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The purpose of the present paper is to assess the efficacy of confidence intervals for Rosenthal’s fail-safe number. Although
Rosenthal’s estimator is highly used by researchers, its statistical properties are largely unexplored. First of all, we developed
statistical theorywhich allowedus to produce confidence intervals for Rosenthal’s fail-safe number.Thiswas produced by discerning
whether the number of studies analysed in a meta-analysis is fixed or random. Each case produces different variance estimators.
For a given number of studies and a given distribution, we provided five variance estimators. Confidence intervals are examined
with a normal approximation and a nonparametric bootstrap. The accuracy of the different confidence interval estimates was then
tested by methods of simulation under different distributional assumptions. The half normal distribution variance estimator has
the best probability coverage. Finally, we provide a table of lower confidence intervals for Rosenthal’s estimator.

1. Introduction

Meta-analysis refers to methods focused on contrasting and
combining results from different studies, in the hope of iden-
tifying patterns among study results, sources of disagreement
among those results, or other interesting relationships that
may come to light in the context of multiple studies [1]. In
its simplest form, this is normally done by identification of a
common measure of effect size, of which a weighted average
might be the output of a meta-analysis. The weighting might
be related to sample sizes within the individual studies [2, 3].
More generally there are other differences between the studies
that need to be allowed for, but the general aim of a meta-
analysis is to more powerfully estimate the true effect size
as opposed to a less precise effect size derived in a single
study under a given single set of assumptions and conditions
[4]. For reviews on meta-analysis models, see [2, 5, 6]. Meta-
analysis can be applied to various effect sizes collected from
individual studies. These include odds ratios and relative
risks; standardized mean difference, Cohen’s 𝑑, Hedges’ 𝑔,
and Glass’s Δ; correlation coefficient and relative metrics;

sensitivity and specificity from diagnostic accuracy studies;
and𝑃-values. Formore comprehensive reviews see Rosenthal
[7], Hedges and Olkin [8], and Cooper et al. [9].

2. Publication Bias

Publication bias is a threat to any research that attempts to use
the published literature, and its potential presence is perhaps
the greatest threat to the validity of a meta-analysis [10].
Publication bias exists because research with statistically sig-
nificant results is more likely to be submitted and published
than work with null or nonsignificant results. This issue was
memorably termed as the file-drawer problem by Rosenthal
[11]; nonsignificant results are stored in file drawers without
ever being published. In addition to publication bias, other
related types of bias exist including pipeline bias, subjective
reporting bias, duplicate reporting bias, or language bias (see
[12–15] for definitions and examples).

The implication of these various types of bias is that
combining only the identified published studies uncritically
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may lead to an incorrect, usually over optimistic, conclusion
[10, 16]. The ability to detect publication bias in a given
field is a key strength of meta-analysis because identification
of publication bias will challenge the validity of common
views in that area and will spur further investigations [17].
There are two types of statistical procedures for dealing with
publication bias inmeta-analysis: methods for identifying the
existence of publication bias and methods for assessing the
impact of publications bias [16]. The first includes the funnel
plot (and other visualisation methods such as the normal
quantile plot) and regression/correlation-based tests, while
the second includes the fail-safe (also called file-drawer)
number, the trim and fill method, and selection model
approaches [10, 14, 18]. Recent approaches include the test for
excess significance [19] and the 𝑝-curve [20].

Themost commonly usedmethod is the visual inspection
of a funnel plot. This assumes that the results from smaller
studies will be more widely spread around the mean effect
because of larger random error. The next most frequent
method used to assess publication bias is Rosenthal’s fail-safe
number [21]. Two recent reviews examining the assessment
of publication bias in psychology and ecology reported that
funnel plots were the most frequently used (24% and 40%
resp.), followed by Rosenthal’s fail-safe number (22% and
30%, resp.).

2.1. Assessing Publication Bias by Computing the Number
of Unpublished Studies. Assessing publication bias can be
performed by trying to estimate the number of unpublished
studies in the given area a meta-analysis is studying.The fail-
safe number represents the number of studies required to
refute significant meta-analytic means. Although apparently
intuitive, it is in reality difficult to interpret not only because
the number of data points (i.e., sample size) for each of 𝑘 stud-
ies is not defined, but also because no benchmarks regarding
the fail-safe number exist, unlike Cohen’s benchmarks for
effect size statistics [22]. However, these versions have been
heavily criticised, mainly because such numbers are often
misused and misinterpreted [23]. The main reason for the
criticism is that, depending on which method is used to esti-
mate the fail-safe𝑁, the number of studies can greatly vary.

Although Rosenthal’s fail-safe number of publication bias
was proposed as early as 1979 and is frequently cited in the
literature [11] (over 2000 citations), little attention has been
given to the statistical properties of this estimator. This is the
aim of the present paper, which is discussed in further detail
in Section 3.

Rosenthal [11] introduced what he called the file drawer
problem. His concern was that some statistically nonsignifi-
cant studies may be missing from an analysis (i.e., placed in a
file drawer) and that these studies, if included, would nullify
the observed effect. By nullify, he meant to reduce the effect
to a level not statistically significantly different from zero.
Rosenthal suggested that rather than speculate on whether
the file drawer problem existed, the actual number of studies
that would be required to nullify the effect could be calculated
[26]. This method calculates the significance of multiple
studies by calculating the significance of the mean of the
standard normal deviates of each study. Rosenthal’s method

calculates the number of additional studies𝑁
𝑅
, with themean

null result necessary to reduce the combined significance to
a desired 𝛼 level (usually 0.05).

The necessary prerequisite is that each study examines a
directional null hypothesis such that the effect sizes 𝜃

𝑖
from

each study are examined under 𝜃
𝑖
≤ 0 or (𝜃

𝑖
≥ 0). Then the

null hypothesis of Stouffer [27] test is

𝐻
0
: 𝜃
1
= ⋅ ⋅ ⋅ = 𝜃

𝑘
= 0. (1)

The test statistic for this is

𝑍
𝑆
=
∑
𝑘

𝑖=1
𝑍
𝑖

√𝑘
, (2)

with 𝑧
𝑖
= 𝜃

𝑖
/𝑠
𝑖
, where 𝑠

𝑖
are the standard errors of 𝜃

𝑖
. Under

the null hypothesis we have 𝑍
𝑆
∼ 𝑁(0, 1) [7].

So we get that the number of additional studies 𝑁
𝑅
,

with mean null result necessary to reduce the combined
significance to a desired 𝛼 level (usually 0.05 [7, 11]), is found
after solving

𝑍
𝛼
=

∑
𝑘

𝑖=1
𝑍
𝑖

√𝑁
𝑅
+ 𝑘

. (3)

So,𝑁
𝑅
is calculated as

𝑁
𝑅
=
(∑

𝑘

𝑖=1
𝑍
𝑖
)
2

𝑍2
𝛼

− 𝑘, (4)

where 𝑘 is the number of studies and 𝑍
𝛼
is the one-tailed

𝑍 score associated with the desired 𝛼 level of significance.
Rosenthal further suggested that if 𝑁

𝑅
> 5𝑘 + 10, the

likelihood of publication bias would be minimal.
Cooper [28] and Cooper and Rosenthal [29] called this

number the fail-safe sample size or fail-safe number. If this
number is relatively small, then there is cause for concern.
If this number is large, one might be more confident that
the effect, although possibly inflated by the exclusion of
some studies, is, nevertheless, not zero [30]. This approach
is limited in two important ways [26, 31]. First, it assumes
that the association in the hidden studies is zero, rather than
considering the possibility that some of the studies could have
an effect in the reverse direction or an effect that is small
but not zero. Therefore, the number of studies required to
nullify the effect may be different than the fail-safe number,
either larger or smaller. Second, this approach focuses on
statistical significance rather than practical or substantive
significance (effect sizes). That is, it may allow one to assert
that the mean correlation is not zero, but it does not provide
an estimate of what the correlation might be (how it has
changed in size) after themissing studies are included [23, 32–
34]. However, for many fields it remains the gold standard to
assess publication bias, since its presentation is conceptually
simple and eloquent. In addition, it is computationally easy
to perform.

