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Abstract

Despite the positive health effect of physical activity, one third of the world’s population is

estimated to be insufficiently active. Prior research has mainly investigated physical activity

on an aggregate level over short periods of time, e.g., during 3 to 7 days at baseline and a

few months later, post-intervention. To develop effective interventions, we need a better

understanding of the temporal dynamics of physical activity. We proposed here an approach

to studying walking behavior at “high-resolution” and by capturing the idiographic and day-

to-day changes in walking behavior. We analyzed daily step count among 151 young adults

with overweight or obesity who had worn an accelerometer for an average of 226 days

(~25,000 observations). We then used a recursive partitioning algorithm to characterize pat-

terns of change, here sudden behavioral gains and losses, over the course of the study.

These behavioral gains or losses were defined as a 30% increase or reduction in steps rela-

tive to each participants’ median level of steps lasting at least 7 days. After the identification

of gains and losses, fluctuation intensity in steps from each participant’s individual time

series was computed with a dynamic complexity algorithm to identify potential early warning

signals of sudden gains or losses. Results revealed that walking behavior change exhibits

discontinuous changes that can be described as sudden gains and losses. On average, par-

ticipants experienced six sudden gains or losses over the study. We also observed a signifi-

cant and positive association between critical fluctuations in walking behavior, a form of

early warning signals, and the subsequent occurrence of sudden behavioral losses in the

next days. Altogether, this study suggests that walking behavior could be well understood

under a dynamic paradigm. Results also provide support for the development of “just-in-

time adaptive” behavioral interventions based on the detection of early warning signals for

sudden behavioral losses.
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Introduction

It is widely recognized that physical activity directly protects against the development and

exacerbation of non-communicable diseases and mental health issues, and improves quality of

life [1]. Physical activity is also, in some forms such as active transportation, a key contributor

to climate change mitigation and air pollution reduction, which indirectly protect population

health [2]. Despite these positive effects, one third of the world’s population is estimated to be

insufficiently active and, so far, the promotion of physical activity globally has been described

as “largely unsuccessful” [3]. Although several explanations for this relative failure have been

proposed (see for example [4, 5]), little prior research has been conducted to understand the

day-to-day, “high-resolution”, and long-term changes in physical activity behavior, despite

clear theoretical and practical benefits to do so. Indeed, gaining a better understanding of the

resolution of change could provide important information to refine current physical activity

guidelines and theories to reflect a more dynamic perspective and, ultimately, inform new

forms of quasi-real time physical activity interventions [6–9]. The present study aimed to

improve our understanding of day-to-day changes in physical activity within individuals over

several months. Notably, this study focuses on walking behavior, a central component of phys-

ical activity and an accessible, inexpensive and low-impact means for individuals to meet

national and international physical activity guidelines [10, 11].

Physical activity behavior changes

Evaluation of physical activity interventions typically incorporate measurement bursts, i.e.,

regular measurement of physical activity for 3 to 7 days, that are dispersed across time, such as

immediately before taking part in an intervention, immediately after an “intervention phase”,

and, occasionally, a few weeks or months after the intervention is completed (e.g., [12]). Using

this measurement approach, physical activity levels within each measurement burst are often

aggregated at the weekly level (e.g., minutes/week of moderate-to-vigorous intensity physical

activity), and insight into the high-resolution day-to-day variations in physical activity

removed through aggregation [9]. As both a cause and consequence to this methodological

paradigm, physical activity changes have been mostly conceptualized as a relatively linear and

deterministic process (e.g., “the adoption and maintenance paradigm”; [13–16]). Nonetheless,

recent studies adopting continuous measures of physical activity via accelerometry and investi-

gating the within-person variability in that behavior have shown that physical activity levels

can vary extensively within individuals over time and across different contexts [17–20]. To

date, no studies have characterized the within-person patterns of change in physical activity

over several months; however, recent findings speak to the possibility that physical activity

fluctuates in a potentially strong irregular fashion at the individual level [17–20].

