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Abstract 6 

Detection of AmpC and ESBL producing P. aeruginosa by phenotypic methods is challenging, 7 

especially in low-income countries such as Pakistan. Therefore, a molecular method was 8 

developed for rapid detection of these resistance markers. A total of 303 clinical samples were 9 

collected from intensive care units (ICUs) of the Jinnah postgraduate medical centre (JPMC) 10 

Karachi, Pakistan. The isolates were identified by traditional and matrix-assisted laser desorption 11 

ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). Isolates were phenotypically 12 

analyzed for AmpCs and ESBL by D-test and by double disc synergy, respectively. The Check 13 

MDR CT103 XL and PCR techniques were used for the detection AmpCs and ESBLs.  Out of 303 14 

isolates, 148 (48.8%) were P. aeruginosa.  The resistance pattern of P. aeruginosa against 15 

piperacillin, cefatizidime and cefepime was 59.4%, 64.8% and 59.4% respectively.  More than 16 

60% isolates were resistant to aminoglycosides and ciprofloxacin.  All (148) strains were found 17 

sensitive to colistin. Phenotypic ESBL prevalence was 8.8% whereas genotypic resistance was 18 

29.1%. blaVEB was the most prevalent ESBL. Although 25.67% of P. aeruginosa isolates were 19 

positive phenotypically for AmpC, microarray (Check-MDR) analysis did not detect 20 

chromosomally located AmpC in any of the isolates.  21 
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1. Introduction 31 

Pseudomonas aeruginosa commonly causes infections among the immunocompromised 32 

patients admitted in intensive care units (ICUs) [1]. The emergence of multi-drug resistant 33 

(MDR), extensively drug-resistant (XDR) and pan-drug resistant (PDR) strains of P. 34 

aeruginosa has serious consequences including therapeutic failure, increase in healthcare cost 35 

by 70%, increase in the rates of morbidity and mortality and prolonged hospital stay [2]. The 36 

MDR, XDR and PDR strains have evolved through genomic plasticity and accumulation of 37 

selected mutations in chromosomal genes and transmission of exchangeable resistance 38 

elements [1]. Indeed, the overexpression of the chromosomal AmpC and ESBL production are 39 

the two primary mechanisms of resistance against antipseudomonal cephalosporins, penicillins 40 

and other β-lactam antibiotics [3, 4]. The blaAmpC genes, usually located on chromosome but 41 

plasmid mediated genes are clinically important [5]. The most common types of plasmid 42 

mediated AmpC (pAmpCs) are CMY, ACT, DHA, FOX and MIR in P. aeruginosa [5, 6, 7]. 43 
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Commonly encountered ESBLs are PER, GES, VEB, BEL and PME of class A, while TEM, 44 

SHV and CTX-M-type appear less frequently in P. aeruginosa [8, 9, 10,11].  45 

Clinical and Laboratory Standards Institute (CLSI) does not recommend the commonly 46 

employed phenotypic methods (double disc diffusion test with clavulanic acid and D-Tests) 47 

for the detection of ESBLs and AmpCs in P. aeruginosa [12]. Yet these phenotypic methods 48 

continue to be used in resource limited settings. A molecular method, Check-MDR CT103 XL 49 

(Check-points, Wageningen, Netherlands), has been developed as a rapid and accurate assay 50 

for the detection of clinically relevant ESBLs, pAMPCs and carbapenemase variants in a single 51 

tube reaction [13]. The prevalence of ESBL-producing strains varies geographically [2] and 52 

the prevalence of ESBL and AmpC producing P. aeruginosa is partially described in Pakistan. 53 

In the present study we highlight the compromised sensitivity of phenotypic assays used for 54 

the determination of ESBL and AmpC types in P. aeruginosa as compared to DNA microarray 55 

(Check-MDR) and PCR.  56 

2. Materials and Methods 57 

2.1 Setting  58 

The present work was performed in the Department of Microbiology, Basic Medical 59 

Sciences Institute (BMSI), Jinnah Postgraduate Medical Centre (JPMC) Karachi, Pakistan (a 60 

teaching hospital with >1500 beds) in collaboration with the Department of Microbiology 61 

University of Karachi, Dow University of Health Sciences, Karachi, and the UCL Centre for 62 

Clinical Microbiology, Royal Free Campus, London. 63 

2.2 Sample size  64 
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A total of 303 clinical specimens, that were growth positive, were processed from the 65 

patients admitted to ICUs at JPMC, Karachi, Pakistan during November 2015 to May 2016. The 66 

duplicated/repeated, Glucose fermenting Gram-negative bacilli and Gram-positive cultures were 67 

excluded.  The specimens were collected in accordance with the standard operating procedures 68 

