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Background
Network models have become very popular in cell biology in recent years, proving 
their usefulness in many contexts. Example applications include gene regulatory, co-
expression and protein signalling networks. Most applications in cell biology continue 
to use static network models, including in the context of single-cell RNA-seq data [1, 
2]. However, processes such as development are inherently dynamic, and hence for such 
applications, a time-varying genomic network model would be more appropriate. Better 
inference of time-varying genomic networks will allow regulatory patterns to be inferred 
which better characterise dynamic biological processes such as development.

Developmental processes are characterised by transient expression of certain key 
genes at specific times. Morphogen gradients set up at particular developmental stages 
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provide specific information about location of cells, leading to appropriate patterns of 
gene expression in those cells. These gene expression patterns define cellular lineages, 
which can then be locked in place by persistent expression of, for example, homeobox 
and bHLH genes [3]. In the neural lineage, particular subtypes of fully differentiated 
neurons and glial cells are arrived at as a result of sequential expression of such posi-
tional markers and fate-determining genes [4–7].

In the cortex of mammalian embryos, early in neural development morphogen gradi-
ents driven by WNT and SHH signalling are set up defining location in the cortex. For 
example, SP8 and COUP-TFI are expressed most strongly at either end of a rostrodorsal 
to caudoventral gradient, and PAX6 and EMX2 expressed most strongly at either end 
of a rostroventral to caudodorsal gradient. The positional information from these mor-
phogen gradients leads to specific developmental trajectories being followed in human 
embryos, involving the expression of numerous other master regulators and positional 
markers such as NKX2-1, SOX6, COUP-TFII, GSX2, DLX1/2, and OLIG2 [8]. For exam-
ple, later in neural development, these trajectories can lead (depending on location) to 
the sequential expression RELN, TBR1, CTIP2, CUX1 and SATB2 [4], which determine 
the specification of excitatory neuron subtypes. For a more detailed background on the 
molecular mechanisms of neuronal specification, a thorough review is provided by Guil-
lemot and colleagues [9].

Cells can be characterised in terms of their progression through a dynamic process 
such as neural development according to their gene expression patterns. In this context, 
cells with similar gene expression patterns are characterised as being at a similar point 
along the developmental process, or trajectory. The notion of ‘developmental time’ of 
cells can be used to quantify the progression of those cells through the developmental 
process, or trajectory. Hence, developmental time can be characterised in terms of the 
gene expression patterns of the cells. It is also recognised that genomic network infer-
ence in single-cell data should be carried out on cells of specific types [10]. A time-var-
ying network model allows the dynamic genomic network structure to be inferred from 
relatively homogenous groups of cells, with each such group of cells corresponding to a 
different developmental time-point. In this model, each such group of cells represents a 
different time-step along the developmental process, or trajectory.

Any genomic network model based only on gene expression data can by definition 
only infer gene co-expression networks. In order to infer gene regulatory patterns, it 
is necessary to also include data which relates to the physical binding of the products 
of some genes to DNA of other genes. Previous work has been successful at infer-
ring these more complicated genomic network structures, by incorporating data of 
several different modalities [11, 12]. However, those models are very computationally 
intensive, and are appropriate only for small networks involving the influence of few 
tens of gene regulators (such as transcription factors) on a few hundreds of genes. On 
the other hand, the method which we propose here is able to infer genomic regula-
tory patterns from genome-wide data, based on the expression of tens of thousands 
of genes and / or transcripts. However, we also note that to confirm any novel find-
ings of marker genes or transcription factors important in neurogenesis, any anal-
ysis using this method will need to be coupled with experimental verification. This 
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would require a combined dry/wet lab setting, which is beyond the scope of this 
investigation.