In this regard, complex systems theory offers a unique framework to characterize and

understand dynamics and discontinuous/irregular patterns of change in human behavior [8,

16, 21, 22]. According to this theoretical framework, complex systems can experience abrupt

and discontinuous changes from one stable state to another over time (e.g., [23]). These

changes are sometimes referred to as abrupt shifts, order transitions or sudden gains and losses
([24]; we will henceforth refer to them using this last term). Numerous examples of sudden

gains and losses in complex systems exist in the literature, from asthma attacks [25], shifts in

motivational flow [26], improvements or aggravations of symptoms in individuals with

depression, mood and/or anxiety disorders [27], and, at a broader level, forms of societal col-

lapse [28] or climatic change [29]. In the health behavioral science literature, recent studies

found that sleep stage transitions [30], as well as sedentary behaviors (i.e., time spent sitting)

[31], were characterized by such irregular patterns of change. More volitional behaviors, such
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as daily changes in alcohol consumption, have also been successfully modelled with methods

allowing the consideration of non-linearity and non-stationarity [32]. Although there have been

prior and recent calls to study the dynamics of physical activity behavior changes through the

lens of complex systems theory [8, 16], empirical investigations are lacking for this behavior.

Early warning signals for sudden behavioral changes

Beyond characterizing the dynamic nature of behavior change processes, early findings suggest

that sudden gains and losses in complex systems can sometimes be predicted via early warning
signals [24, 33]. One kind of signal corresponds to the presence of critical fluctuations in the

behavior, as observed within time series data from a given system (e.g., an individual), which

can be interpreted as an indicator of an imminent sudden gain or loss [34]. For example,

research conducted within the psychotherapy setting showed that sudden gains and losses in

symptom severity in individuals diagnosed with a mood disorder could be predicted by critical

fluctuations in measures of the therapeutic process a few days before each transition [35]. This

study used scores of dynamic complexity to quantify the amount of fluctuation [34]. The

authors reported a positive and significant association between different dynamic complexity

indicators and subsequent occurrence of sudden gains and losses [35]. Notably, this study

found that greater fluctuations in measures of the therapeutic process were prospectively asso-

ciated with the occurrence of sudden gains and losses in the next few days (see Fig 1 for a con-

ceptual illustration of this process). The detection of behavioral fluctuations, quantified by

indicators of dynamic complexity, thus represents a potentially useful way for clinicians and

Fig 1. Conceptual illustration of critical fluctuations in a given behavior followed by a sudden gain (upper panel), expressed as the

level of dynamic complexity (lower panel). The transition from a stable state (starting at day 1 and ending around day 10) to a second

stable state (starting around day 17) is characterized by a period of instability in which the behavior of the system displays critical

fluctuations (upper panel). The greater the fluctuations in the behavior, the higher the dynamic complexity score (lower panel). Work in

critical transitions across various systems indicate that instability can be observed shortly before a phase transition; increases in dynamic

complexity can thus be seen as a form of early warning signal for either sudden gains and/or losses in a given system [35, 37]. Note that the

Figure’s x axis represents continuous time but does not refer to a specific time unit, as this approach can be used to describe both rapid- and

slow-evolving processes. The time unit here can thus conceptually vary from seconds to years.

https://doi.org/10.1371/journal.pone.0251659.g001
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intervention designers to anticipate sudden behavioral gains and losses before they occur [24].

Applied to physical activity, the early prediction of imminent behavioral transitions represents

a potentially valuable signal for delivering interventions “just-in-time” [36].

It is theoretically plausible that physical activity behavior is usefully described from a com-

plex systems perspective; however, there is a paucity of empirical work to test this assumption.

If empirical work suggests that there are inherent sudden gains and losses, and potential com-

plexity, in physical activity changes within individuals over time, then that would have impor-

tant implications for physical activity research methods, theories, and interventions. If strong

discontinuous patterns of change are observed, then the current measurement approach,

which largely relies on snapshots of behavior across time, would be demonstrably insufficient

to understand behavioral dynamics. Consequently, there would be a need to move from low-

to high-resolution physical activity assessments [9]. If results illustrate discontinuous patterns

of change, this would also establish the need for behavioral theories of physical activity that

better account for the dynamic, discontinuous and potentially complex nature of physical

activity [6, 7]. Finally, in regard to interventions, if the sudden gains and losses exist, the capac-

ity to identify early warning signals for these state shifts in physical activity would be highly

valuable for realizing and optimizing just-in-time adaptive interventions [36]. In particular,

critical fluctuations, characterized by an increase in dynamic complexity, could be used to

identify states of vulnerability, opportunity, or “teachable moments” for individuals (i.e., peri-

ods in which individuals would benefit from support if they are receptive to it [38, 39]).

