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ii. Abstract 

 

The thesis begins by exploring a large-scale data set from the smartphone application The Great 

Brain Experiment. I leverage this sample size to show that gambling for prospective losses (but 

not gains) increases throughout the day. I introduce the question of how exploring asymmetries 

between attitudes and responses to gains and losses may provide useful insights in the field of 

Computational Psychiatry. 

The next section of the thesis concerns mood and affective states, and their connections to 

decision-making. I introduce a novel paradigm: the Future Prospects Task, which allows for a 

comparison between how people feel about choosing between prospective gains and 

prospective losses, and how they feel about such prospects in the future. Computational 

modelling reveals that affective responses to losses are greater than responses to gains, 

demonstrating an affective negativity bias. It also demonstrates that the valence of future 

prospects has an impact on affective state, and that risky decision-making increases with 

proximity to positive futures, and conversely decreases in proximity to negative futures.  

This novel paradigm was adapted for a new smartphone application The Happiness Project and 

for fMRI. Some of the early pilot results for the smartphone application are presented, and their 

feasibility for future longitudinal testing discussed. The fMRI paradigm and hypotheses are 

described in the discussion chapter, as data collection was disrupted due to COVID-19.  

I also endeavour in the thesis to further extend our understanding of models of affective 

dynamics, which have become popular in the last decade. I include analyses of robustness, and 

highlight the statistical issues that should be taken into account with their usage. 
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iii. Impact Statement 

 

The final year of this thesis work took place during the COVID-19 global pandemic. During this 

time, as a society we have become acutely aware of the importance of mental wellbeing, and 

how our mood can affect our activities (and vice versa). The science of mood has made strong 

steps in the last decade, due particularly to the inclusion of computational modelling and 

smartphone-based tools, both of which utilise dense sampling of emotional states.  

This thesis explores asymmetries between positive and negatively valenced events, and how 

they affect our mood and behaviour. I have developed a novel paradigm, which allows for 

comparison between positive and negative events in both the present and near future. The 

findings contribute to our understanding of how negative events are prioritised in attention and 

learning compared to positive events– by showing stronger emotional responses for negative 

events than positive. I have also demonstrated that when we have the opportunity to be 

optimistic about our future, we increase the risks we take in the present, whilst pessimistic 

futures decrease the risks we take. This paradigm has been adapted for use in both a 

smartphone application and fMRI. This allows the findings to be explored on a longitudinal and 

neural level. The conclusions drawn from this work will contribute to new experimental efforts 

to understand the mechanisms through which optimistic and pessimistic attitudes towards our 

future may affect our day-to-day mood and decisions. 

Some of the effect sizes presented in this work are small. However, effects of this size have 

implications when considering behaviour at the level of society. In a large-scale smartphone 

based cognitive task, I show that decision-making for prospective losses increases throughout 

the day. Regarding how changes in decision-making are caused by changes in future prospects; 

this has implications for how future events are communicated when behavioural compliance 

on the level of society is required. For example, the promising development of a vaccine during 

a global pandemic may lead to reduced compliance with current rules by means of increased 

risk taking. The findings from both these studies are being prepared for submission to peer-

reviewed journals. 
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Over the course of my PhD I also developed the smartphone application ‘The Happiness Project’ 

with my laboratory cohort. This smartphone application is designed to collect longitudinal data 

from the general public about their mood fluctuations over time, to be used in conjunction with 

clinical studies. Smartphone based tools engage the public in research, and provide an insight 

into the work done within academic settings in a fun and engaging way.  Throughout my PhD, I 

have been an advocate for developing accessible ways for the public to understand 

Computational Psychiatry. One of these projects was designing and facilitating a significant 

public engagement project – Dear World Project to this end. 

 

 

Figure 1-1 Postcards from Dear World Project 

Dear World Project was a cross-disciplinary public engagement project developed by 

myself, Cassie Hugill and a cohort of students and staff at the Max Planck UCL Centre & 

Wellcome Centre for Human Neuroimaging from 2017-2019. We invited the public to write 

postcards about their current thoughts and feelings. They then explored postcards written 

by other members of the public, and had to ‘categorise’ them based on different labels that 

corresponding to different research themes (e.g. mood, confidence, effort, focus). We used 

this as a springboard to discuss how, as researchers, we look to understand how people 

think and feel, using categorical labels and continuous scales to discuss themes in 

Computational Psychiatry. This figure contains a selection of postcards where members of 

the public expressed their concerns and excitement about their future prospects. 
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1. Concepts, Definitions & Models 
 

Here, I provide key concepts and definitions that are referred to throughout the thesis. They 

should be read through now if they are unfamiliar, though their use may not be completely 

apparent until they are situated in context. Models included in the main text expand upon the 

models shown here. 

 

1.1 Mood, Emotions, Feelings & Affect 

Feelings refer to the distinct conscious element of an affective experience or state. Emotions 

are categorised definitions of affective states (e.g. happiness). Mood is a long lasting affective 

state, which does not directly respond to the environment, but integrates the effects of events 

over time. Affect is a difficult property to define, but refers to the property of an event which 

had made it salient in a valanced way. These are all further defined and explored in Section 2.2. 

Conceptually the work in thesis subscribes to the definitions as given above. Through this thesis, 

I endeavour to use affective reactivity or affective response when referring to a consciously 

experienced valenced change in state (or affective state). Mood will be used to describe the 

ongoing affective experience that is largely low intensity and not defined in relation to one 

particular event. Research, which explores mood, emotions, feelings and affect, will often be 

described under the heading of ‘mood’. 

 

1.2 Decisions, Value and Utility 

Value and Utility are single scalars which can be used to compare multiple options in one 

dimension, and terms that are often used interchangeably within neuroeconomics literature 

(particularly subjective value and utility). Work which uses value to deliberate between choices 

considers it axiomatic that decisions are implemented in the brain by an internal neural value 

signal which incorporates all relative dimensions of the choice (reward, cost, risk, time delays). 

Value and Utility are essentially unitless, and are only understandable in comparison to each 
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other. Value is not typically measured directly, but inferred from choice, approximated by 

computational models. 

 

1.3 Risk in Gain, Loss and Mixed Trial Types 

All the decisions made by participants in the experimental work are two alternative forced 

choices, and are one of three types of trials (Figure 1-1). In gain trials, the choice is between 

two positive magnitudes with associated probabilities. Loss trials use only negative magnitudes. 

Mixed prospect trials represent a choice between a certain option of zero and a gamble with a 

positive and negative magnitude. In all cases where the participant does not receive the 

magnitude, they receive zero. Tasks that use these kinds of trials are often referred to as 

exploring risky decision-making, or as part of the field of behavioural economics, or 

neuroeconomics. 
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Figure 1-1 Trial Types used in Behavioural Economics Experiments 

Three kinds of probabilistic decisions are typically used to measure attitudes to risk, and 

the relative weighting of gains vs losses in prospect theory. These are gain (green), loss (red) 

and mixed (blue) trials, an example of which is shown here. Each decision contains the 

options of a gamble (top row) where there is a 50% chance of receiving each of the amounts 

in the circle, or a certain option (bottom row) where there is a 100% chance of receiving 

the amount in the circle. In gain trials (green circles) the choice is between a certain gain of 

£1, or a 50% chance of winning £2. In a mixed trial (blue box) the participant chooses 

between a certain option of receiving nothing, or a 50% a chance of winning and a 50% 

chance of losing £3. In loss trials (red box) the participant chooses between a certain option 

of losing -£2, and a 50% chance of losing -£4.  

 

1.4 Expected Value and Prediction Error 

The expected value of a choice is given by the probability multiplied by the magnitude of the 

outcome, summed across all possible outcomes for a given choice.  A prediction error (often 

called a reward prediction error) is the difference between the expected value and the outcome 

magnitude. Importantly prediction errors give a signed outcome depending on the deviation 

from what is expected. For example an outcome can be positive (e.g. a free vanilla ice cream), 

but the prediction error may be negative if a greater option was also potentially available that 
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was missed out on (e.g. a free double chocolate triple scoop ice cream with extra rainbow 

sprinkles). The expected value in this example would be the magnitude of the basic ice cream 

[+1] with a 50% chance of receiving it, plus the magnitude of the chocolate ice cream [+7] with 

a 50% chance of receiving it. An expected value of 0.5 + 3.5 is greater than an outcome of +1, 

thus giving a negative prediction error. 

 

1.5 Reinforcement Learning 

Reinforcement learning describes behaviour that is driven by the goal of maximizing reward. 

This is a vast oversimplification, but put briefly, the paradigms described in this thesis which use 

reinforcement learning involve participants receiving feedback on a choice they made in terms 

of how good or bad that action was (typically in terms of a reward or punishment; this is the 

reinforcement part). The degree to which participant updates their actions based upon a 

prediction error (driven by a surprising rewarding or punishing outcome) is called the learning 

rate. Learning rates can be applied to all outcomes, or separated for different conditions (e.g. 

separate learning rates can be defined for reward and punishments, or wins and losses). The 

thesis does not contain any experimental work which uses reinforcement learning models, but 

it is built upon inferences made from work which does. 

 

1.6 What is a Computational Model? 

Computational modelling uses three broad elements. The generative model, the observed data 

and the generated data. The observed data is essentially the data collected by the 

experimenter- this could be choices, ratings, reaction times, or even records of medical 

diagnoses. The generative model is the algorithm which we use to try and capture the variance 

in the observed data. Rescorla Wagner, Temporal Difference Learning, Prospect Theory Models 

and Bayesian Perceptual Models are all examples of generative models. The generative model 

is passed a series of task events that coincided with the collection of the observed data, such as 

the choices made by a participant, the valence of the stimuli encountered or the time limit given 

to make a choice. The output of the generative model is the generated data (or sometimes 

called predicted data) – a data series of the same dimensions as the observed data. The aim is 
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to minimise the mathematical difference between the observed data and the generated data. 

This is broadly done in two ways. Firstly by trying various generative models to see if they give 

a better ‘fit’. A fit describes the mathematical distance between the observed and generated 

data – the smaller the distance, the ‘better’ the fit1. Secondly, each generative model typically 

includes latent variables or free parameters which can be adjusted to better fit an individual’s 

observed data. Statistical tests can be performed on estimates of free parameters.  

If this sounds novel – it is hardly the case. You can swap observed data for dependent variable, 

generative model for general linear model; free parameters for slope and intercept. Both a 

generative model and general linear model generate data – the key difference being the optimal 

parameter estimates of the general linear model can be calculated, whereas the parameters of 

the generative model are fit using an optimisation procedure (see Section 1.9.1 Parameter 

Estimation). All computational models in this thesis involve fitting generative models to 

observed data using the raw data on a trial-by-trial basis – no aggregates or averages are 

generated from the participants’ data prior to the in the fitting process. The Prospect theory 

Model and the Affective Dynamics Model described next are both generative models. 

 

1.7 Prospect Theory as a Computational Model 

Prospect theory converts the objective value into subjective value based on the preferences of 

the agent making the choices. The choices are those which are described in Figure 1-1. The 

generative model consists of two parts; the equations which convert objective to subjective 

utility (Equation 1-1), and an equation which compares subjective utilities and transforms them 

into probability space (Equation 1-2). 

 

1.7.1 From Expected Value to Subjective Utility 

The following equations convert the magnitude (Mgain and Mloss) and probabilities (here 0.5 for 

simplicity) presented in the trial choices to a subjective utility (Ugamble and Ucertain). The 

subjective utility is determined by the magnitude of the choice multiplied by the probability of 

                                                      

1 I will revisit the concept of best fit shortly, but for simplicity will briefly assume the aim is to have the observed 
data mimic the generated data as closely as possible. 
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the choice and a power function. The first equation shows the utility of a choice between two 

magnitudes and associated probabilities. The second equation shows the utility of a certain 

option, where there is only one outcome. Note these equations are identical, but the utility of 

the certain option is presented in a simplified form. There are three parameter estimates 

present; αloss, αgain, and λ. αloss, αgain are often described as risk sensitivity and λ as loss aversion.  

λ indexes the relative weighing of gain or loss magnitudes, here is described as loss aversion as 

typically it has been shown to have a value >1, meaning losses are weighted as relatively greater 

(Kahneman & Tversky, 1979; Sokol-Hessner & Rutledge, 2019). 

 

𝑈𝑔𝑎𝑚𝑏𝑙𝑒 = 0.5(𝑀𝑔𝑎𝑖𝑛)
𝑎𝑔𝑎𝑖𝑛

 - 0.5𝜆(𝑀𝑙𝑜𝑠𝑠)𝑎𝑙𝑜𝑠𝑠   

𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = (𝑀𝑐𝑒𝑟𝑡𝑎𝑖𝑛)𝑎𝑔𝑎𝑖𝑛   if 𝑀𝑐𝑒𝑟𝑡𝑎𝑖𝑛 ≥ 0 

𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = −𝜆(−𝑀𝑐𝑒𝑟𝑡𝑎𝑖𝑛)𝑎𝑙𝑜𝑠𝑠 

 

 if 𝑀𝑐𝑒𝑟𝑡𝑎𝑖𝑛 < 0 

Equation 1-1 Prospect Theory Model 

 

Converting an objective to subjective utility using a power function (i.e. αLoss and αGain) means 

that when the risk sensitivity parameter is <1, the subjective utility increases at a lower rate as 

the objective value increases. Opposing when the parameter is >1, subjective utility increases 

at a faster rate than the objective value. For example, if you take two magnitudes of [certain 

option, gamble option; +5, +10], they have a difference of +5. If risk sensitivity is set at 0.8, the 

subjective utilities are [+3.6 +6.3] and the difference in utility is +2.7. If risk sensitivity is set at 

1.2, this gives subjective utilities of [+6.9 +15.8] with a difference of +8.9. When risk sensitivity 

is described as increasing, what this means is the difference in subjective utilities is increasing. 

While this in itself does not change the ordering of the utilities in terms of their attractiveness, 

when this is applied to risky decisions used in experimental tasks, the greater magnitude is 

typically associated with a lower probability. Thus, if the greater magnitude [+10] only has a 

50% chance of receipt if chosen, and the lower magnitude of [+5] has a 100% chance of receipt, 

the subjective utilities for a risk sensitivity of 1.2 becomes [+6.9 +7.9] with a difference of +1. 

However for a risk sensitivity of 0.8, the utilities become [+3.6 +3.2] and the difference is now 
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a negative value of -0.4. Therefore a risk sensitivity of 0.8 appears as risk aversive behaviour, as 

the certain option becomes more attractive as the utility is greater. Conversely, for a risk 

sensitivity of 1.2, behaviour appears risk seeking as the risky option appears more attractive. 

The behaviour depends upon the sign of the magnitude, thus for loss trials with a greater value 

αLoss the behaviour become risk aversive and a lower value becomes risk seeking as the greater 

magnitude is more aversive. 

After subjective utilities are determined they are required to be converted into choice 

probabilities using a softmax rule (Equation 1-2). The softmax includes an inverse temperature 

parameter (µ) which quantifies choice stochasticity (Figure 1-2). 

 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
1

1 + e−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)
 

Equation 1-2  Softmax Rule 
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Figure 1-2 Softmax Rule Simulation 

The softmax rule converts the difference in value for each of the two options (utility of the 

difference) to a probability of choosing one of the options (values closer to 1 predict 

choosing the gamble option, and values closer to 0 predict choosing the safe option). The 

free parameter µ dictates the degree to which the utility of the difference effects the 

probability of choice. The colour bar on the right indicates values of μ. When µ is high, the 

behaviour is more deterministically based on the difference in subjective value of the 

choices. When µ is low, the subjective value has less influence over the choice as the 

subjective probability reaches 0.5 for all choices and behaviour becomes stochastic and 

more difficult to predict. Importantly changes in µ do not allow the choices to be inverted.  

 

1.8 A Computational Model of Affective Dynamics 

Affective ratings that are recorded throughout an experiment can be fit using a model often 

branded as the the Happiness Model as the data is recorded in response to asking participants 

being asked “how happy are you at this moment?” or a similar question (Rutledge et al., 2014). 

Here happiness, each time it is rated by a participant, is determined by free parameters 

including a baseline constant C (free parameter) and affective dynamics parameters, which are 

parametric weights on different parts of the design matrix depending on the choice made by 

the participant. One example of an affective dynamic free parameter is a weighting on the 

prediction error of the choices outcome, shown below as wPE. This parameter describes the 
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degree to which reward prediction errors affect happiness ratings.  Parameter τ captures how 

many trials in the past influence the current rating with an exponential decay. (Figure 1-3). An 

example of this model, is shown in Equation 1-3. In this example both prediction errors and the 

expected value of the chosen option have parametric weighted influence on the happiness 

ratings. The model has a highly mutable form, where any number of task events can be 

weighted as alternatives (or in addition) including outcomes, or separating prediction errors 

into different trial types (e.g. gain and loss).  

𝐻𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠𝑡 = 𝐶 + 𝑤𝐸𝑉 ∑ 𝜏𝑡−𝑗 𝐸𝑉𝑗 + 𝑤𝑃𝐸 

𝑡

𝑗=1

∑ 𝜏𝑡−𝑗

𝑡

𝑗=1

 𝑃𝐸𝑗 

Equation 1-3 Affective Dynamics Model 

 

Figure 1-3 Simulation of Affective Decay 

The Affective Dynamics Model captures the influence of the proceeding trials on the 

current rating by using a parameter which captures the decaying influence of trials further 

into the past. The colour bar on the right indicates values of τ. Higher values of τ indicate 

that trials preceding the happiness rating have more of an influence on the current rating 

than o. Lower values of τ indicate the preceding trials have less of an influence on the 

ratings. For example for τ = 0.8 trial t-2 would have 64% of the influence as trial t. For τ = 

0.5 trial t-1 would have 25% of the influence of trial t. 
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1.9 Model Fitting & Comparison 

Fitting models to data and comparing between them can be driven by two (partially 

overlapping) goals. Firstly, models can be analytical tools for analysing the observed data, 

similar to a statistical test of parameters in a general linear model. Secondly, they can be 

expressions of hypotheses about cognition that causes behaviour, or other observed data 

(Palminteri et al., 2017).  

 

1.9.1 Parameter Estimation 

The generative models within this thesis are fitted using two different techniques depending 

upon whether the observed data is choices or ratings. Choice data (i.e. binary decisions) was fit 

with negative log likelihood (nLL; Equation 1-5a) and continuous data (e.g. happiness ratings) 

was fit with sum of squared errors (SSE; Equation 1-4a). nLL and SSE both act as  quantities that 

are smallest when the observed data and generated data are more similar, these values are 

called the objective function. The objective function is minimised by iterating through a series 

of free parameter estimates, until we find the minimum objective function we are able to 

sample using this process. The iteration is performed through a function in MATLAB called 

fmincon (Find the MINimum of Constrained nONlinear multivariable function). Once fmincon 

establishes it has found the minimal objective function, it terminates the process and the model 

has been fit to the data.  

Continuous ratings were fit by minimising the SSE. SSE describes the amount of unexplained 

variance in the observed data by the generative model (Equation 1-4a). When this is divided by 

the total variance in the data (the residual squared difference between the data and its mean) 

it gives a value which can be used as a proportion of how much variance in the data the model 

fits (r2). An r2 of 0.35 would mean the model can explain 35% of the total variance in the data 

(Equation 1-4b). 
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a. Estimating Sum of Squares Errors 

𝑆𝑆𝐸 =  ∑  ( 𝑌 − 𝑀𝜃)2  

𝑖=𝑛

𝑖=1

  

b. Calculating R2 

𝑟2 =  1 −   
𝑆𝑆𝐸

∑  ( 𝑌 − 𝑌̂)
2

  𝑖=𝑛
𝑖=1

  

Equation 1-4 Calculating a Measure of Fit for Continuous Data 

 

Binary choice data were fit by minimising the nLL. Log likelihood is the likelihood of the data 

given the model under its current parameter estimates. A high value of log likelihood indicates 

a better fit, thus we use the negative log likelihood as a function to minimise (Equation 1-5a). 

From the log likelihood we can calculate a pseudo r2 which can be interpreted similarly to an r2 

as the proportion of variance in the observed data accounted for by the model (Equation 1-5b). 

 

a. Estimating Log Likelihood 

𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = log(𝑝(𝑑 |  𝑀𝜃) 

b. Calculating Pseudo r2 

𝑃𝑠𝑒𝑢𝑑𝑜 𝑟2 =  1 +  
𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

log(0.5) ∗ No of trials
 

Equation 1-5 Calculating a Measure of Fit for Binary Decisions 

 

1.9.2 Comparison of Model Fits 

The models fit to both kinds of data were compared using Bayesian Information Criterion 

(Equation 1-6). The first term in the equation uses the objective function. In the second term 

the model guards against overfitting by penalising for the addition of each parameter. N is the 

number of data points being fit, K is the number of parameters in the model. BIC penalises for 

the addition of each parameter as a guard against overfitting the data by adding increasing 



32 
 

complexity. When two models have an equivalent likelihood (and are fit to the same number 

of data points) BIC will prefer the model with fewer parameters. 

 

a. Choice Data 

𝐵𝐼𝐶 =  −2𝑙𝑛𝐿(𝜃|𝑦, 𝑀) + 𝐾𝑙𝑛𝑁 

b. Continuous Data 

𝐵𝐼𝐶 =  𝑁 𝑙𝑛 (
𝑆𝑆𝐸

𝑁
) + 𝐾𝑙𝑛𝑁 

Equation 1-6 Bayesian Information Criterion 

 

The BIC of a model can return extremely large values where interpretability is non-trivial. One 

way to easily compare BIC scores is to calculate the difference between the BIC for the model 

with the lowest BIC score and the BIC of other candidate models. Here the difference in values 

can be interpreted according to a particular criterion where Model A has a lower BIC than Model 

B (Table 1-1). It is worth noting that in the vast majority of circumstances including an additional 

parameter in the model will increase the amount of variance captured. To guard against 

capturing small amounts of variance which can be deemed as noise in the data, the BIC model 

comparison trades off between generalisability (how well this model may be able to explain 

other data sets) and complexity (the number of parameters)2. The model can be described as 

overfitting when fitting a model to a particular data set is prioritised over fitting the ability to 

fit to new hypothetical data sets collected in the same manner. 

This method of model comparison tells us how well the generated data fits the observed data. 

However there are other metrics of fit that can be factored in when comparing models. Briefly, 

these include the following (non-independent) criteria: 

                                                      

2 It is interesting to note complexity does not refer to the structure of the model. A model that uses addition is no 
less complex than a model that utilizes multiplication, power functions and multiple transformations – as long as 
the number of free parameters is the same. 
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Identifiability: can you refit the model to the generated data and have it prefer the same 

model (also called model recoverability)? 

Recoverability: can you refit the model to the generated data and have it return the 

same parameter estimation values (also called parameter recovery)? 

Falsifiability: can we define a feature of the data which would distinguish between 

 models? 

These principles of model comparison have received considerably less attention than formal 

comparisons of quality of fit like BIC. This is likely to be because there is not a formalised 

criterion for assessing them.  

 

Table 1-1 Bayesian Information Criterion 

ΔBIC = < 2 Little difference to distinguish Models A and B. 

ΔBIC = 4 -7 Considerable less support for Model B over Model A 

ΔBIC = 8 - 9 Moderately less support for Model B over Model A. 

ΔBIC > 10 Essentially no support for Model B. 

ΔBIC is the difference in BIC values for two models. This can be for one participant, or an average taken across 

all participants. 

 

1.10 A Primer on Computational Psychiatry 

The work in this thesis was conceptualised and developed in an environment which self-defines 

itself as Computational Psychiatry. The field of Computational Psychiatry applies computational 

mechanisms to clinically orientated problems with the goal of understanding more about 

psychiatric disorders (Rutledge & Adams, 2017). The word computational is used differentially 

in two alternative sub-approaches; theory driven and data driven (Huys et al., 2016). Data-

driven approaches capitalise on computational power to analyse large psychiatrically relevant 

data sets in order to predict clinical outcomes or find clinically relevant clusters of symptoms or 

behaviours. An example of this is work by Adam Chekroud and colleagues who used clinical trial 

data of participants’ self-reported depressive symptoms (N = 4,4041) to train a machine 
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learning algorithm to predict clinical remission based on the success of different SSRIs 

(Chekroud et al., 2016). Theory-driven approaches typically involve describing experimental 

hypotheses as computational models and constructing experimental tasks which attempt to 

verify those models and falsify competing hypotheses (the proceeding sections describe this 

approach). One such example is a study by Robb Rutledge and colleagues where the Affective 

Dynamics Model (Equation 1-3) was fitted to participants’ self-reported happiness when taking 

part in a probabilistic gambling task. They found that changes in happiness ratings and neural 

activation in response to task prediction errors did not differ in patients with major depressive 

disorder (MDD) compared to healthy controls, but did differ according to the baseline around 

which their happiness fluctuated. Those with higher depressive scores had lower baselines 

(Rutledge et al., 2017). This was interpreted as suggestive of prediction error signals in the 

dopaminergic system in people with depression may be intact, which is contrary to studies 

exploring prediction errors in learning tasks (e.g. Kumar et al., 2008). These two approaches 

complement each other: theory driven approaches are useful for trying to infer mechanisms in 

behavioural and neural data; data-driven approaches can capitalise on known mechanisms to 

explore large data sets in a more directed way (Browning et al., 2020).
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Happiness is a specific. Misery is a generalisation. People usually know why they are happy. They 

very rarely know they [why] they are miserable. 

    Jeanette Winterson, Written on the Body (2013) 

 

2. Introduction 
 

2.1  Summary 

This section of the thesis introduces the literature that describes how gain and loss have been 

thought about within the fields of mood and decision-making. It begins by addressing how we 

will talk about mood, its proposed function and how to engage with it experimentally. It 

summarises the relevant literature in computational modelling and experience sampling 

methods. It also expands upon the concept of reward sensitivity as it is addressed in behavioural 

studies and is informed by functional magnetic resonance imaging (fMRI). This is expanded 

upon by considering each stage of the decision process and how affective experience may 

influence, and be influenced. There is an emphasis upon how beliefs about future prospects 

(i.e. optimism and pessimism) can be understood as anticipated utility. Finally, the introduction 

focusses upon asymmetries in gain and loss and considers open questions in this area. 

 

2.2 Defining & Measuring Mood, Emotions and Feeling 

2.2.1 Definitions 

The three terms used in the literature to describe different facets and dimensions of the 

affective experience are: ‘mood’, ‘emotions’, and ‘feelings’. Whilst we may use these words 

interchangeably in our colloquial language (i.e. the same event can elicit the following verbal 

responses: emotion: “I am really sad about it.”; feeling: “That made me feel awful.”; mood: 

“that has put me in a really bad mood all day”), scientific accounts tend to define these terms 

as distinct and with moderate convergence. The term ‘emotions’, heralding from the Latin 

‘movere’ meaning to move, is typically associated with the categories we use to understand and 
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communicate our affective state: happiness, sadness, contentment, rage, kaukokaipuu3. In the 

past, emotions have been considered to be made up of a discrete universal set (Ekman, 1992), 

with more contemporary views describing emotions as being clusters of bodily sensations and 

environmental contexts (Barrett, 2016). The term ‘feeling’ refers more loosely to the 

phenomenal experience of being in an affective state and thus acts as a conscious dimension of 

an emotion. The etymology of the term ‘feeling’ is connected with the conscious physical 

sensation of a tactile stimulus, demonstrating an implicit assumption that ‘feeling’ is a term 

which necessarily prescribes embodiment. ‘Mood’ is often described as a lasting affective state 

with a time course that can last hours, days, or even weeks. The origin of the term ‘mood’ is less 

clear but may relate to Old Saxon and Norse terms for ‘mind’ and Germanic and Gothic terms 

for courage. ‘Affect’ itself defines the property of some experience or motivation that has some 

element that connects to our mood, emotions, and feelings. For example, an affective state 

describes an agent’s position where their behaviour may be changed in some particularly way 

by their emotions or feelings.  

The literature has begun to converge on how these three affective terms are used in relation to 

one another (Bennett et al., 2020; Clark et al., 2018; Marinier & Laird, 2009). Emotions act as 

the immediate result of some affective event. Feelings are what the agent consciously 

perceives, and mood operates as a summary of past affective experience. Some theories 

marginally differ in how they define emotions vs. feelings, or are less specific. However, an 

important distinction is made between emotions/feelings and mood in terms of time scales and 

their relationship to individual events. While emotions/feelings are responses to discrete 

events, mood has a non-intentional property: it does not relate to any particular subject (Beedie 

et al., 2005) and is not necessarily causally linked to the present environment (Bennett et al., 

2020). For example, this distinction is made in the Free Energy Principal theory of mood, which 

describes emotional states as reflecting the brain’s precision on prior beliefs (about the 

consequence of actions) and mood acting as hyper-priors that constrain the range of emotional 

responses (Clark et al., 2018).  

 

                                                      

3 A Finnish word, meaning to be homesick or long for a place you have never been. 
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2.2.2 What is the Function of Mood & Affective Reactivity? 

The etymological root of emotion – to move – is consistent with what it is generally agreed 

affective properties are for; to motivate behaviour that is beneficial to the agent experiencing 

the affect.  However, the exact mechanism which implements this, or the exact behaviour it is 

designed to motivate, is of continued debate. There are two broad questions here: what is the 

purpose of a conscious experience of affect, and what is the purpose of an ongoing evolving 

affective state (i.e. mood)? 

Historically science of affect has focused on emotions, their experience and expression. 

Emotions have been considered discrete and automatic responses, with distinct physiological 

characteristics and facial expressions that evolved in all cultures to improve fitness by adapting 

the body for reacting to the environment and communicating one’s current state to others 

(Ekman, 1992). More contemporary views have expanded on this, describing emotions as 

statistically consistent clusters of bodily sensations and environmental context, which help us 

prioritise context-appropriate action selection (Barrett, 2016).  

Understanding the function of mood is much more challenging. What use is a diffuse, non-

intentional long time scaled affective experience? Mood is frequently described as a latent 

state, which causes changes in our behaviour and feelings but may not be directly observable. 

Another question of perhaps equal importance asks: how are moment-to-moment fluctuations 

in affective experience integrated into mood? Prominent computational approaches based on 

reinforcement learning principles have proposed mood as representing the rate of change in 

reward levels in an environment (‘Mood as Momentum’:  Eldar et al., 2016; Eldar & Niv, 2015). 