In this work, we propose a method to infer dynamic genomic network structure, fus-
ing single-cell RNA-seq data from specific experiments (i.e., gene expression data) with 
publicly-available DNase-seq data (i.e., DNA-binding data). This paper is organised as 
follows. In “Methods” section, we define our model, and describe our inference method. 
In “Results” section, we present the results of applying our model/method to data from 
human fetal cortical development. Then in “Discussion” section, we discuss our findings 
and their wider implications.

Methods
Model overview

We infer genomic network structure by fitting a sparse linear model locally around each 
‘target gene’. This sparse linear model has the log gene expression for target gene i at 
time t as the response, and the log gene expression for all genes j  = i genome-wide at 
time t as potential predictors; variables are standardised before model fitting. From this 
genome-wide choice of potential predictor genes, the sparse model fit chooses a small 
set of predictor genes which together are able to predict the expression level of the target 
gene i. This chosen set of genes are then used to infer the local network structure around 
the target gene i. To infer the global network structure, we infer the local network struc-
ture around each target gene i in turn.

As well as gene expression data, we also use DNA-binding data to inform the sparse 
model fits. We use this DNA-binding data to reduce the sparsity of the model fit for 
predictor genes for which there is evidence of a physical DNA interaction between the 
gene-product of predictor gene j with the DNA of target gene i. This means that the 
sparse model fit is more likely to infer genomic network interactions between predictor 
genes and a target gene whenever there is evidence of a physical interaction between the 
gene product of the predictor genes and the DNA of the target gene.

Time‑varying network model

Following earlier work [13], denoting log(gene expression+1) at time t as yt for the tar-
get gene i and xt for the p− 1 other genes, the model is defined as:

The time-varying coefficient vector bt,: encodes the time-varying local network structure 
at time t around the target gene. If there is a non-zero element of this vector at bt,j (after 
thresholding to remove trivially small values), then a network edge is inferred between 
genes j and i. The row-vector bt,: is a row of the matrix b , and hence b encodes the time-
varying local network structure around the target gene i for all times t ∈ {1, . . . ,T }.

Assuming local decomposability of the global network structure as in [14] allows the 
local network structure to be inferred separately around each target gene i. Also assum-
ing Gaussian distributed errors with constant variance leads to the log-likelihood

(1)yt = a+ bt,:x
⊤
t + ǫt .
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where the subtraction of the � term leads to ‘regularisation’, or ‘penalisation’ (of the 
model likelihood). A special case of the model, which assumes no DNA-binding data is 
available to adjust local sparsity, defines � as

The first term of � , i.e., 
∑T

t=1 �bt,:�1 , encourages choosing a smaller number of regulator 
genes, minimising the number of non-zero entries in bt,: , which is referred to as ‘sparsity 
within time’ [13]. The second term of � , i.e., 

∑T
t=2 �bt,: − bt−1,:�1 , encourages smooth 

time-variation of bt,: , which is referred to as ‘sparsity across time’ [13].
The type of likelihood penalisation specified by � (Equation (3)) falls within the 

generalised lasso framework [15], meaning that � can be written as

where vec(·) is the vectorisation operator (which vectorises the (p− 1)× T  matrix b⊤ 
to a (p− 1)T × 1 vector), and � controls how sparse the model is. The penalty matrix 
D ∈ R

m×(p−1)T controls which elements of b are sparse, as well as controlling which dif-
ferences between elements of b are sparse. Each row of D defines a different component 
of the sparsity. If exactly one element of a row of D is non-zero, then this leads to a con-
tribution to the sparsity within time, i.e., sparsity for the variable and time-point at the 
corresponding location in vec(b⊤) . If exactly two elements of a row of D are non-zero, 
are of equal magnitude but opposite sign, and correspond to locations in vec(b⊤) for the 
same variable at adjacent time-points, then this leads to a contribution to the sparsity 
across time. These are the only scenarios for this model in which any element of D is 
non-zero.