[14]. The informed consent was obtained from the patient or attendant and ethical approval was 69 

taken from the institutional review board (IRB), JPMC Karachi (No. F.2-18/2014-70 

GENL/31649577/JPMC). 71 

2.3 Microbiological assays 72 

Clinical specimens (tracheal aspirates, urine, blood, sputum, pus) were processed using 73 

standard techniques and blood specimens were directly inoculated in blood culture bottles 74 

according to the standard protocols [14]. P. aeruginosa isolates (148) were selected for further 75 

analysis. 76 

2.4 Identification of P. aeruginosa 77 

 Isolates were initially identified by routine cultural characteristics and battery of 78 

biochemical tests. The oxidase test was performed by MicrobactTM oxidase strips (Oxoid, UK) 79 

[15]. These provisionally identified isolates were confirmed by the API 20 NE (Biomerieux, Marcy 80 

I’Etoile France) and re-confirmed by the matrix-assisted laser desorption ionization–time-of-flight 81 

mass spectrometry (MALDI-TOF-MS, Microflex, Bruker Daltonics) at the Centre for Clinical 82 

Microbiology, UCL, London, UK.   83 

2.5 Antibiotic susceptibility testing (AST)  84 

AST was determined by the disk diffusion technique using Mueller-Hinton agar (MHA), (Oxoid, 85 

UK) according to the recommendations of the CLSI. AST results were checked and compared with 86 
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the results of micro-broth dilution method and Etest as recommended by CLSI. P. aeruginosa 87 

ATCC 27853 was used as a quality control strain [12]. 88 

2.6 Phenotypic detection of AmpCs and ESBLs in P. aeruginosa 89 

AmpCs in P. aeruginosa was determined by a diffusion test, D-test [16]. Cabapenem 90 

[imipenem (IPM), meropenem (MEM) and amoxicillin-clavulanate (AMC)] discs were used as 91 

inducers, whereas, antipseudomonal cephalosporins and penicillin [ceftazidime (CAZ), 92 

piperacillin (PIP), and aztreonam (ATM)] were applied as substrate antibiotics (Oxoid, UK) as 93 

recommended by the CLSI for AST of P. aeruginosa [12]. After incubation at 35ᴼC for 16-18 94 

hours, the growth inhibition zones were determined. A difference of ≥2 mm at inducer side and 95 

non-inducer side was interpreted as AmpCs positive strain. 96 

The ESBLs were phenotypically determined by the double disc synergy test (DDST) with 97 

clavulanic acid (CA) in accordance with Laudy et al. [11] and CLSI recommendations [12]. The 98 

shoulder formation towards the AMC and any of CAZ, CRO, FEP, or ATM was interpreted as 99 

ESBLs producer.  100 

2.7 Detection of -lactamases by DNA microarray 101 

The ESBLs and AmpCs were determined by the Check-MDR CT103XL microarray kit (Check-102 

Points Health BV, Wageningen, Netherlands). This assay was performed at the Centre for Clinical 103 

Microbiology, Royal Free Campus, London, UK by following the manufacturer's instructions. The 104 

principle of this technique is based on the multiplex ligation detection reaction (LDR). It included 105 

two probes for the targeted resistance genes which make it superior to multiplex PCR. This 106 

microarray targeted various ESBL and AmpC genes including BEL 107 

CTX-M-groups, GES-ESβL, PER, SHVs, TEMs, VEB variants and ACC, ACT, CMY, DHA, 108 

FOX, MIR, MOX respectively [13]. 109 
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2.8 Detection of blaPER and blaVEB genes by PCR 110 

The primers for the PCR were designed according to the microarray results. PCR was 111 

performed using G-Strom-482, (Gene Technologies Ltd, UK) thermocycler and the amplification 112 

kit (Qiagen, Germany). PCR reaction cycles and the annealing temperature for VEB gene have 113 

been described previously [17]. The optimized PCR cycle time used in this work was 15, 0.5, 0.5, 114 

1 and 10 min for initial, denaturation, annealing, extension and final extension respectively at the 115 

different temperature (Table.1).  116 

Table 1 The primers and their cycles temperature in this work 117 

Gene Primer Sequence  *In. 

(oC) 

*Det. 

(oC)  

*An. 

(oC) 

*Ext. 