This theory proposes that a high mood (positive or negative) biases the perception of outcomes 

in the direction of the current mood, which then updates expectations about future outcomes 

and  encourages the agent to continue or discontinue foraging4. More recently, it has been 

proposed that mood integrates the current advantage5 of performed actions in order to 

facilitate the process of learning the best actions in each current circumstance or state in 

dynamic environments (Mood as Integrated Advantage: Bennett et al., 2020). Importantly both 

                                                      

4 Foraging is a term from Behavioral Ecology which describes the searching for rewards in the environment. 

5 Advantage is a term from Reinforcement Learning which describes how much more successful an action is 
compared to some other standard e.g. all other possible actions in the current circumstance. 
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these computational theories parametrize the integration of mood fluctuations over time using 

a parameter that scales the degree to which affective state at time point t-1, influences state at 

time point t and propose that this may vary in value in different individuals. Other models 

deriving from a Resource Rationality Framework6, consider mood/emotions to provide a meta-

reasoning strategy for reducing the amount of computational strategies from which to choose   

(Huys & Renz, 2017; Russek et al., 2020) . All these theories emphasise the evolutionary adaptive 

role of mood, both in the environments in which we evolved, and perhaps also in the modern 

world. 

 

2.2.3 From Day-to-Day, to Trial –to-Trial 

There are three broad ways mood is quantified and explored in the literature: Clinical report 

(Self or Observer), Experience Sampling Methods, and Experimental Sampling Methods. The 

clinical report comprises a variety of questionnaires that can be completed by the participant, 

or by a training observer. These typically return one score per participant (or more if the 

questionnaire can be divided into validated sub scores). Many studies use more than one 

questionnaire depending on the psychological constructs of interest. Measures that comprise 

questions about day-to-day mood include Beck’s Depression Inventory II, which asks for a rating 

of how often the subject has felt sad (amongst other questions, Beck et al., 1996), and the Mood 

and Anxiety Symptom Questionnaire that asks how cheerful the responder has been feeling 

(amongst other questions, Watson et al., 1995). Both questionnaires ask behaviour and feelings 

in the last two weeks. Studies focusing on changes in symptoms, such as after an experimental 

intervention (e.g. Browning et al., 2012), typically collect these questionnaires in more than one 

instance to examine any potential change in symptoms.  

While such questionnaires provide an implicitly agreed-upon standard7 between researchers 

across studies, they can only be repeatedly deployed on an infrequent basis and thus cannot 

tell us much about how mood evolves over shorter timescales. To this end, experience sampling 

methods such as Ecological Momentary Assessment or Experience Sampling Methods 

                                                      

6 Resource Rationality Framework argues that the cognitive constraints of humans need to be given more 
consideration in algorithm based descriptions of behaviour. 

7 Recently proposed by the National Institute of Mental Health (US) to be an explicit standard. 
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(EMA/ESM, EMA for brevity) can be used to capture the time series of an individual’s mood 

when they are not necessarily primed for such queries (as they may be within the lab). Original 

methods for this include using a digital wristwatch with a timer to ‘beep’ at variable intervals 

throughout the day, and reports made in a collated daily booklet (e.g. Wichers et al., 2009). 

With the increased ubiquity of personal smartphones and reduced cost of accessing the 

internet, methods that require frequent and brief sampling of current affective states on 

smartphone devices have become possible, increasing the popularity of EMA as a tool of clinical 

interest. Study participants can now download smartphone applications to their personal 

devices, which prompt them at a set schedule to fill in a brief set of questions about their 

current affective state and/or activities in which they are partaking.  With a continued repeated 

set of samples (each sample prompted by a push notification8  on the device) for each 

participant, a time series can be produced of how affective states evolve, and their relationship 

to day-to-day activities can be probed. Whilst the work in this thesis does not include EMA, the 

principles upon which it is based have motivated the development of the app The Happiness 

Project (Chapter 5), and therefore I will briefly explore some of its interesting results. 

Many EMA studies have used metrics of Positive Affect (PA) and Negative Affect (NA), typically 

generated using a dimensionality reduction method on EMA items with positive or negative 

valence (Figure 2-1). In many cases PA and NA have been shown to have differential predictive 

power. For example, an increase in PA (but no change in NA) in the first week of a new drug 

treatment was shown to be associated with a reduction in depressive scores after six weeks of 

treatment (Geschwind et al., 2011). Although requiring frequent interactions, EMA methods 

can be considered a relatively low burden for participants (compared with repeated visits to a 

laboratory setting or questionnaires gathered by phone calls). This may explain the high study 

retention rates that are often observed (e.g. Tsanas et al., 2016) and make it possible to 

continue studying patients for considerable periods of time, allowing data to be collected about 

individuals who have remittent episodes (e.g. Wichers et al., 2012). 

                                                      

8 Push Notifications are messages that pop up on the home screen of a mobile device, such as the short message 
to alert you that you have a text message. You do not need to have the application open in order to receive its 
push notifications  
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Figure 2-1 Example of  Experience Sampling Method Question 

Mood Zoom as featured in Tsanas et al (2016), where participants can quickly report their 

current mood on various dimensions. Reproduced from Tsanas et al (2016) Journal of 

Affective Disorders from under Creative Commons License. 

 

Further to exploring PA/NA at various time points, their evolution can also be capitalized on by 

more sophisticated time scale analysis. Metrics have been used to differentiate between the 

different conditions characterized by mood instability (Dejonckheere et al., 2018) particularly 

Bipolar Depression (BD) and Borderline Personality Disorder (BPD). One such example using 

Mood Zoom (Figure 2-1) analysed the variance of a time series of EMA with daily monitoring for 

over a year with a study adherence of over 80% (Tsanas et al., 2016). This generated four 

different metrics for variability (e.g. root mean squared successive difference) and compared 

whether these metrics of the EMA could differentiate between BPD, BD, and healthy controls 

(HC). They demonstrated that BPD and BD diagnoses were better differentiated by variability 

metrics from the EMA than weekly standardized questionnaire scores (e.g. GAD-7 and ASRM).  

Many EMA studies have proposed alternative metrics of affective dynamics and heralded their 

differential prediction power. However, a recent meta-analysis of 15 EMA studies (N = 1,777) 

demonstrated that many newly proposed unique dynamic affective features do not predict 

variance to a more significant degree than the mean and standard deviation of PA and NA time 
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series (Dejonckheere et al., 2019). Dejonckheere and colleagues included seven proposed 

metrics including: Emotional Inertia (the degree to which PA/NA carry over from one moment 

to the other); Emotional Instability (the average change in intensity between two successive 

measurement occasions for PA/NA); Emotional Interdependency across time (the degree to 

which various PA and NA predict one another over time) and Bipolarity (the degree to which PA 

and NA are experienced independently). Very few of the seven new affective dynamics included 

in the 15 studies captured more variance than the mean or standard deviation of PA or NA. Only 

Emotional Inertia and Bipolarity captured additional variance of interest, with Bipolarity 

capturing additional variance in life satisfaction and depressive scores (but not borderline 

symptoms). This paper highlights that while time series analysis of mood can have good clinical 

predictive power, we should be sceptical of work proposing more complex dynamics which 

claim to represent distinct emotional properties. 

EMA examines affective time scales with high granularity over multiple days, weeks, or months. 

However, to investigate the influence of experimental manipulation on a participant’s affective 

state, experimentalists have used a similar repeated sampling method within the laboratory 

experimental setting. These studies typically involve multiple choice trials where decisions may 

vary within features such as risk, uncertainty, and magnitude. These choice variables provide 

varying quantifiable amounts that can be compared to participants’ ratings of their current 

affective state on a trial-by-trial basis (many studies using this method are covered in later 

sections). For example, in work by Robb Rutledge and colleagues, participants are asked 

throughout the task (between a set number of trials) to respond to the question ‘how happy 

are you at this moment?’ and asked to rate their current happiness on a continuous scale (Figure 

2-2). Sampling affective state within an experiment was used in behavioural and fMRI studies, 

as well as in a gamified cognitive task on a smartphone platform (Rutledge et al., 2014). It is 

useful to compare and contrast these methods, particularly in terms of their capacity to shed 

light on psychiatric disorders characterised by mood, and their ability to advance our 

understanding of mood and affective dynamics. 
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Figure 2-2 Repeated Within Experiment Sampling 

Many studies utilise sampling affective state, or happiness repeatedly within the 

experiment. Shown here is an example from Rutledge et al (2014) where participants made 

choices in a probabilistic gambling task (example shows a mixed prospects trial), and their 

happiness was sampled after outcomes every 2-4 trials. Happiness rating was reported by 

adjusting a yellow cursor on a line using the computer mouse. 

 

EMA methods allow for the assessment of reaction to particular events. For example, the 

degree to which positive events boost mood, or how stressors reduce mood and the transience 

of these effects. Daily activities, such as sleep or exercise to which researchers have a priori 

hypotheses, can be explored in terms of their relationship to affect. For example, one study 

found that how long participants slept had a differential effect on PA and NA for adolescents 

compared to adults (Cousins et al., 2011). Physical activity has been shown to have a larger 

effect on PA in patients than controls in a non-remitted group (Mata et al., 2012).  Daily events 

can also be explored more generally. One study found that patients made more negative and 

less positive appraisals of day-to-day activities than healthy controls (Wichers et al., 2009). 

Additionally, patients were more negatively affected by negatively appraised events. However, 

only the magnitude of change in PA in response to positively appraised activities was a predictor 

of treatment success.  
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Humans show inaccuracies when asked to report their mood in the past (Wilson et al., 2003) or 

predict their mood in the future (Dunn et al., 2016). EMA methods often reduce the possibility 

for interference from such biases by asking people to report how they feel in the current 

moment (Verhagen et al., 2016). However, EMA studies have also asked participants to report 

their perception of recent events (e.g. last day or hour), reports which may be vulnerable to 

interference in terms of evaluating their valence, and therefore whether they should be 

included in the EMA assessment at all. For example, in Wichers et al (2009) participants were 

asked to appraise the current situation using Likert scales in response to questions such as “does 

this activity require effort?’ or ‘are you skilled at doing this activity?’ Importantly, depressive 

symptoms are known to affect perception of effort in an experimental setting (e.g. Cléry-Melin 

et al (2011); Silvia et al (2014)) and it is likely to bias these reports in a similar way. Examining 

an affective time series in the absence of an objective assessment of the respondent’s 

surroundings and events arising from it may mean the data lacks valuable context of how 

affective responses may be sensitive to the same events in quantitatively different ways 

between individuals.  

Another key distinction between EMA methods and lab-based mood sampling is that typically 

in lab-based studies only one question is asked that usually refers to positive affect (e.g. Blain 

& Rutledge, 2020; Keren et al., 2019; Vinckier et al., 2018). Whilst this decreases the 

dimensionality and thus the richness of the data, it may provide a more naturalistic assessment 

of someone’s current emotional state; we are not frequently asked to assess our current state 

across multiple dimensions simultaneously. These studies implicitly assume that asking about 

happiness acts as a proxy for how much positive or negative affect is felt and therefore provides 

a more general assessment of current subjective wellbeing. This assumption is not unfounded. 

The concept of happiness occupies the sole position as the only purely positive emotion in 

Ekman’s basic emotions theory (Ekman, 1992). Furthermore, the term happiness has a broadly 

general use beyond its concrete emotional concept (Barrett, 2016) as exemplified by its 

colloquial use as an evaluative term e.g. are you happy with how that went?. 

In summation, these two methods provide different avenues for the understanding of affective 

dynamics. Broadly the distinction between these two methods can be defined as follows:  EMA 

describes how individuals respond to uncontrolled natural events, and sampling within 

experiments describes how individuals respond to controlled unnatural events. Further work 
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exploring a combination of EMA and experimental tasks may find these naturally complement 

one another. Sampling within experiments benefits from the affective events being defined by 

the experimenter, allowing for interpretation of the subjective affective response to the event 

without confounding the subjective description of the event itself. However, by constraining 

the affective events, participants can respond to in such a way that the emotional salience of 

events is necessarily reduced as they are not relevant to a participant’s nature day-to-day 

choices and goals. Work in Chapter 5 describes a smartphone experimental design which seeks 

to explore these methods in combination. 

 

2.3 The Recursive Nature of Mood and Decision-Making 

 

2.3.1 Reward Sensitivity 

Mood and decision-making are most typically studied in the context of reward sensitivity. 

Rewards can be divided into primary and secondary categories. Primary rewards are those that 

provide direct nourishment of the body and satisfy survival needs (e.g. food). Secondary 

rewards are those that can be used to procure primary rewards (e.g. currency). Experimentally, 

primary rewards are typically understood as consumable when given and cannot be taken back 

by the experimenter. These include taste and  smell (e.g. Amsterdam et al., 1987) , and seeing 

an attractive picture of a member of the gender or sex of your preference (e.g. Iigaya et al., 

2016). Secondary rewards are not typically given until the experiment ends (e.g. cumulative 

points scored are converted to prize money; Rutledge et al (2014)). Financial loss tends to be 

understood under the reward framework, as it constitutes a lack or reduction of reward from a 

given endowment. This is distinct from punishment which involves the presence of an aversive 

event. These include electric shocks (e.g. Berns et al., 2006), tastes and smells (Swiecicki et al., 

2009). It is worth noting that there is inconsistency in the literature as to whether losing money 

is described within the reward framework (as a negative reward; e.g. Maddox et al., 2012; 

Rutledge et al., 2015;Sokol-Hessner et al., 2015), or as part of a punishment framework (Beevers 

et al., 2013; Guitart-Masip et al., 2012; Pulcu & Browning, 2017). Most of the variance here may 

be explained by whether a reinforcement learning framework is used (punishment), or a risky 

decision-making (negative reward).  
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Our current understanding of reward sensitivity is largely driven by the activation seen in areas 

of the brain during neuroimaging studies (particularly fMRI) when participants are making 

decisions and receiving rewards (e.g. Rutledge et al., 2015) Many neuroimaging studies from 

the neuroeconomic and reinforcement learning literature focus on the neural correlates of 

subjective value and describe areas of correlated activation as value-encoding. This implicitly 

assumes that the brain encodes for a single scalar value and can be used to compare between 

any multiple number of choices9.   

Areas of the brain where neural activity correlates with subjective utility include the ventral 

striatum, the ventral medial prefrontal cortex, and the orbitofrontal cortex (Levy & Glimcher, 

2012). Activity in these areas show increases based on the value of gain prospects (and 

outcomes) and decreases for the value of loss prospects (and outcomes). In an exemplar study 

by Levy & Glimcher (2011), participants were deprived of food and water and were then 

required to make risky decisions where rewards corresponded to food and water (and money). 

They found that individual differences in risk preferences were correlated across reward type 

(i.e. those who showed a preference for a small certain financial gain over a riskier large gain 

also showed the same preference when the prospective gains were food). Furthermore, whilst 

distinct neural regions were found to encode for the subjective value of food, the subjective 

value of all potential rewards correlated with activation in the vmPFC,  suggesting that the value 

of both food and money lies on a common scale (with allowance for re-scaling based on 

context). This is an important assumption for computational psychiatry; risk preference is 

consistent across domains and is described by the same brain mechanism. 

Reward Sensitivity occupies an important place within the RDoC (Research Domain Criteria) 

framework developed by the National Institute of Mental Health in the USA (NIMH; Cuthbert & 

Insel, 2013). The perspective of the RDoC framework is that mental illnesses are brain disorders 

and thus should be addressed at brain circuit level. Following this, dysfunction in brain circuits 

can be identified using the tools of neuroscience (e.g. functional neuroimaging) and this will 

                                                      

9 A recent controversial paper has suggested that the concept of value is not what the mammalian brain has 
evolved to represent and manipulate for the making of choices (Hayden & Niv, 2020)  but rather, the concept of 
action weights (i.e. the probability of performing a particular choice in a given state/situation). The marrian goal is 
correct behaviour rather than computing value. Both perspectives agree that value is at least a correlate to what 
the brain actually uses to compute and is thus a sufficient understanding for the neuroimaging studies included in 
this section. Furthermore, the paper concedes that the brain may compute value on occasion, but it is not what it 
typically uses day to day. 
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yield biosignatures that can be used for clinical management (e.g. Clementz et al., 2015). The 

RDoC framework specifies six major domains which reflect current thinking about the major 

systems at play in cognition, motivation and behaviour: Cognitive; Arousal/Regulatory; 

Sensorimotor; Positive Valence; Negative Valence; Social Processes  (Insel et al., 2010). Reward 

sensitivity is defined under Positive Valence Systems which subdivides further: Reward 

Responsiveness; Reward Learning, and Reward Valuation (and others). The contrasting 

Negative Valence System includes: responses to threat; reactions to the withdrawal/prevention 

of reward; states of deprivation from a significant motivator (e.g. shelter, companionship, 

status). The prospective of losing reward is included in the Positive, and not the Negative, 

Valence System10. 

While RDoC has a biological focus, it by no means discounts the role of behavioural tasks and 

self-reporting. Here, behavioural tasks aid the identification of neural circuits relevant to 

symptoms of interest, and can be used to test hypotheses about how they may work to do this. 

For example, increased negative activity with strength of punishment was seen in the habenula 

(a small structure with considerable connections to sources of both dopamine and serotonin 

neurons in the brain; Yang et al., 2018) has been observed in patients with MDD while 

completing a conditioned shock task (Lawson et al., 2017). This is in contrast to an increasing 

positive activity seen in healthy volunteers, and no significant activation present in response to 

financial wins or losses. Anhedonia scores were also shown to have a negative relationship with 

the volume of the habenula in both healthy volunteers and patients with MDD. Such 

observations allow for the advancement of mechanistic discussion about the association 

between depression and active avoidance.  

Importantly, the goals of RDoC are to both identify pathophysiological mechanisms that are 

present in multiple diagnosed psychiatric disorders (e.g. anhedonia), and identify mechanisms 

that are unique to specific psychiatric symptoms that can be used to reflect risk of developing 

                                                      

10 One may also argue that this perspective is driven by the privilege of wealth where financial loss does not 

destabilize an individual’s status or create a state of deprivation. For example a loss of £7 to an affluent individual 

is disappointing but does not affect their status. A loss of £7 to a family in a low income background can mean a 

parent going without a meal in order for their children to eat well. Mental illness is known to be more present in 

lower socio-economics groups (Hudson, 2005). 
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these symptom profiles. This approach explicitly embraces heterogeneity in psychiatric 

disorders (Drysdale et al., 2017; Merikangas et al., 1994). The idea is to yield new classifications 

based on discoveries that cut across multiple levels of analysis (behaviour, neuroscience, 

genomics) that can predict a degree of treatment response (Insel et al., 2010)11. Currently there 

is no strong evidence to suggest that diagnostic categories based on DSM style diagnostics 

relate to consistent underlying neurobiology (Hyman, 2007). 

Anhedonia is a symptom that has received considerable attention in RDoC perspectives and 

Computational Psychiatry. It is defined as the loss or lack of reactivity to pleasurable stimuli 

(APA, 2013) and is typically understood as an extreme dimension of reward sensitivity (reward 

hyposensitivity) characterized by low approach motivation to rewarding stimuli (Auerbach et 

al., 2019). The other end of the scale, reward hypersensitivity characterized by strong approach 

behaviour to rewards, is observed in patients with bipolar disorder and other manic like 

symptoms (Nusslock & Alloy, 2017).  Anhedonia is observed in a wide range of diagnostic 

categories including major depressive disorder (MDD; Pizzagalli, 2014), schizophrenia (Gard et 

al., 2007, but for a counter perspective see Strauss & Gold, 2012) , obsessive compulsive 

disorder (OCD; Pushkarskaya et al., 2019), and even physical illness (Eisenberger et al., 2010). It 

is also associated with poor clinical outcomes (e.g. Uher et al., 2012; Vrieze et al., 2013).  In one 

such study an anhedonia symptom dimension was shown to be the only dimension that 

predicted longer time before remission and fewer depression free days in a trial of adolescents 

with treatment resistant depression randomized to a medication switch (with or without 

Cognitive Behavioural Therapy in parallel; McMakin et al., 2012). Dimensions that were not 

predictive were: reported depressed mood; somatic symptoms; morbid thoughts and observed 

depression. 

Although anhedonia is seen as a trans-diagnostic symptom dimension there is much debate as 

to how it breaks down into further dimensions itself, such as anticipated, consummatory 

(deficits in enjoying reward), and motivational (deficit in wanting to get rewards) anhedonia 

(Auerbach et al., 2019). Delineating the respective contributions of anhedonia to the anatomy 

                                                      
11 Akin to computational modelling, a category is useful given its ability to predict outcomes and we assume it will 

be more useful if it more closely reflects reality. 
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of a decision by fractioning the contribution of reward sensitivity at each stage can lead to 

better phenotyping of possibly distinct syndromes from similar symptomology (i.e. apathy, 

(Husain & Roiser, 2018). The decision-making process can be divided into three stages where 

reward sensitivity may be examined in terms of affective responses. Firstly, there is ‘decision 

utility’ which describes the weighing of associated outcomes prior to a decision being made 

(Kahneman et al., 1997). Following this is ‘anticipated utility’; the experience of waiting for an 

outcome after the decision has been registered (Loewenstein, 1987). Finally, when an outcome 

is revealed there is ‘experienced utility’ (Kahneman et al., 1997) which describes how we feel 

about the outcome. All three of these stages may be affected by an individual’s current mood 

which may influence the perception and evaluation of a decision (Hartley & Sokol-Hessner , 

2018). I will next review the literature for each of these in terms of reward sensitivity and 

affective responses. 

 

2.3.2 Incidental Emotional Effects 

Mood can have an incidental effect on decision-making. For example, when we are in a good 

mood we might be more amenable to a colleague’s suggestion to go for an after work drink, 

whereas when we are in a bad mood we may be more tempted by an early night in our pyjamas.  

Experiments have utilised mood inductions to test how incidental mood may affect decision 

utility. Positive mood, as induced by happiness-inducing musical extracts (Schulreich et al., 

2014), sunny weather (Bassi et al., 2013), and local sports team wins (Otto et al., 2016), have all 

been shown to increase propensity to take risks (however this has not been observed 

unilaterally, Treffers et al., 2016). It is suggested that a good mood makes us feel more 

optimistic about the chances of our next decision (Sharot, 2011). Other work has shown that a 

mood induction caused by a surprise windfall of points or a significant loss of points from a 

‘wheel of fortune’ midway through an experiment, increase a preference for stimuli 

encountered after a windfall (when a self-reported mood was more positive) and an aversion 

for those encountered after a loss (when a self-reported mood was more negative) compared 
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to stimuli they encountered before the surprising wheel (Eldar & Niv, 2015, however this result 

was only seen in participants who had self-reported high mood instability)12.  

Mechanistic explanations for how mood inductions modulate risk taking include priming to 

think about the possible outcomes in the direction of the induction (e.g. create a pessimistic or 

optimistic outlook about the decision in hand (Isen, 1993). However not all studies have 

consistently found that positive mood increases risk taking, and the evidence for how negative 

mood affects risk taking is less clear still. For example, Yuen & Lee (2003) used a mood induction 

of happy, sad and neutral film clips (from 22 to 26 minutes long) and then asked participants to 

complete the Choice Dilemmas Questionnaire, where participants had to respond to their 

willingness to take part in real life situations. They found that sad movie clips reduced risk taking 

(compared to neutral and happy clips), but happy clips did not have a significant effect on risk 

taking from neutral clips. Some studies have found the opposite effects. Yen and Chuang (2008) 

found that when asked to write about emotional content, sad-related content increased risk 

taking (by means of reducing loss aversion) and happiness-related content decreased risk taking 

(by means of increased loss aversion). Here loss aversion was quantified by using choice task 

where participants had to choose between ‘status quo’ products (e.g. apartments, vacation 

hotels and help clubs) and new alternatives. One reason for this inconsistency may be the 

differences in task design and the type and duration of the mood induction paradigm. Mood 

inductions such as film clips and writing about emotional content may induce mood in a way 

that is personal and idiosyncratic. It would be useful for the field to try to isolate the 

mechanisms by which incidental mood may change decision-making. 

fMRI work focusing on mood induction has suggested that mood inductions, specifically those 

induced by prediction errors, cause an increase in activity in value encoding areas which drives 

the perception of subsequent decisions (Abitbol et al., 2015; Eldar & Niv, 2015; Iigaya et al., 

2019; Vinckier et al., 2018b). This is consistent with work showing that simple endogenous 

fluctuations in value encoding areas bias choices in risky decision tasks (Chew et al., 2019; 

Huang et al., 2014). One example showing the effect of a mood induction on neural activity and 

risk taking is a study by Fabien Vinckier and colleagues where quiz questions of various difficulty 

                                                      

12 Only probability was varied between choices and not magnitude, thus mood induced changes in risk taking were 
not tested. 
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with biased feedback were used to create episodes of high or low correct choice rate which 

acted as a mood induction.  The choice task consisted of whether to accept or reject a motor 

precision task which varied in level of difficulty and prospective gain or loss framing. Rejecting 

the trial meant being presented with a much easier motor precision task with a smaller 

prospective loss or gain. Using the data generated from their computational mood model, they 

found that mood after the quiz task (prior to motor choice onset) correlated with positive 

activity in the ventral medial prefrontal cortex (vmPFC) and negative activity in the anterior 

insula. They extended their mood model by including each participant’s individual activation in 

these two regions which modulated the weights on prospective gains and losses in the choice 

task, for the vmPFC and anterior insula respectively. Behaviourally, this means that propensity 

to make risky choices for prospective gains was associated with greater mood, and reduced 

propensity to make risky prospective loss choices was associated with lower mood. Importantly 

the activity in vmPFC and anterior insula was not a reflection of each other, both explaining 

unique variance in the mood ratings when included in the same regression model.  

 

2.3.3 Decision utility 

Work on the contribution of emotions to decision utility can be divided into two broad ideas; 

being presented with a decision itself can have affective properties which drive choice, and the 

affective forecasts we make about how we will feel given a particular choice outcome may also 

drive choice (e.g. how happy we might be if we win a prize, how disappointed we will be if we 

do not, or the regret we will feel if we did not take the risk). This has been hotly debated with 

regard to the behavioral phenomenon of loss aversion where ‘losses loom larger than gains’ 

(Kahneman & Tversky, 1979). Is loss-aversion driven by the presence of negative affect at the 

time of decision, or anticipated increased negative affect at losing (compared to anticipated 

positive affect at winning)? 

Theories postulating how feelings about decisions drive choice are described within various risk 

as feelings hypotheses where affective responses to a prospective decision may differ from 

cognitive evaluations (Loewenstein et al., 2001). In one prominent theory, the somatic marker 

hypothesis (Bechara & Damasio, 2005) feelings and their associated physiological components 

(e.g. increased heart-rate, nausea in the stomach) provide valuable information about the 
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stimulus that has been encountered which can lead to more optimal decision-making (Bechara 

& Damasio, 2005). For example, when a stimulus associated with a positive outcome is 

encountered, such as an ice-cream, this induces a positive affective state which drives you to 

approach the stimuli (and ideally eat it). Conversely, if the last time you ate ice cream it made 

you sick, the feeling of nausea when you encounter it again may lead you to sensibly avoid it. 

However, it is unclear as to the degree to which the effect of emotions in decision utility may 

scale to simple repetitive probabilistic gambling choices as often used in a computational 

modelling approach. 

While risk as feeling focuses on emotions at decision time, other theories have focused on the 

role of anticipated feelings. In affective forecasting the agent uses information about how they 

believe they will feel about the prospective outcomes to drive their decision-making, however, 

this information is not experienced as affect, rather it is cognitively evaluated (Wilson & Gilbert, 

2005). This provides an avenue for many cognitive biases and individual beliefs to affect 

judgement as future feelings must be estimated in terms of their valence, intensity and 

duration. While humans (and other mammals) tend to be very good at predicting the valence 

of future events, we are not as good at estimating the duration and intensity of the emotional 

response, tending to overestimate both of these (termed the impact bias Gilbert et al., 1998). 

For example college students were found to overestimate their future happiness if they were 

assigned to a desirable dormitory, and underestimate their happiness if assigned to a 

undesirable dormitory (Dunn et al., 2016). The authors of the original affective forcasting theory 

explored this by asking participants how they would feel immediately after they won or lost a 

fair coin toss which would result in winning $5 or losing $3 and how they would feel 10 minutes 

after. After finding out the result, they rated their happiness a second time after 10 minutes of 

a filler task. The results demonstrated a loss aversion in the participant’s affective forecasts 

where they predicted losing would have a greater emotional impact than winning, both 

immediately and 10 minutes after, where they predicted that their happiness would not have 

returned as closely to their baseline as it in fact did (Kermer et al., 2006). These results were 

also present when participants completed 44 trials and were divided into experiencers where 

they actually won or lost money or forecasters where they watched the computer play and 

predicted how they would have felt. Interestingly, it has also been suggested that the impact 

bias may work retrospectively, where Americans rated their emotional responses as more 
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extreme four months after the 2000 Bush vs Gore election than they rated them at the time 

(Wilson et al., 2003). 

Whilst the original affective forecasting study provided a convincing argument for the existence 

of an affective loss aversion at population level, they did not correlate each individual’s results 

with behavioural loss aversion. To this end, Caroline Charpentier and colleagues utilised a 

model comparison based approach to explore whether feelings at outcome, or predicted 

feelings at outcome, were a better explanation of behavioural loss aversion. Participants made 

predictions and gave ratings at outcome, and both were used as inputs into a computational 

model predicting choice in a separate choice task. The best fitting model was one that used 

their expected feelings as opposed to experienced feeling, and another model that used a 

feeling ambivalent value function alone, suggesting that loss aversion is driven by affective 

forecasts with an impact bias for losses. Interestingly neither of the studies explicitly asked 

participants how they felt at the point of decision-making by sampling their current experienced 

emotions. This leaves open the possibility that affective forecasts and confounded with 

affective properties when they are made, i.e. the experienced negative affect at the time of 

choice leads me to over predict the negative affect of a prospective loss. A similar argument is 

made by Levine et al where they critique the questions used to quantify the affective forecast, 

suggesting they may cause the effect itself (Levine et al., 2012, 2013). They note that when 

forecasts are made, participants are asked how they will feel about a particular event and this 

is compared to later when they asked about how they currently feel. The first question 

encourages focalism on the event, while the second samples the emotion in the context of a 

more general affective state. This also highlights the care that any experimental mood sampling 

must take to ensure that the inferences made are appropriate to the nature of the reports 

given. 