Iyengar and Greenhouse [12] proposed an alternative
formula for Rosenthal’s fail-safe number, in which the sum
of the unpublished studies’ standard variates is not zero. In
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this case the number of unpublished studies 𝑛
𝛼
is approached

through the following equation:

𝑍
𝛼
=
∑
𝑘

𝑖=1
𝑍
𝑖
+ 𝑛

𝛼
𝑀(𝛼)

√𝑛
𝛼
+ 𝑘

, (5)

where 𝑀(𝛼) = −𝜙(𝑧
𝛼
)/Φ(𝑧

𝛼
) (this results immediately

from the definition of truncated normal distribution) and
𝛼 is the desired level of significance. This is justified by
the author that the unpublished studies follow a truncated
normal distribution with 𝑥 ≤ 𝑧

𝛼
. Φ(⋅) and 𝜙(⋅) denote the

cumulative distribution function (CDF) and probability dis-
tribution function (PDF), respectively, of a standard normal
distribution.

There are certain other fail-safe numbers which have been
described, but their explanation goes beyond the scope of
the present article [35]. Duval and Tweedie [36, 37] present
three different estimators for the number of missing studies
and the method to calculate this has been named Trim
and Fill Method. Orwin’s [38] approach is very similar to
Rosenthal’s [11] approach without considering the normal
variates but taking Cohen’s 𝑑 [22] to compute a fail-safe
number. Rosenberg’s fail-safe number is very similar to
Rosenthal’s and Orwin’s fail-safe number [39]. Its difference
is that it takes into account the meta-analytic estimate under
investigation by incorporating individual weights per study.
Gleser and Olkin [40] proposed a model under which the
number of unpublished studies in a field where a meta-
analysis is undertaken could be estimated. The maximum
likelihood estimator of their fail-safe number only needs the
number of studies and the maximum 𝑃 value of the studies.
Finally, the Eberly and Casella fail-safe number assumes a
Bayesian methodology which aims to estimate the number of
unpublished studies in a certain field where a meta-analysis
is undertaken [41].

The aim of the present paper is to study the statistical
properties of Rosenthal’s [11] fail-safe number. In the next
section we introduce the statistical theory for computing
confidence intervals for Rosenthal’s [11] fail-safe number.
We initially compute the probability distribution function
of 𝑁̂

𝑅
, which gives formulas for variance and expectation;

next, we suggest distributional assumptions for the standard
normal variates used in Rosenthal’s fail-safe number and
finally suggest confidence intervals.

3. Statistical Theory

The estimator 𝑁̂
𝑅

of unpublished studies is approached
through Rosenthal’s formula:

𝑁̂
𝑅
=
(∑

𝑘

𝑖=1
𝑍
𝑖
)
2

𝑍2
𝛼

− 𝑘. (6)

Let 𝑍
𝑖
, 𝑖 = 1, 2, . . . , 𝑖, . . . , 𝑘, be i.i.d. random variables with

𝐸[𝑍
𝑖
] = 𝜇 and Var[𝑍

𝑖
] = 𝜎

2. We discern two cases:

(a) 𝑘 is fixed or
(b) 𝑘 is random, assuming additionally that 𝑘 ∼ Pois(𝜆).

This is reasonable since the number of studies

included in a meta-analysis is like observing counts.
Other distributions might be assumed, such as the
Gamma distribution, but this would require more
information or assumptions to compute the param-
eters of the distribution.

In both cases, estimators of 𝜇, 𝜎2, and 𝜆 can be calcu-
lated without distributional assumptions for the 𝑍

𝑖
with

the method of moments or with distributional assumptions
regarding the 𝑍

𝑖
.

3.1. Probability Distribution Function of 𝑁̂
𝑅

3.1.1. Fixed 𝑘. We compute the PDF of 𝑁̂
𝑅
by following the

next steps.

Step 1. 𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑖
, . . . , 𝑍

𝑘
in the formula of the estimator

𝑁̂
𝑅
(6) are i.i.d. distributed with 𝐸[𝑍

𝑖
] = 𝜇 and Var[𝑍

𝑖
] = 𝜎

2.
Let 𝑆 = ∑

𝑘

𝑖=1
𝑍
𝑖
and according to the Lindeberg-Lévy Central

Limit Theorem [42], we have

√𝑘(
𝑆

𝑘
− 𝜇)

𝑑

󳨀→ 𝑁(0, 𝜎
2
) 󳨐⇒ 𝑆

𝑑

󳨀→ 𝑁(𝑘𝜇, 𝑘𝜎
2
) . (7)

So the PDF of 𝑆 is

𝑓
𝑆 (𝑠) =

1

√2𝜋𝑘𝜎2
exp[−

(𝑠 − 𝑘𝜇)
2

2𝑘𝜎2
] . (8)

Step 2. The PDF of Rosenthal’s 𝑁̂
𝑅
can be retrieved from a

truncated version of (8). From (3), we get that

𝑆 = 𝑍
𝛼
√𝑁̂

𝑅
+ 𝑘. (9)

We advocate that Rosenthal’s equations (3) and (9) implicitly
impose two conditions which must be taken into account
when we seek to estimate the distribution of𝑁

𝑅
:

𝑆 ≥ 0, (10)

𝑁̂
𝑅
≥ 0. (11)

Expression (10) is justified by the fact that the right hand side
of (9) is positive, so then 𝑆 ≥ 0. Expression (11) is justified by
the fact that𝑁

𝑅
expresses the number of studies, so it must be

at least 0. Hence, expressions (10) and (11) are satisfied when
𝑆 is a truncated normal random variable.

The truncated normal distribution is a probability distri-
bution related to the normal distribution. Given a normally
distributed random variable𝑋withmean 𝜇

𝑡
and variance 𝜎2

𝑡
,

let it be that𝑋 ∈ (𝑎, 𝑏), −∞ ≤ 𝑎 ≤ 𝑏 ≤ ∞.Then𝑋 conditional
on 𝑎 < 𝑋 < 𝑏 has a truncated normal distribution with PDF:
𝑓
𝑋
(𝑥) = (1/𝜎)𝜙((𝑥−𝜇

𝑡
)/𝜎

𝑡
)/(Φ((𝑏−𝜇

𝑡
)/𝜎

𝑡
)−Φ((𝑎 − 𝜇

𝑡
)/𝜎

𝑡
)),

for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑓
𝑋
(𝑥) = 0 otherwise [43].

Let it be 𝑆∗, such that 𝑆∗ ≥ 𝑍
𝛼
√𝑘. So the PDF of 𝑆∗ then

becomes

𝑓
𝑆
∗ (𝑠

∗
) =

1

Φ (𝜆∗) √2𝜋𝑘𝜎2
exp[−

(𝑠
∗
− 𝑘𝜇)

2

2𝑘𝜎2
] ,

𝑠
∗
≥ 𝑍

𝛼
√𝑘,

(12)

where 𝜆∗ = (√𝑘𝜇 − 𝑍
𝛼
)/𝜎.
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Then, we have

𝑓
𝑁̂
𝑅

(𝑛
𝑅
) = 𝑓

𝑆
∗ (𝑠

∗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑆
∗

𝑑𝑁
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(9),(12)

󳨐󳨐󳨐󳨐󳨐⇒ 𝑓
𝑁̂
𝑅

(𝑛
𝑅
)

=
𝑍
𝛼

2Φ (𝜆∗) √2𝜋𝑘𝜎2 (𝑛𝑅 + 𝑘)

× exp[

[

−
(𝑍

𝛼
√𝑛

𝑅
+ 𝑘 − 𝑘𝜇)

2

2𝑘𝜎2
]

]

, 𝑛
𝑅
≥ 0.

