS
o
o (=3 o
S S S -
2 T T T 1 < T T T 1 e I T T T T 1
5 10 15 20 10 20 30 40 20 30 40 50 60 70
sample size=10 sample size=30 sample size=50
%
QL 7 o
P N
g _ \ 3 f \ 5 f&‘
3 \ i
[ : ]
o o -
S 3
5 S)
2 © 2 2 o
) ] 8 a o
o S —
= & g |
=1 o
§ - g g
S T T T T T 1 ° I | S T T T T 1
50 60 70 80 90 100 350 400 450 700 750 800 850 900
sample size=100 sample size=500 sample size=1000

19



Figure 3. Histograms of 1,000,000 simulated values with ny >0. The dashed line represents the exact
PDF for approach 1 (9) and the solid line indicates the exact PDF for approach 2 (15).
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Figure 4. Histograms of 1,000,000 simulated values with n_ >-k . The dashed line represents the

exact PDF for approach 1 (9) and the solid line indicates the exact PDF for approach 2 (15).
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Figure 5. Logarithm of the relative absolute error (20) against the logarithm of the number of studies.
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Figure 6. The ratio R_.against the number of studies.
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