The present study

This study aimed to (i) characterize within-person, day-to-day patterns of change in physical

activity (i.e., daily step count); and (ii) examine whether critical fluctuations in walking behav-

ior, expressed as a dynamic complexity score, were associated with the subsequent occurrence

of a sudden gain or loss in the following days. Based on previous literature in psychology and

behavioral sciences, we expected to observe discontinuous patterns of change in walking

behavior within individuals, including sudden gains and losses preceded and followed by rela-

tively stable behavioral states (see Fig 1, upper panel). We also expected heterogeneity in state

transitions between participants, with participants experiencing either few or many sudden

gains and losses. Second, we expected a significant and positive association between dynamic

complexity (derived from the observation of fluctuations in walking behavior) and the subse-

quent occurrence of a sudden gain or loss in the following days (Fig 1, lower panel).

Materials and methods

To test these hypotheses, we used data from an ongoing two-year, three-arm, parallel-group

randomized controlled trial (RCT) targeting weight loss among young adults with overweight

or obesity (ClinicalTrials.gov Identifier: NCT03907462). Only the participants recruited for

this RCT from April 16th 2019 (i.e., the beginning of the trial) to March 1st 2020 (i.e., before

Covid-19 lockdown measures expected to influence physical activity were introduced in San

Diego, California) were included in the present study. All relevant ethical regulations have

been followed and the ethical committee of the University of California San Diego approved

the study protocol. Participants have completed informed consent.

Participants and procedure

The analytic sample comprises only the participants from the RCT who had worn an activity

monitor for at least 90 days (i.e., 3 months) with less than 20% of missing daily observations

(i.e., inclusion criteria for the present study). Complete observations were defined as at least

PLOS ONE Fluctuations in walking behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0251659 May 14, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0251659


600 minutes of valid minute heart rate signal per day (i.e., wear time indicator). Inclusion cri-

teria for the RCT included being aged between 18 and 35 years, being affiliated with one of 3

major universities in San Diego (CA) as a student, faculty, staff member, or alumni and being

overweight or obese (25> = BMI< 40 kg/m2). Participants with comorbidities such as psychi-

atric and/or medical conditions were not eligible for the RCT.

The RCT is a 24-month study including (i) a group with activity monitors and connected

digital scales, text messaging and lifestyle interventions based on social media, targeting weight

loss through behavioral changes, (ii) a group with the abovementioned intervention package

and additional phone-based health coaching sessions and (iii) a control group with activity

monitors and digital scales alone. As the trial is still ongoing, group assignment remained

unknown for the present study, and was not modelled in our analyses.

Measures

Data on walking behavior (i.e., daily step count) were collected with a Fitbit Charge 3 (Fitbit

Inc, San Francisco, CA, USA). Participants were asked to wear the wrist-worn device continu-

ously during the trial according to manufacturer recommendations (i.e., to wear the device on

one’s non-dominant arm and up to three finger widths above the wrist bone).

Steps are estimated from the Fitbit via triaxial accelerometry measuring gravitational accel-

eration in the anterior-posterior [x], cranial-caudal [y], and medial-lateral [z] planes. It should

be noted that this indicator of physical activity (i.e., step count) was chosen over other metrics

offered by the device (e.g., physical activity intensity) because the estimation of steps from Fit-

bit sensors range from good to excellent in comparison with direct observation [40], while the

validity of other metrics remains questionable [41]. With regards of descriptive statistics,

weight and height were measured objectively in the lab and used to compute participant’s BMI

in kg/m2. Age and gender were self-reported.

Data analysis

Time series characteristics. The mean length of the time series across participants was

226 days and the mean number of missing days per participant was 20 days (range = 0–61

days). Missing days were imputed using the Kalman Filter method (i.e., a procedure to com-

pute the likelihood of a time series which is the outcome of a stationary autoregressive moving

average process or non-stationary autoregressive integrated moving average process; see for

further details [42]). This method, recommended for univariate time series imputation [43],

was preferred over other techniques (e.g., ‘last observation carried forward’) based on visual

inspections of the time series.

Characterization of gains and losses. Following the approach applied by Olthof et al.

(2020), we used a recursive partitioning algorithm to characterize within-person behavioral

changes over the course of the study using regression trees from the package rpart [44] for the R

software environment [45]. Regression trees enable to identify nodes and partition a continuous

variable y in recursive splits based on different predictors. In the present study, we partitioned

the variable steps based on the progressive day of the intervention as predictor. Once we identi-

fied the splits for the variable steps for each participant separately, we classified them as gain or

losses if they met additional criteria defined on the basis of previous research. Specifically, sud-

den gains and losses were defined as a shift toward a lower (loss) or higher (gain) number of

steps over time, provided that two conditions (i.e., criteria) were simultaneously met:

1. Based on past research from our group [46–48], gains or losses for each participant were

defined as a 30% increase or reduction in steps relative to the median number of steps, as
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assessed over the study period. For example, for a participant with a median of 7000

steps/day, a sudden gain was defined as an increase greater than 2100 steps per day (+30%)

compared with the median, while a sudden loss was defined as a drop greater than 2100

steps per day (-30%) compared with the median. We used the median number of steps

instead of the mean to manage potential skewed step count distributions at the individual

level.