(13)

The characteristic function is
𝜓
𝑁̂
𝑅

(𝑡) = 𝐸 [exp (𝑖𝑡𝑁
𝑅
)]

=
Φ ((𝜇

1
+ 𝜆

∗
) /𝜎

1
)

Φ (𝜆∗)

⋅
𝑍
𝛼
exp (𝑘2𝜇2𝑖𝑡/ (𝑍2

𝛼
− 2𝑘𝜎

2
𝑖𝑡) − 𝑘𝑖𝑡)

(𝑍2
𝛼
− 2𝑘𝜎2𝑖𝑡)

1/2
,

(14)

where 𝑖 = √−1, 𝜇
1
= 2𝑘√𝑘𝜇𝜎𝑖𝑡/(𝑍

2

𝛼
−2𝑘𝜎

2
𝑖𝑡), 𝜎2

1
= 𝑍

2

𝛼
/(𝑍

2

𝛼
−

2𝑘𝜎
2
𝑖𝑡).
From (14) we get

𝐸 [𝑁̂
𝑅
] =

𝑘
2
𝜇
2
+ 𝑘𝜎

2

𝑍2
𝛼

− 𝑘 + 𝜀, (15)

where 𝜀 = (𝜙(𝜆
∗
)/Φ(𝜆

∗
)) ⋅ (𝑘𝜎(√𝑘𝜇 + 𝑍

𝛼
)/𝑍

2

𝛼
).

Also,

Var [𝑁̂
𝑅
] =

2𝑘
2
𝜎
2
(2𝑘𝜇

2
+ 𝜎

2
)

𝑍4
𝛼

+ 𝛿
∗
, (16)

where

𝛿
∗
=
𝜙 (𝜆

∗
)

Φ (𝜆∗)

[

[

𝑘
2
𝜎
3
(5√𝑘𝜇 + 𝑍

𝑎
)
2

𝑍4
𝛼

−(
𝜙 (𝜆

∗
)

Φ (𝜆∗)
+ 𝜆

∗
)
𝑘
3/2
𝜎
2
(√𝑘𝜇 + 𝑍

𝑎
)
2

𝑍4
𝛼

]

]

.

(17)
Proofs for expressions (14), (15), and (16) are given in the

Appendix.

Comments. Consider the following:
(1) For a significantly large 𝑘 we have that Φ(𝜆∗) ≈ 1. So

(13) becomes

𝑓
𝑁̂
𝑅

(𝑛
𝑅
) =

𝑍
𝛼

2√2𝜋𝑘𝜎2 (𝑛
𝑅
+ 𝑘)

× exp[

[

−
(𝑍

𝛼
√𝑛

𝑅
+ 𝑘 − 𝑘𝜇)

2

2𝑘𝜎2
]

]

,

𝑛
𝑅
≥ 0.

(18)

Also we get

𝐸 [𝑁̂
𝑅
] =

𝑘
2
𝜇
2
+ 𝑘𝜎

2

𝑍2
𝛼

− 𝑘, (19)

Var [𝑁̂
𝑅
] =

2𝑘
2
𝜎
2
(2𝑘𝜇

2
+ 𝜎

2
)

𝑍4
𝛼

. (20)

(2) A limiting element of this computation is that 𝑁̂
𝑅

takes discrete values because it describes number of
studies, but it has been described by a continuous
distribution.

3.1.2. Random 𝑘. It is assumed that 𝑘 ∼ Pois(𝜆). So taking
into account the result from the distribution of 𝑁̂

𝑅
for a fixed

𝑘 we get that the joint distribution of 𝑘 and 𝑁̂
𝑅
is

𝑓
𝑁̂
𝑅
,𝑛
(𝑛
𝑅
, 𝑘) = 𝑓

𝑁̂
𝑅

(𝑛
𝑅
| 𝑘 = 𝑘) ⋅ 𝑝 (𝑘 = 𝑘)

󳨐⇒ 𝑓
𝑁̂
𝑅
,𝑛
(𝑛
𝑅
, 𝑘)

=
𝑍
𝛼

2Φ (𝜆∗) √2𝜋𝑘𝜎2 (𝑛𝑅 + 𝑘)

× exp[

[

−
(𝑍

𝛼
√𝑛

𝑅
+ 𝑘 − 𝑘𝜇)

2

2𝑘𝜎2
− 𝜆]

]

⋅
𝜆
𝑘

𝑘!
,

𝑛
𝑅
≥ 0, 𝑘 = 0, 1, 2, . . . .

(21)

3.2. Expectation and Variance for Rosenthal’s Estimator 𝑁̂
𝑅

(a) When 𝑘 is fixed, expressions (19) and (20) denote the
expectation and variance, respectively, for 𝑁̂

𝑅
. This

is derived from the PDF of 𝑁̂
𝑅
; an additional proof

without reference to the PDF is given in theAppendix.
(b) When 𝑘 is random with 𝑘 ∼ Pois(𝜆), the expectation

and variance of 𝑁̂
𝑅
are

𝐸 [𝑁̂
𝑅
] =

𝜆
2
𝜇
2
+ 𝜆 (𝜇

2
+ 𝜎

2
)

𝑍2
𝛼

− 𝜆,

Var [𝑁̂
𝑅
] = ((4𝜆

3
+ 6𝜆

2
+ 𝜆) 𝜇

4

+ (4𝜆
3
+ 16𝜆

2
+ 6𝜆) 𝜇

2
𝜎
2

+ (2𝜆
2
+ 3𝜆) 𝜎

4
)

× (𝑍
4

𝛼
)
−1

− 2 ⋅
(2𝜆

2
+ 𝜆) 𝜇

2
+ 𝜆𝜎

2

𝑍2
𝛼

+ 𝜆.

(22)

Proofs are given in the Appendix.

3.3. Estimators for 𝜇, 𝜎2, and 𝜆. Having now computed a
formula for the variance which is necessary for a confidence
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interval, we need to estimate 𝜇, 𝜎2, and 𝜆. In both cases, esti-
mators of𝜇,𝜎2, and𝜆 can be calculatedwithout distributional
assumptions for the 𝑍

𝑖
with the method of moments or with

distributional assumptions regarding the 𝑍
𝑖
.

3.3.1. Method of Moments [44]. When 𝑘 is fixed, we have

𝜇 =
∑
𝑘

𝑖=1
𝑍
𝑖

𝑘
, 𝜎̂

2
=
∑
𝑘

𝑖=1
𝑍
2

𝑖

𝑘
− (

∑
𝑘

𝑖=1
𝑍
𝑖

𝑘
)

2

. (23)

When 𝑘 is random, we have

𝜆̂ = 𝑘, 𝜇 =
∑
𝑘

𝑖=1
𝑍
𝑖

𝑘
,

𝜎̂
2
=
∑
𝑘

𝑖=1
𝑍
2

𝑖

𝑘
− (

∑
𝑘

𝑖=1
𝑍
𝑖

𝑘
)

2

.

(24)

3.3.2. Distributional Assumptions for the 𝑍
𝑖
. If we suppose

that the 𝑍
𝑖
follow a distribution, we would replace the

values of 𝜇 and 𝜎2 with their distributional values. Below we
consider special cases.

Standard Normal Distribution. The 𝑍
𝑖
follow a standard

normal distribution; that is, 𝑍
𝑖
∼ 𝑁(0, 1). This is the original

assumption for the 𝑍
𝑖
[11]. In this case we have

𝜆̂ = 𝑘, 𝜇 = 0, 𝜎
2
= 1. (25)

Although the origin of the𝑍
𝑖
is from the standard normal dis-

tribution, the studies in a meta-analysis are a selected sample
of published studies. For this reason, the next distribution is
suggested as better.