(oC) 

*FE. 

(oC) 

Size (bp) 

blaVEB F- GTTAGCGGTAATTTAACCAGATAG 

R- CGGTTTGGGCTATGGGCAG 

95 94 55 72 72 1070 

blaPER F- GCTCCGATAATGAAAGCGT  

R- TTCGGCTTGACTCGGCTGA 

95 94 53 72 72 520 

*In: Initial Temperature, Det: Denaturation, An: Annealing temperature, Ext: Extension, FE: Final 118 

Extension 119 

2.9 Data analysis 120 

The initial data was recorded in Microsoft Excel version 2010 and statistical analysis was 121 

conducted using SPSS (Statistical Package for Social Sciences, Microsoft Inc., USA) software, 122 

version 16.0 for Windows. The sensitivity and specificity of phenotypic assays were calculated by 123 

using the web calculator (https://www.medcalc.org/calc/diagnostic_test.php).  124 

 125 

3. Results 126 

3.1 Frequency of Gram-negative Bacilli 127 

Out of 303 samples 154 (50.8%) were positive for Pseudomonas spp., 108 (35.6%) for 128 

Acinetobcter baumannii, and 41 (13.5%) for other Gram-negative bacteria. P. aeruginosa was the 129 

most prevalent species amongst Pseudomonads (148/154, 96.1%); most of the isolates were 130 
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obtained from respiratory (61/148, 41.2%) and blood specimens (53/148, 35.8%), followed by pus 131 

samples (Table.2).  132 

3.2 Antibiogram of P. aeruginosa  133 

P. aeruginosa isolates were phenotypically resistant to most of the antipseudomonal penicillin and 134 

cephalosporins but a significant proportion was sensitive to piperacillin/tazobactam (PZT) 135 

(58/148, 39.2%). Resistance against the carbapenems (imipenem 74.3%, meropenem, 68.2%), 136 

ciprofloxacin (65.5%) and aminoglycosides (64.2%) was also higher (Table.3). All the P. 137 

aeruginosa isolates were resistant to ampicillin, ampicillin sulbactam and ceftriaxone. 138 

  139 
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Table 2 Frequency of P. aeruginosa in relation to the specimens (n=148) 140 

Specimen Disease P. aeruginosa  Percentage % 

Tracheal aspirates VAP/HAPa 61 41.2 

Blood  Septicemia  53 35.8 

Pus  Diabetic 

Foot/postsurgical wound 

18 12.2 

Urine  UTIs 11 7.4 

Sputum  Pneumonia 5 3.4 

Total  148 100 

aVentilator-associated pneumonia, Hospital-acquired pneumonia, bUrinary tract infections 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 
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Table 3 Susceptibility patterns of Pseudomonas aeruginosa by combined disc diffusion method 151 

and Etest, according to the recommendation of CLSI (n=148) 152 

Antibiotics class Number of   isolates (%) Total (%) 

Resistant   Intermediate  Sensitive  

Penicillins      

Piperacillin (PIP) 88 (59.45) 8(5.40) 52(35.13) 148(100) 

Piperacillin/tazobactam (PZT)         58(39.18) 11(7.43) 79 (53.37)  148(100) 

Cephalosporins 3rd Generation     

Ceftazidime  (CAZ) 96 (64.86) 2(1.35) 50(33.78) 148(100) 

Cephalosporins 4thGeneration     

Cefepime (FEP) 88 (59.45) - (40.54) 148(100) 

Carbapenems     

Imipenems (IPM) 110(74.32) 4(2.70) 34(22.97) 148(100) 

Meropenems (MEM) 101(68.24) 2(1.35) 45(30.40) 148(100) 

Aminoglycosides     

Amikacin (AK) 96 (64.86) 3(2.02) 49(33.10) 148(100) 

Gentamicin (CN) 95(64.18) 5(3.37) 47(31.75) 148(100) 

Tobramycin (TOB) 95(64.18) 5(3.37) 47(31.75 148(100) 

Quinolones      

Ciprofloxacin (CIP) 97(65.54) 3(2.02) 48(32.43) 148(100) 

Lipopetides (Polymyxins)     

Colistin (CT)* - - 148(100) 148(100) 

*Broth microdilution, CLSI (2018) guidelines 153 

 154 
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3.3 Phenotypic and genotypic detection of ESBLs and AmpCs 155 