2. In addition to these +/- 30% criteria, and to control for known differences in walking

behavior between weekends and weekdays [49], sudden gains and losses had to be observed

for stable periods of at least 7 days during which no further shifts in step count occurred. In

other words, these changes of +/- 30% had to last at least 7 days, otherwise they were not

classified as sudden gains or losses. Consequently, periods of high variability in steps with-

out a stable period of at least 7 days (i.e., changes greater than +/- 30% from one day to

another) were not classified as sudden gains or losses with our algorithm.

Local dynamic complexity calculation. After the identification of gains and losses,

dynamic complexity was estimated from the fluctuations in the steps times series. We used for

this purpose an algorithm designed specifically to identify critical fluctuations in time series

and implemented with the R package casnet [50].

The dynamic complexity score is the product of a fluctuation measure, F, and a distribution

parameter, D, for each unit of the time series (here, each day). The fluctuation measure, F, is

sensitive to the amplitude and frequency of change in the time series, with F being at its maxi-

mum when the dynamics of the data vary from one observation to another with large (e.g.,

between the minimum and maximum values of the outcome) and regular frequency. The dis-

tribution parameter, D, measures the deviance of the data points from the range of possible

values within the time series. This parameter increases when irregular changes from one obser-

vation to another occur (see [34]).

The two measures, F and D, were computed from moving time windows over the course of

the time series. Based on previous literature [34, 35], we used a backward 7-day overlapping

window, which means that F and D for a particular day n was computed on the basis of fluctu-

ations in walking behavior in the past 7 days. In other words, the scores for day n was com-

puted based on the aggregation fluctuation intensity in the past 7 days, between day n-7 and

day n.

The dynamic complexity score (F x D) was then used to derive a continuous predictor of

sudden gains and losses called local dynamic complexity. This score reflects the highest com-

plexity score (F x D) in the 3 days preceding a possible gain or loss (as conceptually illustrated

in Fig 1, lower panel, day #14). This 3-day time window was chosen based on previous litera-

ture [35] and because, theoretically, critical fluctuations are likely to appear a few days before a

sudden gain or loss (although please see the sensitivity analyses in the Results section with

varying time windows).

For mathematical details, see the document entitled “Dynamic Complexity” in the supple-

mental material available at https://osf.io/64cmv/).

Associations between local dynamic complexity and sudden gains and losses. The asso-

ciation between local dynamic complexity (i.e., the independent variable) and the occurrence

of sudden gains and losses (i.e., the dependent variable) was tested with discrete-time multi-

level event-history analysis through a generalized linear mixed-effects model. Individual differ-

ences in the number of gains and losses were controlled by including a random intercept.

Adopting a “maximal approach” [51], random slopes were also included for the two continu-

ous independent variables, time and local dynamic complexity. The equation, in the language
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of the package lme4 [52], is provided in the equation below:

Sudden gains or losses � Timeþ Durationþ Local Dynamic Complexity
þ ð1þ Timeþ Durationþ Local Dynamic Complexity jj Participant IDÞ

As recommended for this type of analysis [53], the progressive number of days from the

beginning of the trial was included as a control variable (e.g., the likelihood of sudden gains and

losses may be higher at the beginning of the study compared with the end). Further, the effect of

time between events (e.g. sudden gains, losses and the start of data collection) was modeled by

including a “duration indicator”, i.e. the number of days passed between events. The inclusion

of this duration indicator is essential in event-history analyses to (i) control for censored cases

(i.e., participants who did not experience a sudden gain or loss within the observation period)

and (ii) reliably estimate cases with multiple sudden gains or losses [53]. Similar models were

then conducted separately for the occurrence of gains (1 = occurrence of a sudden gain; 0 = no

sudden gain) and losses (1 = occurrence of a sudden loss; 0 = no sudden loss). Odds ratios of

the fixed effects coefficients were estimated with 95% likelihood profile confidence intervals.

Code and data availability. Statistical analyses were performed in R version 4.0.2. The

data and code for the statistical analyses used in the present study are available on Open Sci-

ence Framework, https://osf.io/64cmv/.