One overlooked feature of this is that if negative affect associated with decision utility 

motivates the avoidance of certain choices, an overestimation of this effect (as suggested by 

Charpentier) may lead to negative events being under sampled thereby limiting opportunities 

to accurately update the decision utility (similar to a prediction error update in a reinforcement 

learning model).  
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2.3.4 Anticipated Utility 

Anticipated utility refers to the valenced effect of waiting for an event to resolve itself with an 

outcome. It is not difficult to think of many emotional terms referring to the waiting period 

before an outcome: dread, excitement, sanguinity, suspense, hopefulness. Many of us 

experience dread before a dental appointment or excitement when planning an upcoming 

holiday. Interesting perspectives on anticipated utility come from work on early information 

preference in paradigms where participants are given the option to learn about future 

deterministic outcomes in advance (Berns et al., 2006; Iigaya et al., 2016, 2019). Here, it is 

shown that for both rewarding and punishing stimuli, participants prefer to receive knowledge 

about their occurrence in advance. 

Work exploring information seeking for future rewards comes from two studies by Kiyohito 

Iigaya. In the first, they asked participants whether they would like to receive prior information 

about whether they will see a rewarding stimuli or not (the reward being a picture of an 

attractive female model) after a known delay period of between 1 and 40 seconds. The 

likelihood of seeing the rewarding stimuli was 50% for all trials, and receiving prior information 

meant a deterministic answer as to whether they would see the rewarding stimuli. They found 

that the longer the delay the more likely participants were to choose receiving prior information 

about the delayed outcome. The authors argue that new information constitutes a positive 

prediction error from receiving the information itself, starting the process of savouring the 

anticipation of the future reward (Iigaya et al., 2016). In a follow up study using a similar 

paradigm in fMRI, they replicated that participants would prefer to know in advance if they 

would see a rewarding stimuli (this time a more general pleasant image), and that their 

preference increased when the delay was longer. Interestingly, they found preferences for 

information were heterogeneous whether the probability of the rewarding stimuli was higher 

or lower. They proposed a choice model which includes an advanced information prediction 

error (aRPE) and an anticipatory signal which ramps up in strength from the onset of the aRPE 

until the rewarding image is seen. They found the ramping up anticipatory utility signal from 

the model correlated with an increase in activity in the vmPFC throughout the delay period, and 

as expected, aRPE strength correlated with activity in the dopaminergic midbrain (VTA/SN). RPE 

however are phasic signals; interestingly an aRPE signal was also present in the hippocampus 

along with prolonged activity throughout the delay period. This hippocampal activity was found 
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to mediate functional coupling between the vmPFC and dopaminergic midbrain – the authors 

suggest a role for the hippocampus in imagining the future reward and thus playing a key role 

in anticipation. 

Iigaya and colleagues speculate whether they would be able to generalize their conclusions to 

events of a negative valence and feelings of dread. The rewards they used did not have a ranking 

of how rewarding they are, which meant that they could not test whether anticipation had any 

value that could be offset against the value of the final reward (i.e. would they prefer early 

knowledge of a possible smaller reward, or no early knowledge of a probabilistic larger 

reward?). These ideas have been explored in work featuring punishing stimuli (Berns et al., 

2006). Berns and colleagues found that when given the choice some participants preferred to 

receive slightly larger shocks with a shorter delay over smaller shocks with a longer delay. 

Participants with this preference (referred to as extreme dreaders) rated the shocks after a 

longer waiting period as more painful than the rest of the cohort – demonstrating that the 

aversive nature of waiting is on par with the pain of a shock. During fMRI, the authors observed 

similar temporal dynamics to Iigaya’s work in areas of the brain known to respond to pain (i.e. 

right posterior insula and caudate ACC). Where activity from the cue predicting the punishment 

to the time of the painful shock showed a similar ramping effect as in the vmPFC for anticipated 

rewarding stimuli. Those characterized as extreme dreaders showed earlier and more sustained 

activity than the mild dreaders. 

These studies in concert suggest that people have a tendency to prefer prior information about 

future rewards and punishment. I will revisit this observation when we consider the 

mechanisms behind optimism and pessimism in Section 2.3.6 (Optimism and Pessimism). It is 

worth noting that work on anticipation has focused on the future receipt of primary rewards. 

There is currently no work concerning anticipation of future reward prediction errors in 

secondary reward (i.e. you will get chances to win money soon!). 

 

2.3.5 Experienced Utility 

Work on how decisions affect our mood has largely been driven by our understanding of 

experienced utility; how we feel about receiving an outcome. Dominant in this area is the idea 

that mood is largely driven by surprises, or prediction errors; deviations between what we 
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expected and what we received. In one frequently cited study, real world unexpected events 

(quantified from historical trends) such as sunny days or a local sports team win boosted 

happiness at city wide level and increased lottery ticket purchases. Similarly in an EMA study of 

university students with ratings taken after receiving of exam grades, deviations from expected 

grades drove ratings of PA and NA (Villano et al., 2020). Here PA/NA, were densely sampled 

every 45 minutes over the eight hours following grade receipt. A computational model which 

used both the grades and student’s expectations about them (after taking the exam and before 

receiving the grades) better predicted the time course of PA and NA than simply the grades 

themselves. Another interesting example is a study looking at the introduction of new 

technologies in the classroom (e.g. tablets), which found lower expectations about the 

technology intervention resulted in higher approval ratings after their implementation (Hassan 

& Geys, 2016). 

Laboratory work has demonstrated that even transient emotional fluctuations are driven by 

deviations from expectations on a trial-by-trial time scale. In 2014 Rutledge and colleagues 

sampled happiness throughout a probabilistic gambling task after the outcome of the decision 

was received every 2-3 trials (Figure 2-2). A model comparison approach revealed that 

happiness ratings were better explained by weights for the influence of expected value and 

prediction errors (Equation 1-3 Affective Dynamics Model), compared to outcomes alone, a 

result which was consistent across behavioural and fMRI, and could be replicated multiple times 

in a large scale smartphone data set (Rutledge et al., 2014). Another laboratory study used the 

same method of asking about happiness every 2-3 trials but looked at how it varied across three 

differently structured environments (Keren et al., 2019). They used a probabilistic gambling task 

where trials of gain, loss and mixed prospects are pseudorandomised (as did Rutledge et al., 

2014), and a structured task the trials were organised into blocks of very high or very low 

prediction error values. They also included a structured adaptive task where the reward 

prediction errors for a subsequent trial were calculated using a closed-loop control13 in order to 

deliver participants the trials they needed to maximally boost their happiness ratings as close 

to the top or the bottom of the scale as possible. In this experiment, the also found that 

happiness ratings were driven by expectations and prediction errors, but defined these 

                                                      

13 Closed Loop is a control system where the operations are regulated through feedback. 
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differently. The expected value was defined as the average of all previous outcomes, and 

prediction errors were the difference in the outcome and the expected value. 

The studies presented here all find a role for expectations and predictions in describing the 

happiness ratings after an event. While each of these studies presents a subtly different model 

to draw inferences, this may reflect differences in the experimental paradigm, highlighting that 

caution that should be applied when generalizing these results to what makes us happy. For 

example, in the study of university student’s exam grades by Villiano and colleagues, they found 

the best fitting model included outcomes in addition to expectations and prediction errors. This 

may be due to the personal salience of the event and its relevance to future rewards; getting 

an A in an exam is a positive event whether you expected it or not, as it is a good indicator of 

future exam success and even good job prospects14. Laboratory based studies lack personal 

salience in their mood inducing events and include multiple similar events in sequence so 

outcomes may play less of a role. Differences in how the expectations and prediction errors are 

defined between Rutledge at al and Keren et al may be due to the way environments are 

structured. In Keren’s study, as environmental changes occurs in the structured and structured 

adaptive tasks, causing there to be a greater role for previous events on current affective 

ratings. These models also differ in their conclusions about whether recent events or primary 

events (i.e. those at the beginning of sessions) have a greater influence on mood. While these 

suggestions are speculative, it may be that in the interpretation of any proposed model of 

mood, we need to consider how the model may mirror the paradigm in a way that makes it less 

generalizable to day-to-day fluctuations.  

 

2.3.6 Optimism and Pessimism 

I have briefly dissected the contributions of affective responses throughout the decision 

process. These studies focus largely on events that are happening to us right now. Specifically, 

studies exploring anticipation and dread limit themselves to events happening after a delay of 

less than a minute. Thus the field has yet to ask whether optimistic and pessimistic beliefs about 

the future may in themselves have affective qualities which may impact upon decision-making. 

                                                      

14 There is no guarantee it will be linked to future happiness. It could also lead to doing a PhD. 
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We will briefly review the literature on optimism and pessimism with regards to mood, 

behaviour and major depressive order (MDD) in order to assess which models of affective 

anticipation (and dread) may be extended to explore further future prospects. 

A multitude of studies have shown that overall we have an optimism bias; a tendency to believe 

events in the future will be more positive than negative, and update our beliefs when presented 

with more information in a positive direction (for reviews, Sharot, 2011, 2012). For example, in 

a community wide sample it was found that respondents to a mailed questionnaire had a 

tendency to rate themselves as less at risk than their peers for susceptibility to various kinds of 

physical and mental harm (Weinstein, 1987), 15. In another example, heavy smokers were 

shown to consider themselves less likely to be at risk of premature mortality (Schoenbaum, 

1997). Despite these examples showing how optimistic beliefs about risk may encourage less 

desirable behaviour, the association of optimism with positive benefits means it is often 

considered a desirable bias to have. Observational studies have shown that trait optimism is 

associated with better mental and physical health outcomes (Conversano et al., 2010; Scheier 

& Carver, 1987). A possible suggestion for this is that holding optimistic beliefs promotes 

behaviours that increase the potential for rewarding outcomes by increasing motivation and 

self-confidence (Bouchard et al., 2018).  

Another perspective is that good subjective wellbeing requires accurate perception about self 

and the environment (e.g. Dillard et al., 2009). One paper suggests that both optimistic and 

pessimistic beliefs lead to reduced long term wellbeing (de Meza & Dawson, 2020). Utilizing a 

survey of British households across 18 years (N = 1,601), they found that those who predicted 

themselves to be financially better or worse off both experienced significant reductions in their 

long term subjective well-being compared to those who held realistic beliefs about their future 

financial situations. This presents a contrast to the infamous concept of depressive realism 

where depressive symptoms are associated with an accurate perception of future prospects 

and how well things are going (Alloy & Abramson, 1979). However, it is worth noting two 

                                                      

15 However it is worth noting that the methodology that supports the optimism bias in particular optimistic belief 

updating has been criticized (Shah et al., 2016), highlighting the methodological complexities of using analogue 

scales for reporting and assuming linearity throughout the scale. 
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reviews that conclude that depressive realism may be a small effect which is very dependent 

upon study methodology (particularly against the objective standard of reality that is used to 

compare, Ackermann & DeRubeis, 1991; Moore & Fresco, 2012) and most work focuses upon 

events that will be resolved quickly within the experiment (i.e. not in the future). It may be that 

not all situations benefit from an optimistic disposition, particularly those with such an 

importance to real life environments as financial situations (Dawson et al., 2015). Biases about 

the valence of our future are likely to strongly interact with current environmental statistics.  

When considering real life events further into the future, MDD has been associated with a more 

pessimistic perspective of the future. In an online study, participants were asked to estimate 

the probability of events of different valence occurring in their lives (e.g. having a serious 

headache, being yelled at by a stranger, having your work praised). Those with higher 

(subclinical) depressive scores predicted positive events to be less likely than those with lower 

scores compared to their actual incidence over a 30 day period (Strunk et al., 2006). It is not 

clear whether trait pessimism is a risk factor or a symptom of MDD.  

 

2.4  Loss and Gain Asymmetry 

In the preceding review of work on the affective properties of decision-making, it is clear that 

understanding both responses to positive and negative stimuli in both rewarding and punishing 

environments needs to be explored. One ongoing implicit debate in the field is whether 

responses to gain and loss may be best described as a mirror of each other. For example, one 

infamous behavioural principle from prospect theory is the reflection effect (Daniel Kahneman 

& Tversky, 1979). The reflection effect refers to the reversal of preferences when shifting 

between prospect choices in the reward domain as gains or losses, which can be captured by a 

single free parameter (e.g. Arnett, 1992; Ruggeri et al., 2020; This is the α parameter discussed 

in Section 1.7 Prospect Theory as a Computational Model). In a similar vein, many studies in 

reinforcement learning capture positive and negative prediction errors in the same parameter 

(e.g. Behrens et al., 2007; Gershman et al., 2009). Some studies have employed separate 

learning rates for positive and negative prediction errors (Gershman, 2015; Niv et al., 2012). In 

both cases, studies looking across lifespans have found differential development patterns for 
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behaviours towards gains and loss (Christakou et al., 2013; W. van den Bos & Hertwig, 2017), 

motivating dual process biological accounts of behaviour (Bossaerts & Murawski, 2015). 

The term affective gradient has been used to describe individual differences in preferential 

processing of positive vs negative stimuli (Pulcu & Browning, 2017). Identifying whether 

affective gradients are driven by a single or separate processes for positive and negative stimuli 

is an important question for computational psychiatry, particularly in terms of treatment 

approaches. For example, if preferential processing is governed by one operation only one side 

of the spectrum need be approached (i.e. increasing attention to positive things will decrease 

attention to negative things). Whereas if these are partially independent processes, one valence 

may be a better treatment target (i.e. we can focus on increasing attention to positive things 

OR decreasing attention to negative things). Overall it seems people hold a negativity bias, 

where negative information seems preferentially processed in terms of our attention and 

behaviour (Baumeister et al., 2001; Rozin & Royzman, 2001). This has been observed in learning, 

where learning from negative prediction errors exceeds learning from positive prediction errors 

(Gershman, 2015; Niv et al., 2012). Negativity biases have also been observed in other 

modalities, for example losses show increase physiological arousal in terms of pupil diameter 

and heart rate compared to equivalent gains (Hochman & Yechiam, 2011). To this author’s 

knowledge, there is no work in the affect domain where negativity biases are observed in 

affective responses driven by prediction errors. 

The roles of the neurotransmitters dopamine and serotonin have been implicated in possible 

opponent roles in decision-making in terms of their contribution to positive and negative stimuli 

(Cools et al., 2011). Briefly, classic work by Schultz, Dayan and Montague showed in midbrain 

single cell recordings from dopaminergic neurons, a spike in activity for unexpected reward, a 

depression in activity for the absence of an expected reward, and no activity change for an 

expected reward (Schultz et al., 1997). Since this, the role of phasic dopamine has been well 

established as a reward prediction error signal (Glimcher, 2011) and associated with increased 

approach bias for rewarding stimuli (Rutledge et al., 2015). While the role of serotonin has been 

implicated in depression (Cowen & Browning, 2015) its direct contribution to behaviour has 

been less clearly delineated. The considerably larger number of serotonin receptors (compared 

to dopamine) suggest that its influence and role in psychiatric disorders is highly complex 

(Naughton et al., 2000). Specifically, serotonin is associated with promoting withdrawal from 
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aversive stimuli through behavioural inhibition (Cools et al., 2011; Crockett et al., 2012). 

However, isolating serotonin’s contribution to punishment compared to loss is not clear, due 

to negative experimental outcomes not always being defined as one or the other. Recently 

Jochen Michely and colleagues found that during a week-long daily dosage of SSRIs (placebo 

controlled, in a non-depressed population), learning from losses, but not wins, was enhanced 

in a reinforcement learning task compared to a session prior to SSRI or placebo to the task 

session days afterwards (Michely et al., 2020). Here they postulate SSRIs may boost mood over 

time by means of increasing the amount of positive surprises available (by slowing down reward 

learning) and reduce the number of disappointments (by speeding up punishment learning). 

Irrespective of the precise implementation of responses to positive and negative stimuli, it is 

largely suggested that dissociable decision processes represent an adaptive process for 

responding to differential environmental statistics  (Dayan & Huys, 2009). Different 

environmental statistics can include changes in the presence of food and predators across the 

day, or in terms of their autocorrelation (e.g. the presence of one fruit may indicate the 

presence of a fruit tree, however the presence of one tiger does not suggest more tigers16). It 

has been suggested that negative affective gradients observed at population level are a rational 

response to the assumption that losses have a higher information content then gains. Indeed it 

has been shown that participants adapt their learning rates separately to gains and losses 

depending on the volatility of the environment (a stimuli’s volatility acting as a proxy for its 

information content about future occurrence (Pulcu & Browning, 2017). Conversely, simulation 

work from Eran Eldar and colleague’s mood as momentum model suggests that increased 

learning from positive events (compared to negative) increases overly positive expectations 

regarding rewards in one’s surroundings leading to disappointment when expectations 

increasingly exceed the value of outcomes. Thus symmetrical learning rates are best primed for 

stable mood fluctuations (Eldar et al., 2016).  

Reducing a negativity bias has been suggested as a target for novel behavioural interventions 

(Browning et al., 2010). The use of attentional bias modificiation has been tested in this context; 

whereby computerized training is used to encourage focus on positive stimuli compared to 

negative (by means of the positive stimuli being more reliability associated with a probe). 

                                                      

16 80-95% of carnivores hunt alone. 
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Browning and colleagues found in a placebo controlled study modification, training using 

valenced faces (but not words) lasting two weeks was associated with a reduction in BDI scores 

after four weeks (Browning et al., 2012). Strikingly, the scores associated with training was seen 

two weeks after the training had finished, and not immediately preceding the training itself, 

consistent with the delay in therapeutic effects often reported for antidepressant medication. 

An interesting counter perspective is provided by work comparing reward and punishment 

domains. Here, depressed individuals have been found to perform better in tasks involving the 

minimization of punishment compared to their non-depressed counterparts in tasks where 

immediate benefits are traded off against longer term pay offs (Beevers et al., 2013; Maddox 

et al., 2012) with the inverse being seen in reward maximization conditions in one of the two 

studies (Beevers et al., 2013). The authors of both papers argue that the idea of depressive 

disorder being associated with decision-deficits per se may be due to the literature’s focus on 

reward based tasks. They argue elsewhere that when a task framework matches an individual’s 

‘regulatory style’ they are more likely to make optimal decisions (Maddox & Markman, 2010). 

It is worth noting that the mood as momentum model (Eldar et al., 2016; Mason et al., 2017) all 

takes place within the rewards domain. A more recent study has suggested that mood related 

reward prediction errors are no different between healthy controls and patients with MDD, 

however they do not test prediction errors for wins and losses separately (Rutledge et al., 2017). 

These results highlights the need to explore both rewards and punishments, and consider the 

environmental stimuli typically present in an individual’s real life in order to evaluate the utility 

of asymmetrical learning. 

 

2.4.1 Negativity Bias & Optimism Bias 

One intriguing unanswered question is why the literature on the whole, observes a negativity 

bias for learning about current events, and an optimism bias for our beliefs about future events? 

Why do we learn more from bad things, but believe things will turn out better? One explanation 

could be that optimism pertains to higher-level abstract beliefs, whereas a negativity bias 

relates to low-level reinforcement learning processes. Germain Lefebvre and colleagues, found 

greater learning rates for positive prediction errors than negative prediction errors, leading 

them to conclude that the optimism bias may, in fact, be explained by a low level learning 
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mechanism (Lefebvre et al., 2017). It is not clear how this result fits with the field’s norm of 

observing a negativity bias (the authors suggest that differences may be seen due to whether 

paradigms are instrumental or pavlovian) but it invites the question of whether an individual’s 

position on an affective gradient should pertain to both beliefs about the future and their 

current choices. The field has yet to study both of these measures in the same task, to 

understand whether those who believe their future will be positive, learn more from positive 

events in the present.
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3. Risk Taking For Potential Losses But Not 
Gains Increases With Time Of Day 
 

3.1 Abstract 

Humans exhibit distinct risk preferences when facing choices involving potential gains and 

losses. These preferences are subject to neuromodulatory influence, particularly from 

dopamine and serotonin. As these neuromodulators manifest distinct circadian rhythms, this 

suggests decision-making under risk might be affected by time of day. Here, in a large subject 

sample (N = 26,720), we tested the hypothesis of a diurnal modulation in risk taking for gains 

and losses. We found that risky options with potential losses were increasingly chosen over the 

course of the day. Using a computational modelling approach to obtain a more fine-grained 

account, we show this diurnal change in risk preference reflects a decrease in sensitivity to 

increasing losses, but no change was observed in the relative impacts of gains and losses on 

choice. This diurnal sensitivity, present across two different task designs, was robust to 

between- and within-subject analysis, age, and gender. Thus, our findings reveal a striking 

diurnal modulation in human decision-making, a pattern with potential importance for real-life 

preferences that include voting, medical decision-making and global stock market investments. 
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3.2 Introductions 

Everyday decisions are driven by risk attitudes that vary across individuals (Levin & Hart, 2003; 

Weber et al., 2002; Yechiam & Ert, 2011). Where one person might wait for a walk signal to turn 

green before crossing the road, another may take a cursory glance at the oncoming traffic and 

hurry on their way. Equally one person may be adventurous in trying a new ice cream flavour, 

while another may be more inclined to stick with an old favourite. People can exhibit opposing 

preferences in gain frames with prospective rewards and in loss frames with prospective losses 

(Tversky & Kahneman, 1981). Thus, the same person who makes a safe choice when deciding 

between potential rewards (i.e., ice cream) may make a risky choice in the face of potential 

losses (i.e. jaywalking). 

The reflection effect refers to a reversal of preferences when shifting between gain and loss 

frames. This effect is a central feature within prospect theory (Daniel Kahneman & Tversky, 

1979) and is repeatedly observed at the population level (Liu et al., 2014; Tymula et al., 2013). 

It is also robust across multiple demographics including, for the most part, a sample of 4,098 

participants spanning 19 countries and 13 different languages (Ruggeri et al., 2020). This effect 

is also observed in non-human primates (Lakshminarayanan et al., 2011). Behaviourally the 

reflection effect manifests as risk aversion for gains (i.e., smaller certain reward are preferred 

over larger risky rewards) and risk seeking for losses (i.e., larger risky losses are preferred over 

smaller certain losses (Kahneman & Tversky., 1979). 

Biological accounts link risk-taking behaviour to underlying neural circuitry (Bossaerts & 

Murawski, 2015) and to processes that change across the lifespan (reviewed in development: 

(Rosenbaum & Hartley, 2019) and in ageing (Samanez-Larkin & Knutson, 2015)). For example, 

epidemiological evidence shows that adolescents engage in greater risky behaviours (Arnett, 

1992) which is often attributed to developmental changes in dopaminergic reward circuitry 

(Blakemore & Robbins, 2012; Fareri et al., 2008). However, the majority of such studies focus 

on situations in which every risky option includes a potential gain, without considering decisions 

that involve only potential losses.  Many studies implicitly assume that risk taking for gains and 

losses is governed, at least partially, by shared processes (Arnett, 1992). However, natural aging 

is associated with a decline in the integrity of the dopamine system and this has been linked to 

a parallel decline in risk taking for potential gains but not potential losses (Rutledge et al., 2016). 

Furthermore, risk taking for losses shows a linear decrease while risk taking for gains shows a 
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quadratic relationship between the ages of 8 to 22 (van den Bos & Hertwig, 2017). In a broader 

sample between the ages of 12 to 90, risk attitudes for gains did not relate to risk attitudes for 

losses in the same individuals (Tymula et al., 2013). The overall pattern of findings from these 

studies suggests that risk taking for gains and losses might be controlled by distinct processes.  

Similarly, computational modelling in studies of risky decision-making often focuses on a single 

loss aversion parameter. It is assumed to govern the relative impact of potential gain and losses 

on choice (‘losses loom larger than gains’: Charpentier et al., 2016; Kahneman & Tversky, 1979), 

which could influence risk taking related to both gains and losses (reviewed in Sokol-Hessner & 

Rutledge, 2019). However, many studies do not consider situations in which only potential 

losses are involved. It is an open question whether any shared process influences attitudes 

towards risk for both gains and losses. In line with dual-process models of decision-making, 

dopamine is associated more with reward-related behaviours (Rutledge et al., 2015) while 

serotonin is associated more with loss-related behaviours (Dayan & Huys, 2008). An 

environmental asymmetry in rewarding and punishing stimuli has been proposed as providing 

an adaptive account for dissociable decision processes that could vary independently (Dayan & 

Huys, 2009). 

Whether circadian rhythms influence risk taking in humans is unknown. Regular changes in 

environmental statistics are associated with changes in behaviour in animals across the course 

of a day. For example, the presence of foraging opportunities and predators change on a regular 

diurnal cycle (Chiavacci et al., 2015). Circadian changes in risk taking are observed in male dark-

eyed juncos deciding whether to sing or forage (McNamara et al., 1987), and increased risk 

taking during foraging is observed later in the day in sparrows (Caraco, 1981). The regularity of 

these diurnal changes is entrained in brain circuitry and might be explained by regular 

fluctuations in neuromodulators throughout the day (Fuller et al., 2006). 

We tested risk attitudes for gains and losses in humans as a function of time of day. To this end, 

we measured propensity to take different types of risks at different time of the day in a sample 

of more than 25,000 people playing a gamified risky decision task on a smartphone platform 

(The Great Brain Experiment, www.thegreatbrainexperiment.com). We implemented 

computational models based on prospect theory (Sokol-Hessner et al., 2009; Tversky & 

Kahneman, 1992) to test whether risk taking for gains and losses show differential diurnal 

patterns that might reflect a differential mechanistic basis. 

http://www.thegreatbrainexperiment.com/
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3.3 Experimental Procedures 

3.3.1 Participants 

We included the data from 26,720 participants from the UK and US aged 18-69 (18,215 18-39; 

13,168 Female; 19,156 UK) who completed a risky decision-making task between March 1, 2013 

and September 30, 2014 on the gamified cognitive task platform The Great Brain Experiment 

(freely available on Apple iOS and Google Android). Participants played the task at whatever 

time they liked with no prompting. Results from part of this data set have been previously 

published elsewhere (Rutledge et al., 2014; Rutledge et al., 2016). Both gender, age and location 

were defined as participants self-selecting their demographics when they downloaded the app. 

Participants selected their age from the given age brackets of; 18-24, 25-29, 30-39, 40-49, 50-

59, 60-69 and 70+. All participants gave informed consent within the smartphone platform. The 

Research Ethics Committee of University College London approved this study. 

 

3.3.2 Within-Subjects Sample  

We identified a subset of participants (N = 2,599) to utilize for within-subject analyses. Eligibility 

for this subset was defined as having completed at least two game plays on different days. All 

plays included were between 8am and 10pm, time windows utilized in previous studies (Correa 

et al., 2020; Orban et al., 2020). All plays were required to be using the same design matrix. 

 

3.3.3 The Great Brain Experiment 

The Great Brain Experiment is freely available on Apple iOS and Google Android. Participants 

downloaded the app under a Citizen Science endeavor to contribute to neuroscientific research. 

There were two significant download peaks, firstly when the app was released in March 2013, 

and secondly when the paper contained the Happiness Equation (Equation 1-3 Affective 

Dynamics Model) received considerable press attention in August 2014. 
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3.3.4 Smartphone-Based Experiment 

The task involved 30 trials where participants chose between safe and risky options. 

Participants also rated their happiness 12 times and the results of those analyses are reported 

elsewhere (Rutledge et al., 2014; Rutledge et al., 2017). The majority of participants took 

between 3 and 5 minutes to complete each game. Participants began with 500 points. When 

each game is finished the participants are told the score they achieved, what percentage of all 

other plays from all players it was higher than, and their all-time high score. On each trial 

participants chose between a safe option (where the points were guaranteed if they chose the 

option) or a risky option where they had a 50% chance of two potential outcomes. The risky 

choice was represented on a spinner where an arrow moved around until it landed on either of 

the two potential outcomes. Where the safe option was chosen the outcome was resolved 

immediately. There was no time constraint on making a decision on each trial. The task 

contained three types of trials: (1) gain trials, where they could choose between a certain gain 

and a gamble with a greater potential gain or a zero; (2) loss trials, where they chose between 

a certain loss and a gamble with a greater potential loss or a zero or (3) mixed trials where they 

chose between a certain option of zero or a gamble with a potential loss and a potential gain 

(Figure 3-1).  

 

3.3.5 Design Matrices 

The data included was from two different design matrices, with the second design matrix added 

with an update of the smartphone application to test the robustness of our findings.  We ran 

between-subjects analyses separately for the ratio and uncorrelated designs. For the within-

subjects analyses we only included participants who had completed plays that were both ratio 

or both uncorrelated designs. 

Each design contained 11 gain, 11 loss, and 8 mixed trials in each 30 trial game. The ratio design 

had a set of 60 gain, 60 loss, and 30 mixed trials to choose from. The loss trial set was identical 

to the gain trial set except with negative values. The ratio design comprised all downloads or 

updates between March 6, 2013 and July 16, 2013. In this design the gain (and loss) trials had 

possible 4 certain amounts (30, 35, 45, 55) and 15 multipliers (1.64, 1.7, 1.76, 1.82, 1.88, 1.94, 

2, 2.06, 2.12, 2.18, 2.26, 2.4, 2.7, 3.2, 4). Mixed trials had 3 prospective gains (40, 44, 75) with 
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10 prospective losses generated from multipliers (0.2, 0.34, 0.6, 0.54, 0.77, 0.89, 1, 1.1, 1.35, 

2).  

The uncorrelated design had a set of 45 gain, 45 loss, and 30 mixed trials to choose from. In the 

uncorrelated design (comprised of all downloads or updates after July 17, 2013) gain trials had 

3 certain amounts (35, 45, 55) and 15 gamble amounts (59, 66, 72, 79, 85, 92, 98, 105, 111, 118, 

124, 131, 137, 144, 150). Mixed trials has 3 prospective gains (40, 44, 75) and 10 prospective 

losses (-10, -19, -28, -37, -46, -54, -63, -72, -81, -90). 

 

3.3.6 Time of day 

All data from the smartphone platform was time stamped with Greenwich Mean Time (GMT). 

Thus 6.5 hours was subtracted from timestamps for data collected in the US to correct for the 

time difference for the average participant in the US. 