To achieve sparsity within time, there must be a separate row in D for each gene 
j for each time-point, with one non-zero element in each of these rows. The level 
of sparsity can be varied for each gene j by varying the magnitude of these non-
zero elements, as long as the magnitude of the non-zero elements is the same for all 
T rows of D which correspond to gene j. Similarly, to achieve sparsity across time, 
there must be a separate row in D for each gene j for each pair of adjacent time-
points t − 1 and t, with t ∈ {2, . . . ,T } . Each of these rows must have exactly two 
non-zero elements with the same magnitude and opposite signs, at locations cor-
responding to times t − 1 and t for gene j. Again, the level of sparsity can be varied 
for each gene j by varying the magnitude of these non-zero elements, as long as the 
magnitude of the non-zero elements is the same for all T − 1 rows of D which corre-
spond to gene j. In practice, we set the magnitude of the non-zero elements to be the 
same for all 2T − 1 rows of D which correspond to gene j—this covers both sparsity 
within and across time.

(2)ℓ = −

T
∑

t=1

(yt − bt,:x
⊤
t )

2 −� ,

(3)� = �

(

T
∑

t=1

�bt,:�1 +

T
∑

t=2

�bt,: − bt−1,:�1

)

.

(4)� = ��D vec(b⊤)�1,
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Using DNA‑binding data to adjust local sparsity

To set the magnitude of the non-zero elements of the rows of D which correspond to 
gene j, we use the evidence available in DNA-binding data for any interaction of the pro-
tein-product of gene j with the promoter DNA of the target gene i. We set these magni-
tudes from model probabilities which quantify the evidence in the DNA-binding data 
for this protein-DNA interaction. These fitted model probabilities can come from any 
model, meaning that the framework presented here is independent of the model of the 
DNA-binding data which is used. Other authors have previously used such a notion of 
model independence for data-fusion in genomics [12].

The magnitude of the non-zero elements of D defaults to 1 whenever there is no evi-
dence for the binding of the protein-product of gene j to the promoter DNA of the target 
gene i. This is typically the case when, for example, gene j does not code for a transcrip-
tion factor. When there is evidence of binding of the protein-product of gene j to the 
promoter DNA of the target gene i, the magnitude of the corresponding elements of D 
is decreased below 1. The amount by which this magnitude is decreased varies accord-
ing to the strength of evidence of DNA binding, with a minimum magnitude of 1/η (for 
η > 1 ) when the binding evidence is strongest. This means that the sparsity is decreased 
for gene j according to the strength of evidence of an interaction between the protein 
product of gene j with the promoter (or other regulatory) DNA of the target gene i.

We assume that the model of the DNA-binding data gives binding probabilities 
pji ∈ [0, 1] for the interaction of the protein-product of gene j with the promoter DNA of 
target gene i. Then, we want pji = 1 and pji = 0 to correspond to magnitudes of 1/η and 
1 respectively, for the non-zero elements in the rows of D which correspond to gene j. 
For 0 < pji < 1 , we want these magnitudes to scale proportionally to log(pji) . The intui-
tion behind this proportionality of scaling is simply that by referring to the log-likeli-
hood in Eq. (2), we can observe that the sparsity term � is on the scale of log-probability. 
Hence we want any additive components of � (as in Eqs. (3–4)) to scale proportionally 
with log-probabilities.

To achieve this scaling between 1/η and 1 proportionally to log(pji) , we set the magni-
tude of the non-zero elements of the rows of D which correspond to gene j as

for j ∈ {j : pji ≥ pmin, } , where pmin > 0 is the minimum model probability of interest. 
We set the magnitude of the non-zero elements of D to be 1 otherwise. Thus, η repre-
sents the factor by which � is scaled down from gene j to gene j′ , when pji ≤ pmin and 
pj′i = 1 . Like � , the scaling factor η > 1 is set by the user. We have found that η = 4 
works well in practice, and we previously found that � = 20 is optimal [13].