Results

Participant and time series characteristics

The final sample includes 151 young adults with overweight or obesity [57% Female; Mean

age = 23 years (range = 18–38 years), mean BMI at baseline = 30 kg/m2 (range = 25–44 kg/

m2)], who had worn an activity monitor measuring their daily step count for an average of 226

days (range = 107–320 days). The mean number of steps/days during the study across partici-

pants was 9687 steps/day (range = 508–53131 steps/day, median = 9110).

Objective 1: Characterization of sudden gains and losses

Participants experienced an average of 6 gains or losses during the study (range = 0–14), with an

average of 3 gains (i.e., +30% compared with median steps for a period of at least 7 days) and 3

losses (i.e., -30% compared with median steps for a period of at least 7 days) per participant. Ten

participants only experienced gains, six participants only experienced losses and one participant did

not experience any gains or losses according to our criteria. The average period of time between

two gains or losses was 31 days (range = 9–110 days). The average change in steps observed when a

gain or loss occurred was 4900 steps (5022 steps for gains and 4784 steps for losses).

To illustrate this, Fig 2 presents the time series for six participants. The figure includes: the

participant experiencing the highest number of gains and losses (participant #4); the partici-

pant experiencing no significant gains or losses (participant #100); one participant presenting

only one loss (participant #121) and one participant presenting only one gain (participant

#60); and finally, two participants that are representative of the total sample, experiencing a

relatively equal number of gains and losses (participants #48 and #79). Similar visualizations

for the 151 participants’ time series are available in the S1 Fig.

Objective 2: Associations between local dynamic complexity scores and

sudden gains and losses

The association between local dynamic complexity scores and the occurrence of sudden gains

and losses was then tested with generalized linear mixed-effects models. The first model
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included the occurrence of a sudden gain or loss as a binary outcome (1 = occurrence of a gain

or loss; 0 = no gain or loss) and the local dynamic complexity score as the predictor of interest.

The same model was then used to test the associations between local dynamic complexity and

gains and losses separately in order to examine potential differences when the outcome was

framed as a gain rather than a loss, and vice versa.

Results are presented in Table 1. Local dynamic complexity positively predicted subsequent

behavioral shifts with an odds ratio (OR) of 1.14, 95%CI [1.05, 1.24], indicating that an

increase in local dynamic complexity of 1 SD relates to 14% increased odds of either a gain or a

loss in the next 3 days. This result was driven by a positive association between local dynamic

complexity score and sudden losses, OR = 1.44, 95%CI [1.28, 1.58]. Indeed, an increase in local

dynamic complexity of 1 SD relates to 44% increased odds of experiencing a transition to

lower physical activity levels. In contrast, local dynamic complexity tended to be negatively

related (although not statistically significant) with behavioral gains, OR = 0.88, 95%CI [0.76,

1.00]. Time (i.e., the progressive number of days from the start of data collection) was nega-

tively associated with the occurrence of both types of behavioral shifts, indicating that sudden

gains and losses were less likely to occur at the end of the data collection period compared

with the beginning. In contrast, duration (i.e., the number of days between events) was posi-

tively associated with the occurrence of both types of behavioral shifts, indicating that the lon-

ger the time since the beginning of the study or a prior gain or loss, the more likely it is that a

participant will experience a sudden gain or loss.

Fig 2. Time series for six participants with heterogeneous patterns of change in walking behavior. Some apparent gains and losses were not classified as “significant”

(as indicated by the blue and orange triangles) because they were either smaller than 30% of the median or not preceded and followed by a stable 7-day period.

https://doi.org/10.1371/journal.pone.0251659.g002

Table 1. Associations between local dynamic complexity scores and sudden gains and losses in walking behavior.

Gains and losses (N = 151; k = 26882) Gains only (N = 144; k = 25924) Losses only (N = 140; k = 25031)

Predictors OR 95% CI OR 95% CI OR 95% CI

Time 0.85 [0.77, 0.93]� 0.70 [0.61, 0.79]� 0.60 [0.51, 0.71]�

Duration 1.21 [1.12, 1.32]� 2.06 [1.84, 2.30]� 2.11 [1.86, 2.40]�

LDC 1.14 [1.05, 1.24]� 0.89 [0.77, 1.01] 1.43 [1.28, 1.58]�

OR = odds ratio; CI = confidence intervals; LDC = local dynamic complexity.