 

3.3.7 Statistical Procedures 

We report Pearson correlation coefficients for effect sizes of relationships between task 

measures (i.e., gambling for losses) and time of day of the game’s completion. Additionally, 

we computed the difference between pairs of effect sizes (i.e., effect size of the relationship 

between gambling for losses and time of day, effect size of the relationship between gambling 

for gains and time of day) to test if time of day had different effects on each parameter. All p 

values were computed based on permutation tests using 10,000 random shuffles of the time of 

play to determine null distributions (MATLAB, Version 2018a). We also included Bayes Factor 

tests in support for the null hypothesis (BF01) for all instances where the permutated p values 

were less than 0.1 (JASP, Version 0.14.1). A BF01 of less than 3 offers mild evidence for the null 

hypothesis, a BF01  between 3 and 10 offers moderate evidence for the null hypothesis, and 

values exceeding 10 offer strong evidence. We computed these analyses separately for both 

genders, and for older and younger players, and for US and UK participants.  
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3.4 Results 

On each choice trial, participants were presented with choices between risky and safe options, 

and had to activate a spinner to make a risky choice (Figure 3-1).The outcome of chosen 

gambles was revealed after a brief delay. Participants received no prompt as to when they 

should complete the task. To detect the presence of diurnal variations in risk taking, we 

examined how preference for risk taking in gain, loss, and mixed trials changed according to the 

time of day that the task was completed. We examined plays from the two countries with the 

largest sample sizes in our data set (UK, N = 18,977; US, N= 7,743), involving a total of 26,720 

participants. For between-subject analysis, we examined first plays alone so that all participants 

would contribute the same amount of data. For all analyses, we considered the day to begin at 

06:00. The median time the task was completed was 18:48 with 70% of plays between 08:00 

and 22:00. For within-subject analysis, we evaluated a subset of players (N = 2,599) who had 

completed plays on two different days between 08:00 and 22:00.  
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Figure 3-1 The Great Brain Experiment Task Design 

Gain trials (green outline added for description purposes as every trial had the same 

outlook to the participants) have potential gains and no potential losses. In an example gain 

trial, a participant chooses between a risky option (here, 50% probability of 59 points) and 

a safe option (here, 100% probability of 35 points). Loss trials (red) have potential losses 

and no potential gains. Mixed trials (blue) have both potential gains and potential losses 

with a safe option that is always worth 0 points. 

 

3.4.1 Risk Taking for Potential Losses Increases with Time of Day 

We found that in gain trials there was no significant relationship between risk taking and time 

of day (Pearson’s r = 0.0018, p = 0.77). Here, we found evidence for the null hypothesis over 

the alternative hypothesis with a Bayes Factor (BF01) of 124.94. In contrast, in loss trials (i.e., 

those with no potential gains), we observed a strong positive correlation between risk taking 

and time of day (r = 0.037, p < 0.0001). A similar increase was also present in risk taking in mixed 

trials, which feature both potential gains and losses (r = 0.027, p < 0.0001) (Figure 3-2). Time of 

day effects for loss and mixed trials did not differ significantly from each other (p = 0.068), but 

effect sizes for mixed and loss trials were both significantly greater than for gain trials (both p < 

0.0001). Hence, risk taking for potential losses, but not potential gains, increases with time of 

day, with people on average choosing more risky options with potential losses in the evening 
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compared to in the morning. Participants on average chose the risky option more than 50% of 

the time (gain trials: 70.2% ± 26%; loss trials: 53.7% ± 29.4%; mixed trials: 66.3% ± 26%). As risk 

taking appeared greater for gain trials than loss, we tested whether the lack of effect observed 

in gain trials could be due to a ceiling effect. In this analysis, we only included participants who 

choose the riskier option in gains, losses and mixed less than 100% and more than 0% of the 

time in all trial types (N = 16,322). We found risk taking and time of day was correlated for loss 

trials (r = 0.028, p = 0.0004), but not gain (r = 0.0063, p = 0.424) or mixed trials (r = 0.0066, p = 

0.400). 

This diurnal effect on risk taking was robust to gender in loss trials (female: r = 0.040 p < 0.0001; 

male: r = 0.032, p = 0.0002). In mixed trials the effect was statistically significant for female (r = 

0.038, p < 0.0001) but not male participants (r = 0.011, p = 0.20, BF01= 40.54). Positive effect 

sizes were seen for younger and older age groups for loss trials (18-39: r = 0.039, p < 0.0001; 

40+: r = 0.036, p = 0.0014 and mixed trials (18-39: r = 0.025, p = 0.0006; 40+: r = 0.037, p = 

0.0007). Overall, increased risk taking in loss but not gain frames was a highly consistent result 

present in 7 out of 8 subsamples tested (Table 3-1).  

Although increased risk taking in mixed trials (most closely associated with loss aversion in the 

literature) was also robust to age and task design, the effect was present in females but no 

significant effect was found in males. We further tested this effect due to their being unequal 

splits between genders for the two design matrices. The first play for male participants was 

77.2% the uncorrelated design (N = 10,543) and 22.9% the ratio design (N = 3,123). The first 

play for female participants was 64.6% the uncorrelated design (N = 8,427) and 35.5% the ratio 

design (N = 4,627). As the time of day effect appeared greater in the ratio design and female 

participants had a greater percentage of plays with the ratio design, we confirmed the 

differences in risk taking for mixed trials was present in each design. Where the effect of time 

of day in risk taking for mixed trials was seen to be greater in female and males this could be 

observed when looking at uncorrelated design first plays (p = 0.017) but not in ratio design first 

plays (p = 0.244). Thus, the time of day difference observed could not be put down to 

differences in task design. 

We also considered other factors that may vary throughout the day. We first tested whether 

mood changed across the day. Participants rated their current mood by answering the question 

how happy are you at this moment? when the game began, but before they had been presented 
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with any trials. Participants mood did not change linearly throughout the day (r = -0.013, p = 

0.033, BF01= 13.17), however mood was higher in plays in the morning (6am – 12pm) compared 

to plays completed late at night (12am till 6am) (t(7948) = 5.35, p < 0.0001, Figure 3-3). 

Therefore, we included this as a covariate in a partial correlation test for risk taking for loss trials 

and time of day to test whether changes in choice behaviour could be partially explained by 

changes in mood. In this test we observed the same positive correlation between risk taking for 

losses and time of day (r = 0.037, p < 0.0001). 

We next tested whether the time of day was related to the response times for each trial type 

(Figure 3-3). Median response times were on average faster when participants chose the safe 

option compared to the risky option in loss trials (safe option: 3.78 ± 1.94; risky option: 4.30 ± 

2.18; t(48,450) = 9.01 , p < 0.0001), and faster to choose the risky option than the safe option 

in gain trials (safe option: 3.42 ± 2.02 ; risky option: 3.010 ± 1.38; t(47,507) = 2.72 , p < 0.0066). 

Participants had the same response times for when they choose the safe or risky option in mixed 

trials (safe option: 4.05 ± 2.24; risky option: 3.69 ± 1.73; t(47,784) = 1.76, p = 0.078). Thus, we 

tested separately effects of response times across the time of day for each trial and choice type. 

In each response times analysis we removed all participants with an average median response 

time of over 30 seconds. 

Participants were faster when they choose the risky option later in the day in loss trials (r = -

0.023, p < 0.0001), but not when they chose the safe option (r = 0.0078, p = 0.226, BF01= 59.25). 

Response times did not change for gain or mixed trials in safe or risky options (safe option: r = 

0.0014, p = 0.844, BF01= 115.08; risky option: r = -0.013, p = 0.029, BF01= 11.93). We used a 

partial correlation test to determine whether the relationship between risk taking and time of 

day could be partially explained by changes in response times for these trial types. When 

median response time for loss trials for safe or risky options were included as a covariate we 

still observed a positive correlation between time of day and risk taking (safe option: r = 0.0340, 

p < 0.0001; risky option: r = 0.0328, p < 0.0001).  
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Table 3-1 Effect Sizes for Time of Day on Risk Taking for each Demographic Split 

Data Sample size Gain trials  Loss trials Mixed trials 

  Effect 

size 

p value 

BF01 

Effect 

size 

p value 

BF01 

Effect 

size 

p value 

BF01 

All 27,720 0.0018 
0.77 

124.94 
0.037 <0.0001 0.027 <0.0001 

UK  18,977 -0.00035 
0.96 

109.79 
0.040 <0.0001 0.029 <0.0001 

US 7,743 0.011 
0.34 

44.00 
0.027 

0.016 

4.12 
0.021 

0.066 

12.80 

Male 13,666 -0.0038 
0.65 

84.38 
0.032 0.0002 0.011 

0.20 

40.54 

Female 13,054 0.0052 
0.56 

76.50 
0.040 <0.0001 0.038 <0.0001 

Younger 18,106 -0.0068 
0.39 

70.54 
0.039 <0.0001 0.025 0.0006 

Older 8,614 0.0045 
0.68 

67.83 
0.036 0.0014 0.037 0.0007 

Ratio 7,750 -0.0026 
0.82 

68.48 
0.046 <0.0001 0.029 

0.010 

2.71 

Uncorrelated 18,970 0.0073 
0.31 

66.52 
0.028 <0.0001 0.022 0.0031 

Effect sizes (Pearson’s r) for each demographic split of the data (country, gender, age, ratio or uncorrelated task 
designs). Demographic pairs (where N = 27,720) are every pair of rows after ‘All’. Bayes Factor (BF01) tests for 
evidence for the null hypothesis are included in all instances where the permutated p value > 0.01. BF01 of > 1 
indicate support for the null hypothesis. 
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Figure 3-2 Risk Taking for Potential Losses Increases with Time of Day 

A) Risk taking in choice trials with potential losses increased with time of day (N = 26,720). 

This was true in loss trials featuring risky options with equal probabilities of zero or a 

potential loss, and in mixed trials featuring risky options with equal probabilities of 

potential gains and losses. The frequency of choosing risky options with only potential gains 

was unaffected by time of day. Each time bin includes data collected in the interval starting 

at the time indicated (i.e., the 6am bin includes all data collected from 06:00 until 11:59). 

Error bars represent the SEM. 

B) Risk taking in loss trials increased with time of day in both female (N = 13,054) and male 

participants (N = 13,666). Risk taking in mixed trials increased with time of day in females 

but not males. Error bars represent bootstrapped 95% confidence intervals. 

 

[* p < 0.05, ** p < 0.01, *** p < 0.005] 
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Figure 3-3 Responses Times and Mood Across the Day 

A) Median response times decreased across the day for when risky options were chosen in 

loss trials, but not for any of trial and choice type combination. For each trial and choice 

type we removed participants who either did not ever choose that trial choice type 

combination or had a median response time of over 30 seconds. Thus, we removed the 

following number of participants from each analysis (gain risky: 2878, gain safe: 5113, loss 

risky: 420; loss safe; 5052; mixed risky: 320; mixed safe 1060). Response times for safe trials 

are indicated by a dashed line and risky trials by a filled line. Each time bin includes data 

collected in the interval starting at the time indicated (i.e., the 6am bin includes all data 

collected from 06:00 until 11:59). Error bars represent the SEM. 

B) Baseline happiness was lower between 12am and 6am than between 6am and 12pm for 

both female (N = 13,054, t(3684) = 3.74, p < 0.0001) and male participants (N = 13,666, 

t(4262) = 3.91, p < 0.0001). 
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3.4.2 Computational Modelling using Prospect Theory  

Choice behaviour in risky decision tasks is well described using a parametric computational 

model based on prospect theory (Equation 1-1 Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992). Standard decision models include parameters for risk sensitivity (α), loss 

aversion (λ), and choice stochasticity (inverse temperature, μ). This model can be extended to 

allow risk sensitivity to vary for gains and losses separately (αgain and αloss) (Sokol-Hessner et al., 

2009). Adopting a model-based approach to our behavioural data allows us to delineate 

between alternative mechanisms which could explain the time of day effect on risk taking for 

losses but not gains, asking whether time of day affects a single model parameter. An increase 

in risk taking for trials that include losses could be explained by a decreased loss sensitivity 

(αloss), reducing the difference in expected utility between potential losses associated with safe 

and risky options. One effect of a decrease in loss sensitivity is to render the safe option 

subjectively less attractive relative to the risky option. Loss aversion is perhaps the best known 

of the phenomena described in prospect theory. Increased risk taking for losses could also 

relate to a decrease in loss aversion (λ), a parameter that captures the relative weighting in 

choice of potential losses and equivalent gains. 

We fit a model with a single risk sensitivity parameter (Single Alpha Model) and a second model 

with separate risk parameters for gains and losses (Dual Alpha Model). The Dual Alpha Model 

(pseudo-r2 = 0.37 ± 0.23, mean ± SD) fit the data better than Single Alpha Model (pseudo-r2 = 

0.29 ± 0.21) and was preferred according to Bayesian model comparison which penalizes for 

model complexity (Table 1-1).  
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Table 3-2 Model Comparison for Individual Plays 

Model Parameters 

per subject 

Mean r2 Median r2 Model BIC BIC-BICdual 

Single Alpha 3 0.29 0.25 1061299 1481 

Dual Alpha  4 0.37 0.34 1059817 0 

Bayesian Information Criterion (BIC) measures are summed for fits for each participant’s first play (N = 
26,720). Both models included choice stochasticity (inverse temperature) and loss aversion 
parameters. The final column is the difference between the model BIC and BIC for the Dual Alpha 
model. 

 

3.4.3 Loss Sensitivity and not Loss Aversion Decreases with Time of Day 

Using the preferred Dual Alpha Model, we examined each parameter in relation to the time of 

day the game was played. As expected, αgain (1.02 ± 0.30, mean ± SD) was not associated with 

time of day (r = -0.0042, p = 0.50, BF01= 103.49) nor was choice stochasticity μ (0.74 ± 2.76; r = 

-0.0071, p = 0.24, BF01= 66.84). Instead, time of day was correlated with αloss (0.79 ± 0.34, r = -

0.039, p < 0.0001), where a decreased αloss (reduced loss sensitivity) is consistent with the 

observed increase in risk taking in loss trials. This result was robust to gender (Figure 3-4), age, 

and task design (all r < -0.029, p < 0.001). If loss aversion parameters decreased with time of 

day, this could partially explain increased risk taking for losses. Instead we observed a modest 

increase in loss aversion log(λ) (0.63 ± 0.93, r = 0.013, p = 0.036). Furthermore the data 

supported the null hypotheses with a BF01 of 4.87. Thus, decreased loss aversion does not 

provide an explanation for the greater risk taking for potential losses we observe as the day 

goes on. Loss sensitivity αloss decreased significantly more with time of day than loss aversion 

log(λ) in both females (p < 0.0001) and males (p = 0.0007). 

In this novel data set, the values of αgain and αloss diverge from what is typically observed in the 

literature (Ruggeri et al., 2020), where α is typically on average estimated to be greater than 1, 

meaning participants are risk seeking for losses (when the expected value of the choices is 

equal, choosing the safe option) and risk aversive for gains (when the expected value of the 

choices is equal, choosing the safe option). 
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Figure 3-4 Loss Sensitivity and not Loss Aversion Decreases with Time of Day 

A) Loss sensitivity parameters (αloss) decreased with time of day in both females and males, 

consistent with increased risk taking in trials with potential losses. Error bars represent the 

SEM.  

B) Increased risk taking for losses could be partially explained by decreased loss aversion. 

However, loss aversion parameters (log(λ)) did not decrease with time of day in both samples. 

Error bars represent SEM. 

C) Loss sensitivity decreased more than loss aversion in both females and males. Error bars 

represent bootstrapped 95% confidence intervals. 

[* p < 0.05, ** p < 0.01, *** p < 0.005] 

 

3.4.4 Loss Sensitivity Decreases with Time of Day in Individuals 

To test for the presence of circadian effects within individuals, we used the first two plays from 

a subset of players (N = 2,599) who completed plays on two different days between 08:00 and 

22:00 (eligibility criteria in Supplementary Information). We confirmed the results of the 

between-subject sample model comparison within this smaller sample (Table 3-3). For each 

subject, we computed the difference in the time of day between the two plays and asked 

whether a larger time difference predicted a greater change in risk taking. The mean time of 

day difference between each play used in the analysis was 4.3 h (SD, 3.4 h). Time of day 

difference was positively correlated with the difference in risk taking between two plays in loss 

trials (r = 0.057, p = 0.0038), but not in mixed (r = 0.015, p = 0.44, BF01 = 30.40) or gain trials (r 
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= -0.0038, p = 0.84, BF01 = 39.93) (Figure 3-5a).Additionally, we again found that the difference 

in time of day between the two plays was negatively correlated with the loss sensitivity 

parameter αloss (r = -0.061, p = 0.0024) but not with the loss aversion log(λ) (r = 0.0075, p = 0.70, 

BF01 = 37.79) or gain sensitivity parameters αgain (r = -0.011, p = 0.59, BF01 = 34.94) (Figure 3-5b 

& c). We find that the strength of the decline in loss sensitivity over the course of the day was 

significantly greater than the decline in loss aversion (p = 0.015). 

We also tested whether mood or response times changed within individuals with the time of 

day. The time of day difference was not correlated with the difference in mood ratings (r = -

0.0158, p = 0.413, BF01 = 29.41).  Regarding response times, there was no change in gain or 

mixed trials for either choice type (all r < 0.02, p > 0.404, BF01 > 23). No significant differences 

were seen for response times in loss trials, but bayes factor tests revealed only mild support for 

the null hypothesis in both cases (safe: N = 1,815, r = -0.043, p = 0.0649, BF01 = 6.32 ; risky: N = 

2,488 r = -0.047, p = 0.019, BF01 = 2.36).  

 

Table 3-3 Model comparison for Within Subject Data set 

Model Parameters 

per subject 

Mean r2 Median r2 Model BIC BIC-BICdual 

Single Alpha 3 0.31 0.27 201608 1705 

Dual Alpha  4 0.40 0.36 199903 0 

BIC measures are summed across the within-subject dataset (N = 2,599). Both models included choice 
stochasticity (inverse temperature) and loss aversion parameters. The final column is the difference 
between the model BIC and BIC for the Dual Alpha model.  
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Figure 3-5 Loss Sensitivity Decreases with Time of Day in Individuals 

(A) We identified individuals (N = 2,599) who completed the risky decision task on two 

different days between 08:00 and 22:00. Risk taking in loss trials increased with time of day 

within individuals. (B) Loss sensitivity (αloss), but not gain sensitivity (αgain) or loss aversion 

(log(λ)), decreased with time of day in this within-subject sample. Error bars represent 

bootstrapped 95% confidence intervals (C) Loss sensitivity decreased significantly with time 

of day in within-subject analysis. Error bars represent bootstrapped 95% confidence 

intervals. Data binned on differences less (early) or more (late) than 7 hours are shown for 

illustration purposes. 

 [* p < .05, ** p < .01, *** p < .005]. 

 

3.5 Discussion 

We show that time of day is associated with changes in attitudes towards risk, informing a 

theoretic account of human behaviour. Time of day, reflecting circadian rhythms, may influence 

risk attitudes with respect to potential losses but with no impact on risk taking observed for 

reward. Using computational modelling, we show that changes in risk taking for losses were 

explained by a reduced sensitivity to increasing losses over the day. The results are consistent 

with an account for risk taking with distinct processes related to risk taking for gains and losses.  

In terms of computational processes, a model with separate value sensitivity parameters for 

potential gains and losses explained the data better than a model with a single value sensitivity 

parameter. This was true in both between- and within-subject datasets, consistent with a time 
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of day effect on one value sensitivity parameter but not the other. One possible mechanism for 

diminishing loss (but not gain) sensitivity could be related to potential increases in tonic 

serotonin over the course of the day. Elevated serotonin concentrations late in the day have 

been reported in the dorsal raphe nucleus (DRN) the primary site in the brain of serotonin 

neurons (Ågren et al., 1986), and for blood plasma levels in both rodents (Mateos et al., 2009) 

and humans (Rao et al., 1994). The DRN has reciprocal connections with central neural 

structures for circadian rhythms like the Superchiasmatic Nucleus, which plays a central role in 

regulating circadian rhythms (Ciarleglio et al., 2011; Mazuski et al., 2018). However, the role of 

serotonin in sensitivity to valenced stimuli is unclear. Selective Serotonin Reuptake Inhibitors 

(SSRIs) are associated with reduced attention to negatively valenced stimuli (Harmer et al., 

2004). Studies exploring the propensity to take risky choices with losses have associated taking 

tryptophan (the precursor of serotonin) with reduced risk taking for losses and a reduced 

reflection effect (Murphy et al., 2008). However, no change in the reflection effect has been 

associated with tryptophan depletion (Rogers et al., 2003). In the computational modelling 

literature serotonin is frequently associated with pavlovian avoidance (Cools et al., 2011; 

Crockett et al., 2012; Dayan & Huys, 2008). 

The phasic response to potential aversive outcomes by serotonin neurons could be highest 

relative to a background of low tonic serotonin earlier in the day. If phasic serotonin is related 

to the aversiveness of options under consideration, a reduced dynamic range for serotonin in 

the evening when tonic serotonin is high could provide a potential mechanistic explanation for 

our finding of reduced sensitivity to increasing losses. A similar mechanism has been proposed 

for explaining increased reward seeking when pre-stimulus dopaminergic midbrain BOLD 

activity is low and phasic responses to potential rewards are elevated (Chew et al., 2019). An 

established link between phasic dopamine and reward seeking (Rutledge et al., 2015; Stopper 

et al., 2014) combined with the lack of effect in the present study despite the large sample 

suggest that phasic dopamine responses to reward-related stimuli do not change throughout 

the day. 

An alternative account is that making decisions about losses increases task attention which may 

interact with changes in wakefulness through the day (Yechiam & Hochman, 2013). Previous 

diurnal patterns of behaviour have been observed in the literature when taking into account a 

participant’s chronotype (e.g. Ingram et al., 2016; May, 1999). Ultimatum Game decisions 
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varied with time of day and did so differently in participants who identify as being a ‘Morning 

Type’ compared to those who identify as being an ‘Evening Type’ (Correa et al., 2020). Such 

differences are attributable to changes in wakefulness and reduced inhibitory executive 

function (Correa et al., 2020; McElroy & Dickinson, 2019). Here, we saw no change in choice 

stochasticity for simple value-based choice despite the large sample size. However, when we 

analysed response times for each trial type and choice type, differences were only seen in loss 

trials, but not gain trials. Future work might usefully examine how chronotypes relate to a 

modulation of diurnal changes in loss sensitivity. Finally, it is of interest that profound changes 

are reported in resting-state brain network connectivity profiles over the course of the day 

(Orban et al., 2020). Integrating the latter approach in conjunction with measures of decision-

making could help to identify the specific networks that underlie diurnal changes in loss 

sensitivity. 

We observed an association between time of day and risk taking in mixed trials in females but 

not males. Sex differences in risk taking have been observed in a variety of effects (e.g., under 

stress (Lighthall et al., 2009; Preston et al., 2007), sensitivity to winning and losing (R. van den 

Bos et al., 2013) and real life risky behaviours such as drug use and dangerous driving  (Byrnes 

et al., 1999)) but little is known about how these may interact with the circadian rhythms of 

neuromodulators. Speculatively, one possible reason is human sex hormones interacting with 

different phases of circadian rhythms. Estrogen has been associated with shortened circadian 

periods in rodents (i.e. more free running in daylight hours, Krizo & Mintz, 2015) and has been 

suggested to shorten the circadian period in humans (Leibenluft, 1993). Increased estrogen 

during ovulation has also been associated with reduced loss aversion in mixed trials in humans 

(Lazzaro et al., 2016). 

Our results demonstrate that diurnal patterns in risk behaviour can be remotely assessed with 

smartphone. This also provides a non-invasive method to observe circadian rhythm disruption, 

a key factor in many mental health disorders (Spencer et al., 2013; Teicher et al., 1997). The 

causal direction of circadian rhythm disruption and psychiatric disorders is unknown (Parekh & 

McClung, 2016). Further work exploring the interaction of hormones and circadian cycles may 

also shed light on the increased prevalence of seasonal affective disorder in woman which has 

been associated with disrupted circadian rhythms (Leibenluft et al., 1995; Magnusson & 

Partonen, 2005). The advancement of smartphone platform and online testing provides a 
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powerful methodological framework where frequent sampling of behaviour in the morning and 

evening can provide an efficient way to measure circadian rhythm disruption in relation to 

mental health disorders (Brown et al., 2014). Gamification can also make a task more enjoyable, 

which may be particularly valuable in the study of adolescence when mental health problems 

peak (Paus et al., 2008), with potential for early interventions. However, researchers designing 

gamified tasks should maintain an awareness of how gamified mechanisms may affect cognitive 

or affective biases. In the Great Brain Experiment, we saw that participants were on average 

risk aversive in loss trials, and risk seeking in gain trials, counter to what is typically observed in 

the literature (Ruggeri et al., 2020). We speculate this may be due to the use of a spinner 

animation when the risky option is chosen, which takes several seconds to complete before the 

outcome is shown. This may increase risk taking for gains due to the inclusion of the positive 

affect of anticipation, and decrease risk taking for losses due to a negative effect of dread. 

Future work could test this hypothesis by varying the length of time the spinner animation plays 

for, including resolving the outcome instantly. 

In this study, we analysed the relationship between time of day and risk taking without a causal 

manipulation of when participants played the task (i.e. they were not prompted to play at a 

particular time). Thus, we cannot statistically conclude that time of day is a causal influence on 

risk taking. Furthermore, as data was not collected on other possible factors with diurnal 

rhythms, such as wakefulness or hunger which may affect cognitive biases, we can only 

speculate on a serotonin based mechanism at this stage. Future studies which prompt 

participants to play at set times, could collect data on other factors and incorporate them as 

covariates using a within-subjects approach. 

Many factors contribute to human risk taking and it would be surprising for gradual circadian 

changes to elicit large effects on risk taking. The robust effects on loss sensitivity that we 

observe could have significant implications at the societal level. International stock markets are 

simultaneously at different positions in their diurnal patterns (i.e. the New York Stock Exchange 

(NYSE) opens in the morning around when the Tokyo exchange ends trading for the day). 

Individuals making decisions about purchasing or selling stock from an international exchange 

may exhibit differences in loss sensitivity to individuals making purchases in local time zones. 

Given NYSE opening hours, investors in California may make decisions about NYSE-listed stocks 

earlier in their day on average than investors in Berlin. Time of day is known to be relevant to 
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investor behaviour, and it has been observed that buying near the closing of the market and 

selling at the opening next morning incurs greater returns than buying at opening and selling at 

closing (Kelly & Clark, 2011). Our finding of lower sensitivity to potential losses late in the day 

draws attention to one potential factor that may contribute to this effect. Policy changes that 

allow for more voting in the early morning, or late evening, could also have profound 

implications particularly if voters view candidates in a loss frame (i.e., they dislike both 

candidates) where we have shown that risk taking increases throughout the day. Understanding 

how diurnal biases in risk taking affect behaviour at individual and population level is useful for 

policy makers and might shape medical decision-making.  
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4. Gain and Loss Asymmetry for Short and 
Long Term Prospects 

 

4.1 Abstract 

Asymmetries in how we respond to positive and negative events have been observed in learning 

from reinforcement, and beliefs about the valence of future events. Intriguingly, in the former 

we often observe a negativity bias and in the latter an optimism bias. In both cases, these 

tendencies are typically observed in decision-making behaviour, and the link to differences in 

affective responses has been implied, but not been explicitly tested. We tested subjects (N = 

81) in a novel probabilistic gambling task in which gain and loss trials were performed in short 

blocks while also displaying the valence of the next two blocks. Participants rated their 

happiness throughout the task. Firstly, we found using computational modelling, that losing 

points has a greater affective impact than winning the equivalent amount of points. We found 

this affective negativity bias is related to an increased propensity to make risky choices in loss 

trials, and is attenuated in participants reporting greater anhedonic symptoms. Secondly, we 

found that mood was not only affected by the current and past trial events, but also by the 

information related to the forthcoming trials. More specifically, participants were happier when 

the future contained more gain blocks, compared to when it contained more loss blocks. 

Intriguingly, we also observed increases in risky decision-making as participants approached a 

future with prospective gains, compared to small decreases in risk taking when a future with 

prospective losses was approached. This is consistent with work in anticipation and dread which 

suggests that the effect of future events on mood increases with temporal proximity. 

 

4.2 Introduction 

Expectations are ubiquitous and are key for adaptive behaviour. Moreover, what we expect to 

happen to us in the next minute, day or hour can influence our current emotional state. For 

example, the expectation of a soon to be enjoyed ice cream may have a positive effect on our 

emotions, additionally looking forward to a weekend at the beach several days in advance may 
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also fill us with delight. Expecting to have to walk home in the rain later in the afternoon, or 

dreading a difficult exam on Monday can have a negative impact on one’s current mood.  

The influence of expectations on mood has been primarily explored in terms of deviations from 

them (i.e. prediction errors). Happiness in particular, has been shown to be driven by prediction 

errors in laboratory settings (Blain & Rutledge, 2020; Eldar & Niv, 2015; Keren et al., 2019; 

Rutledge et al., 2014; Rutledge et al., 2017) and in the wild; where deviations from expected 

exam results (Villano et al., 2020), and unexpected sports team victories or sunny days also 

drive changes in mood (Otto et al., 2016). However, the unique role expectations themselves 

may themselves play in mood, has been not been fully defined. Studies have explored the role 

of deterministic future rewards or punishments on decision-making. Specifically, participants 

show an increased preference for learning about future rewarding outcomes when a delay is 

longer, suggesting that the experience of anticipation itself has a positive utility (Iigaya et al., 

2016, 2019; Loewenstein, 1987). In complimentary research on future deterministic electric 

shocks, many participants preferred to receive a larger shock sooner, than a smaller shock later, 

suggesting that experiencing dread has a negative utility (Berns et al., 2006; Story et al., 2013). 

While both these studies imply the existence of an effect of future prospects on mood, they did 

not collect data regarding changes in affective state. 

Expectations about longer term futures have been explored in studies looking at abstract beliefs 

about future prospects (e.g. belief in susceptible to future harmful events; Weinstein, 1987). 

Generally, an optimism bias has been observed, where individuals rate themselves as less likely 

to befall prospective negative future events (such as smoking related premature morbidity; 

Schoenbaum, 1997); and mental and physical harm; Weinstein, 1987) and more likely to 

encounter positive events, and update their beliefs in response to good news rather than bad 

news (Sharot, 2011; Sharot & Garrett, 2016). Notably trait optimism has been associated with 

better mental and physical health outcomes (Conversano et al., 2010; Scheier & Carver, 1987), 

however the mechanism by which this occurs is unclear. It has been suggested that optimistic 

beliefs promote behaviour that increases the potential of rewarding outcomes through 

increased confidence and self-belief (Bouchard et al., 2018). An alternative hypothesis is that 

expectations about the future intrinsically contain affective properties, thus optimistic beliefs 

boost current mood and future well-being. 
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In contrast to the optimism bias pertaining to abstract future events, a negativity bias tends to 

be observed in more low-level information processing. Negative information has been shown 

to receive preferential processing in terms of learning from reinforcement (Gershman, 2015; 

Niv et al., 2012), and increased physiological arousal (Hochman & Yechiam, 2011). For example, 

it has been shown that learning from negative prediction errors exceeds learning from positive 

prediction errors (Gershman, 2015). Counterintuitively, a negativity bias has been suggested to 

have a positive effect on mood, specifically due to its association with successful avoidance of 

negative future events  (Michely et al., 2020). Evidence for a general positivity bias can be seen 

on occasion (e.g. Lefebvre et al., 2017).  