Half Normal Distribution.Here we propose that the𝑍
𝑖
follow

a half normal distribution HN(0, 1), which is a special case
of folded normal distribution. Before we explain the rational
of this distribution, a definition of this type of distribution is
provided. A half normal distribution is also a special case of
a truncated normal distribution.

Definition 1. The folded normal distribution is a probability
distribution related to the normal distribution. Given a
normally distributed random variable 𝑋 with mean 𝜇

𝑓
and

variance 𝜎2
𝑓
, the random variable𝑌 = |𝑋| has a folded normal

distribution [43, 45, 46].

Remark 2. The folded normal distribution has the following
properties:

(a) probability density function (PDF):

𝑓
𝑌
(𝑦) =

1

𝜎
𝑓
√2𝜋

exp[

[

−
(−𝑦 − 𝜇

𝑓
)
2

2𝜎2
𝑓

]

]

+
1

𝜎
𝑓
√2𝜋

exp[

[

−
(𝑦 − 𝜇

𝑓
)
2

2𝜎2
𝑓

]

]

,

for 𝑦 ≥ 0,

(26)

(b)

𝐸 [𝑌] = 𝜎
𝑓
√
2

𝜋
exp(

−𝜇
2

𝑓

2𝜎2
𝑓

) + 𝜇
𝑓
[1 − 2Φ(

−𝜇
𝑓

𝜎
𝑓

)] ,

Var [𝑌]

= 𝜇
2

𝑓
+ 𝜎

2

𝑓

− {𝜎
𝑓
√
2

𝜋
exp(

−𝜇
2

𝑓

2𝜎2
𝑓

) + 𝜇
𝑓
[1 − 2Φ(

−𝜇
𝑓

𝜎
𝑓

)]}

2

.

(27)

Remark 3. When𝜇
𝑓
= 0, the distribution of𝑌 is a half normal

distribution. This distribution is identical to the truncated
normal distribution, with left truncation point 0 and no right
truncation point. For this distribution we have the following.

(a) 𝑓
𝑌
(𝑦) = (√2/𝜎

𝑓
√𝜋) exp (−𝑦2/2𝜎2

𝑓
), for 𝑦 ≥ 0.

(b) 𝐸[𝑌] = 𝜎
𝑓
√2/𝜋, Var[𝑌] = 𝜎

2

𝑓
(1 − 2/𝜋).

Assumption 4. The𝑍
𝑖
in Rosenthal’s estimator𝑁

𝑅
are derived

from a half normal distribution, based on a normal distribu-
tion𝑁(0, 1).

Support. When a researcher begins to perform a meta-
analysis, the sample of studies is drawn from those studies
that are already published. So his sample is most likely
biased by some sort of selection bias, produced via a specific
selection process [47]. Thus, although when we study Rosen-
thal’s 𝑁

𝑅
assuming that all 𝑍

𝑖
are drawn from the normal

distribution, they are in essence drawn from a truncated
normal distribution.This has been commented on by Iyengar
and Greenhouse [12] and Schonemann and Scargle [48]. But
at which point is this distribution truncated? We would like
to advocate that the half normal distribution, based on a
normal distribution 𝑁(0, 1), is the one best representing the
𝑍
𝑖
Rosenthal uses to compute his fail-safe𝑁

𝑅
.The reasons for

this are as follows.

(1) Firstly, assuming that all 𝑍
𝑖
are of the same sign does

not impede the significance of the results from each
study. That is, the test is significant when either 𝑍

𝑖
>

𝑍
𝛼/2

or 𝑍
𝑖
< 𝑍

1−𝛼/2
occurs.

(2) However, when a researcher begins to perform a
meta-analysis of studies, many times 𝑍

𝑖
can be either

positive or negative. Although this is true, when
the researcher is interested in doing a meta-analysis,
usually the 𝑍

𝑖
that have been published are indicative

of a significant effect of the same direction (thus 𝑍
𝑖

have the same sign) or are at least indicative of such
an association without being statistically significant,
thus producing𝑍

𝑖
of the same sign but not producing

significance (e.g., the confidence interval of the effect
might include the null value).

(3) There will definitely be studies that produce a totally
opposite effect, thus producing an effect of opposite
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direction, but these will definitely be aminority of the
studies. Also there is the case that these other signed
𝑍
𝑖
are not significant.

Hence, in this case

𝜆̂ = 𝑘, 𝜇 = √
2

𝜋
, 𝜎

2
= 1 −

2

𝜋
. (28)

SkewNormal Distribution.Herewe propose that the𝑍
𝑖
follow

a skew normal distribution; that is, 𝑍
𝑖
∼ SN(𝜉, 𝜔, 𝛼).

Definition 5. The skew normal distribution is a continuous
probability distribution that generalises the normal distribu-
tion to allow for nonzero skewness. A random variable 𝑋
follows a univariate skew normal distribution with location
parameter 𝜉 ∈ 𝑅, scale parameter 𝜔 ∈ 𝑅

+, and skewness
parameter 𝛼 ∈ 𝑅 [49], if it has the density

𝑓
𝑋 (𝑥) =

2

𝜔
𝜙(

𝑥 − 𝜉

𝜔
)Φ(𝛼

𝑥 − 𝜉

𝜔
) 𝑥 ∈ 𝑅. (29)

Note that if 𝛼 = 0, the density of𝑋 reduces to the𝑁(𝜉, 𝜔
2
).

Remark 1. The expectation and variance of𝑋 are [49]

𝐸 [𝑋] = 𝜉 + 𝜔𝛿√
2

𝜋
, where 𝛿 = 𝛼

√1 + 𝛼2
,

Var (𝑋) = 𝜔
2
(1 −

2𝛿
2

𝜋
) .

(30)

Remark 2. Themethods of moments estimators for 𝜉, 𝜔, and
𝛿 are [50, 51]

𝜉 = 𝑚
1
− 𝑎

1
(
𝑚
3

𝑏
1

)

1/3

, 𝜔̃
2
= 𝑚

2
− 𝑎

2

1
(
𝑚
3

𝑏
1

)

2/3

,

𝛿 = [𝑎
2

1
+ 𝑚

2
(
𝑏
1

𝑚
3

)

2/3

]

−1/2

,

(31)

where 𝑎
1
= √2/𝜋, 𝑏

1
= (4/𝜋 − 1)𝑎

1
, 𝑚

1
= 𝑛

−1
∑
𝑛

𝑖=1
𝑋
𝑖
, 𝑚

2
=

𝑛
−1
∑
𝑛

𝑖=1
(𝑋

𝑖
− 𝑚

1
)
2, and 𝑚

3
= 𝑛

−1
∑
𝑛

𝑖=1
(𝑋

𝑖
− 𝑚

1
)
3. The sign

of 𝛿 is taken to be the sign of𝑚
3
.

Explanation. The skew normal distribution allows for a
dynamic way to fit the available 𝑍-scores. The fact that there
is ambiguity on the derivation of the standard deviates from
each study from a normal or a truncated normal distribution
creates the possibility that the distribution could be a skew
normal, with the skewness being attributed that we are
including only the published 𝑍-scores in the estimation of
Rosenthal’s [11] estimator.

Hence, in this case and taking the method of moments
estimators of 𝜉, 𝜔, and 𝛿, we get

𝜆̂ = 𝑛, 𝜇 = 𝜉 + 𝜔̃𝛿√
2

𝜋
, 𝜎̂

2
= 𝜔̃

2
(1 −

2𝛿
2

𝜋
) , (32)

where 𝑎
1
= √2/𝜋, 𝑏

1
= (4/𝜋 − 1)𝑎

1
, 𝑚

1
= 𝑛

−1
∑
𝑛

𝑖=1
𝑍
𝑖
, 𝑚

2
=

𝑛
−1
∑
𝑛

𝑖=1
(𝑍
𝑖
− 𝑚

1
)
2, and𝑚

3
= 𝑛

−1
∑
𝑛

𝑖=1
(𝑍
𝑖
− 𝑚

1
)
3.