Phenotypic assessment identified 8.8% (13/148) isolates of P. aeruginosa as ESBL 156 

producers, whereas the genotypic prevalence of ESBLs was 43/148 (29.05%). blaVEB was the most 157 

common marker (Fig.1). The microarray method (Check-MDR) did not detect AmpC producers; 158 

however, 38 (25.67%) isolates were positive for AmpC by the D-test (Fig. 2).  159 

3.4 Sensitivity and specificity of phenotypic methods 160 

The sensitivity and specificity of the double disc synergy method for ESBLs in P. 161 

aeruginosa, was 30.2% and 100%, respectively, compared to the microarray (Check-MDR). The 162 

data was also analyzed for the co-production of AmpC in genotypically VEB positive and 11.6% 163 

(5/43) isolates were found D-test positive for AmpC. 164 

  165 
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 166 

L     N P 1 4 5 10 11 12 13 30 31 32 37 39 50 51 55 74 

 167 

Figure 1  PCR results of  blaVEB gene (1070 bp), L, DNA ladder (1kb), N negative control, P, positive 168 

control, sample #. 5, 10, 30, 32,74 were positive and 1, 4, 11, 12, 13, 31, 37, 39, 50, 51, and 169 

55 were negative 170 

 171 

 172 

 173 

Figure 2 Phenotypic and genotypic compression of ESBLs and AmpC in P. aeruginosa 174 
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4. Discussion: 175 

The environment in ICUs favors survival of P. aeruginosa due to its ability to grow in 176 

nutritionally poor environments, resistance to commonly used disinfectants and other 177 

environmental factors such as favorable temperature and humidity. This increases the risk of 178 

transmission of multidrug resistant and carbapenem resistant P. aeruginosa to 179 

immunocompromised and critically ill patients [18, 19, 20]. The present study corroborated 180 

previous findings that the resistance to imipenem and meropenem was more prevalent than the 181 

antipseudomonal penicillins (piperacillin and piperacillin/tazobactam) and cephalosporins 182 

including ceftazidime and cefepime in P. aeruginosa [21]. The resistance may be attributed to the 183 

alteration of porins or repression of OprD, presence of intrinsic AmpCs and over-expression of 184 

MexAB-OprM and modification in efflux pump activity [22, 23]. Among these phenotypically 185 

tested strains, AmpCs producing P. aeruginosa showed higher prevalence (26.0%) than ESBLs 186 

(8.8%) producers in present study. However the results of microarray (Check-MDR) were in 187 

contrast to the phenotypic results, showing the higher prevalence of ESBL producing P. 188 

aeruginosa.  A similar pattern of ESBLs and AmpC has been reported from Pakistan but at lower 189 

frequencies [24]. Lower prevalence of ESBLs (7.4%) in P. aeruginosa has also been found in other 190 

countries, such as in Egypt [13]. The AmpCs were not found by the microarray (Check-MDR) in 191 

all the P. aeruginosa isolates as the microarray (Check-MDR) detects only plasmid mediated 192 

AmpC (pAmpCs). Previously microarray (Check-MDR) has been reported as 100% specific and 193 

sensitive for pAmpC targets [13]. 194 

VEB-1 was initially discovered in E. coli from Vietnam (1996), and then it was widely 195 

reported in Pseudomonas spp. [25]. In the present study, VEB appeared as the only ESBL in P. 196 

aeruginosa (28.4%) and it is may be endemic in this geographic location. Other variants of ESBLs 197 
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(CTX-M-15 and OXA-10) have also been reported from this region [26]. The ESBL in P. 198 

aeruginosa is not restricted to some types but it varies from VEB to OXA-like, GES, PER and 199 

CTX from various geographic regions [11, 15, 26, 27]. The higher frequency of blaVEB carrying 200 

P. aeruginosa in this study may be due to clonal spread in the ICUs of this hospital or these strains 201 

are present in environment. Woodford et al. also found higher prevalence of VEB harboring P. 202 

aeruginosa from the UK [25].  203 

In summary, the sensitivity of phenotypic methods is compromised due to the accumulation 204 

of different resistance mechanisms against the extended cephalosporins, which are used as 205 

substrate in the phenotypic test for ESBLs detection.     206 

5. Conclusion 207 

The phenotypic methods for the detection of ESBLs and AmpC have good specificity but 208 

poor sensitivity than genotypic tests. The VEB-type producing P. aeruginosa strains are common 209 

in this hospital. Other than ESBLs, resistance mechanisms are present in the P. aeruginosa which 210 

may be investigated at local level to understand the molecular mechanisms of resistance. 211 
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