� = statistical significance based on confidence intervals.

https://doi.org/10.1371/journal.pone.0251659.t001
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To summarize, results show that higher local dynamic complexity (or higher fluctuations in

one’s daily step count) are positively associated with the odds of observing a sudden loss of at

least 30% (compared with one’s median step count) in the next three days, lasting for a period

of at least a week. However, fluctuations in one’s daily step count is not significantly associated

with the odds of observing a sudden gain of at least 30% compared with one’s usual step count

in the next three days, lasting for at least a week (see Table 1).

Sensitivity analyses

Sensitivity analyses were conducted to test the robustness of the results for varying levels of

gains and losses (i.e., +/-20% and +/-40% of the median number of steps, instead of +/-30%, as

specified in the main analyses), and different time-lags for the local dynamic complexity score

(i.e., higher scores in the past two and four days, instead of the past three days, as specified in

the main analyses). Results of the sensitivity analyses were compared with regards to their

effects on the identification of gains and losses (objective 1) and the association between local

dynamic complexity and the occurrence of sudden gains and losses (objective 2).

As shown in Table 2, lower (+/-20%) and higher (+/-40%) thresholds lead respectively to

the identification of more (N = 1180) and less (N = 595) sudden gains and losses in compari-

son with the main analyses (+/-30%; N = 862). Using a more conservative threshold (+/-40%

of the median number of steps) resulted in the detection of a lower number of sudden gains

and losses, while using a less conservative threshold (+/-20% of the median number of steps)

resulted in the detection of a higher number of events.

The associations between local dynamic complexity and the occurrence of sudden gains

and losses were substantially unchanged (notably the prediction of sudden losses) in the sensi-

tivity analyses with different time windows chosen for the computation of the local dynamic

complexity score. Results from these 3 (thresholds for the identification of gains and losses) x 3

(time-lapses for the computation of local dynamic complexity) x 3 (gains and losses separately

and together) sensitivity analyses are presented in the S1 Table.

Discussion

Findings from this study provide new empirical insights into the idiographic, day-to-day,

changes in walking behavior over time in participants of a weight loss program. Regarding our

first objective, the results revealed that, when analyzed at the daily-level, walking behavior

exhibits discontinuous changes that can be described as sudden gains and losses, as conceptu-

alized in complexity theory. Indeed, on average participants to this study experienced six sud-

den gains and losses of at least +/-30% of their individual steps level over a mean period of 226

days. Results also show heterogeneity in the patterns of change in walking behavior, with par-

ticipants experiencing between 0 and up to 14 behavioral gains or losses during the study

period. Regarding our second objective, significant associations between critical fluctuations

in walking behavior, characterized here as increases in local dynamic complexity, and the

Table 2. Effect of different thresholds on the identification of behavioral gains and losses.

Thresholds Gains and losses Gains only Losses only

20% N = 1180 N = 563 N = 617

30% N = 862 N = 422 N = 440

40% N = 595 N = 295 N = 300

Note. Thresholds are estimated based on the median number of steps during the study period for each participant.

https://doi.org/10.1371/journal.pone.0251659.t002
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subsequent occurrence of sudden gains and losses in the next three days were observed. Nota-

bly, increased local dynamic complexity was predictive of increased odds of sudden losses. The

odds of having a sudden loss was 43% higher after an increase in local dynamic complexity.

Overall, these findings provide early empirical support of our hypotheses that walking behav-

ior is subject to irregular, day-to-day changes and that sudden losses can be anticipated with

some accuracy from the analyses of critical fluctuations computed from physical activity

behavior two to four days previous.

The first set of results (i.e., the identification of sudden gains and losses), is in accordance

with both (i) previous empirical results, showing that psychological, physiological, social and

behavioral systems, when observed at a high-resolution, might changes in a discontinuous

fashion (e.g., [26, 32]), and (ii) complex systems theory assumptions, which postulate that any

natural system is “bubbling” with change and tends to evolve in a non-stable manner [54]. Our

observations thus provide support for several recent position papers arguing that changes in

health behaviors can be fruitfully studied with research designs, methods, and statistics that

reflect these behavioral dynamics [8, 9, 55]. Further, at the theoretical level, results from this

study support the adoption of complex systems theory to better understand the dynamics of

health behaviors over time and across contexts [6, 16]. With regards to walking behavior spe-

cifically, visual inspection of the time-series (see S1 Fig) also provides support to previous

research (conducted at the group level and over short and aggregated periods of time) showing

that significant variance in physical activity data could be observed at the intra-individual

level, thus varying extensively not only between individuals but also within individuals [20].