While both a negativity bias and an optimism bias may appear contradictory, it has been 

suggested that both represent an adaptation to environmental statistics, with positive events 

being more common than negative ones (Pulcu & Browning, 2017). In this study we examine 

whether there exists both a negativity bias and an optimism bias in mood by explicitly 

quantifying the affective consequences of gains and losses in the short and longer term. We 

designed a novel experimental paradigm where participants performed blocks of trials where 

they can only gain points (or miss out on gaining), or lose points (or avoid losing). Importantly, 

participants also see the whether the blocks in the next future will be predominantly 

opportunities to gain points, or lose points. Regarding the negativity bias, we predict that 

prediction errors for losing points will have a greater impact on mood than prediction errors for 

gaining points. 

Regarding the effect of future prospects, we predict that futures containing gain trials (i.e. 

positive futures) will increase mood, while futures containing loss trials (i.e. negative futures) 

will decrease mood. If mood is successfully manipulated by future valence, we will predict there 

will also be an effect on decision-making: specifically we predict that positive futures will 

increase risk taking, and negative futures will decrease risk taking. Regarding the optimism bias 

we will explore whether this is present by contrasting the effects of positive futures with 

negative futures. 
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4.3 Methods 

4.3.1 Participants 

81 young adults (18-35) were recruited through University College London Psychology 

Database. Participants were screened for no history of psychiatric or neurological disorder. The 

study was approved by the University College London research ethics committee, and all 

participants gave written informed consent. 

 

4.3.2 Task Design 

Stimuli were presented in MATLAB (MathWorks, Inc) using Cogent 2000. All participants 

performed a 196(±2) trial economic decision-making task including trials were there were 

prospective gains (i.e. gain trials) and trials with prospective losses only (i.e. loss trials). All trials 

were independent, and the magnitude and probability of each option was explicit so no learning 

was required. In the gain trials, participants chose between a reference option (referred to 

hence forth as the 'safe gamble’) with a 80% chance of winning +20 points. The alternative 

option's magnitude (the 'risky gamble') were drawn from a set of [25 40 65 80] with a probability 

varying between 10% and 70% in increments of 10. Thus the risky gamble always has a greater 

magnitude than the safe gamble, and a lower probability. We refer to choosing the risky gamble 

as “risky decision-making”, while acknowledging that choosing the safe gamble is also a risk. 

The loss trial design matrix was identical to the gains, but with negative magnitudes. The 

maximum absolute outcome on a trial was 80 (maximum expected value 56) and the minimum 

was 20 (minimum expected value 4). The risky gamble had a greater absolute expected value 

for 60% of the gambles. Earnings were cumulative but not shown on screen and participants 

were paid based on their total points at the end of the task. The trials were presented in a series 

of blocks, each block containing 2 or 3 trials of the same valence (Figure 4-1). Importantly, on 

the top half of the screen the next two blocks were shown. Red blocks indicated future blocks 

would be loss trials, green blocks indicated future trials would be gain trials. Future prospects 

could be either: positive (two gain blocks), negative (two loss blocks), or mixed (one loss block 

and one gain block Figure 1-2). Mood was sampled frequently throughout the experience to 

probe how task events contribute to mood fluctuations. Participants are asked ‘How happy are 

you at this moment?’ on a scale ranging from very unhappy to very happy. After the happiness 

rating was made, participants would see a brief animation transitioning them into the next 
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block. This method of quantifying moment to moment changes in happiness has been used in 

behavioural and fMRI studies, and used on a smartphone platform with over 200,000 unique 

users (Rutledge et al., 2014). Importantly, this question makes no reference to current or future 

task events. Participants were able to practice 20 blocks of the task prior to beginning the main 

experiment. 
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Figure 4-1 Future Prospects Task 

Subjects (N = 81) performed an economic decision-making task where they had to decide between two choices with different outcome 

magnitudes of points and probabilities of receiving them. They were instructed that their cumulative points would be converted to financial 

reward when the task ended. In gain trials participants chose between two gambles. One choice was the same on every trial, which was an 

80% chance of winning 20 points (i.e. the safe choice). The other choice had a greater magnitude from the set [25 40 65 80] and lower 
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probability (between 70% and 10%), termed the risky choice. All combinations of probability and magnitude were shown for the risky choices. 

The example shows a risky choice of 60% chance of 40 points. The probabilities were arranged on screen so objects lower down the screen 

had lower probabilities – this was explained intuitively to participants as items being ‘harder to dig up’. In loss trials participants chose between 

outcomes with negative magnitudes. Participants had explicit knowledge of the block they were currently in (but not the length) by means of 

a coloured border (green for gain trials, red of loss trials) around the area of the screen where the choice options resided. Each trial began 

with a self-paced choice between the safe and risky choice. After the decision is made by clicking left or right the choice remains on screen 

for 2400ms and the unchosen option is removed. If the points are obtained the magnitude text changes colour (green in gain trials, red in loss 

trials) to indicate that the magnitude were added to the participants cumulative earnings. If they do not obtain the magnitude they are shown 

a rock indicating no points were added to their score. 38 Participants performed the design shown. The other 43 participants partook in an 

alternative design which did not include a 10% probability option and there was no colour gradation in the choice area. 
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Figure 4-2 Future Block Transition 

While participants made choices, they were also able to see the two subsequent blocks which could be either two loss blocks (negative futures), 

two gain blocks (positive futures), or a gain and loss block (mixed futures). Every 2-3 trials participants were asked to rate their happiness by 

answering the question how happy are you right now? by moving a cursor on a line with the computer mouse. A block transition animation was 

then shown before the next block began. Participants performed on median of 45 trials with positive futures, and 45 with negative futures 

(minimum 39 maximum 53) corresponding to between 15 and 21 blocks each of 2-3 trials (median 18). The remaining trials all had mixed futures 

(median 41 blocks, between 95 and 112 trials).  
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4.3.3 Questionnaires 

We included five questionnaires, Beck's Depression Inventory II (BDI-II; Beck et al., 1996), the 

trait section of the State Trait Anxiety Inventory (STAI; Spielberger et al., 1970), Patient Health 

Questionnaire (PHQ-9; Kroenke et al., 2001), Rumination Response Style Questionnaire (RRSQ; 

Nolen-Hoeksema & Morrow, 1991) and the Mood and Anxiety Scale Questionnaire Anhedonia 

Subscale (MASQ-Anhed; Huys et al., 2013; Watson et al., 1995). Questionnaires were completed 

prior to the task being performed in the same session. The first 43 participants completed the 

MASQ and RRSQ online after the laboratory session. 

 

4.3.4 Statistical Procedures 

Two-sided Wilcoxon signed rank tests were used to compare parameter estimates in all 

computational models at group level. Spearman rank correlations across participants were used 

to test for relationships between parameter estimations and questionnaire scores. All averages 

were reported as (mean ± standard deviation), unless otherwise stated. All analyses were 

performed using MATLAB. The minimum p value threshold reported is p < 0.0001. 

In order to correct for multiple comparisons where the tests are not independent we can use a 

correction to control for the false discovery rate (FDR) i.e. the expected proportion of false 

positives. Here we use the Benjamini-Hochberg Procedure (Benjamini & Hochberg, 1995). In this 

procedure the hypothesis tests are ranked according to the lowest to the highest p value. The 

p values are then compared to a threshold determined by the number of tests, desired alpha 

value (in this case 0.05) and position in the ranking.17 . The test with the greatest rank where 

                                                      

17 This test is similar to the Holm-Bonferroni Method – where the statistical tests are performed 

in sequence. The sequence is terminated once a hypothesis test exceeds the threshold for its 

ranking. Thus this test controls the family wise error rate and is more conservative than the 

Benjamini-Hochberg Procedure. We considered a less conservative test more appropriate due 

to the shared variance in the questionnaire scores and apply conservativeness to the specificity 

of our interpretations. 
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the p value does not exceed the threshold determines the rank at which all tests below that 

rank are deemed significant. Significance of tests will be reported as (Rho, pHB adjusted 

threshold, actual p value). 

 

4.4 Results 

The results presented for this task include happiness ratings and decision-making in regards to 

current state (i.e. performing gain or loss trials) and future states (i.e. positive or negative 

futures). For ease of reading, much of the modelling work is located after the main results and 

discussion in Section 4.6 Extended Analyses & Results.  

 

4.4.1 Participants Removed  

Two criteria for each participant’s data were defined to ensure data quality. Firstly they had to 

choose the riskier gamble at least 50% of the time when it was the best option in either gain or 

loss trials. This is to ensure we are able to model their behavioural and happiness where we 

assume expectations are determined by probability and magnitude. Only one participant was 

removed under this criteria (Figure 4-3a). The second criteria was that participants had to rate 

their mood not at the centre, or the extreme end of the scale more than 50% of the time. This 

was to ensure adequate variance in their happiness scores that could be captured by a model. 

Under this criteria we excluded 2 participants (Figure 4-3b) 
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Figure 4-3 Excluded Participants 

Grey areas of the plot indicate the exclusion criteria. Orange data points indicate excluded 

participants. a) Participants (N = 81)  were excluded from all analyses if they chose the risky 

gamble less than 50% of the time when it was the option with the greatest expected value 

in both loss and gain trials. One participant was excluded for choosing the risky option in 

gain trials only 38% of the time, and none of the time in loss trials. b) Participants were 

excluded if they rated their happiness as 0, 0.5 or 1 more than 50% of the time. Two 

participants were excluded under this criterion. Separate participants were excluded based 

on each criteria. 

 

4.4.2 Questionnaire Measures 

Nine Participants did not complete the MASQ or RRSQ. These were unique participants to those 

removed in the proceeding section. All questionnaires were highly correlated with a mean 

Pearson’s r of 0.670 and a minimum r of 0.352. All questionnaires scores were not significantly 

different between the two versions ran of the task (all p > 0.11, MASQ p = 0.309; Figure 4-1) 
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4.4.3 Participants have Stronger Affective Responses to Losses Compared to Gains: 

Evidence for an Affective Negativity Bias 

We first confirmed that choice outcomes impacted happiness ratings. We found that 

participants were happier after gaining points than after missing out on gaining (gaining: 0.565 

± 0.113; missing out on gaining: 0.422 ± 0.120; z = 7.673, p < 0.0001) and that they were happier 

after avoiding losing, than after losing (losing: 0.390 ± 0.120; avoiding losing: 0.519 ± 0.120; z = 

7.414, p < 0.0001). Interestingly, participants reported to be happier after avoiding losing, than 

after missing out on gaining, while the outcome is zero points in both trial types (z = 6.492, p < 

0.0001). This suggests an effect of expectations, as well as the involvement of outcomes in 

happiness fluctuations. We next turned to comparing gain and loss trials overall. Participants 

were happier in gain trials (0.517 ± 0.107) compared to loss trials (0.449 ± 0.109; z = 6.811, p < 

0.0001). Furthermore, those who were happier in gain blocks were also happier in loss blocks 

(ρ(76) = 0.757, p < 0.0001) suggesting happiness ratings capture important variance about 

overall mood state, independent of task events.  

We next designed computational models to capture both the aforementioned expectation and 

outcome effects in fluctuations in happiness ratings. All models we compared are shown in 

Section 4.6.1 (Models of Affective Dynamics). For the succeeding analyses, we used a model 

including the recent history of expectations as well as the recent history of the difference 

between the choice outcome and the expectation, namely the prediction error to predict each 

participant’s happiness ratings. The full model is described by below (Equation 4-1 Expectations 

Model, which is a formation of Equation 1-3 Affective Dynamics Model). In the model 

comparison in Section 4.6.4, this model is described as Expectations Model (3b). 

 

𝐻𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠𝑡 = 𝐶 + 𝑤𝐸𝑉𝑙𝑜𝑠𝑠 ∑ τ𝑡−𝑗 𝐸𝑉𝐿𝑜𝑠𝑠𝑗 +

𝑡

𝑗=1

𝑤𝐸𝑉𝑔𝑎𝑖𝑛 ∑ τ𝑡−𝑗 𝐸𝑉𝐺𝑎𝑖𝑛𝑗 + 𝑤𝑃𝐸𝑔𝑎𝑖𝑛 

𝑡

𝑗=1

∑ τ𝑡−𝑗

𝑡

𝑗=1

 𝑃𝐸𝐺𝑎𝑖𝑛𝑗

+ 𝑤𝑃𝐸𝑙𝑜𝑠𝑠 ∑ τ𝑡−𝑗

𝑡

𝑗=1

 𝑃𝐸𝐿𝑜𝑠𝑠𝑗 

Equation 4-1 Expectations Model 
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In the Expectations Model C , wi and τ are free parameters. The constant term C describes 

baseline mood. This was on average around the centre of the scale (0.535 ± 0.103). Weights 

were included that parameterized the influence of expected value and prediction errors on 

happiness ratings, termed affective dynamics (Figure 4-4b). Affective Dynamics for gain and loss 

trials were modelled separately as expected value (wEVloss: 0.178 ± 0.210; wEVgain: 0.0686 ± 

0.0882) and prediction error weights (wPEloss: 0.537 ± 0.403; wPEgain: 0.414 ± 0.287). The decay 

parameter τ captured the influence of previous trial events on the happiness rating (0.643 ± 

0.244), suggested that approximately 4-5 trials in the past influenced the current rating (Figure 

1-3). Interestingly, prediction error weights were significantly higher in the loss trials than the 

gain trials (z = 4.45, p < 0.0001; Figure 4-4c) as were expected value weights (z = 4.24, p < 

0.0001). This suggests that participants had stronger affective reactions to equivalent outcomes 

in loss trials compared to gain trials. For example, using the average prediction error parameter 

estimates, a prediction error of winning 60 points with a chance of 20% would boost happiness 

by 20 points in a gain trial, but a prediction error of losing 60 points would decrease happiness 

by 26 points in the loss trial. We consider this to be evidence of an affective negativity bias. In 

the continuation of the results we will refer to the difference in prediction error weights as the 

negativity bias (work concerning the difference in expected value weights is in Section 4.6.3). 
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Figure 4-4 Affective Responses to Losses are Greater than those for Gains 

A) Fluctuations in momentary happiness (black filled line) are well explained by a model (magenta dotted line) which includes parameters that 

estimate the influence of expected value, prediction errors on happiness (i.e. Expectations model). Happiness ratings made after gain trials are 

shown with a green background, ratings made after a loss trial are shown with a red background. Ai) Shows the happiness ratings for the 

participant with the median r2 value. Aii) Shows the participant with the median negativity bias (0.091). B) The Expectations model included 

parameter estimates which weighted events in gain trials (green bars) and loss trials (red bars) separately (termed affective dynamics). Affective 

dynamics parameter estimates convert trial-by-trial points to a change in the happiness rating. If the expected value was +80 points, and the 

wEVgain is 0.25, happiness ratings would increase by 20% of the scale.  Baseline parameter C and decay parameter τ (blue bars) were fit to all 

trials. Bars shown the mean parameter estimate and the error bars show the standard error of the mean. Each participant’s individual estimate 

is shown as a data point in the same width of the bar. C) Parameter estimates for prediction errors were greater in loss trials than in gain trials 

(z = 4.45, p < 0.0001). D) Error bars show the mean average z-scored happiness rating for each magnitude outcome. Filled lines show the 

Expected Model estimates. Dotted lines show the estimates of an alternative model where the affective dynamic parameters are fit to loss and 

gain trials together, and a separate baseline parameters (C) are fit to loss and gain trials. 

[*p < 0.05, ** p < 0.01, *** p < 0.001, , **** p < 0.0001] 
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4.4.4 Negativity Bias Associated Increased Sensitivity to Losses 

We next tested whether the parameter estimates in the affective dynamics model related to 

decision-making. Overall, participants made the risky choices in a similar proportion between 

gain trials and in loss trials (gain trials: 0.488 ± 0.149; loss trials: 0.524 ± 0.187; z = 1.152, p = 

0.128). Participants number of risky choices in gain trials was not related to their choices in loss 

trials (ρ(76) = -0.192, p = 0.0926). The proportion of risky choices did not correlate with any of 

the self-report questionnaires (all ρ < 0.188, p > 0.122). Mean happiness was not related to the 

overall propensity to take risks; the proportion of risky choices made did not correlate with 

mean happiness in loss blocks (ρ(76) = 0.096, p = 0.403) nor gain blocks (ρ(76) = -0.066 p = 

0.565). 

Focusing on the negativity bias for happiness ratings, we looked for whether this was related to 

any differences in choices made by the participants. An asymmetry between how one feels 

about positive and negative events may lead us to change our behaviour accordingly to 

maximize feeling good and avoid feeling bad. In other words, if losing points makes us feel 

worse than winning the equivalent gains, we may actively seek to avoid large losses more than 

we look to approach large gains. In order to investigate this we tested whether the prediction 

error parameters were correlated with risk taking in loss and gain trials separately. The 

prediction error weight was negatively correlated with proportion of risky choices in the gain 

trials (ρ(76) = -0.308 p = 0.0060), suggesting that those that were happier in response to 

outcomes in gain trials also chose the risky option less frequently. We did not see a relationship 

in loss trials (ρ(76) = -0.055 p = 0.632), nor a relationship between the negativity bias and the 

difference in proportional risky decisions when loss compared to gain trials (ρ(76) = -0.112 p = 

0.331).  

In order to test whether any of the affective dynamics were related to differences in the 

subjective perception of magnitudes or probabilities used to make choices, we used a series of 

prospect theory-like model to fit the choices which included a probability weighting function 

(Section 4.6.4 Comparing Models of Choice). For the succeeding analyses, we used a model 

which fits free parameters for gain and loss trials separately (the equation below does not 

specify trial frame for clarity; Figure 4-5).  
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𝑤(𝑝) =  
𝑝𝛾

(𝑝𝛾 + (1 − 𝑝)𝛾)1/𝛾
 

𝑈𝑠𝑎𝑓𝑒 = 𝑤(𝑝)(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒)𝛼   

𝑈𝑟𝑖𝑠𝑘𝑦 = 𝑤(𝑝)(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒)𝛼  

Equation 4-2 Prospect Theory Model with Tversky Probability Weighting Function 

 

Choice probabilities were then determined by a softmax rule which converts the difference in 

subjective utilities (Urisky  and Usafe) to the probability of choosing the riskier option. The softmax 

includes an inverse temperature parameter (µ) which quantifies choice stochasticity (Equation 

4-3  & Figure 1-2 Softmax Rule Simulation) As above, we fit µ separately for both loss and gain 

trials but omit this from the equation below. 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
1

1 + e−µ(𝑈𝑟𝑖𝑠𝑘𝑦−𝑈𝑠𝑎𝑓𝑒)
 

Equation 4-3 Softmax Rule 
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Figure 4-5 Prospect Theory Style Model of Decision-making 

(A) The Prospect theory style model included parameters which estimate the influence of 

the subjective perception of magnitudes (α) and probability (γ) on choice. It also includes a 

parameter which indexes how deterministic participant’s choices were (µ). Bars shown the 

mean parameter estimate and the error bars show the standard error of the mean. Each 

participant’s individual estimate is shown as a data point in the same width of the bar. 

Parameter estimates for loss trials are in red, estimates for gain trials are in green. (B) The 

mean proportion of risky choices is shown in error bars with the standard deviation (red for 

loss trials, green for gain trials) for each magnitude (Bi) and probability (Bii). Joined lines 

indicate the Prospect Theory model’s mean predictions. We median split the data based on 

whether participants had a high negativity bias (mean 0.287, N = 39) or low negativity bias 

(mean -0.041, N = 39) for presentation purposes. 
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We next tested whether there were correlations between the prediction error weights with the 

subjective perception of magnitudes (α), and probabilities (γ). We found correlations between 

these in gain and loss trials, but they did not exceed the multiple-comparisons adjusted 

threshold (αloss : ρ(76) = 0.217, pHB < 0.0167, p = 0.057; γgain: ρ(76) = 0.217, pHB < 0.0167, p = 

0.057) 18. We next tested whether the negativity bias showed a relationship with any 

parameters. Here we found that αloss correlated with the negativity bias (ρ(76) = 0.2996, pHB < 

0.0083 , p = 0.0079, Figure 4-6c), but not any other estimates of subjective magnitude or 

probability, nor the difference between them. This suggests that those who were comparatively 

more upset about losses than they are about gains, were also more likely to choose the smaller 

magnitude more likely loss option over the larger magnitude less likely loss option. The 

relationship between αloss and the negativity bias was in part largely driven by the participants 

who showed a more positive bias; where they showed greater prediction error weighted 

responses to gains than losses. When they were removed from the analysis (N = 19) there was 

no significant correlation (ρ(57) = 0.0420, p = 0.751). We also tested the Prospect Theory Model 

with only one set of parameters (i.e. all shared between gain and loss) which demonstrated the 

same effect for the α fit to both gain and loss (α: 0.798 ± 0.493, ρ(78) = 0.297, pBH < 0.0167, p = 

0.0084). This may suggest the negativity bias is associated with increased sensitivity to 

magnitudes overall (higher values of α indicating relatively greater risk taking for gains, and safe 

choices for losses). 

 

4.4.5 Negativity Bias Associated with Reduced Anhedonia Symptoms 

We next looked to see whether the negativity bias was associated with any of the questionnaire 

measures. We found that greater self-reported scores on the MASQ were negatively correlated 

with the average happiness (ρ(67) = -0.402, pHB  < 0.01, p = 0.0006) as were scores on the STAI 

(ρ(76) = -0.273, pHB < 0.02, p = 0.0157) and the BDI (ρ(76) = -0.265, pHB  < 0.03, p = 0.0189). We 

next used the parameter estimates from the Expectations Model to test whether this may 

explained by a lower mood baseline or an increased negativity bias. The MASQ questionnaire 

negatively correlated with both the baseline parameter C (ρ(67)  = -0.415, pHB < 0.0167, p = 

                                                      
18 The test statistics in these paragraphs were identical when rounded, this is not a transcription 
error. 
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0.0004, Figure 4-6a) and the negativity bias (ρ(67)  = -0.290, pHB < 0.0333, p = 0.0155, Figure 

4-6b). It did not correlate with the difference in expected value parameter estimates between 

loss and gain trials (ρ(67) = -0.108, p = 0.501). An exploratory analysis showed that the 

relationship with MASQ was present for wPEloss (ρ(67) = -0.251, p = 0.0372) but not wPEgain 

(ρ(67) = 0.131, p = 0.284). These findings suggest that those with greater self-reported 

anhedonia have lower mood baselines, and also reduced negativity bias (Further analysis to 

support the robustness of these results can be found in Section 4.6.3.1 (The Asymmetry of 

Prediction Errors is not caused by Variance in Mood Baselines.). 

Having seen relationships between the negativity bias with MASQ, and with risk sensitivity for 

losses (αloss ), we looked to see whether MASQ scores were also associated with αloss. We did 

not find a relationship between αloss nor any other parameters in the model (all ρ(57) < -0.215, 

p > 0.0764). Interestingly we did find a relationship between MASQ scores and response times 

for both gain (MASQ: ρ(57) = 0.436, pBH < 0.01, p < 0.000182; RRSQ: ρ(78)  = 0.306, pBH < 0.02, 

p = 0.0105; BDI, ρ(78)   = 0.238, pBH < 0.03, p = 0.0249) and loss trials (MASQ, ρ(57)  = 0.433, pBH 

< 0.01, p = 0.000205). Higher MASQ scores (mean score 71.177, N = 34) had an average response 

time of 1.900 minutes for Loss trials and 1.70 for Gain trials, while lower MASQ scores (mean 

score 49.971, N = 35) had an average of 1.48 minutes for Loss trials and 1.35 minutes for Gain 

trials. MASQ scores were not associated with response times for happiness ratings for gain trials 

(ρ(57) = 0.209, pBH < 0.02, p = 0.0856) nor loss trials (ρ(57)  = 0.195, pBH < 0.02, p = 0.109), 

suggesting that anhedonia may be associated with prolonged deliberation time for choices.  

Interestingly, we found that the RRSQ positively correlated with reporting time for happiness 

ratings, however the p values exceeded the adjusted threshold (Gain trials: ρ(78)   = 0.284, pBH 

< 0.01, p = 0.0182; Loss trials: ρ(78)   = 0.288, pBH < 0.01, p = 0.0166). This may suggest that 

participants reporting increased rumination in their day to day life take more time to consider 

their happiness ratings. 
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Figure 4-6 Anhedonia Symptoms Associated with Decreased Mood Baseline and Reduced Affective Asymmetry 

(A) The baseline parameter C negatively correlates with scores on the MASQ questionnaire, demonstrating that participants who report greater 

anhedonia symptoms have a lower mood baseline. (B) The difference in negativity bias was negatively correlated with MASQ scores suggesting 

those that report less anhedonia symptoms show increased affect reactivity to losses compared to gains. In order to test whether the difference 

in prediction error weights included variance driven by changes in the baseline parameter we ran a partial correlation test and found that the 

negativity bias correlated with MASQ scores when the baseline was partialled out (ρ(67) = -0.31, p = 0.009). (C) The negativity bias was positively 

correlated with αLoss. Higher values of αLoss indicate the higher magnitudes being overweighed and choosing the riskier option appears less 

attractive. The analysis was run again removing those with negative values of negativity bias (where the prediction weights were greater for 

gains than losses (N = 19) and the correlation was no longer significant (ρ(78) = 0.0420, p = 0.751). 
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4.4.6 Affective Dynamics were influenced by Positive and Negative Futures 

In the previous sections, we have shown evidence for a negativity bias, where participants show 

larger changes in their happiness ratings for prediction errors in loss trials compared to gain 

trials. We found the negativity bias is related to risk sensitivity in choices, particularly sensitivity 

to prospective losses. Next, we looked to see whether future prospects had an effect on 

happiness ratings. We used the Expectations Model to regress out the influence of all trial-by-

trial events on happiness to determine if the future blocks had any influence on the ratings (a 

method previously used in Vinckier et al., 2018a). Positive residual happiness means that the 

model has under predicted the participant’s happiness ratings (i.e. they are happier than would 

be estimated given the current trial expectations and outcomes). Negative residual error means 

that the model has over predicted the participant’s happiness ratings (i.e. they are less happy 

than would be estimated given the current trial expectations and outcomes). We first tested 

whether the future had an effect on happiness ratings overall, by comparing the happiness 

residuals between positive and negative futures. These were significantly different across all 

trials (0.0229 ± 0.053, z = 3.44, p < 0.00058) in both loss trials (0.0220 ± 0.0613, z = 2.96, p < 

0.0031) and gain trials (0.0251 ± 0.0654, z = 2.98, p > 0.0029; Figure 4-7a). As a robustness 

check, we tested whether these differences were present in both the first and second half of 

the experiment, where it was found to be the case in both loss trials (first half: z = -2.08, p = 

0.038; second half: z = 2.015, p = 0.044) and gain trials (first half: z = 2.52, p = 0.012; second 

half: z = 2.63, p = 0.009). Across all trials, the mean difference in happiness residuals for positive 

vs negative futures was positively correlated between gain and loss trials (ρ(76) = 0.367, p < 

0.001; Figure 4-7b). 

We next looked to see whether we could see effects in negative and positive futures separately. 

For looking at positive and negative futures separately, we compared residual happiness for the 

mixed prospects future in order to account for whether an individual’s residuals were on 

average positive or negative. Residual happiness was significantly positive for positive futures 

(0.0096 ± 0.037, z = 2.25, p = 0.024), and significantly negative for negative futures (-0.013 ± 

0.040, z = 2.90, p = 0.0037). Positive futures were significantly positive in gain trials (0.0124 ± 

0.0444, z = 3.0158 p = 0.0026) but not significant in loss trials (0.0080 ± 0.0517, z = 1.163, p = 
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0.2448). Negative futures were significantly negative in loss trials (-0.014 ± 0.0406, z = -2.93, p 

= 0.0034) and showed a negative trend for gain trials (-0.0127 ± 0.0576, z = -1.7009, p = 0.0890). 

 

 

Figure 4-7 Influence of the Future on Happiness Ratings 

(A) The difference in Happiness ratings and the generated model predictions (residual 

happiness) was significantly different between positive and negative futures for all trials 

(blue bars), and when split by loss trials (red bars) and gain trials (green bars). Residual 

happiness was significantly positive when the future was positive for all trials and in gain 

trials. The residual happiness was significantly negative for negative futures for all trials, 

and loss trials. An average residuals value of 0.02 would mean that happiness ratings are 

2% greater on average under a given future prospect. (B) The difference in residual 

happiness for positive and negative futures was significantly positive in both loss and gain 

trials, and the differences also correlated between them. 

[*p < 0.05, ** p < 0.01, *** p < 0.001] 

 

4.4.7 Influence of the Positive and Negative Futures on Decision-making Increases with 

Proximity 

Having shown that the valence of the future prospects influenced happiness ratings, we next 

we looked at whether positive or negative futures effected decision-making. We used the 
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Prospect Theory model to regress out the influence of magnitude and probability on choice to 

explore if the future blocks had any influence on the decision-making. Positive choice residuals 

means that the model under predicted the risky option would be chosen. Negative choice 

residuals meant that the model under predicted the safe option would be chosen.  The greater 

the residuals, the more the model under predicted the choice made. We first tested whether 

future prospects had an effect on decision-making overall, by comparing the choice residuals 

between positive and negative futures. These were not significantly different overall (0.015 ± 

0.068, z = 1.69, p = 0.091), nor when split between loss trials (0.012 ± 0.097, z = 1.58, p = 0.115), 

or gain trials (0.0174 ± 0.102, z = 0.809, p = 0.418). The mean difference in choice residuals for 

loss trials was positively correlated with the mean difference in happiness residuals (ρ(76) = 

0.246, p = 0.029), but not in gain trials (ρ(76) = -0.030, p = 0.796) nor overall ρ(76) = 0.115, p = 

0.316). This may suggest that in loss trial’s those whose mood was more affected by future 

prospects also had changed their decision-making based upon future prospects. However as we 

do not see this effect in gain trials we do not consider it robust enough for further analysis. 

Unlike happiness ratings, decision-making is sampled multiple times within one block of trials. 

We leveraged this to explore whether we could see changes in decision-making at the beginning 

or end of a block of trials. We found that the choice residuals were significantly different 

between positive and negative futures on the 3rd trial of each block across all trials, (0.0454 ± 

0.157, z = 2.607, p = 0.0091; Figure 4-8ai), loss trials (0.0594 ± 0.222, z = 2.56, p = 0.0105; Figure 

4-8aii), but not gain trials (0.0228 ± 0.27, z = 0.516, p = 0.606; Figure 4-8aiii). All effects seen 

were positive, suggesting that positive futures increased risky choices where as negative futures 

increased safe choices. We did not see this effect on the 1st trial of each block (all trials: 0.011  

±  0.097, z = 1.25, p = 0.210; loss trials: 0.014  ±  0.146, z = 1.08, p = 0.281; gain trials: 0.0079  ±  

0.133, z = 0.167, p = 0.868). 