3.4. Methods for Confidence Intervals

3.4.1. Normal Approximation. In the previous section, for-
mulas for computing the variance of 𝑁̂

𝑅
were derived. We

compute asymptotic (1 − 𝛼/2)% confidence intervals for 𝑁
𝑅

as

(𝑁̂
𝑅low

, 𝑁̂
𝑅up
)

= (𝑁̂
𝑅
− 𝑍

1−𝛼/2
√V̂ar [𝑁̂

𝑅
] , 𝑁̂

𝑅
+ 𝑍

1−𝛼/2
√V̂ar [𝑁̂

𝑅
]) ,

(33)

where𝑍
1−𝛼/2

is the (1−𝛼/2)th quantile of the standard normal
distribution.

The variance of 𝑁̂
𝑅
for a given set of values 𝑍

𝑖
depends

firstly on whether the number of studies 𝑘 is fixed or random
and secondly on whether the estimators of 𝜇, 𝜎2, and 𝜆

are derived from the method of moments or from the
distributional assumptions.

3.4.2. Nonparametric Bootstrap. Bootstrap is a well-known
resampling methodology for obtaining nonparametric con-
fidence intervals of a parameter [52, 53]. In most statistical
problems one needs an estimator of a parameter of interest
as well as some assessment of its variability. In many such
problems the estimators are complicated functionals of the
empirical distribution function and it is difficult to derive
trustworthy analytical variance estimates for them. The pri-
mary objective of this technique is to estimate the sampling
distribution of a statistic. Essentially, bootstrap is a method
that mimics the process of sampling from a population, like
one does in Monte Carlo simulations, but instead drawing
samples from the observed sampling data. The tool of this
mimic process is the Monte Carlo algorithm of Efron [54].
This process is explained properly by Efron and Tibshirani
[55] and Davison and Hinkley [56], who also noted that
bootstrap confidence intervals are approximate, yet better
than the standard ones. Nevertheless, they do not try to
replace the theoretical ones and bootstrap is not a substitute
for precise parametric results, but rather a way to reasonably
proceed when such results are unavailable.

Nonparametric resampling makes no assumptions con-
cerning the distribution of, or model for, the data [57]. Our
data is assumed to be a vector Zobs of 𝑘 independent obser-
vations, and we are interested in a confidence interval for
𝜃(Zobs).The general algorithm for a nonparametric bootstrap
is as follows.

(1) Sample 𝑘 observations randomly with replacement
from Zobs to obtain a bootstrap data set, denoted by
Z∗.

(2) Calculate the bootstrap version of the statistic of
interest 𝜃∗ = 𝜃(Z∗).

(3) Repeat steps (1) and (2) several times, say 𝐵, to obtain
an estimate of the bootstrap distribution.

In our case
(1) compute a random sample from the initial sample of

𝑍
𝑖
, size 𝑘,
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(2) compute𝑁∗

𝑅
from this sample,

(3) repeat these processes 𝑏 times.

Then the bootstrap estimator of𝑁
𝑅
is

𝑁
𝑅 bootstrap =

∑𝑁
∗

𝑅

𝑏
. (34)

From this we can compute also confidence intervals for
𝑁
𝑅 bootstrap.
In the next section, we investigate these theoretical

aspects with simulations and examples.

4. Simulations and Results

Themethod for simulations is as follows.

(1) Initially we draw randomnumbers from the following
distributions:

(a) standard normal distribution,
(b) half normal distribution (0, 1),
(c) skew normal distribution with negative skew-

ness SN(𝛿 = −0.5, 𝜉 = 0, 𝜔 = 1),
(d) skew normal distribution with positive skew-

ness SN(𝛿 = 0.5, 𝜉 = 0, 𝜔 = 1).

(2) The numbers drawn from each distribution represent
the number of studies in a meta-analysis and we have
chosen 𝑘 = 5, 15, 30, and 50. When 𝑘 is assumed to be
random, then the parameter 𝜆 is equal to the values
chosen for the simulation, that is, 5, 15, 30, and 50,
respectively.

(3) We compute the normal approximation confidence
interval with the formulas described in Section 3 and
the bootstrap confidence interval. We also discern
whether the number of studies is fixed or random.
For the computation of the bootstrap confidence
interval, we generate 1,000 bootstrap samples each
time. We also study the performance of the different
distributional estimators in cases where the distribu-
tional assumption is not met, thus comparing each of
the six confidence interval estimators under all four
distributions.

(4) We compute the coverage probability comparing with
the true value of Rosenthal’s fail-safe number. When
the number of studies is fixed the true value of
Rosenthal’s number is

𝐸 [𝑁̂
𝑅
] =

𝑘
2
𝜇
2
+ 𝑘𝜎

2

𝑍2
𝛼

− 𝑘. (35)

When the number of studies is random [from a
Poisson (𝜆) distribution] the true value of Rosenthal’s
number is

𝐸 [𝑁̂
𝑅
] =

𝜆
2
𝜇
2
+ 𝜆 (𝜇

2
+ 𝜎

2
)

𝑍2
𝛼

− 𝜆. (36)

We execute the above procedure 10,000 times each
time. Our alpha-level is considered 5%.

This process is shown schematically in Table 1. All sim-
ulations were performed in 𝑅 and the code is shown in
the Supplementary Materials (see Supplementary Materials
available online at http://dx.doi.org/10.1155/2014/825383).

We observe from Table 2 and Figure 1 that the bootstrap
confidence intervals perform the poorest both when the
number of studies is considered fixed or random. The only
case in which they perform acceptably is when the distri-
bution is half normal and the number of studies is fixed.
The moment estimators of variance perform either poorly
or too efficiently in all cases, with coverages being under
90% or near 100%. The most acceptable confidence intervals
for Rosenthal’s estimator appear to be in the distribution-
based method and to be much better for a fixed number
of studies than for random number of studies. We also
observe that, for the distribution-based confidence intervals
in the fixed category, the half normal distribution HN(0,1)
produces coverages which are all 95%. This is also stable
for all number of studies in a meta-analysis. When the
distributional assumption is not met the coverage is poor
except for the cases of the positive and negative skewness
skew normal distributions which perform similarly, possibly
due to symmetry.

In the next sections, we give certain examples and we
present the lower limits of confidence intervals for testing
whether 𝑁

𝑅
> 5𝑘 + 10, according to the suggested rule of

thumb by [11]. We choose only the variance from a fixed
number of studies when the 𝑍

𝑖
are drawn from a half normal

distribution HN(0,1).

5. Examples

In this section, we present two examples of meta-analyses
from the literature. The first study is a meta-analysis of the
effect of probiotics for preventing antibiotic-associated diar-
rhoea and included 63 studies [24].The secondmeta-analysis
comes from the psychological literature and is a meta-
analysis examining reward, cooperation, and punishment,
including analysis of 148 effect sizes [25]. For each meta-
analysis, we computed Rosenthal’s fail-safe number and the
respective confidence interval with the methods described
above (Table 3).

We observe that both fail-safe numbers exceed Rosen-
thal’s rule of thumb, but some lower confidence intervals,
especially in the first example, go as low as 369, which only
slightly surpasses the rule of thumb (5 ∗ 63 + 10 = 325 in this
case).This is not the case with the second example. Hence the
confidence interval, especially the lower confidence interval
value, is important to establish whether the fail-safe number
surpasses the rule of thumb.

In the next section, we present a table with values
according to which future researchers can get advice on
whether their value truly supersedes the rule of thumb.