Modelling co‑regulation to achieve consistency in sparse model fits

The lasso is a linear model with L1 penalisation, such as in Equation (3) where � is com-
prised of � · �1 terms. It is well known that lasso models may lead to inconsistent results, 
if the same model is fit several times to the same data under slight perturbations of the 
set of variables available to the model [16]. This inconsistency happens because there 

(5)
1

η
+

η − 1

η
·

log(pji)

log(pmin)
,
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may be many subsets of the available variables which produce model fits which are virtu-
ally as good. A novel way to overcome this inconsistency in the context of genomic net-
work inference is to look for genes which are consistently inferred as regulators of many 
genes in a particular gene-set.

In the time-varying genomic network model described here, a gene is inferred as a 
regulator of a target gene i at time t if it is included in the genes j which are selected as 
predictors of target gene i according to the non-zero model coefficients |bt,j| > 0 . Genes 
j which are inferred as predictors of target gene i are then inferred as being connected 
to this target gene in the local network structure around this target gene. If a particu-
lar gene j is inferred in this way as being connected to many such target genes i, where 
those target genes make up a particular gene-set, then consistency is demonstrated in 
the regulation of the target genes i of this gene set by the gene j. Such a gene-set could 
correspond to, for example, the marker genes known to specify particular cell-types.

Results
Inference of developmental pseudo‑time

The main neuro-developmental data-set analysed here [17] consists of transcriptome 
measurements from single cells from developing fetal brains. Some of these cells are 
neural stem-cells, some are fully differentiated neurons and other cell types, and there 
is a whole spectrum of cells in between. No information is available for each cell other 
than its gene expression measurements. We inferred a time-ordering of all the cells 
before model fitting: this time-ordering gives the relative position on a ‘developmental 
trajectory’ which goes from neural stem cell (inferred time t̂ = 1 ) to fully differentiated 
cell type ( ̂t = T  ). These developmental trajectories also branch with lineage, as cells are 
specified and differentiate into various different cell types. A time ordering inferred like 
this is often referred to as ‘pseudo-time’. Several methods have been published previ-
ously, to carry out this pseudo-time inference [18–21]. We have followed a common 
theme amongst these methods, summarised as follows: (1) Dimensionality reduction 
e.g., by t-SNE (t-distributed stochastic neighbour embedding) [22]. (2) Trajectory and 
branch inference (often after some clustering, to assign cells of the same phenotype to 
the same pseudo-time point). (3) Biological inference (using prior knowledge to relate 
trajectory extrema to known cell-types).

Figure  1 shows a developmental pseudo-time ordering according to the strategy 
described above, based on the gene-expression measurements for the 2136 cells of the 
main neuro-developmental data-set analysed here [17]. The trajectories in Figure 1 are 
inferred from a minimum spanning tree, where the root represents the location of the 
stem cells and the leaves represent the fully differentiated cell types. This minimum 
spanning tree is fitted to the medioids of clusters obtained by the ‘partition around 
medioids (PAM)’ method, resulting in T = 8 . The visualisation is via a t-SNE projection 
into three dimensions. Figure 1 also shows the cells coloured according to mean expres-
sion of marker genes identified for different cell-types (Additional file 1: Table S1). N.B., 
these marker genes (provided by domain-experts) were not used in any way to infer the 
pseudo-time ordering or the developmental trajectories, other than to determine which 
end of the trajectory is the stem cell. Hence these colourings blindly verify the appropri-
ateness of the inferred developmental pseudo-time orderings.