The second set of results (i.e., associations between local dynamic complexity and sudden

behavioral shifts), are partially aligned with previous literature. We observed a significant and

positive association between our marker of critical fluctuations (i.e., local dynamic complexity)

and the occurrence of sudden behavioral shifts in the following days. This confirmed assump-

tions from complex systems theory that changes within a system tends to be characterized by

increased variability in system behavior before reorganization [34] (see Fig 1 for an illustra-

tion). However, this result was driven by a relatively strong positive association between criti-

cal fluctuations and the occurrence of a sudden behavioral loss. In contrast, although not

significant, greater fluctuations were related to reduced odds of behavioral gains. Previous

empirical work, conducted by Olthof et al. (2019), also found differences in the prediction of

improvement (sudden losses) and deterioration (sudden gains) in psychological symptoms: (i)
a positive and significant association between higher fluctuations and the occurrence of sud-

den symptoms improvements in psychotherapy and (ii) a positive but not-significant associa-

tion between higher fluctuations and the occurrence of sudden symptoms deteriorations [35].

However, these analyses were explorative and possibly under-powered [35]. It is possible that

different indicators of critical fluctuations have different predictive values for gains and losses

depending on contextual parameters (i.e., weight loss program versus psychotherapy) or

according to the outcome specificity (i.e., walking behavior versus depressive symptoms).

Whether different kinds of gains or losses can be predicted from different critical fluctuations

indicators remains an open question for future research inside and outside the field of physical

activity. In any case, the fact that different associations are observed in the literature between

indicators of dynamic complexity and sudden gains and losses invite to analyze these two

kinds of behavioral shifts distinctively instead of pulled together.

Finally, an interpretation of the results can also be offered in terms of dynamic attractor

landscapes depicted in Fig 3. Consider a landscape with two attractors, (i) a behavioral state of

“low physical activity level’ (on the left) and (ii) a behavioral state of “high physical activity

level” (on the right). In panel A of Fig 3, the system is in a stable state, either in the low-activity

attractor or the high-activity one (upper panel of Fig 1). In panel B, as the landscape evolves to
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a state where the system is more unstable (due to the intervention, for example), random per-

turbations from daily events could move it to back and forth either direction, resulting in the

instability indicated by increased dynamic complexity. Whether one starts out from low,

medium or high activity, if the high-activity attractor remains shallower than the low-activity

attractor, instability (which, again, shows up as dynamic complexity) will increase odds of end-

ing up in the low-activity attractor after destabilizations. If the landscape subsequently evolves

back to the one depicted in panel A, it has likely become trapped in the low-activity attractor–

that is, having experienced what we define as a sudden loss. In other words, we make here the

hypothesis that the low activity state would, in general, be more stable than the high activity

one in the studied population and that destabilizations therefore are more likely to lead to low

activity state (i.e., a sudden loss).

Study strengths, limitations and perspectives

A key strength of this study lies in its design and modelling approach, which highlighted origi-

nal and unique information on the within-person, day-to-day changes in walking behavior

over several months; which, taking together, lend empirical support toward the adoption of a

more dynamic and complex systems-oriented research paradigm in this field of research. This

study also provides a first proof of concept regarding the analysis of critical fluctuations in

walking behavior as a form of early warning signal for sudden behavioral losses for walking

behavior, thus providing potentially fruitful interventional perspectives for the development of

just-in-time adaptive interventions.

This study has also several limitations. Based on literature in psychotherapy (e.g., [35]) and

the availability of appropriate statistical methods, we decided to classify behavioral changes as

sudden gains and losses, however, other characterizations of behavioral states could have been

deployed. For example, analyses of decreasing or increasing slopes could be conducted with

structural break detection methods [56]. Further, and although our recursive algorithm par-

tially considers within-person variability in daily step count, other statistical methods might be

more appropriate in the detection of “stable” versus “unstable” behavioral states, such as the

analyses of signal variability [57]. Such complementary analyses (e.g., slope or signal variability

analyses) could give a different insight on physical activity changes and might actually provide

better statistical fits in some contexts or for some participants. Further, and using these or dif-

ferent techniques, it would also be important to explore whether different trajectories or

Fig 3. Attractor landscapes.

https://doi.org/10.1371/journal.pone.0251659.g003
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patterns of change are associated with treatment responses and relevant outcomes (e.g., weight

loss, improvements in cardiorespiratory fitness or mental health). In the same vein, we decided

in the present study to focus on day-to-day changes in physical activity; however, micro-tem-

poral changes occurring within days (see [58]) or macro-temporal variations across months or

years could also be studied with similar methods, with important implications for physical

activity theories and interventions from a multi-time scale perspective [59]. Future studies are

thus needed to explore different characterizations of discontinuous and idiographic behavior

changes over multiple time-scales to complement the results from this early work.