6. Suggested Confidence Limits for 𝑁
𝑅

We wish to answer the question whether 𝑁
𝑅
> 5𝑘 + 10 for

a given level of significance and the estimator 𝑁̂
𝑅
, which is
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Figure 1: Continued.
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Figure 1: This figures shows the probability coverage of the different methods for confidence intervals (CI) according to the number of
studies 𝑘. The figure is organised as follows: the 𝑍

𝑖
are drawn from four different distributions (standard normal distribution, half normal

distribution, skew normal with negative skewness, and skew normal with positive skewness) which are depicted in ((a)–(d), (e)–(h), (i)–(l),
and (m)–(p)), respectively. The different values of 𝜇 and 𝜎

2 for the variance correspond to the standard normal distribution ((a), (e), (i),
and (m)), half normal distribution ((b), (f), (j), and (n)), skew normal with negative skewness ((c), (g), (k), and (o)), and skew normal with
positive skewness ((d), (h), (l), and (p)).
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Table 3: Confidence intervals for the examples of meta-analyses.

Fixed number of studies Random number of studies
Bootstrap based CIDistribution

based CI
Moment
based CI

Distribution
based CI

Moment
based CI

Study 1 [24]
Rosenthal’s𝑁

𝑅
= 2124

(2060, 2188) (788, 3460) (2059, 2189) (369, 3879) (740, 3508)

Study 2 [25]
Rosenthal’s𝑁

𝑅
= 73860

(73709, 74012) (51618, 96102) (73707, 74013) (40976, 106745) (51662, 96059)

the rule of thumb suggested by Rosenthal. We formulate a
hypothesis test according to which

𝐻
0
: 𝑁

𝑅
≤ 5𝑘 + 10

𝐻
1
: 𝑁

𝑅
> 5𝑘 + 10.

(37)

An asymptotic test statistic for this is

𝑇& =
𝑁̂
𝑅
− 5𝑘 − 10

√Var [𝑁̂
𝑅
]

𝑑

󳨀→ 𝑁(0, 1) , (38)

under the null hypothesis.
So we reject the null hypothesis if (𝑁̂

𝑅
− 5𝑘 −

10)/√Var[𝑁̂
𝑅
] > 𝑍

𝛼
⇒ 𝑁̂

𝑅
> 𝑍

𝛼
√Var[𝑁̂

𝑅
] + 5𝑘 + 10.

In Table 4 we give the limits of 𝑁
𝑅
above which we are

95% confident that𝑁
𝑅
> 5𝑘 + 10. For example if a researcher

performs a meta-analysis of 25 studies, the rule of thumb
suggests that over 5 ⋅ 25 + 10 = 135 studies there is no
publication bias. The present approach and the values of
Table 4 suggest that we are 95% confident for this when 𝑁

𝑅

exceeds 209 studies. So this approach allows for inferences
about Rosenthal’s 𝑁̂

𝑅
and is also slightly more conservative

especially when Rosenthal’s fail-safe number is characterised
from overestimating the number of published studies.

7. Discussion and Conclusion

The purpose of the present paper was to assess the efficacy
of confidence intervals for Rosenthal’s fail-safe number. We
initially defined publication bias and described an overview
of the available literature on fail-safe calculations in meta-
analysis. Although Rosenthal’s estimator is highly used by
researchers, its properties and usefulness have been ques-
tioned [48, 58].

The original contributions of the present paper are its
theoretical and empirical results. First, we developed sta-
tistical theory allowing us to produce confidence intervals
for Rosenthal’s fail-safe number. This was produced by
discerningwhether the number of studies analysed in ameta-
analysis is fixed or random. Each case produces different
variance estimators. For a given number of studies and a given
distribution, we provided five variance estimators: moment-
and distribution-based estimators based on whether the
number of studies is fixed or random and on bootstrap
confidence intervals. Secondly, we examined four distribu-
tions by which we can simulate and test our hypotheses of

variance, namely, standard normal distribution, half normal
distribution, a positive skew normal distribution, and a
negative skew normal distribution. These four distributions
were chosen as closest to the nature of the 𝑍

𝑖
𝑠. The half

normal distribution variance estimator appears to present
the best coverage for the confidence intervals. Hence, this
might support the hypothesis that 𝑍

𝑖
𝑠 are derived from a

half normal distribution. Thirdly, we provide a table of lower
confidence intervals for Rosenthal’s estimator.

The limitations of the study initially stem from the flaws
associatedwith Rosenthal’s estimator.This usuallymeans that
the number of negative studies needed to disprove the result
is highly overestimated. However, its magnitude can give
an indication for no publication bias. Another possible flaw
could come from the simulation planning.We could trymore
values for the skew normal distribution, for which we tried
only two values in present paper.

The implications of this research for applied researchers
in psychology, medicine, and social sciences, which are the
fields that predominantly use Rosenthal’s fail-safe number,
are immediate. Table 4 provides an accessible reference for
researchers to consult and apply this more conservative
rule for Rosenthal’s number. Secondly, the formulas for the
variance estimator are all available to researchers, so they
can compute normal approximation confidence intervals on
their own. The future step that needs to be attempted is to
develop an 𝑅-package program or a Stata program to execute
this quickly and efficiently and make it available to the public
domain. This will allow widespread use of these techniques.

In conclusion, the present study is the first in the literature
to study the statistical properties of Rosenthal’s fail-safe
number. Statistical theory and simulations were presented
and tables for applied researchers were also provided. Despite
the limitations of Rosenthal’s fail-safe number, it can be a
trustworthy way to assess publication bias, especially under
the more conservative nature of the present paper.

Appendices

A. Proofs for Expressions (19), (20), and (22)

(a) Fixed 𝑘. 𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑖
, . . . , 𝑍

𝑘
in the formula of the

estimator 𝑁̂
𝑅
(9) are i.i.d. distributed with 𝐸[𝑍

𝑖
] = 𝜇 and

Var[𝑍
𝑖
] = 𝜎

2. Let 𝑆 = ∑
𝑘

𝑖=1
𝑍
𝑖
; then, according to the

Lindeberg-Lévy Central Limit Theorem [42], we have

√𝑘(
𝑆

𝑘
− 𝜇)

𝑑

󳨀→ 𝑁(0, 𝜎
2
) 󳨐⇒ 𝑆

𝑑

󳨀→ 𝑁(𝑘𝜇, 𝑘𝜎
2
) . (A.1)
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Table 4: 95% one-sided confidence limits above which the estimated 𝑁
𝑅
is significantly higher than 5𝑘 + 10, which is the rule of thumb

suggested by Rosenthal [11]. 𝑘 represents the number of studies included in a meta-analysis. We choose the variance from a fixed number of
studies when the 𝑍

𝑖
are drawn from a half normal distribution HN(0, 1), as this performed best in the simulations.