We next tested whether any influence of the future on decision-making increased throughout 

the block. We fit general linear models to the choice residuals as a function of the trial number 

separately for all combinations of future valence and trial valence (Figure 4-8b). A positive slope 

for the influence of trial number on future prospects would indicate an increase in gambling as 

the future was approached. There was a significant difference between the influence of future 

on trial number slopes across all trials when comparing positive and negative futures (0.0288 ± 

0.084, z = 2.95, p = 0.0032). We then tested this separately for trial types and found a significant 
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contrast in loss trials (0.0393 ± 0.115, z = -2.87, p = 0.0042), but not in gain trials (0.0206 ± 0.129, 

z= 1.75, p = 0.080). As a robustness test we split the data in half and tested whether we could 

observe the difference in positive and negative futures in both halves (first half:  0.0344 ± 0.104,  

z = -2.77, p = 0.0056; second half: 0.0239 ± 0.123  z = -1.99, p = 0.047). 

Finally, we explored whether we could see effects in negative and positive futures separately. 

To test the significance of these separately, we fit another set of general linear models which 

included a slope that captured the influence of decision-making changing across the block under 

all future conditions, to remove any variance associated with this. Choice residuals showed a 

positive slope for positive futures across all trials (0.010 ±  0.032,  z = 2.68, p = 0.0074), but the 

slope for negative futures was not significant (0.0049 ± 0.028 , z = -1.41, p = 0.159). For loss 

trials only, we found the positive and negative futures were not significant (positive future: 

0.0074 ± 0.041, z = 1.606, p = 0.108; negative future: -0.0082 ± 0.041, z = -1.736, p = 0.083), and 

only positive futures in gain trials (positive future: 0.0125 ± 0.050, z = 2.28,p = 0.022; negative 

future: -0.0027 ± 0.0383, z = -0.535, p = 0.592).



110 
 

Figure 4-8 Influence of the Future on Decision-Making 

(A) Choice Residuals (y-axis) are the difference in the choice made by the participant (1 for riskier choice, zero for safe choice) and the probability 

of making the risky choice from the Prospect Theory style model. Positive choice residuals means that the model under predicted the risky 

option would be chosen. Negative choice residuals meant that the model under predicted the safe option would be chosen.  The greater the 

residuals, the more the model under predicted the choice made. The choice residuals are shown for loss trials (red error bars), gain trials (green 

error bars), and all trials (blue error bars). Darker colours indicate negative futures, and lighter colours indicate positive futures. Choice residuals 

were significantly different in the 3rd trial of each block in loss trials, and across all trials. (B) Slopes were fitted to the choice residuals and trial 

position which were significantly different between positive and negative futures for loss trials, and across all trials. We did not appear to see 

any effects of trial number in gain trials, this appears to be driven by the 3rd trial when the future is negative being positive. We can speculate 

that is may be due to an additional gain trial being treated as a positive surprise. 

*p < 0.05, ** p < 0.01, *** p < 0.001 
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4.5 Discussion 

In a novel paradigm where participants were aware of the valence of near future trials while 

making decisions in current trials, we demonstrate that moment-to-moment changes in densely 

sampled happiness ratings relate to both short and long term prospects. In the short term, using 

a computational model of affective dynamics we find evidence for an affective negativity bias, 

where happiness ratings (modelled as prediction errors) were more extreme for loss trials then 

gain trials. We also show that the valence of longer term prospects affects affective ratings and 

tendency to make risky decisions: positive futures are associated with higher affective ratings 

and increased risky taking; negative futures are associated with lower affective ratings and 

decreased risk taking. Where possible, for affective biases we looked to interpret results which 

contrast between gain and loss trials, and positive and negative futures. This is due to these 

statistics being more robust to individual participant’s differential usage of the scale, but limits 

the interpretations we can make about the independent influence of individual trial type of 

valence of future. 

Negativity biases have been observed across multiple domains (learning from reinforcement: 

Gershman, (2015); increased attention: Yechiam & Hochman (2013); mixed prospect choices: 

Charpentier et al (2016)). Here we show robust evidence for its presence in affective responses, 

as observed using densely sampled ratings. Prior work has suggested a utility of such a bias in 

learning, where it allows for the avoidance of future negative surprises (Michely et al., 2020; 

Pulcu & Browning, 2017). Consistent with this view, we see a relationship between a greater 

negativity bias and increased risk sensitivity for losses in a prospect theory model where risk 

sensitivities for gains and losses are parametrised separately. We also see this effect in a model 

where risk sensitivity is captured as one parameter, which suggests the negativity bias may be 

associated with increased sensitivity to magnitudes overall (higher values indicating relatively 

greater risk taking for gains, and safe choices for losses). However as we found the parameters 

in the prospect theory style model were highly correlated, we believe these results should be 

replicated before strong inferences can be made.  

We also found that future prospects were associated with affective responses in the direction 

of their valence; participants were happier when the future was positive, compared to when 

the future was negative. This effect was present in both gain and loss trials. We examined the 

influence of positive and negative futures separately on affective ratings, and found significant 
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effects in both cases. When further split by trial type, we only found significant effects in loss 

trials and negative futures, and gain trials and positive futures. However this may be due to 

statistical power being sufficiently reduced; one future for each trial type corresponds to less 

than 10 ratings per participant. This observation could suggest that dwelling on the nature of 

the future has an affective property, which may contribute to the observation that optimism is 

associated with greater life outcomes. 

The size of the effects for the influence of future prospects on affective ratings and decision-

making were robust but relatively small. For example, the difference between happiness ratings 

between positive and negative futures was on average approximately 2% of the entire scale, 

compared to the average difference in prediction error weights which was 12% of the scale.  

This is perhaps not-surprising due to there being no task associated with the presence of the 

future blocks, which limits the attention required to them. Studies exploring anticipation 

typically focus on the anticipated event entirely, with no interweaving task related events (e.g. 

Iigaya et al., 2016). In contrast, here we looked to design a novel task which capitalised on a 

more natural tendency to dwell on the future, and explore how it interacts with current events 

(i.e. decisions). 

Regarding the influence of future prospects on decisions, we were surprised to not find an effect 

of the future on decision-making when including all trials, particularly as many participants 

informally reported that they did change their decisions based on the future blocks. Intriguingly, 

we found that when we looked across the whole block, we could see the risk taking increased 

as participants approached the end of the block with a positive future, compared to as they 

approached a negative future where risk taking appeared to reduce. A change in decision-

making as distance to the future decreases is consistent with neuroimaging work on 

anticipation, where a ramping signal in the value encoding areas of the brain is observed, 

following surprising news about a future reward to the receipt of the reward itself (Iigaya et al., 

2019). The anticipation of positive and negative futures may drive a similar neural mechanism 

which leads to risky gain prospects being perceived as more attractive. Studies exploring dread 

have suggested a similar increase in affective intensity and neural activation as a painful shock 

stimulus approaches in time (however in pain related areas, and not value encoding: Berns et 

al., 2006). 
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A lower baseline mood being associated with increased depressive symptoms has been 

observed in studies using dense affective sampling (Blain & Rutledge, 2020; Rutledge et al., 

2017). We replicated this result here, where the baseline mood parameter is negatively 

correlated with the Mood and Anxiety Symptom Questionnaire. This questionnaire measures 

self-reported anhedonia symptoms, however we prescribe caution at interpreting this result to 

be specifically associated with anhedonia, as we also saw strong correlations between average 

happiness and other measures, including anxiety (State Trait Anxiety inventory) and depressive 

symptoms (Beck’s Depression Inventory II). In addition to lower baselines being associated with 

greater MASQ scores, we also saw that the affective negativity bias was lower in greater MASQ 

scores. We confirmed the independence of these results using a partial correlation test. A 

reduced negativity bias, if linked to reduced avoidance behaviour, could suggest a mechanism 

by which mood related symptoms are worsened by being unaided by negative affect to avoid 

more future negative affect. Other studies have shown evidence for attenuated neural 

prediction error signals in patients with major depressive disorder (e.g. Kumar et al., 2008). 

Major depressive disorder, and anhedonia more specifically, have been related to reward 

sensitivity, as opposed to attenuated learning rates (as indexed by the MASQ questionnaire: 

Huys et al., 2013). It may be that differences in mood related prediction errors are more 

appropriately described as differences in reward sensitivity, and understood distinctly from 

learning related prediction errors. It is notable in this study; we did not find strong evidence for 

a prediction error model better describing the happiness ratings than a model using the value 

of the outcome alone. 

Prior studies using dense affective sampling have not observed any differences between 

prediction error weights in affective dynamics models and depressive symptoms (Blain & 

Rutledge, 2020; Rutledge et al., 2017). These experimental tasks use either all trials of the same 

type (gain trials; Blain & Rutledge, 2020) or pseudo-randomise the order of different trial types 

(gain, loss and mixed; Rutledge et al., 2017). It may be that we were able to observe prediction 

error relevant variance with symptoms for two experimental reasons. Firstly, we leveraged the 

difference in prediction errors between two trial types, which partially normalises for each 

participants individual scale usage. Secondly, it may be that by structuring trials into blocks of 

gain and loss trials we increase the relevant emotional salience of each trial type. This may 
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correspond to the difference in comparing a surprising good or bad event, with the difference 

in a good or bad day.  

Altogether, we have shown that expectations in the short and longer term can influence 

affective state, estimated from happiness ratings, and decision-making. This approach of 

estimating both affective and decision biases within the same study extends our understanding 

of how both these biases interact, perhaps leading to a better understanding of how low mood 

and mood disorders affect our choices and perception of the world. Future work should focus 

on optimising computational models for both happiness ratings and decision-making, perhaps 

developing model based solutions for estimating latent variables that affect both mood and 

choice. 
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4.6 Extended Analyses & Results 

 

4.6.1 Models of Affective Dynamics 

4.6.1.1 The Model Space 

To explore the influence of task events on fluctuations in happiness ratings, we considered 2 

families of affective dynamics models. The first family, referred to as Expectation Models, used 

expected values and prediction errors. The second family, referred to as Rewards Models, used 

outcomes only. Within each family we tested two model versions: one with a shared baseline 

between gains and losses, and one which modelled signed outcomes and zero outcomes 

separately (Table 4-1 Affective Dynamics Candidate Models). All models had separate affective 

dynamic weights for gains and losses, and shared a forgetting factor (τ) between gains and 

losses. The reason for this was in previous studies, is has been shown that the number of trials 

which influence the current rating exceeds the lengths of the blocks in this study (e.g. Blain & 

Rutledge, 2020; Rutledge et al., 2014).  

4.6.1.2 Model Selected for Analysis in the Main Text 

The following sections examine the models for complexity and generalizability trade-off (BIC 

Model comparison), split-half reliability of parameter estimates, and model identifiability. We 

conclude from these tests that the Expectations Model (3b) is the best for analysing differences 

in happiness ratings. Importantly, we do not conclude that our model comparison is able to 

demonstrate the affective responses are driven by prediction errors, and expectations, 

compared to other candidate models. 

4.6.1.3 BIC Model Comparison 

First, we performed a formal model comparison using Bayesian Information Criterion, as has 

been standard for affective dynamics models (e.g. Blain & Rutledge, 2020; Rutledge et al., 

2014). The best fitting model according to this criterion was Rewards Wins & Losses (2b) (Table 

4-1; Figure 4-9a) with a mean ΔBIC of 6.585 compared to the best fitting model of the 

Expectations family (Figure 4-9b&c).  
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Figure 4-9 Bayesian Model Comparison for Affective Dynamics Models 

 (A) Bayesian Information Criteria for comparing the candidate models. The x-axis shows 

the average difference between the BIC for the model with the lowest BIC (Rewards Win & 

Losses (2b)) and each other candidate model. The models are fit to z-scored happiness 

ratings, in order to not bias the model comparison towards participants who use a lesser 

degree of the happiness rating scale. (B) The difference in each participants BIC scores 

between Expectations model (3b) and Rewards Wins & Losses (2b) (pink data points), and 

Rewards (1b) (blue data points). The difference in r2 for the same models is shown in C). All 

models were fit using positive bounds. 
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Table 4-1 Affective Dynamics Candidate Models 
  

Model Name Affective Dynamics  Constant Baseline 

Rewards (1a) Outcome (2)      [-1 0.5 2] 

 

 (2)      [-0 0.5 1] 

Rewards, One Baseline (1b)   (1)     [            ] 

Rewards Wins & Losses (2a) Signed Outcomes (2)      [-1 0.5 2] 

 

Unsigned Outcome (2)      [-1 0.5 2] (2)      [-0 0.5 1] 

Rewards Wins & Losses, One Baseline (2b)   (1)     [            ] 

Expectations (3a) Expected Value (2)      [-1 0.5 2] 

Prediction Errors (2)      [-1 0.5 2] 

 (2)     [-0 0.5 1] 

Expectations, One Baseline (3b)   (1)      [            ] 

Expectations, Split Baseline (3c) Expected Value (1)     [            ] 

Prediction Error (1)     [            ] 

 (2)     [            ] 

Expectations Wins & Losses (4a) Expected Value (2)      [-1 0.5 2] 

Prediction Errors for Wins (2)      [-1 0.5 2] 

Prediction Errors for Losses (2)      [-1 0.5 2] 

 (2)      [-0 0.5 1] 

Expectations Wins & Losses, One Baseline (4b)   (1)     [            ] 

Here we show two families of candidate models Rewards Win & Losses Models (2) and Expectation Models (3). The round bracketed number indicates the amount of 
parameters of that kind in the model, where (2) indicates a separate parameter for gain and loss trials and (1) indicates they are shared. The square brackets indicate the 
[lower bound, starting point, upper bound] for each parameter when it is fit with fmincon (MATLAB). Where models are described as having ‘positive bounds’ in the main 
text, the affective dynamics parameters have a lower bound of 0. Each model is presented in its full version, indicated by ‘a’ and any subsequent versions below only provide 
numbers of parameter if they change from the ‘a’ model. Every model also includes a forgetting factor (τ) which is constrained at [0 0.1 1]. Expectations (3c) is used for 
simulations and robustness checks.  
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4.6.1.4 Assessing Model Reliability 

Reliability is a paramount issue for models used in computational psychiatry. In order for 

parameters in computational models to be compared to self-reported questionnaire measures 

(or any other measures taken from real life e.g. a diagnosis) they need to be estimated with a 

high degree of internal consistency (e.g. test retest reliability, or split-half reliability) (Brown et 

al., 2020; Browning et al., 2020; Paulus et al., 2016). This poses a difficult question for models 

of mood, where emotional engagement may vary throughout the task.  

With this in mind, we tested the split-half reliability of all candidate models. This procedure 

involved fitting each participant’s first and second half of their data separately (39 blocks per 

sample, ~98 trials) and correlating the estimated parameters fit to the data from the first half, 

to those fit to the second half. We also tested two different boundary constraints to see if it 

improved reliability. In the first set of constraints (unconstrained) the affective reactivity 

parameters were allowed to fit under zero, in the second set (positive bounds) the affective 

reactivity parameters were constrained to be above zero. The reason for this was because 

affective dynamic parameters below zero are difficult to interpret, for example a negative 

prediction error weight in gain trials would suggest that an individual was happier when they 

lost points. Despite this, previous publications using affective dynamics models have not 

constrained the parameters to be above zero (e.g. Blain & Rutledge, 2020; Rutledge et al., 

2014).  We test here whether formalising our expectation that constraining these weights to be 

positive improves split-half reliability and should be considered an axiom for future 

instantiations of affective dynamics models. In both sets of boundary constraints the baseline 

mood parameter (C) and decay parameter (τ) were constrained to exceed zero. 

We tested whether constraining all parameters to be positive improved reliability of parameter 

estimates between the first and second half of the experiment.  Broadly, all the models showed 

good split-half reliability, where most parameter estimates (with the exception of τ) correlated 

between the first and second half (all the statistics for these analyses are presented in Table 4-2 

Split-Half Reliability). In almost all models and parameters, the split-half reliability improved 

with the inclusion of positive bounds.
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Table 4-2 Split-Half Reliability 

Model Names Parameter Reliability (R) r2 

Rewards Wins and Losses 

(2)  

UnSign wSign τ C  

      (2a)  Unconstrained 

       (2a) Positive bounds 

       (2b) One Baseline 

.467*** 

.543*** 

.367*** 

.527*** 

.692*** 

.621*** 
 

.331** 

.467*** 

.478*** 

.409*** 

.645*** 

.540*** 
 

.28* 

.131ns 

.140ns 

.320* 

.461*** 

.108ns 

.387*** 

.341*** 

.581 

.577 

.554 

Expectations (3) wEV wPE τ C  

       (3a)  Unconstrained 

       (3a) Positive bounds 

       (3b) One Baseline 

.172ns 

.303** 

.41***  

.189 

.223* 

.218ns 
 

.669*** 

.673*** 

.701*** 

.693*** 

.722*** 

.698*** 
 

.139ns 

.308** 

.190ns 

.343*** 

.440** 

.268** 

.375*** 

.450*** 

.548  

.539  

.527   

Each column shows first the loss trials estimate, and second the gain trial estimate. If there is only one value, the parameter is fit to both trial types. 

[ns non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001] 
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4.6.1.5 Parameter Correlations 

In each of the four candidate models there was a high degree of correlation between baseline 

parameters for each trial frame and their affective dynamics parameters (Figure 4-10). In the 

Rewards Model (2a) the baseline for gains negatively correlates with positively signed outcomes 

(r(76) = -0.504, p < 0.0001), and positively correlates with unsigned outcomes (r(76)  = 0.306, p 

= 0.0065; Figure 4-10a). The inverse can be seen in the loss trials, where the baseline positively 

correlates with negatively signed outcomes (r(76) = 0.336, p = 0.0027), and negatively correlates 

with unsigned outcomes (r(76) = -0.530, p < 0.0001). The same direction of relationships is 

observed in the Expectations Model (3a), where the baseline for gains negatively correlates with 

positively signed affective dynamics (expected value, r(76) = -0.591, p < 0.0001) and the baseline 

for loss trials positively correlates with negatively signed affective dynamics (expected value, 

r(76) = 0.680, p < 0.0001; ; Figure 4-10b). Shared variance between baselines and dynamics 

presents an issue for comparing between gain and loss trials, as variance may be either masked 

by this trade-off, or artefacts occur causing erroneous significant differences between trial 

types discussed in Section 6.3.2 Can we Identify both Mood Baselines and Affective Responses?). 

We next tested whether we could reduce the covariance between the baseline being fit to both 

gain and loss trials together. In the Rewards Model (2b) the covariance reduced only marginally; 

the baseline parameter negatively correlated with affective dynamics for loss trials (unsigned 

outcome: r(76)  -0.374, p = 0.0007; signed outcome: r(76)  = 0.278, p = 0.0139), and gain trials 

(unsigned outcome: r(76) = 0.240, p = 0.0347; signed outcome, r(76)  = -0.469, p < 0.0001; Figure 

4-10c). However fitting a shared baseline reduced covariance a considerable degree in the 

Expectations Model (3b); the expected value weights for loss trials r(76)  = 0.376 , p = 0.0008), 

and gain trials r(76)  = -0.427 , p = 0.0001), and also the prediction error weights reduced (loss 

trials, r(76)  = -0.0257, p = 0.823; gain trials, r(76)  = 0.0035, p = 0.98; Figure 4-10d). 
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Figure 4-10 Correlation Matrices for Candidate Models 

The Pearson’s r values for each parameter compared to each other parameter in the same 

model are shown in for (A) Rewards Wins and Losses (2a), (B) Expectations Model (2b), (C) 

Rewards Wins and Losses (2b), and (D) Expectations Model (3b). These models were all fit 

with positive bounds. The r values are written at the intersection of each parameter pair, 

with the saturation of the colour also indicating the value (saturated colours indicate lower 

absolute values of r). The maximum unsaturated tone is shown in the diagonal squares 

where the r value is 1. An r value of zero is indicated by a white tone. Red Squares indicate 

any correlations where at least one parameter is fit to only loss trials (e.g. C and wPEloss), or 

(wEVloss and wPEloss). Green Squares indicate any correlations where at least one parameter 

is fit to only gain trials (e.g. C and wPEgain), or (wEVgain and wPEgain). Grey Squares indicate 

correlations where parameters are fit to both gain and loss trials equally (e.g. C and τ), or are 

fit to one set of trials and not another (e.g. wEVgain and wEVloss). 
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4.6.2 A Model Recovery Technique for Evaluating Generative Performance in 

Continuous Data 

Generative performance is how well the model predictions capture data features of interest, 

and their ability to make unique predictions compared to other candidate models (Palminteri 

et al., 2017). One method of testing generative performance is by performing model recovery; 

fitting a series of candidate models to the generated data of one model of interest (test model), 

and confirming that a new model comparison prefers the test model over the other candidate 

models. If the test model makes unique predictions, then it should be preferred by BIC to other 

candidate models. If one of other candidate models is preferred to the test model, this suggests 

that it makes similar predictions to the test model and thus the theories instantiated by these 

models cannot be described as falsifiable (in this case). 

To the authors knowledge there have not been attempts in the literature to explore model 

recovery for affective ratings. Model recovery is a popular technique when comparing models 

that make binary choices, as the generative data is probability estimates that are converted 

into choices – thus is clear to see how two different candidate decision models may make 

different probability estimates (e.g. the likelihood of choosing a particular option as 0.6 or 0.95) 

but have the same behaviour (i.e. choosing the option). When predicting point estimates of 

mood, the generated data requires no conversion to simulate the behaviour. This means that 

it is very easy to recover any model due to the high level of precision of the predicted data. Here 

a novel model recovery method was used which involved adding noise to the generative data 

of the test model and refitting the candidate models. The noise term was the standard deviation 

of the residuals of the observed data and the generated data. This allows for amount of noise 

added to be both proportional to the participants use of the scale and appropriate for the 

noisiness of the model (akin to an inverse temperature parameter in a decision model). If a 

model makes unique predictions to other candidate models it tends to be recoverable. If a 

model is not recoverable compared to another model it suggests it is not possible to confidently 

distinguish between the two models. 

We looked to test the identifiability of the Expectations Model (3b). We first confirmed the noise 

term correlated with the r2 of the model (when normalized by the standard deviation of each 

participants ratings: ρ(76) = -0.923, p < 0.0001), demonstrating that where the model explained 

more of the variance in the happiness ratings, the simulated noise was lower.  The model 
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recovery did prefer the Expectations Model (3b) in terms of BIC Figure 4-11a) However the ΔBIC 

to the other candidate models was similar in degree to BIC ratings shown in Figure 4-9. Next we 

looked at the r2 measures of fit for gain and loss trials separately for the Expectations Model 

(3b) and Rewards Model (2b). If models are identifiable, r2 should be greater for the test model 

than the alternative candidate model. For loss trials both the Expectations model (3b) and the 

Rewards Model (2b) had greater r2 for their own recovered model compared to the candidate 

(Expectations: r2 for Expectations 0.498 ± 0.222; r2 for Rewards 0.448 ± 0.222, z = 3.086 ,p = 

0.0020; Rewards: r2 for Rewards 0.531 ± 0.232; r2 for Expectations 0.468 ± 0.2104, z = 3.99 ,p < 

0.0001; Figure 4-11bi). However, in the gain trials the only the Rewards model had greater r2 

(Expectations: r2 for Expectations 0.490 ± 0.209; r2 for Rewards 0.471 ± 0.209, z = 1.629 ,p = 

0.104; Rewards: r2 for Rewards 0.547 ± 0.223; r2 for Expectations 0.506 ± 0.223, z = 2.58 ,p = 

0.0098; Figure 4-11bii). 
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Figure 4-11 Affective Dynamics Model Recovery 

 (A) Bayesian Information Criteria for comparing the recovered Expectations Model (3b) 

with all other candidate models. The x-axis shows the average difference between the BIC 

for the model with the lowest BIC (Expectations Model (3b)) and each other candidate 

model. All models were fit using positive bounds. (B)  We simulated the Expectations Model 

(3b) and the Rewards Wins & Losses Model (2b) with noise and recovered each model with 

each of the models. The r2 of the simulated model is on the x-axis, and the r2 of the 

alternative model is on the y axis. The coloured data points indicate simulations from the 

Expectations Model (3b). The r2 for loss trials is shown in (Bi) and (Bii) shows the gain trials. 

Data points below the origin indicate that the trials were best fit in the simulated model 

compared to the alternative model. Loss trials both had greater r2 in the simulated model, 

however gain trials only had greater r2 when the Rewards Wins and Losses Model (2b) was 

simulated.  
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4.6.3 Testing the Robustness of the Negativity Bias to Artefacts 

 

4.6.3.1 The Asymmetry of Prediction Errors is not caused by Variance in Mood Baselines. 

A mood baseline deviating from the centre of the scale may cause artefacts in the estimates of 

affective reactivity weights, due to asymmetries in the amount of space on the scale available 

above and below the baseline. When C > 0.5 positive responses may be truncated compared to 

negative responses. Here, we test whether variance inferred as a negativity bias could be caused 

by this.  

In the Expectations model (3b) the difference in prediction error weights did not correlate with 

C (ρ(76) = 0.0219 , p = 0.849), however the difference in expected value weights positively 

correlated (ρ(76)  = 0.475, p < 0.0001). This correlation suggests that when C is higher, wEVloss 

is estimated as greater than wEVgain; this may be due to there being more room for negative 

expectations to be reported to be than positive expectations.  

4.6.3.2 Could the Appearance of the Negativity Bias be caused by differences in Baseline Mood 

for Gains and Losses? 

It is not implausible to suspect that the negativity bias could be an artefact of different mood 

baselines for gain and loss trials due to parameter trade off. To assess this concern, we fit a 

version of the Expectations Model (3b) with separate baseline estimates (C) for gain and loss 

trials, but shared affective dynamics betas (Expectations Model 3c; r2 : mean 0.493; median, 

0.536; standard deviation, 0.186). In this new model, the baselines were not significantly 

different (z = 1.27, p = 0.203), suggesting that separable baselines were not adequate to 

describe the difference in prediction error parameter estimates.  

To substantiate further whether this concern was plausible, we explored whether a difference 

in baselines between gains and losses could be fit as a negativity bias. In order to perform this 

analysis we generated a new set of happiness ratings where the loss baseline was lower than 

the gain baseline. We did this by taking the generated ratings from a model where all the 

parameters were shared between gain and loss trials, and subtracting one standard deviation 

of the baseline estimate (0.121) from all of the happiness ratings which were sampled at the 

end of loss trials. We confirmed we had successfully generated separable baselines by fitting 

the same model, but a separate baseline for gain and loss trials to these new ratings. We 
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confirmed the baseline estimates were significantly different (z = 7.12, p< 0.0001). Next we fit 

the Expectations Model (3b) to the new happiness ratings, and compared the difference in 

affective dynamics weights. We found that the model estimated greater expected value weights 

for loss trials than gains (mean difference: 0.111 ± 0.241, z = 3.98, p < 0.0001), and a minor 

increase in the prediction error for gains compared to losses (mean difference: -0.023 ± 0.081, 

z = -2.253, p = 0.024). This is consistent with our analysis of covariance, where we saw high 

correlations between expected value and baseline parameters. 

4.6.3.3 Removing Happiness Ratings at the Boundaries does not affect the Negativity Bias 

We next looked to explore if we could still observe the negativity bias if we removed ratings 

that may be vulnerable to being artificially bounded by the scale. We fit the Expectations Model 

(3b) to only the happiness ratings that where within 0.1 and 0.9 of the scale. Marginally more 

happiness ratings at the end of loss blocks were removed than in gain blocks (loss trials: 4.795 

+ 6.205; gain trials 4.167 + 5.540,z = 1.96, p = 0.050). In the model fit to the subset of ratings, 

the difference in affective dynamics weights were still significantly greater in loss trials than in 

gains (expected value weights: wEVloss , 0.183 + 0.197, wEVgain, 0.058+ 0.078, z = 4.46, p < 

0.0001; prediction error weights: wPEloss , 0.507+ 0.414, wPEgain, 0.352+ 0.229, z = 4.78, p < 

0.0001). 

 

4.6.4 Comparing Models of Choice 

When developing the design matrix for this study we looked to balance emotional salience of 

choices and outcomes, and attention paid to the future prospects. To this end we had both 

choices associated with a probability, to maximize the number of surprising outcomes, and used 

a constant decision option (i.e. the safe option) so decision-making was not cognitively 

overtaxing, allowing for attention to be paid to the future blocks. When fitting prospect theory 

style models of choice to the data, we found that the design matrix was not optimized for 

arbitrating between models and identifying parameters. Here, we briefly present some basic 

model comparison, but we do not believe these models should be relied upon for strong 

inferences about connections with affective dynamics. 

We fit four prospect theory style models with different probability weighting functions. 

Probability weighting functions distort the effect of objective probabilities on subjective utilities 
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to describe participants choices ‘overweighing’ (treating a probability as greater than it is) and 

‘underweighting choices’ (treating a probability as smaller than it is). The four probability 

weighting functions we tested were: Tversky function (Tversky & Kahneman, 1992; Figure 4-12), 

Lattimore function (Lattimore et al., 1992) and two versions of the Prelec function (Prelec, 

1998). 

Figure 4-12 Tversky & Kahneman Probability Weighting function 

The probability weighting function as included in Tversky & Kahneman (1992) includes one 

free parameter (γ) which converts objective to subjective probability. The colour bar on the 

right indicates values of γ. When γ <1 low probabilities are over weighted and moderate to 

high probabilities are underweighted. When γ > 1 lower probabilities are underweighted 

and higher probabilities are marginally overweighed. Average study values of γ tend to be 

< 1.  