Second, this study used a specific score of local dynamic complexity to characterize critical

fluctuations in daily steps based on previous successful applications of this indicator in the pre-

diction of sudden mental health improvements or deteriorations in psychotherapy [35]. Also,

and like for the detection of sudden behavioral shifts, other forms of fluctuation indicators

could be tested for their predictive power in future research. A previous study for example has

computed the local dynamic complexity score from several self-reported items compiled

together instead of computing the dynamic complexity score from the main variable of interest

[35], like we did in the present study (i.e., steps). Hence, future studies might wish to test

whether critical fluctuations in several indicators, compiled together, such as walking behavior

but also some of its determinants (e.g., motivational factors, stress, weather), have greater pre-

dictive power in the detection of subsequent behavior changes than the analyses of critical fluc-

tuations in the main variable of interest solely. Testing whether determinants of walking

behavior (e.g., fluctuations in behavioral intentions or action control) are associated with the

critical fluctuations in the behavior would also provide important information about why

increases in dynamic complexity are observed and what they represent. Adopting an idio-

graphic approach, we could also make the assumptions that the predictive power of critical

fluctuations for behavior changes differ from one person to another [60, 61]. It is possible that

different fluctuation indicators (e.g., derived from walking behavior only versus from compiled

variables) or time-lapses (e.g., 3-day versus 7-day windows to compute local dynamic com-

plexity) are more or less predictive depending on participant idiosyncrasies.

Third, our results provide support for the hypothesis that behavioral change may occur

through critical transitions that are preceded by increased levels of dynamic complexity. How-

ever, we do not know the causal drivers of the increased dynamic complexity and the transi-

tions. it is important for future studies to explore (i) whether possible causal influences on

physical activity behavior (i.e., weather variations; changes in motivation) are related to

changes in local dynamic complexity and sudden gains or losses. Furthermore, future research

should test whether local dynamic complexity can be manipulated during an intervention to

prevent sudden losses in walking behavior.

Finally, this study was conducted among young, fairly active, adults with overweight and

obesity participating in a weight loss program where different health-related behaviors are

manipulated as part of the intervention. Although, this population is of prior interest for physi-

cal activity promotion, other pattern of results might be observed in other contexts and popu-

lations. Further, as the trial is still ongoing, group assignment remained unknown for the

present study, and was not modelled in our analyses, which constitutes a limit given that

results might differ by groups. For all these different reasons, results from the present study

should be replicated in other contexts.

Theoretical, methodological and interventional implications

Although results from this study should be replicated in different contexts, they provide empir-

ical evidence that high-resolution changes in walking behavior might be better studied and
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understood if elements of complexity theory and methods are accounted for [8]. In other

words, a dynamic and complex systems-oriented paradigm should be adopted to better under-

stand and describe physical activity behavior change, notably if those changes are studied at

high-resolution, such as a daily level. Theories and models could progressively be refined to

include more precise assumptions about time and behavior dynamics as argued in recent posi-

tion papers [6, 7]. Previous assumptions about gradual behavior change following adoption

and maintenance phases should also be refined, or at least completed, to better account for

rapidly changing critical transitions. At the methodological level, results from this study sug-

gest that future studies interested in the dynamics of behavior changes should transition from

(i) low- to high-resolution behavioral assessments to better capture potential discontinuous

changes in those processes; (ii) group-only to group- and individual-level statistical inference

to accurately modelled individual variability; and (iii) static to adaptive and continuous tuning

interventional designs to better account for rapidly changing behavioral states and contexts

(see [9] for further justifications). If successfully applied, that type of adaptive interventions

would also argue against the utilization of traditional randomized control trials to test inter-

ventions in the physical activity context, at least as they are often implemented, i.e., with low-

resolution behavioral measures, exclusively using a nomothetic approach and fixed interven-

tion components.

Conclusion

This study highlights discontinuous -sudden gains and losses- and heterogeneous patterns of

day-to-day changes in walking behavior over months among a large sample of young adults

with obesity participating to a weight loss program. This study also provides first evidence that

critical fluctuations in behavior time-series can be associated with the subsequent occurrence

of behavioral losses in the next days, thus providing a form of early warning signals for physical

activity behavior changes. Taken together, this study suggests that walking behavior changes

could be well understood under dynamic and complex-system paradigms.
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