𝑘 Cutoff point 𝑘 Cutoff point 𝑘 Cutoff point 𝑘 Cutoff point
1 17 41 369 81 842 121 1394
2 26 42 380 82 855 122 1409
3 35 43 390 83 868 123 1424
4 45 44 401 84 881 124 1438
5 54 45 412 85 894 125 1453
6 63 46 423 86 907 126 1468
7 71 47 434 87 920 127 1483
8 79 48 445 88 934 128 1498
9 86 49 456 89 947 129 1513
10 93 50 467 90 960 130 1528
11 99 51 479 91 973 131 1543
12 106 52 490 92 987 132 1558
13 112 53 501 93 1000 133 1573
14 118 54 513 94 1014 134 1588
15 125 55 524 95 1027 135 1603
16 132 56 536 96 1041 136 1619
17 140 57 547 97 1055 137 1634
18 147 58 559 98 1068 138 1649
19 155 59 571 99 1082 139 1664
20 164 60 582 100 1096 140 1680
21 172 61 594 101 1109 141 1695
22 181 62 606 102 1123 142 1711
23 190 63 618 103 1137 143 1726
24 199 64 630 104 1151 144 1742
25 209 65 642 105 1165 145 1757
26 218 66 654 106 1179 146 1773
27 228 67 666 107 1193 147 1788
28 237 68 679 108 1207 148 1804
29 247 69 691 109 1221 149 1820
30 257 70 703 110 1236 150 1835
31 266 71 716 111 1250 151 1851
32 276 72 728 112 1264 152 1867
33 286 73 740 113 1278 153 1883
34 296 74 753 114 1293 154 1899
35 307 75 766 115 1307 155 1915
36 317 76 778 116 1322 156 1931
37 327 77 791 117 1336 157 1947
38 338 78 804 118 1351 158 1963
39 348 79 816 119 1365 159 1979
40 358 80 829 120 1380 160 1995

So we have

𝐸 [𝑆] = 𝑘𝜇

Var [𝑆] = 𝑘𝜎
2

𝐸 [𝑆
2
] = (𝐸 [𝑆])

2
+ Var [𝑆] = 𝑘

2
𝜇
2
+ 𝑘𝜎

2
.

(A.2)

Then, from (6) we get

𝐸 [𝑁̂
𝑅
] =

𝐸 [𝑆
2
]

𝑍2
𝛼

− 𝑘 =
𝑘
2
𝜇
2
+ 𝑘𝜎

2

𝑍2
𝛼

− 𝑘

Var [𝑁̂
𝑅
] =

Var [𝑆2]
𝑍4
𝛼

=
𝐸 [𝑆

4
] − (𝐸 [𝑆

2
])
2

𝑍4
𝛼

.

(A.3)
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Table 5: Moments of the Normal distribution with mean 𝜇 and
variance 𝜎2.

Order Noncentral moment Central moment
1 𝜇 0

2 𝜇
2
+ 𝜎

2
𝜎
2

3 𝜇
3
+ 3𝜇𝜎

2
0

4 𝜇
4
+ 6𝜇

2
𝜎
2
+ 3𝜎

4
3𝜎

4

5 𝜇
5
+ 10𝜇

3
𝜎
2
+ 15𝜇𝜎

4
0

Now we seek to compute 𝐸[𝑆4], 𝐸[𝑆2]. For this we need the
moments of the normal distribution, which are given in
Table 5 [59].

So

Var [𝑁̂
𝑅
]

=
𝑘
4
𝜇
4
+ 6𝑘

3
𝜇
2
𝜎
2
+ 3𝑘

2
𝜎
4
− (𝑘

2
𝜇
2
+ 𝑘𝜎

2
)
2

𝑍4
𝛼

=
4𝑘
3
𝜇
2
𝜎
2
+ 2𝑘

2
𝜎
4

𝑍4
𝛼

󳨐⇒ Var [𝑁̂
𝑅
] =

2𝑘
2
𝜎
2
(2𝑘𝜇

2
+ 𝜎

2
)

𝑍4
𝛼

.

(A.4)

(b) Random 𝑘. In this approach, we additionally assume that
𝑘 ∼ Pois(𝜆). So 𝑆 is a compound Poisson distributed variable
[60]. Hence, from the law of total expectation and the law of
total variance [44], we get

𝐸 [𝑆] = 𝐸 [𝑘] 𝐸 [𝑍𝑖] = 𝜆𝜇

Var [𝑆] = 𝐸 [𝑘] 𝐸 [𝑍
2

𝑖
] = 𝜆 (𝜇

2
+ 𝜎

2
) .

(A.5)

Thus, from (6) we get

𝐸 [𝑁̂
𝑅
] =

𝐸 [𝑆
2
]

𝑍2
𝛼

− 𝐸 [𝑘]

=
(𝐸 [𝑆])

2
+ Var [𝑆]
𝑍2
𝛼

− 𝜆

󳨐⇒ 𝐸 [𝑁̂
𝑅
] =

𝜆
2
𝜇
2
+ 𝜆 (𝜇

2
+ 𝜎

2
)

𝑍2
𝛼

− 𝜆,

Var [𝑁̂
𝑅
] =

Var [𝑆2]
𝑍4
𝛼

+ Var [𝑘] − 2 ⋅
Cov [𝑆2, 𝑘]

𝑍2
𝛼

=
𝐸 [𝑆

4
] − (𝐸 [𝑆

2
])
2

𝑍4
𝛼

+ 𝜆 − 2 ⋅
𝐸 [𝑘𝑆

2
] − 𝐸 [𝑘] 𝐸 [𝑆

2
]

𝑍2
𝛼

.

(A.6)

To compute the final variance, it is more convenient to
compute each component separately.

Table 6: Moments of the Poisson distribution with parameter 𝜆.

Order Noncentral moment Central moment
1 𝜆 𝜆

2 𝜆 + 𝜆
2

𝜆

3 𝜆 + 3𝜆
2
+ 𝜆

3
𝜆

4 𝜆 + 7𝜆
2
+ 6𝜆

3
+ 𝜆

4
𝜆 + 3𝜆

2

5 𝜆 + 15𝜆
2
+ 25𝜆

3
+ 10𝜆

4
+ 𝜆

5
𝜆 + 10𝜆

2

We will need the moments of a Poisson distribution [60],
which are given in Table 6.

We then have

𝐸 [𝑆
4
] = 𝐸 [𝐸 [𝑆

4
| 𝑘]]

= 𝐸 [𝑘
4
𝜇
4
+ 6𝑘

3
𝜇
2
𝜎
2
+ 3𝑘

2
𝜎
4
]

= 𝜇
4
𝐸 [𝑘

4
] + 6𝜇

2
𝜎
2
𝐸 [𝑘

3
] + 3𝜎

4
𝐸 [𝑘

2
]

󳨐⇒ 𝐸 [𝑆
4
] = (𝜆

4
+ 6𝜆

3
+ 7𝜆

2
+ 𝜆) 𝜇

4

+ 6 (𝜆
3
+ 3𝜆

2
+ 𝜆) 𝜇

2
𝜎
2
+ 3 (𝜆

2
+ 𝜆) 𝜎

4

𝐸 [𝑆
2
] = (𝐸 [𝑆])

2
+ Var [𝑆]

= 𝜆
2
𝜇
2
+ 𝜆 (𝜇

2
+ 𝜎

2
)

= (𝜆
2
+ 𝜆) 𝜇

2
+ 𝜆𝜎

2

(𝐸 [𝑆
2
])
2

= (𝜆
4
+ 2𝜆

3
+ 𝜆

2
) 𝜇

4

+ 2 (𝜆
3
+ 𝜆

2
) 𝜇

2
𝜎
2
+ 𝜆

2
𝜎
4
.

(A.7)

So

𝐸 [𝑆
4
] − (𝐸 [𝑆

2
])
2

= (4𝜆
3
+ 6𝜆

2
+ 𝜆) 𝜇

4

+ (4𝜆
3
+ 16𝜆

2
+ 6𝜆) 𝜇

2
𝜎
2
+ (2𝜆

2
+ 3𝜆) 𝜎

4
.

(A.8)

Also

𝐸 [𝑘𝑆
2
] = 𝐸 [𝐸 [𝑘𝑆

2
| 𝑘]] = 𝐸 [𝑘𝐸 [𝑆

2
| 𝑘]]

= 𝐸 [𝑘 (𝑘
2
𝜇
2
+ 𝑘𝜎

2
)]

= 𝜇
2
𝐸 [𝑘

3
] + 𝜎

2
𝐸 [𝑘

2
]

= (𝜆
3
+ 3𝜆

2
+ 𝜆) 𝜇

2
+ (𝜆

2
+ 𝜆) 𝜎

2

𝐸 [𝑘𝑆
2
] − 𝐸 [𝑘] 𝐸 [𝑆

2
] = (2𝜆

2
+ 𝜆) 𝜇

2
+ 𝜆𝜎

2
.