 

Each of these models fit the data well, where the average pseudo r2  values all exceeded 0.50 

(Tversky: 0.545 ± 0.213; Lattimore, 0.555 ± 0.214; Prelec Delta, 0.555 ± 0.214; Prelec, 0.542 ± 

0.215). A BIC comparison preferred the model with the Tversky Weighting Function (Figure 

4-13a). However when looked to recover these models and we found they all preferred the 

Tversky model (mean difference in BIC between Tversky model: Lattimore ΔBIC = 3.93; Prelec 

Delta, ΔBIC = 0.260; Prelec, ΔBIC = 5.85). The two best fitting models according to BIC both 

showed considerable parameter covariance (Figure 4-13b & c). 
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It is unlikely that these issues seen here were due to stochasticity of decision-making, as average 

risk taking was highly correlated between the first and second half of the experiment (loss trials, 

ρ(76) = 0.784, p < 0.0001; gain trials, ρ(76) = 0.589, p < 0.0001). Stochasticity parameters for 

the model were relatively high, suggesting behaviour was relatively deterministic based on 

other parameter estimates (µLoss: 3.601 ± 5.462; µGain :5.46 ± 6.483; Figure 1-2 Softmax Rule 

Simulation). 
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Figure 4-13 Models of Choice 

(A) Bayesian Information Criteria for comparing the candidate models. The x axis shows the 

average difference between the BIC for the model with the lowest BIC (Tversky & 

Kahneman Full Model) and each other candidate model. Each model is compared in its ‘full’ 

version: where there is a separate parameter fit for gain and loss trials, and a ‘half’ version 

where the parameters are all shared between gain and loss trials. (B) Shows correlation 

matrices for the best fitting model according to BIC: Tversky Full Model and the 2nd best: 

The Prelec Full Model. Full details of the colour map can be found in the caption for Figure 

4-10. 
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4.6.5 Alternative Parameter Estimates with MASQ and Negativity Bias 

Here, we looked to replicate the result in the main results section in the Prelec Model. We tested 

the prediction error weights with the subjective perception of magnitudes (α), and probabilities 

(γ). We found correlations between these in gain and loss trials, but they did not exceed the 

adjusted threshold (αLoss : ρ(76) = 0.219, pHB < 0.0167, p = 0.054; γGain: ρ(76) = 0.232, pHB < 0.0167, 

p = 0.042) 19. We next tested whether the negativity bias showed a relationship with any 

parameters. Here we found that αLoss correlated with the negativity bias (ρ(76) = 0.351, pHB < 

0.0083 , p = 0.0017), but not any other estimates of subjective magnitude or probability, or the 

difference between them.  

 

4.6.6 Dissociating the Negativity Bias and Changes in Risk Taking 

Differences in decision-making causes different values of expected value and prediction errors 

to be sampled between participants. As we saw a relationship between the negativity bias and 

increased sensitivity for losses (αLoss), thus it is prudent to test whether this relationship may be 

an artefact. In order to test whether particular patterns in decision-making bias the Affective 

Dynamics Model by constraining particular estimates (and differences between them), we fit a 

version of the Expectations Model with each parameter shared between gain and loss trials 

(Expectations 3c) and fit the generated data (plus noise) with Expectations Model (3b). If an 

artefact was caused by changes in decision-making, we would expect to see differences in the 

prediction errors weights in the new parameter estimates that correlated with subjective 

estimates of magnitude and probability. None of the prospect theory free parameters 

correlated with prediction error estimates in this new model, nor the negativity bias (all ρ(76) 

< 0.19, p > 0.107).

                                                      

19 The test statistics in these paragraphs were identical when rounded, this is not an error. 
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5. Future Prospects of a New Smartphone 
Application 

 

5.1 Abstract 

Large-scale data sets collected through smartphone-based tools have been heralded as one of 

the most exciting new resources for answering questions in computational psychiatry. So far, 

the first plays for each participant have been used for the majority of data analysis. We propose 

that collecting repeated plays in the same individual, sampled in a similar style to experience 

sampling methods (ESM), may provide valuable new data sets. The Future Prospects Task was 

adapted from a laboratory behavioural study to be included in a new smartphone app The 

Happiness project. Previously, the Future Prospects Task found evidence for an affective 

negativity bias (increased affective responses to losses compare to gains), and influences of 

positive and negative futures on affective state and risky decision-making. Here, we present 

some early pilot data (N = 2,768) from The Happiness Project where we show evidence for 

positive futures increasing risky decisions, and negative futures decreasing risky decisions. We 

consider the appropriateness of this gamified version of The Future Prospects Task, and the app 

generally for providing insights for mood disorders with longitudinal testing. 

 

5.2 Introduction 

If we wish to bridge the gap between insights from cognitive psychology and clinical treatment, 

focus needs to move from not just merely describing behaviour but predicting outcomes 

(Browning et al 2020). The tools of computational psychiatry are primed to capitalize on the 

collection of large-scale multivariate datasets generated through smartphone-based tools 

(Gillan & Rutledge, 2021; Insel, 2017). Our understanding of the mechanisms of mental illness 

is complicated by the inclusive roles of individual environment, for example urban living (Paykel 

et al., 2000), socioeconomic status (Lorant et al., 2003), and social isolation (Richard et al., 

2017). In order to advance neurocognitive models of mental illness, we need to invest in 

methods that can generate multivariate data sets with considerably large samples. 

Smartphone-base tools can contribute by collecting passive data and user generated input. 
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Passive data is data about how smartphone users interact with their phones (e.g. how many 

outgoing texts they send a day), and how movement in the world can be sensed through their 

phones using functions like accelerometers (e.g. how fast they moved). User generated input 

can include demographic data (which has been shown to be broader, in terms of demographics 

like age and education; Brown et al., 2014), experience sampling measures of current activities 

and events, questionnaire measures, and data from gamified cognitive tasks. Previously in this 

thesis we explored data from a risky decision-making task in The Great Brain Experiment (GBE) 

– a smartphone app containing several gamified cognitive tasks which each took less than 5 

minutes to play.  

In the past two decades, research based apps including gamified cognitive tasks have recruited 

large scale samples under the motivation being a citizen scientist. Large scale samples give the 

opportunity to uncover strong but small effect sizes in individual differences and cross-sectional 

temporal effects. The stop-signal task in the GBE uncovered a decline in reactive control over 

the lifespan, with a greater decline in women than men (Smittenaar et al., 2015). A decline in 

pavlovian approach bias was seen over life time, but not pavlovian avoidance bias (Rutledge et 

al., 2016). Between 2014-2020 , four of the nine peer-reviewed papers utilizing data from the 

GBE made significant claims about how cognitive traits and abilities change across the lifespan 

(McNab et al., 2015; Rutledge et al., 2016; Smittenaar et al., 2015; Teki et al., 2016). Other apps 

include Sea Hero Quest, where participants take part in a sea adventure navigating mazes, and 

chasing fantastical sea creatures (Coutrot et al., 2018). Using the wealth of data generated (over 

27,000 individuals), a measure of spatial navigation was developed which was found to be 

sensitive to a genetic risk factor for Alzheimer’s disease in an subsequently recruited in-lab 

sample (Coughlan et al., 2019). In the past few years, this approach has been adopted by several 

labs leading to new apps. These include Brain Explorer developed by Tobias Hauser and 

colleagues; a space quest themed app looking to understand why so many mental health 

problems emerge during adolescence. Neureka is an app developed by Claire Gillan and 

colleagues, which aims to collect data to identify cognitive markers for individual risk of 

developing dementia. 

One way in which smartphone-based tools can contribute to prediction of mental health 

outcomes, is to capture repeated tests over time for individual participants. This has been the 

standard of experience sampling methods (ESM), which has allowed causal inferences to be 
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made by examining the time series of data. For example, over 28,000 users downloaded the 58 

Seconds app and provided data over a 1 month period on their mood and activities. This allows 

researchers to observe that mood increasing activities were selected when in a bad mood 

(Taquet et al., 2016), an effect they found to be reduced in individuals with a history of 

depressive symptoms (Taquet et al., 2020). Furthermore, the app Track Your Happiness, 

demonstrated a causal link between mind wandering proceeding reduced happiness (N = 2,250; 

Killingsworth & Gilbert, 2010). A repeated sampling framework could be utilised with gamified 

cognitive tasks. Published work from gamified cognitive tasks has largely been focused on the 

first play of each individual, however many users played games multiple times, with one player 

contributing over 150 unique plays in the risky decision-making task in the GBE. 

Smartphone-based tools may be particularly useful for conditions which are characterized by a 

high prevalence in the population, and recurrent episodes such as Major Depressive Disorders 

(MDD) (Solomon, 2000). Spontaneous recovery is also common in MDD; the resolution of 

symptoms without intervention (Frank et al., 1991). Clinically, this can mean that often 

individuals no longer show symptoms when they are able to be observed by a clinician, or 

recover during treatment, independently of the invention itself. Being able to track mood and 

cognitive biases over time may be extremely useful for discovering risk markers for depressive 

episodes. 

MDD is characterized by negative cognitive biases, particularly particular in terms of attention, 

memory and interpretation (Mathews & MacLeod, 2005) and have been suggested as a target 

for behavioural intervention (Browning et al., 2012). For example, following a sad mood 

induction (sad music and reading negative statements), individuals with previous episodes of 

depression rated autobiographical positive memories with less vividness than healthy controls 

(with no history of depression) (Werner-Seidler & Moulds, 2011). Often it is inferred that these 

negative information processing biases may be accompanied by negative affective biases (i.e. 

the conscious experience of negative vs positive affect), however this has not been explicitly 

tested. In previous work in a non-clinical sample, we found evidence for an affective negativity 

bias when comparing affective ratings for positive vs negative outcomes (Chapter 4), consistent 

with evidence that we see a negativity bias at population, albeit less extreme than in MDD (e.g. 

Gershman, 2015; Pulcu & Browning, 2017). However we saw evidence that participants 

reporting greater depressive symptoms had lower affective negative biases. Collecting large 
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scale data sets about affective bias gradients, and their evolution over time, may provide a 

useful insight into how valence biases cause, or are caused by depressive symptoms. 

Furthermore, patients with MDD have also shown to have distinct negative biases in terms of 

their perception of the past and the future. For example patients with MDD were found to 

describe prospective positive events in terms of less vivid imagery (e.g. imagine you will have 

lots of energy and enthusiasm) compared to healthy controls (Morina et al., 2011). No 

difference was found in vividness of prospective negative events (e.g. imagine someone close 

will reject you) and healthy controls. Similarly, in a non-clinical population low BDI-II scores were 

associated reduced vividness of imagination about future positive events, but not negative 

future events (Holmes et al., 2008).  

Importantly, smartphone-based tools can be used alongside clinical studies to enrich data 

collected during the study, and provide longer term measures without considerable additional 

cost and patient burden of laboratory testing. Indeed, smartphone tools do not necessarily 

need to be used independently of other more traditional methods, they can act as an 

inexpensive add-on to a behavioural or neuroimaging study looking to explore changes over 

time. For example, positive affect recorded using ESM has been associated with increased 

variability in physical locations; an association which showed a stronger link for participants 

exhibiting greater functional connectivity between the hippocampus and ventral striatum, 

areas of the brain associated with spatial navigation and reward (Heller et al., 2020). While 

techniques like fMRI are unlikely to become portable, wearable EEG has been utilised alongside 

smartphone-based tools to show that the degree to which prediction errors from a reward 

learning task could be decoded in the EEG signal was predictive of changes in mood later in the 

day (N = 10, Eldar et al., 2018). An example of a behavioural study that could have utilised 

smartphone-based cognitive tasks was that of Michely et al (2020) who linked SSRI usage to 

asymmetric learning rates after a 7 day course. The researchers compared learning rates before 

and after SSRI course, this study may have been enhanced by short repeated testing on a 

smartphone based learning task for 5 minutes each day providing a time course of change in 

the effect of interest.  

The data presented in this short chapter is from the first release of the new smartphone 

application The Happiness Project developed by the Rutledge lab. The app was launched on 

January 4th 2021, and as of February 7th 2021 has over 8,000 downloads from 123 countries. 
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Co-development of the smartphone application has been a major project of my PhD over 3 

years. We have worked to develop an infrastructure using an incentive badge system and push 

notification schedule that encourages longitudinal participation. Longitudinal data sets will be 

available in the future, and here I present some early pilot analysis from the first players. 

The analysis presented is concerned with establishing that the main effects of interest from the 

laboratory based version of the Future Prospects Task (Chapter 4) are present in the data, in 

this relatively small sample. Specifically, we predict that participants will report greater 

happiness in gain blocks than in loss block, and will also report greater happiness when the 

future contains all gain trials (i.e. positive futures) compared to when it contains all loss trials 

(i.e. negative futures). We will explore whether the valence of the future blocks also affects risk 

taking as seen in the lab-based study, where positive futures increase risk taking and negative 

futures decrease risk taking. We predict that these effects will be observable without utilising 

the model residuals for analyses. This is due to the shorter nature of the smartphone task 

(compared to the much longer laboratory task), where the future blocks describe a large 

proportion of the entire game play. Further work is required to explore model-based analyses, 

which will focus on reliable parameter estimates in longitudinal data. At this stage we will test 

whether using a simple affective dynamics model, a baseline mood parameter negatively 

correlates with depressive symptoms, as would be expected in this design. 

In Chapter 3 (Risk Taking For Potential Losses But Not Gains Increases With Time Of Day) we 

observed that risk taking was greater for loss trials as compared to gain trials in a gamified 

cognitive task, counter to what is seen in the broader literature (Ruggeri et al., 2020). We 

speculated this was due to the novelty of the smartphone design where a spinner animation 

took several seconds before revealing the outcome increasing positive anticipation for potential 

gains (increasing the attractiveness), and an effect of negative anticipation for potential losses 

(decreasing the attractiveness). We predict we will see the same effect in this task, which 

includes an animation before the outcome is revealed. 
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5.3 Experimental Procedures 

5.3.1 The Happiness Project 

Download from: https://rutledgelab.org/ 

The Happiness Project features gamified cognitive tasks (hence forth referred to as ‘games’) of 

under 4 minutes. The original release (4th January 2021) featured four games based on 

laboratory experiments. Spinner is based on the Reward and Decision-making task from The 

Great Brain Experiment (the task used in Chapter 3), but also includes forced trials where 

participants were presented with only one choice. Wheel of Fortune is based on the task from 

(Eldar & Niv, 2015) where participants learn the values of probabilistic rewards with a large 

positive or negatively valenced mood induction in the middle of the experiment. Fishing is 

based on Niv et al., (2007) which explores opportunity costs and how much vigour participants 

employ under different rewarding statistics. Finally Digging for Treasure is based on the Future 

Prospects Task where the user plays as a pirate digging for treasure on red islands (loss trials) 

and yellow islands (gain trials).  All games featured several happiness ratings throughout. All 

games apart from Fishing are mostly comprised of two alternative forced choice trials. 

https://rutledgelab.org/
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Figure 5-1 The Happiness Project 

The Future Prospects task was adapted for the smartphone app The Happiness Project (C) 

into a task called Digging for Treasure where the principles of the game are the same as 

those described in Figure 3-1 ). In the player makes a choice between two gold coins by 

tapping on the left or right side of the screen (Ai). Gold coins are always worth positive 

points (i.e. gain trials). Immediately after the choice is made, the unchosen option 

disappears. After (800ms) an animation is shown where the coin moves up the screen at a 

slowly, and the outcome is revealed at a random position (Aii) between where the coin 

started and the top of the screen (Aiii). In (A) the coin reaches the top of the screen and 

grows larger before disappearing, and the score is updated by 80 points. In (B) where the 

player chooses between rusty cans (i.e. loss trials). In (Biii) the can turns into a yellow rock 

(0 points) before it reaches the top. Once it reaches the top it grows larger before 

disappearing. When the player transitions between blocks, the pirate sprite jumps in the 

air and the islands transition forwards so they land on the next island. The animation plays 

after the happiness trial (E), or immediately after the trial if there is no happiness rating at 

the end of that block. This version of the task has minimal instructions prior to the task, and 



139 
 

the pirate sprite provides some useful reminders throughout the game. (C) shows the 

landing screen of The Happiness Project where icons lead to gamified cognitive tasks and 

questionnaires. (top left to bottom right): Fishing, designed by Akshay Nair; Spinner (Viking 

hat), designed by Bastien Blain; Wheel of Fortune (scarab beetle) designed by Liam Mason 

& Ilinca Ureche-Angelescu; Digging for Treasure (gold coin) designed by Rachel Bedder; and 

a questionnaire icon. Questionnaire development was led by Matilde Vaghi. 

 

5.3.2 Task Design 

The experimental design (other than length) was largely the same as described in Chapter Gain 

and Loss Asymmetry for Short and Long Term Prospects4 (Figure 4-1) with a few adaptions. 

New animations were included for the block transition, and outcome reveal (detailed in Figure 

5-1a & b). In Digging for Treasure players experienced 8 blocks of trials (10 were viewable, but 

the game terminated before the final two blocks were played). The order of blocks was 

generated by creating 100,000 different possible orders of 5 gain and 5 loss blocks and filtering 

them based on set criteria (Table 5-1). Each block contains 3 or 4 trials. The 28 trials for each 

game are generated from two sets of all available probabilities (14 trials). Each individual 

probability is randomly allocated a low magnitude risky option [25, 40] and a high magnitude 

risky option [65 80]. These trials are then duplicated in a randomized order (28 trials). The safe 

option remains the same as in the laboratory task, 80% chance of receiving a magnitude of 20. 

Each version had 6 happiness ratings which were distributed randomly throughout the blocks. 

Different playable versions of Digging for Treasure are exported from MATLAB as json files 

(JavaScript Object Notation) and added to the app by the outsourced development team 

(Crysberry). The probabilities and magnitudes of each trial are set in each individual json file, 

with the outcome determined in real time when the player makes a choice. The version of the 

task experienced by each player were randomly sampled without replacement. Therefore it is 

possible for the participant to play the same block set and trial set more than once, but the 

probabilistic outcomes would be determined in each instance. 
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Table 5-1 Digging for Treasure Block Order Criteria 

Criterion Justification 

Ends with [x-GL] or [x-LG] Does not end with the block order that may lead to the 

greatest emotional response (i.e. positive or negative 

futures). 

Begins with [l-GL] or [g-LG] Switching back and forth allows first time players to get 

used to how the future blocks mean. 

No instances for [g-GGG] or [l-

LLL] 

Four Loss blocks in a row may lead the participant to 

terminate the game early. 

At least 1 of each of the 

following 

[l-LL],[l-GL],[l-LG],[l-GG],[g-GG], 

[g-LG],[g-GL][g-LL] 

To allow a parametric function for mood or decision-

making to be fit to the future.blocks. 

Mixed Futures describe when there is both a gain and loss block in the future. Positive futures are two gain 
blocks [GG]. Negative futures are two loss blocks [LL]. Here, the order of blocks is indicated by [current block – 
future block 1, future block 2]. ‘x’ indicates the current block is unspecified. For example, [l-GG] indicates a loss 
block with a positive future, and [x-GG] indicates a positive future and any current block. 

 

5.3.3 Questionnaires 

The app currently includes 4 questionnaires: Patient Health Questionnaire (PHQ-8; Kroenke et 

al., 2001); Generalised Anxiety Disorder Scale (GAD-7; Spitzer et al., 2006); the behavioural 

subscale from the Apathy and Motivation Index (bAMI; Ang et al., 2017); and the Hypermanic 

Personality Scale (HPS; Eckblad & Chapman, 1986). Questionnaires were introduced on the 

home screen as items to be completed in a staged manner after completion of some of the 

games. 

 

5.3.4 Participants 

Players downloaded the app from either Google Play or the Apple App Store. The majority of 

players who downloaded the app were people signed up to an online course The Science of 

Wellbeing (hosted on website coursera.org and designed by Laurie Santos), who received an 
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email announcement about the new app (amongst other items). Players are not paid for their 

participation. 

 

5.4 Results 

All analysis were performed with each participant’s first play, unless otherwise stated. All 

analyses that refer to other plays only count by the number of full-completed plays. 

 

5.4.1 Statistical Procedures 

Two-sided Wilcoxon signed rank tests were used for all comparisons of all task metrics. 

Spearman rank correlations across participants were used to test for relationships between 

parameter estimations and questionnaire scores. All averages were reported as (mean ± 
standard deviation), unless otherwise stated. All analyses were performed using MATLAB. The 

minimum p value threshold reported is p < 0.0001.  

 

5.4.2 Risk Taking 

Players gambled more for gains (0.545 ± 0.235) then for losses (0.489 ± 0.159, z = 8.676, p = 

0.0001). Importantly, players chose the option with the greater expected value in loss trials 

(0.557 ± 0.311; significantly better than chance z = 8.593, p < 0.0001; Figure 5-2a) and in gain 

trials (0.665 ± 0.237; significantly better than chance z = 28.912, p < 0.0001; Figure 5-2a). During 

in-lab piloting sessions, we received feedback from participants that it was not immediately 

intuitive how to interpret the onscreen probabilities, especially in loss trials. To explore whether 

participants understand the game better in the second play, we looked at whether players 

increased the proportion of times they chose the choice with the best expected value. In players 

with at least two full games (N = 955), the proportion of higher expected value choices increased 

for loss trials (second play 0.615 ± 0.338; z = 3.758, p < 0.001) but not gain trials (second play 

0.662 ± 0.257; z = 0.662, p < 0.501). 

Next we looked to see if we could see any impact of the future on decision-making. Participants 

made risky choices more when the future was positive than negative in loss trials (positive 
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future: 0.506 ± 0.337; negative future: 0.474 ± 0.334; z = 4.533, p < 0.0001; Figure 5-2cii) and 

made more risky choices when the future was positive than negative in gain trials (positive 

futures: 0.587 ± 0.302; negative futures: 0.544 ± 0.313; z = 5.958, p < 0.0001; Figure 5-2cii). In 

the laboratory based study we did not see model free changes in risk taking, so this represents 

a promising increase in effect for the gamified short version of the task.
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Figure 5-2 Decision-making and Average Happiness Ratings 

(A) The mean proportion of risky choices is shown in error bars with the standard deviation (red for loss trials, green for gain trials) for each 

magnitude (Ai) and probability (Aii). (B) We report the average happiness for these events as raw scored date in the main text, but z-score 

the data for clarity here. (C) The proportion of risky choices chosen by participants increases when the future is positive (two gain blocks) 

compared to negative (two loss blocks) when making decisions in both gain and loss trials. (D) We did not observe any differences in happiness 

ratings for positive or negative futures in the ratings, or in the residual ratings after the fitting an affective dynamics model. 
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5.4.3 Average Happiness Ratings 

We first confirmed that choice outcomes impacted happiness rating. Players were happier after 

gaining points than missing out on gaining (gaining: 0.565 ± 0.113; missing out: 0.422 ± 0.120; z 

= 21.055, p < 0.0001) and were happier after avoiding losing than losing (losing: 0.511 ± 0.161; 

not losing: 0.540 ± 0.160; z = 7.414, p < 0.0001). Participants were happier overall in gain blocks 

(0.543 ± 0.135) compared to loss blocks (0.521 ± 0.154; z = 19.79, p < 0.0001). Using the 

residuals from an affective dynamics model (see Section 5.4.4) we compared residual happiness 

(z-scored prior to model fitting) for positive and negative futures for gain and loss trials. We did 

not find significant differences between happiness for positive and negative futures in loss trials 

(positive futures: -0.0384 ± 0.637; negative futures: -0.0666 ± 0.6344; z = 1.12, p = 0.263; Figure 

5-2d) nor in gain trials (positive futures: 0.0598 ± 0.602; negative futures: 0.0647 ± 0.629; z = 

0.231, p = 0.818; Figure 5-2d). We also did not find significant differences in the model free data 

(both z < 1.00, p > 0.39).  

 

5.4.4 Modelling 

The fluctuations in the mood ratings were well captured by affective dynamics models (N = 

2,223). We used a version of the affective dynamics model (Equation 1-3) with a baseline (C) , 

decay parameter (τ), and weights shared between gain and loss trials for expected value and 

prediction errors (wEV and wPE) (Figure 5-3a). We first fit a version without positive bounds 

on the affective dynamic weights which had very high average r2 (0.714 ± 0.238). A considerable 

proportion of players had r2 values that exceeded 0.7 (61.7%), this could mean that the 

happiness ratings are being over fit. The inclusion of positive bounds reduced the average r2 

(0.640 ± 0.286), with 52.1% of participants with r2 values of over 0.7. Each game only has 6 

happiness ratings (the model has 4 parameters), thus it needs to be considered how this 

overfitting will affect our ability to look at trajectories with precision without suitable power.  

We examined concatenated plays of at least three (N = 360), and found the r2 reduced (0.409 ± 

0.216; 9.31% over 70%). It may be that to fit longitudinal data the full amount of games needs 

to be leveraged to estimate change in parameters that are not over fit to the data. 
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5.4.5 Questionnaire Data 

Average happiness correlated with all 4 questionnaires (PHQ-8, ρ(840) = -0.198, p < 0.0001; 

GAD7, ρ(788) = -0.183, p < 0.0001; HPS ρ(45) = -0.283, p = 0.054; BAMI ρ(347) = -0.212, p < 

0.0001). The baseline parameter estimate for the model also correlated with each 

questionnaire except the HPS (PHQ-8, ρ(793) = -0.198,p < 0.0001; GAD7, ρ(753) = -0.171, p < 

0.0001; HPS ρ(37) = -0.299, p = 0.161; BAMI ρ(312) = -0.171, p < 0.0024). The sample size varied 

between tests as different players completed different questionnaires, and the model did not 

converge for all participants. 

 

  

Figure 5-3 Affective Dynamics Model fit to Pilot Data in The Happiness Project 

(A) Parameter estimates for an affective dynamics model, where the parameter are all 

shared between gain and loss trials. Mean parameters shown here were estimated with 

positive bounds, error bars indicate the standard error of the mean. (B) The parameter 

estimate for baseline mood (C) was negatively correlated with depressive symptoms (PHQ-

8). 

 

5.4.6 Repeated Plays 

On average each participant played 1.836 times (±1.943). 65% of participants only had 1 

complete play. 6.0% of participants played 5 times or more. One participant played 39 times. 

One of the aims of the app was to encourage people play on multiple days and examine how 
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parameter estimates may change as a function of their incidental mood. Without a working 

notification system, 74.1% of participants played on one day only and 19.3% of participants 

played at least 2 days apart. While this is lower than needed for our longitudinal tests, it is 

promising that almost 20% of people played on average 2 days apart. 

Data collected by smartphone may be more likely to include some happiness ratings of reduced 

quality. We tested this by looking at the number of times a participant rated their happiness as 

either end of the scale or the centre. We included a participant in the analysis if they had at 

least 2 ratings which were not all at the centre or either end of the scale. We found in the first 

play 13.22% of participants were removed (12.10% had 5 or more ratings of 0.5). The amount 

of participants required to be removed appeared consistent across multiple plays: the second 

play (N = 955) required 12.57% to be removed, and the 5th play (N = 165)  16.36% required 

removal. 

To examine whether participants behaviour was stable and thus likely to be reliably capturing 

individual differences we compared data between participants first and second play. Proportion 

of risky choices for gains and losses correlated between first and second play (Gains r(955) = 

0.393; Losses: r(955) = 0.471; both p < 0.0001). Gains, Losses, and receiving zero in both frames 

all correlated between plays (all r > 0.45, p < 0.0001). 

 

5.5 Discussion 

The results show that at a basic level, happiness ratings and decision-making behaviour are 

consistent with what we would expect for rational behaviour and happiness ratings for our most 

basic model assumptions. For example, participants reported greater happiness ratings when 

they won points, compared to when they missed out on winning points. We saw an effect of 

future prospects on decision-making without regressing out trial-by-trial events, where positive 

futures are associated with increased risk taking compared to negative futures. This may be due 

to increased power from sample size, or the effects may be greater in the adapted version than 

the in lab behavioural version. We postulate that the new design may increase the effect sizes, 

due to the design novelty of the future blocks and the shorter task meaning they represent a 

larger proportion of all possible winnings. If this is the case, it may be possible to examine the 

effect of positive or negative futures along an affective gradient. Here, we could examine 
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affective gradients regarding current events (i.e. current trial) and future beliefs, to determine 

whether biases held here can be captured under one gradient mechanism. Surprisingly, we did 

not see an effect of future prospects on happiness ratings. This may be due to their being 

significant changes in decision-making based on future prospects, and therefore different 

outcomes distributions may mask any effects on happiness ratings. Future simulation work can 

be performed to test the viability of this as an explanation. 

We did not perform analyses exploring affective gradients in the pilot data. The affective 

dynamics model used to estimate this effect in Chapter 4 required prediction error parameters 

to be split between gain and loss trials, using a minimum of five parameters.  Here, we show 

that in a model with only four parameters (where all parameters are shared between gains and 

losses), the happiness ratings are likely to be over fit. Thus, making inferences about affective 

ratings may need to be leveraged by combining happiness ratings from multiple game plays, a 

data set we plan to collect in the future. We were able to demonstrate that the baseline 

parameter was negatively correlated with depressive symptoms (consistent with previous work 

in Chapter 4, and in Blain & Rutledge (2020)). 

We hypothesised that we may see greater risk taking for losses compared to gains, due to the 

animation for the risky option taking a longer amount of time than for the safer option (as the 

coin or can has to travel to the top of the screen which takes longer in the risky options). We 

did see that participants made the risky choice more for gains than losses, however participants 

informally also reported some confusion on understanding the loss trials in the first plays. Thus, 

this hypothesis can be revisited once a significant number of participants have played multiple 

times and we can be assured they fully understand the loss trials. 

While here I present the pilot data from only one of the gamified tasks, many of the games 

feature happiness ratings and two alternative forced choices.  It may be that the data from 

multiple tasks can be leveraged to constrain parameter estimation (e.g. hierarchical estimation 

of affective dynamics or baseline estimates). Furthermore, affective characteristics from 

multiple tasks can be combined to form different emotional profiles, that at best can combined 

may increase predictive power, or alternatively allow for an analysis of shared variance to work 

out the specificity of the construct they claim to measure (e.g. as shown in the meta analysis 

ESM work by Dejonckheere et al., 2019). For example, the Wheel of Fortune game based on the 

work by Eran Eldar and colleagues (Mason et al., 2017) allows for the estimation of a mood bias 
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which indexes the degree to which a mid-task mood manipulation (i.e. a windfall or large loss 

of points on a spinning wheel) affects the perception of subsequent outcomes (i.e. a mood bias 

on learning). Combining estimates of affective gradients and mood bias could provide a deeper 

characterisation of emotional profiles. For example, a positivity affective bias may be beneficial, 

but if combined with a high mood bias, this can lead to instability in mood (Eldar et al., 2016; 

Mason et al., 2017).  

A further discussion about the potential of gamified cognitive tasks for computational 

psychiatry can be read in Section 6.3.4 (The Future of Smartphones for Cognitive Science & 

Computational Psychiatry).
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6. General Discussion 
 

6.1 Overall Summary 

In this thesis I have used computational modelling of affective dynamics and decision-making 

to investigate how exploring the difference between individual responses to gains and losses 

may provide new insights. Chapter 3 introduced the approach of using smartphones to capture 

large scale data sets to illuminate small, but important, effect sizes in diurnal changes in 

cognitive biases. Here we showed that the time of day constrains attitudes to risk regarding 

prospective losses, but not gains. Using computational modelling we demonstrated this effect 

could be described as reduced risk sensitivity for losses increasing throughout the day. By being 

able to show diurnal changes to prospective losses but not gains, we were able to speculate on 

the role of serotonin in this behaviour, which has been implicated in loss related behaviours, 

and shows a distinct circadian rhythm itself. 

After the groundwork had been set for comparing gains and losses, in Chapter 4 I expanded this 

to the domain of mood and affective responses. I designed a novel paradigm (the Future 

Prospects Task) where gain and loss trials were organised into short blocks of trials, and 

participants had knowledge of both short and long term expectations. We fit an affective 

dynamics model to dense sampling of affective state throughout the experiment. This model 

revealed a negativity bias: where affective responses to losses exceeded those of equivalent 

gains. We found this negativity bias was linked to risk sensitivity to losses, and the reflection 

effect. We also demonstrated that the valence of longer term prospects, affected ratings of 

affective state (or happiness ratings), and found intriguing results showing that the influence of 

the future’s valence on decision-making is most observable in proximity to the future. The 

neural mechanisms behind this may be similar to those of anticipation and dread, which I 

further explore below (Section 6.2.2).  

Both these studies show how comparing between losses and gains, whether it be as main 

effects (e.g. time of day being associated with differences in risk taking for losses, but not gains), 

or within individuals (e.g. comparing between affective responses for gains and losses) can 

provide valuable insights into the mechanisms that drive our choices and feelings. In The Great 
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Brain Experiment we were able to provide mechanistic hypotheses regarding the change in risk 

taking seen throughout the day due to its influence on loss, but not gain sensitivity. In the Future 

Prospects Task comparing between affective responses to gains and losses as a within subjects 

measure allowed us to be more confident that affects were not reflections of individual 

differences in use of the continuous scale. 

The affective negativity bias, and the influence of the future on affective state and decision-

making may both be understood in terms of their position an affective gradient. I suggest that 

understanding how an individual’s position on the affective gradient may fluctuate over time 

may provide useful insights into mood disorders, when explored alongside measures of sub-

clinical and clinical symptoms. In Chapter 5 I present pilot data from a gamified version of the 

the Future Prospects Task from the new smartphone app The Happiness Project which was 

designed over 3 years of my PhD. The long-term goal of this app is to collect data on affective 

and cognitive biases with repeated longitudinal testing, expanding on the work done with The 

Great Brain Experiment. 

 In the smartphone-based version of the Future Prospects Task we were able to replicate some, 

but not all of the main effects from the laboratory based version. For example, we saw that the 

valence of the future prospects had effects on decision-making in both versions (and to a larger 

degree in the smartphone version), but the valence did not appear to effect happiness ratings 

in the smartphone version. Additionally, at this early stage, we were not able to see the 

presence of a negativity bias in the smartphone version; however both of these results may be 

due to the simplistic modelling done with the limited pilot data. In Chapter 3, we also noted 

divergences between the main effects (i.e. how risk taking was less prevent in loss trials), and 

what is typically observed in the literature. We suggested this may be due to the increased 

effects of anticipation and dread when using a animation of a spinner for risky (but not safe) 

choice options. This effect was also seen in the smartphone version of the Future Prospects 

Task, however this may be due to participants not immediately understanding the loss trials. 

Where behavioural and smartphone results are seen to diverge, it may be prudent to run both 

laboratory and smartphone versions of the task in the same individuals to examine whether 

they are systematic changes due to the format of the task, or if it may be due to differences in 

sampling pools. This work can be done for Future Prospects Task, with participants visiting the 

laboratory before completing the smartphone version for follow-ups. This is a crucial question 
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for computational psychiatry, should the field continue to utilise smartphone applications for 

prediction and longitudinal testing. 

In this final chapter, I will discuss some future directions for behavioural and neuroimaging work 

based on the results from Chapter 1. I will also explore what I believe to be some of the 

theoretical limits of using descriptive models for mood, and some methodological limitations. I 

will also briefly discuss where I see use the use of gamified cognitive tasks (as featured Chapters 

4 & 5) contributing to the computational psychiatry framework in the near future.  

 

6.2 Future Directions 

6.2.1 How can we Further Explore the Role of Expectations? 

The majority of computational studies of mood have focused on how outcomes may drive 

affective responses, particularly in terms of how surprising they are.  While affective dynamics 

models include a role for expectations, this is implicitly part of the response at the time point 

of outcome, and does not necessarily correspond to affect experienced at the point of using 

expectations to make a choice.  Indeed, a 2nd behavioural study of my PhD (not featured here) 

focused on trying to capture affective responses to being presented with a (mixed prospects) 

choice, but found inconclusive results. One important issue with exploring expectations and 

mood is that ideally it requires participants to attend to the prospects of something that has 

not happened yet, compared to something that is happening now (i.e. the outcome of a choice 

recently made). Thus, there may be considerable individual differences in attention to 

expectations which may be conflated with the strength of affective responses to expectations. 

This becomes even more difficult the further in the future expectations will be experienced, as 

attention is likely to be drawn to other things. It is well known that our beliefs and expectations 

about the world guide our decisions, it may be that beliefs play a much stronger role in mood 

than we currently expect, but are undervalued due to the difficulty in experimentally testing 

such hypotheses. 

Finally, another hindrance in the direct study of expectations is when we are able to sample 

affective states. In the Future Prospects task we are able to show decision-making changing 

throughout a block, but only collect happiness ratings at the end of each block. Why not include 

happiness ratings throughout the block? When exploring the role of emotions, designing a task 
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which does not annoy the participant (unless annoyance is the effect of interest) is of 

paramount importance. Happiness ratings can feel like an interruption when a participant has 

been instructed to try and maximize reward, and does not optimize for this by reporting their 

happiness. Thus, we felt it was best to sample happiness at the end of each block before the 

block transition animation, making it predictable when they would be interrupted. However it 

is worth noting, the assumption that within block, (or within trial) will worsen data quality is 

not data driven itself. Future work focusing on methodology of sampling happiness ratings 

could explore ways to enable this. 

 

6.2.2 An fMRI Study Exploring Future Prospects 

I began data collection for an fMRI study exploring how future prospects affect mood and 

decision-making in December 2019 which was disrupted by COVID-19 (Perlman, 2020). The aim 

of this study was to expand upon the results found in Chapter 4, where we demonstrated 

increased affective responses for losing points compared to gains points (affective negativity 

bias), and changes in decision-making as future prospects increased in proximity. With some 

notable design changes (Figure 6-1 & Figure 6-2), we ran the same task paradigm in MRI with a 

view to collect 50 participants for model based analyses. We had collected 15 participants, 

including 5 pilot participants, in total when scanning was terminated. Below, I will briefly 

describe some of the hypotheses and analyses we had planned for this study. 

Regarding the affective negativity bias we planned to explore whether those with greater 

prediction error parameter weights (from an affective dynamics model) for losses compared to 

gains also showed greater activity in the ventral striatum at the point of outcome presentation 

for loss trials. In previous fMRI studies that explored affective dynamics models, model 

parameter estimates were not correlated with trial-by-trial activation strength in the ventral 

median prefrontal cortex (vmPFC), or the ventral striatum (VS), but the objective prediction 

errors of the trials themselves were (Rutledge et al., 2014; Rutledge et al., 2017). This suggests 

that the prediction error weights from affective dynamics models may not reflect differences in 

neural prediction errors. However individual parameter estimates for prediction errors have 

been shown to correlate with neural activity when they drive subsequent choices (e.g.  in 

reinforcement learning tasks, (Niv et al., 2012) and when mood predicts choice (Vinckier et al., 
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2018a)), thus we predicted we may find a relationship in this study, due to the relationship 

observed between prediction errors and risk aversion for losses. 

We noted in the behavioural work that parameter weights for expected value were highly 

correlated with the baseline mood parameter and thus the observed increase in expected value 

weights for losses compared to gains must be interpreted with caution. We planned to leverage 

fMRI to infer whether these differences are substantive by comparing activation in the vmPFC 

at the point of choice onset between gains and loss trials. However, the caveat above again 

applies, that individual participant’s parameter estimates in an affective dynamics model have 

not been shown to consistently correlate with neural activation in value encoding areas. 

Our most exciting neural hypothesis pertained to the changes in decision-making we see 

throughout each block as a function of the valence of the future block. Here, we would be 

guided by the results shown by Kiyohito Iigaya. Briefly, Iigaya and colleagues present a paradigm 

where participants choose to receive prior information about the rewarding nature of a 

stimulus to be presented after less than a minute. They observed a prediction error signal in the 

dopaminergic midbrain when information about a future reward is revealed, and increasing 

activity in the vmPFC as they approach the delayed rewarding outcome, which they describe as 

a signal of anticipation (Iigaya et al., 2019). This study was done with primary rewards (attractive 

pictures), and we hypothesise we will see similar neural activation in the dopaminergic midbrain 

and vmPFC for secondary rewards. Notably our study uses categorical future prospects (positive 

or negative), which are not deterministically relate to future outcomes (i.e. a positive future 

does not guarantee gaining points, it only guarantees that it will be possible to and that no 

points will be lost), thus we will explore whether those with greater neural prediction error 

signals at the point the new future is revealed (Figure 6-2) also show greater anticipatory signals 

in the vMPFC. We predict that the strength of participant’s anticipatory signal in the vmPFC and 

prediction error in the VTA/SN will positively correlate with changes in decision-making 

throughout the length of the block. Thus, this will extend our behavioural findings by describing 

the neural mechanism by which positive and negative futures may change behaviour. In a 

further analysis, Iigaya and colleagues found that those with greater functional connectivity 

between the hippocampus and the vmPFC and midbrain showed greater anticipatory and 

reward prediction error signals. They suggest this to be due to the hippocampus’ role in 

imagining future reward, which could also be explored within our study. 
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Iigaya and colleagues focused on the anticipation of rewards in the brain. Other studies have 

presented similar paradigms that explore the experience of dread (Berns et al., 2006), but these 

have utilised electric shocks. To my knowledge neural models including both the anticipation of 

gains and dread of losses have not been compared within the same study. We hypothesised 

that we would observe the same mechanism at play for future losses. Specifically we would 

observe negative prediction errors when the future was revealed, and a decrease in activation 

in the vmPFC as the future approaches in proximity, corresponding to reduced risky decisions 

being chosen. We were also interested in comparing whether the strength of the prediction 

error signal for positive futures is present to the same degree for negative futures.  

In this adapted version of the Future prospects task we simplified the future by only showing 

two difference valences – one positive block or one negative block. One reason for this was 

because the neutral futures included in the laboratory version of the task where difficult to 

interpret, as they where temporally related to the positive and negative futures (i.e. a negative 

future can only be succeeded by a neutral future with a loss block first then a gain block, but 

not a neutral future with a gain block first). We included a third condition where the future was 

not shown to participants on 50% of the blocks (uncertain future). The inclusion of this 

condition allows for information about positive and negative futures to be less frequent and 

thus more surprising. We also have the opportunity to compare whether receiving information 

about the future constitutes a neural information prediction error in irrespective of its valence. 

However, we have no strong hypotheses regarding this at this stage.
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Figure 6-1 Future Prospects Task Adapted for fMRI 

The adapted task was identical to the behavioural version (Figure 3-1) with the following changes. We increased the average 

number of trials per block to 3.5 (from 2.5) in order to increase our ability to observe any signal change in neural activation 

throughout each block. A total of 210 choice trials were performed for each participant in MRI scanner (excluding practice 

sessions in and out of the scanner). We adapted the colour scheme for the monitor brightness and contrast in the MRI scanner. 

60 blocks performed in the scanner. 
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Figure 6-2 Future Block Transition for fMRI 

We made changes to the block transition to make sure we could record neural activation when the new future was introduced without 

confounds of other task events. One significant adaptation from the behavioural version of the task was removing mixed futures, and including 

unknown futures (30 in total, equally divided between gain and loss). 
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6.3 Methodological Limitations 

6.3.1 How do we Know we are Sampling Affective States? 

This thesis began with a description of how mood, emotions and feelings have been defined 

within the literature. While the field may have broadly converged on definitions, there is no 

guarantee our participants also subscribe to these. In Chapters 4 and 5, participants are asked 

to make a rating of how happy they currently feel, ranging from the labels very unhappy to very 

happy in the laboratory studies, or emoticons that illustrate these labels in all the smartphone-

based studies. Individual subjective interpretations can feed into multiple parts of the process 

of reporting ones current affective state. For example, participants may interpret the word 

happy to mean reflecting their current affective state, or an evaluative judgement about how 

well things are going, reflecting their current luck. I believe it is likely they use a combination of 

the two (i.e. introspection of state, and retrospection of events). It is not clear whether these 

two interpretations would require distinct models (i.e. reflecting on how well have done may 

refer to the amount of recent positive prediction errors). 

When looking to make inferences about affective dynamics, we statistically analyse the degree 

to which participants move the cursor away from their model-inferred baseline. To be able to 

compare individual participant’s responses to the same events, we assume they consider the 

range of the scale to be the same possible emotional range. This assumption may be 

problematic if incorrect, especially if assumptions about scale range co-vary with symptom 

dimensions. In view of this, where possible I have only made major claims, which compare 

affective responses within individuals for different events and use these as individual 

differences to compare between participants. For example the affective bias analysed in 

Chapter 4, relies upon comparing affective prediction errors between gain trials and loss trials 

within an individual. 

Participants are financially incentivised to make rational choices in the decision-making 

elements of the task, as the money they take away from the experiment is a function of the 

total points accrued. There is no such equivalent for rating their current affective state, beyond 

doing what they are asked to do by the experimenter. Thus, it is also possible that participants 

will report their happiness based on what they predict the experimenter is expecting to see. 

Affective ratings are sampled frequently throughout the task, so the participants may be aware 
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the experimenters expect to see variance in ratings on such a time scale. For example, a 

participant may predict that after winning (or losing) a large amount, the experimenter may be 

looking to see a considerable degree of change in their rating, or that they should rate their 

happiness as greater after a gain trial than after a loss trial. However, there is evidence and 

arguments which suggests that participants do not do this to a considerable degree. Firstly, 

reporting ones current affective state in response to being asked about how happy you are is 

easy and intuitive to do; particularly as we aim to make the tasks as engaging as possible when 

considering design and length. Secondly, a prediction error model in many studies performs 

better at fitting the data than an outcomes based model. Unless a participant is well versed in 

cognitive psychology, it is unlikely they would use a model with additional complexity to report 

their affective state. Furthermore, consistency of the magnitude of parameter estimates 

between participants, for example the size of the prediction errors (larger) compared to the 

degree of change in affective state from the future prospects (similar), also suggests a similar 

model of affective responses across individuals rather than being the result of demand 

characteristics. 

Researchers using continuous or visual analogue scales to model affective ratings have been 

hesitant to validate the use of the scale with other, particularly physiological measures (e.g. 

pupillometry, heart rate, galvanic skin response). One reason for this may be that it is not clear 

how subjective affective reports should map onto objective physiological responses. Future 

studies exploring these kinds of connections may reveal vital individual differences in how 

people use information about their bodily state to infer their own feelings, and their degrees of 

affective responses. 

 

6.3.2 Can we Identify both Mood Baselines and Affective Responses? 

Affective dynamics models of mood have two main elements: a baseline which affective 

responses fluctuate around, and those affective responses themselves. These elements may be 

ideal candidates for emotional phenotyping, e.g. it may be useful to distinguish between 

someone who has a very low mood baseline but does not have a strong affective response to a 

negative stimulus, and someone who operates from a higher mood baseline but has 

considerable mood swings when encountering negative stimuli. As descriptive models (by 
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definition) do not explain behaviour, their value is in their ability to estimate latent variables to 

a high degree of accuracy. Adequately distinguishing between baseline mood and patterns of 

mood dynamics requires them both to be able to be estimated independently20.Experimental 

results presented in Chapter 4 found that anhedonia symptoms were associated with a lower 

mood baseline and a reduced negativity bias. We used simulation tests to explore whether they 

can be independently estimated when using a bounded scale. Here, I present a more thorough 

account of this concern, and consider whether our current methodological approach is 

equipped to estimate unique variance in mood fluctuations which can be attributed to baselines 

and responses. I will also suggest some new ways to explore estimating latent variables which 

could improve the reliability of these parameter estimates. 

The identifiability of baseline and affective dynamics parameters governing mood dynamics is 

at risk when using a bounded scale for reporting affective state. On average, most studies have 

found that baseline mood is estimated around the centre of the scale, however greater 

depressive symptoms have been associated with lower baselines (in healthy controls (Blain & 

Rutledge, 2020) and in patients with major depressive disorder (MDD) (Rutledge et al., 2017). 

Rutledge and colleagues observe baseline estimates as low as zero in MDD patients. In 

situations where the mood baseline is low, it may not be possible to capture the full range of 

negative prediction errors, leading these parameters to compete for variance. Figure 6-3 

illustrates the potential problems that can arise from directly comparing affective dynamics 

between gains and losses when the baseline is not the centre of the scale.  

 

6.3.3 What Variance is most Important? 

When fitting a computational model of any kind the experimenter chooses a range of task 

events which will allow them to fit their function of interest. For example, when fitting a 

prospect style theory model it is prudent to include choices where one option is extremely 

attractive (or unattractive) in order to sample the participant’s choice at the extremities. 

                                                      

20 Estimating baseline mood and affective reactions independently does not assume they are 

independent processes. For example, baseline mood may determine the range and asymmetry 

in affective responses.  
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Furthermore, repeatedly sampling choices which involve two options that only marginally differ 

in their desirability (or undesirability) allows for an estimation of an indifference point and how 

deterministic behavior is. Here poses an issue for studies which explore affective responses, as 

we only sample affective ratings regarding choices that have been made (and rarely the 

counterfactual). This creates sampling difference between participants; each participant’s 

experience of expected values and reward prediction errors depends upon their individual 

choice biases. For example, if a participant never chooses high win low probability options they 

will not experience large unexpected windfalls. Furthermore, there are sampling differences 

within participants driven by stochasticity of choices and stimulus probability; for example 

extreme outcomes may be sampled only once, compared to small outcomes being sampled 

multiple times.  

To the author’s knowledge, all currently published work in mood modelling involves fitting the 

observed data to generated data using a total variance explained approach.  However, it may 

be that some parts of the function have greater relevant variance to a symptom dimension of 

interest and thus should be prioritized when comparing between models (Palminteri et al., 

2017). For example; if we wished to understand whether people at risk of depressive relapse 

showed differential affective responses to emotionally salient stimuli compared to those not at 

risk, would it be more relevant to compare reactions to common events which are likely to have 

a smaller response, or compare reactions to extreme events which are likely to have a greater 

response? Using the prevailing model fitting approach common events are likely to have a 

greater impact on parameter estimates and, which may leave valuable variance about 

responses to rarer events unexplained by latent variable estimates in the computational model 

This creates an interesting question for comparing participants along an important dimension 

(i.e. self-reported symptom questionnaire) where it is possible that behaviour also varies along 

the same dimension, which may lead to differences in outcomes sampled, and thus bias 

parameter estimates in an affective dynamics model in unexpected ways. 
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Figure 6-3 Baselines and Boundaries 

Here is illustrated a scenario where we wish to estimate baselines and affective responses 

(e.g. weights for expected value) for gain trials (green) and loss trials (red). The y-axis shows 

the scale which happiness ratings are sampled on. The x-axis shows increasing values of a 

task event (e.g. expected value, or signed outcomes). Filled lines describe the ‘real function’, 

i.e. what would be fit to the mood ratings if the scale had no boundaries and no noise (linear 

functions of happiness to affective responses: δgain and δloss). Asterisks describe sampled 

ratings based upon that function. Dotted lines describe how the sampled ratings may be 

fitted using the estimation strategies included in this thesis (γgain and γloss, i.e. estimating 
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parameters using an optimization procedure). For the sake of this illustration, we assume 

the fitted baseline is identical to the baseline from the ‘real function’, and we only describe 

a scenario where the estimated baseline affects the estimations of affective dynamics, rather 

than when they may compete for variance. (Ai) Shows a scenario where the baseline for the 

gain trials is closer to the centre of the scale (0.5) by a distance of βgain. In loss trials, the 

baseline is a further absolute distance from the centre (βloss). Importantly, the sign of the 

distance from the centre is the same as the sign of most of the affective responses in the 

frame, i.e. In gain trials, the baseline may be more likely to be greater than centre of the 

scale (βgain > 0), and most of the affective responses will be positive (γgain > 0), and in loss 

trials the baseline is more likely to be less than the scale (βloss < 0), and most affective 

responses will be negative (γloss < 0). In this scenario, the absolute distance from the centre 

is not equal between gain and loss trials (βloss ≠ βgain). The consequence of this asymmetrical 

baseline (and affective responses being in the direction as the distance from the baseline), is 

that the parameters for affective responses (γgain and γloss) are likely to be predictably mis-

estimated depending on how distant baseline parameters (βloss and βloss) are from 0.5. In the 

illustration we see the two real reactivity functions are equal in magnitude but not sign (δgain 

and δloss), but γgain is closer to true δgain given βgain is closer to 0.5. (Aii) In an alternative model, 

the gain and loss trials share a baseline. In this case, the mis-estimation in the parameter for 

affective responding to gains is inversely proportional to that for losses, which is determined 

by how far and in what direction the baseline parameter is from 0.5. Here, the baseline is 

much higher than the centre of the scale (β > 0), and thus affective responses to gains are 

(γgain) truncated compared to those to losses (γlosses). (B) Illustrates another scenario, this 

time where the real functions are non-linear (in this case concave). Non-linear functions fit 

as linear slopes may be bias by choice behaviour, due to certain parts of the function being 

sampled more frequently than others. For example, if smaller expected values are sampled 

more frequently in loss trials, and larger expected values are sampled more frequently in 

gain trials, this could lead to artifactual asymmetries in linear functions fitted to the sampled 

ratings. Alternatively, it may be that non-linearity is not part of the real function, but 

observed due to participants being resistant to endorse the extreme poles of the scale. 
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Concerns about misestimating parameters as a function of populations of interest endorsing 

extreme responses on self-report is ubiquitous. Indeed, this has been a particular concern in 

clinical literature. When patient samples score more highly on some measure, ceiling effects 

may mask importance variance related to the study. Model based solutions have been 

proposed to mitigate ceiling (or floor) effects in self-report questionnaires, such as the Tobit 

Model (Tobin, 1958). Briefly, a model is fit to the data by splitting the likelihood function into 

two parts. The first part estimates the probability that the observed data is censored (at the 

boundary) or uncensored (not impeded by the boundary) given the predictor variances (e.g. the 

objective trial-by-trial prediction errors). The second part of the function applies only to the 

uncensored data. This approach was shown to more accurately fit censored data compared to 

a standard least squares approach in simulation work (McBee, 2010). While I am not prescribing 

this model in particular, such statistical approaches should be leveraged to determine if it 

improves indicators of better model fit. This may be particularly useful for scales with reduced 

granularity, such as those used in smartphone studies where the visual analogue scale is limited 

in width (size of the screen) and granularity of response (size of finger tap).  

 

6.3.4 The Future of Smartphones for Cognitive Science & Computational Psychiatry 

Much has been written on the prospective benefits of smartphone-based tools (for a recent 

review; Gillan & Rutledge, 2021). Recruiting from a more diverse pool of participants is likely to 

increase generalizability of insights to clinical samples, as samples collected on smartphone-

based tools and online samples tend to be more diverse (Buhrmester et al., 2011). Western 

university in-lab testing has frequently been critiqued for sampling uniquely WEIRD (White 

Educated Industrial Rich Democratic) participants (Henrich et al., 2010). 85% of participants 

from the Great Brain Experiment were non-university students (Brown et al., 2014). Thus, there 

may be limitations in how easily results from smartphone samples may be compared to studies 

that have been carried out within a physical university setting. Further studies could explore 

whether discrepancies in results are attributable to differential samples, or laboratory vs 

smartphone methods. 

Furthermore, the full potential of multivariate data sets has not yet explored. Phenotyping 

based on machine learning driven clusters of demographics, experience sampling methods and 
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gamified task data could be used for predicting time course of illness or treatment response 

(Gillan & Whelan, 2017). Classifier performance has been shown to be improved when trained 

on parameters estimated from computational models rather than on the observed data used 

to estimate the parameters (on simulated agents, Huys et al., 2016). Future app development 

could also consider the use of generating trial types in real-time, to maximise estimating an 

effect of interest in individuals (e.g. using Bayesian adaptive algorithms; Pooseh et al (2018)). 

Large-scale data sets may also be useful for hypothesis generation for future studies. For 

example, our finding that time of day affects loss sensitivity, was not a priori predicted when 

the Great Brain Experiment was developed. Further studies based on these insights could 

include questionnaire measures on individual diurnal chorotypes (i.e. morning larks and night 

owls; Horne & Östberg, 1976). Participants could be prompted to play games featuring loss 

prospects at different times in the day, and even times of the year to explore whether this 

behaviour varies in individuals with seasonal affective depression, which has shown to be linked 

to circadian rhythm disruption (Leibenluft et al., 1995; Magnusson & Partonen, 2005). 

While there are often no participant costs, the development of smartphones can be highly 

costly, and labour intensive depending on whether the development is kept within the lab or 

outsourced to an app developer or company (Teki et al., 2016). With the increased popularity 

in online testing via platforms such as Amazon Mechanical Turn (MTurk), these online platforms 

may in future show greater cost-benefit trade-offs, especially if they can incentivise repeated 

plays, and provide more flexible updating of tasks based on initial insights. While smartphone-

based cognitive tasks may be highly beneficial for hypothesis testing, it is worth noting that this 

may not be possible within the same platform, if a significantly large sample is required. Large 

samples are often driven by online publicity when the app is realised and can garner the most 

media attention, thus it may not be possible for the same app to collect another sample of the 

same size to test follow up hypotheses. For example, The Great Brain Experiment (GBE) was 

first released in March 2015 and was downloaded 16,000 times in the first month of public 

availability, a significant percentage of its downloads in total. Reliance on a large sample to be 

well powered for a hypotheses means can mean you only get one shot to collect your data. 

While smartphone-based data collection shows much potential for questions of interest in 

computational psychiatry, this method does include some necessary limitations. Previously. 

high quality data collection has often relied upon the sample size outweighing the error from 
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multiple sources inherent in collecting data in on a smartphone. These sources include 

participants being in an uncontrolled environment, using relatively small device and tasks being 

relatively short. While some gamified cognitive tasks have found effect sizes comparable to 

laboratory versions, typically a significantly smaller effect size is observed (Brown et al., 2014). 

Furthermore, to answer questions regarding individual differences, which may be relevance to 

computational psychiatry, it is not sustainable to rely upon large samples to balance the signal 

to noise ratio. Below, I briefly reflect on some sources of noise and make suggestions for how 

these could be mitigated in applications designed in the future. 

Participants are able to complete activities in the smartphone app at any time of their choosing. 

Whilst this means a greater degree of convenience for taking part in scientific research for the 

participant, the experimenter does not typically receive data on aspects of the environment 

that may affect a participant’s performance, such as noise levels and degree of multi-tasking. It 

may be that changes in effects of interest (e.g. mood, response times) may correlate with 

changes in environment. For example, a change in baseline mood may co-occur with a change 

in living situation and depressive symptoms. Researchers should look to collect data reflecting 

this if they believe it may affect their main hypotheses, which can be analysed as covariates. 

Further to this, the length of each task is often made relatively short so they may be completed 

easily throughout the day. This enforces limitations on the complexity of the task, as 

participants must be able to quickly understand how they are required to perform and many 

will likely skip longwinded instruction screens. Sources of error may also relate to the 

smartphone device itself, particular in terms of the size of the screen, which may affect the 

granularity of response (particularly with continuous scales). Researchers could consider 

developing scales that make use of the height and width of the screen, or provide additional 

visual feedback on the position of the cursor. 
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6.4 Final Comments 

6.4.1 The Limitations of Descriptive Models of Mood 

One question that has plagued me during my PhD, is what can we learn from descriptive models 

of mood?21 I have looked to draw connections between mood and decision-making by means 

of comparing parameter estimates from models fit to data collected simultaneously, but 

analyzed orthogonally (i.e. choices and happiness ratings). Here, I have tried to draw inferences 

about how affective reactivity and decisions may be linked. How fluctuations in mood depend 

upon choices is defined within the affective dynamics model (i.e. as the objective expected 

values), however I have not formalized how mood itself may bias decisions in a model-based 

way. One reason for this is the functional role of mood is still a matter of academic debate. 

Understanding the goal of a system, may be the best way to understand how the mechanism 

works (Marr & Poggio, 1977). Not having a clearly defined functional role makes it difficult to 

make normative statements about mood or affective responses, as we cannot quantify the 

degree to which a particular response or state is close to achieving such a goal. Instead, we are 

perhaps bias to making assumptions based on the explicit pleasant or unpleasantness of such a 

state; I do not enjoy being in a bad mood, thus a low mood baseline must be sub-optimal. 

Furthermore, a low mood baseline being associated with depressive symptoms risks being 

guilty by association. Thus, observing connections between symptoms and descriptions of 

properties of mood is limited without a functional explanation. It may be that low baseline 

mood serves as an adaptation to being in an environment to many negative events, by reducing 

the dynamic range for negative responses. 

 

6.4.2 Okay, so what makes us happy?  

The word happiness serves as a tool in mood research in two ways. Firstly (and most 

importantly), its ubiquitous colloquial usage makes it an easy to grasp concept by participants 

being asked to make swift intuitive judgements about their affective state. Secondly, it serves 

as a strong brand, which can be particularly useful for the dissemination of work regarding the 

computational modelling of mood to a broader public audience. A by-product of this, is 

                                                      
21 In addition, to an actual plague. 
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researchers are often asked, or asked to comment on – what makes people happy? What should 

we do to be happy? It is my firm belief that people should terminate asking computational 

modellers of mood this question; we do not know better than anyone else does. The field is in 

its infancy, and we have only begun to start understanding the ways in which human emotions 

evolve and interact with our behaviour. 

 

6.4.3 No but seriously, what makes us happy? 

In this thesis I have explored the role of future prospects on mood. While these effects are small 

in an experimental setting, it may be that they are considerable larger in real life when we 

attend to thoughts on our own expectations about the future, in terms of our personal goals. I 

hope the results here are built upon to develop a greater understanding of how expectations 

and beliefs about the future affect our affective state and mental wellbeing. If anything, based 

on my work I advocate for the role of hoping for the best, and believing your future to be bright.  

 

I wish to take this opportunity to thank my internal examiner, Professor Sarah Garfinkel and my 

external examiner, Professor Michael Browning for examining my PhD thesis. 
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