(A.9)
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Hence, we finally have

Var [𝑁̂
𝑅
] = ((4𝜆

3
+ 6𝜆

2
+ 𝜆) 𝜇

4

+ (4𝜆
3
+ 16𝜆

2
+ 6𝜆) 𝜇

2
𝜎
2

+ (2𝜆
2
+ 3𝜆) 𝜎

4
)

× (𝑍
4

𝛼
)
−1

− 2 ⋅
(2𝜆

2
+ 𝜆) 𝜇

2
+ 𝜆𝜎

2

𝑍2
𝛼

+ 𝜆.

(A.10)

B. Proof of Expression (14): The Characteristic
Function

From (13) we have that

𝜓
𝑁
𝑅

(𝑡)

= 𝐸 [exp (𝑖𝑡𝑁
𝑅
)]

= ∫

+∞

0

exp (𝑖𝑡𝑛
𝑅
) 𝑓

𝑁
𝑅

(𝑛
𝑅
) 𝑑𝑛

𝑅

= ∫

+∞

0

𝑍
𝛼

2Φ (𝜆∗) √2𝜋𝑘𝜎2 (𝑛𝑅 + 𝑘)

× exp[

[

𝑖𝑡𝑛
𝑅
−
(𝑍

𝛼
√𝑛

𝑅
+ 𝑘 − 𝑘𝜇)

2

2𝑘𝜎2
]

]

𝑑𝑛
𝑅

(let 𝑤 = 𝑍
𝛼
√𝑛

𝑅
+ 𝑘)

=
1

Φ (𝜆∗)
∫

+∞

𝑍
𝛼
√𝑘

1

√2𝜋𝑘𝜎2

× exp[𝑖𝑡 (𝑤
2

𝑍2
𝛼

− 𝑘) −
(𝑤 − 𝑘𝜇)

2

2𝜎2
]𝑑𝑤

(let 𝑦 =
𝑤 − 𝑘𝜇

√𝑛𝜎
)

=
1

Φ (𝜆∗)
∫

+∞

−𝜆
∗

1

√2𝜋

× exp[𝑖𝑡 (
𝑘𝜎

2
𝑦
2
+ 2𝑛√𝑘𝜇𝜎𝑦 + 𝑘

2
𝜇
2

𝑍2
𝛼

− 𝑘)

−
𝑦
2

2
] 𝑑𝑦

=
exp (−𝑘𝑖𝑡)
Φ (𝜆∗)

∫

+∞

−𝜆
∗

1

√2𝜋

× exp[
2𝑘𝜎

2
𝑖𝑡 − 𝑍

2

𝛼

2𝑍2
𝛼

𝑦
2

+
2𝑘√𝑘𝜇𝜎𝑖𝑡

𝑍2
𝛼

𝑦 +
𝑘
2
𝜇
2
𝑖𝑡

𝑍2
𝛼

]𝑑𝑦

(let 𝜇
1
=

2𝑘√𝑘𝜇𝜎𝑖𝑡

𝑍2
𝛼
− 2𝑘𝜎2𝑖𝑡

, 𝜎
2

1
=

𝑍
2

𝛼

𝑍2
𝛼
− 2𝑘𝜎2𝑖𝑡

)

=
exp (−𝑘𝑖𝑡)
Φ (𝜆∗)

∫

+∞

−𝜆
∗

1

√2𝜋

× exp[−
(𝑦 − 𝜇

1
)
2

2𝜎2
1

+
𝑘
2
𝜇
2
𝑖𝑡

𝑍2
𝛼
− 2𝑘𝜎2𝑖𝑡

] 𝑑𝑦

(let 𝑥 =
𝑦 − 𝜇

1

𝜎
1

)

=
𝜎
1
exp (𝑘2𝜇2𝑖𝑡/ (𝑍2

𝛼
− 2𝑘𝜎

2
𝑖𝑡) − 𝑘𝑖𝑡)

Φ (𝜆∗)

× ∫

+∞

(−𝜇
1
−𝜆
∗
)/𝜎
1

1

√2𝜋
exp(−𝑥

2

2
)𝑑𝑥

=
𝑍
𝛼
exp (𝑘2𝜇2𝑖𝑡/ (𝑍2

𝛼
− 2𝑘𝜎

2
𝑖𝑡) − 𝑘𝑖𝑡)

Φ (𝜆∗) (𝑍2
𝛼
− 2𝑛𝜎2𝑖𝑡)

1/2

× [Φ (+∞) − Φ(
−𝜇

1
− 𝜆

∗

𝜎
1

)]

󳨐⇒ 𝜓
𝑁
𝑅

(𝑡) =
Φ ((𝜇

1
+ 𝜆

∗
) /𝜎

1
)

Φ (𝜆∗)

⋅
𝑍
𝛼
exp (𝑘2𝜇2𝑖𝑡/ (𝑍2

𝛼
− 2𝜎

2
𝑖𝑡) − 𝑘𝑖𝑡)

(𝑍2
𝛼
− 2𝑘𝜎2𝑖𝑡)

1/2

(B.1)

becauseΦ(+∞)−Φ((−𝜇
1
−𝜆

∗
)/𝜎

1
) = 1−Φ(−(𝜇

1
+𝜆

∗
)/𝜎

1
) =

Φ((𝜇
1
+ 𝜆

∗
)/𝜎

1
).

C. Proof of Expressions (15) and (16)

The cumulant generating function is

𝑔 (𝑡) = ln [𝜓
𝑁
𝑅

(−𝑖𝑡)]

=
𝑘
2
𝜇
2
𝑡

𝑍2
𝛼
− 2𝑘𝜎2𝑡

− 𝑘𝑡 −
1

2
ln (𝑍2

𝛼
− 2𝑘𝜎

2
𝑡)

+ ln [Φ(
𝜇
1
+ 𝜆

∗

𝜎
1

)] + ln
𝑍
𝛼

Φ (𝜆∗)
, 𝑡 <

𝑍
2

𝛼

2𝑘𝜎2
.

(C.1)

For simplicity, let Δ = (𝜇
1
+ 𝜆

∗
)/𝜎

1
. Then

𝑔
󸀠
(𝑡) =

𝑘
2
𝜇
2
𝑍
2

𝛼

(𝑍2
𝛼
− 2𝑘𝜎2𝑡)

2
− 𝑘 +

𝑘𝜎
2

𝑍2
𝛼
− 2𝑘𝜎2𝑡

+
𝜙 (Δ)

Φ (Δ)
Δ
󸀠
,

(C.2)

with Δ
󸀠
= 2𝑘√𝑘𝜇𝜎𝑍

𝛼
/(𝑍

2

𝛼
− 2𝑘𝜎

2
𝑡)
3/2

− 𝑘𝜎
2
𝜆
∗
/𝑍

𝛼
(𝑍
2

𝛼
−

2𝑘𝜎
2
𝑡)
1/2.



16 International Scholarly Research Notices

Then, 𝑔󸀠(0) leads to (15).
Next

𝑔
󸀠󸀠
(𝑡) =

4𝑘
3
𝜇
2
𝜎
2
𝑍
2

𝛼

(𝑍2
𝛼
− 2𝑘𝜎2𝑡)

3
+

2𝑘
2
𝜎
4

(𝑍2
𝛼
− 2𝑘𝜎2𝑡)

2

+
𝜙 (Δ)

Φ (Δ)
[−

𝜙 (Δ)

Φ (Δ)
Δ
󸀠2
− ΔΔ

󸀠2
+ Δ

󸀠󸀠
] .

(C.3)

Then 𝑔󸀠󸀠(0) leads to (16).
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