Page 7 of 19Bartlett ﻿BMC Bioinformatics          (2021) 22:301 	

Fig. 1  Inferred lineage trajectories, together with cellular identities for verification of trajectories. The six 
detected terminally-differentiated neuronal subpopulations are shown in green, with a red outline for the 
one analysed further in “Inferring local structure with the proposed time-varying network model” section. vRG 
and oRG refer to ‘ventricular radial glia’ and ‘outer radial glia’ respectively
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Inference of promoter‑DNA binding

In order to fit the time-varying genomic network model of  “Methods” section, we need 
to obtain probabilities quantifying the evidence for the interaction of the protein-prod-
uct of gene j with the promoter DNA of target gene i. We denote these probabilities 
pji ∈ [0, 1] , and we estimate them as the posterior probabilities of this protein-DNA 
interaction using the CENTIPEDE model [23]. We use the CENTIPEDE model with 14 
DNAse-seq data-sets from human fetal brain tissue, downloaded from ENCODE (www.​
encod​eproj​ect.​org). This provides us with the posterior probabilities of each of 415 tran-
scription factors j interacting with the DNA of 13907 target genes i. To fit the CENTI-
PEDE model, we specify that binding should be within 5000 base-pairs (5kbp) upstream 
of the transcriptional start site, with a 90% minimum probability weight matrix match 
score. These probability weight matrices were downloaded from the JASPAR database 
(jaspar.​gener​eg.​net).

Inferring local structure with the proposed time‑varying network model

The developmental trajectories inferred according to “Inference of developmental 
pseudo-time” section were used to obtain a time-stamp for each cell. Using these time-
stamps, together with with the promoter-DNA binding inference of “Inference of pro-
moter-DNA binding” section, the time-varying genomic network model of “Methods” 
section was fit to the main neuro-developmental single-cell RNA-seq data-set [17]. This 
model fit infers the local network structure around a target gene, by choosing which 
genes best predict the expression of the target gene. The model makes this choice from 
all other 10774 genes, genome-wide, which are present in both the main neuro-devel-
opmental data-set and the DNA-binding data-set. This model fitting procedure takes 35 
minutes on one processor core (MacBook Pro, 2019, 2.6 GHz). The model can be fitted 
to each target gene in turn from a panel of genes of interest, or genome-wide, to give the 
local network structure around each target gene. We note that this procedure can easily 
be run in parallel on multiple cores for a large panel of target genes of interest. Figure 2 
shows the inferred time-varying network structure, which resulted from fitting a single 
model around the target-gene SATB2.

The gene SATB2 is well known for defining the identity of certain types of neuron [4, 
24]. As would be expected for such a gene, network edges (representing direct or indi-
rect genomic regulatory effects) appear at later times (Fig. 2), as the cells take on their 
neuronal identities. These network edges connect SATB2 to several genes, which are all 
relevant to neuronal development, as follows. At the final time-point (Fig. 2), NEUROD2 
is recognised as the prominent neurogenesis gene ‘neurogenic differentiation factor 2’ 
[25]. The transcription factor NFIX is essential for neural development [26], and has a 
role in both embryonic and adult neurogenesis [27]. The transcription factor TFAP2C is 
part of the core cortical development programme [28]. The transcription factor LHX2 is 
known to promote neuronal as opposed to glial fate [29], as well as regulating the tim-
ing of cortical neurogenesis [30]. MEIS2 is known as a co-factor of the ventral neural 
fate marker PAX6 in neurogenesis [31] (PAX6 being one of the most important genes in 
neurogenesis [32]). The gene RBFOX1 is well known for regulating alternative splicing 
in neuronal development [33, 34]. The gene DCC encodes an axon guidance receptor 

http://www.encodeproject.org
http://www.encodeproject.org
http://jaspar.genereg.net/
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which is important for the migration of developing neurons [35]. Then at the penulti-
mate time-point (when the cells may still be proliferating), the transcription factor MAX 
is recognised as being involved with cellular proliferation [36]. Also, the gene CCNJ is a 
cyclin, and thus it is involved in cellular proliferation via its role in the cell-cycle.

Inferring network structure using the thresholded correlation matrix: a comparison

A very popular way to infer gene co-expression network structure is by thresholding the 
gene expression correlation matrix, e.g. at |ρ| ≥ 0.5 , where ρ is the Pearson or Spear-
man correlation coefficient. This method of inferring genomic networks is often used 
in the most high-profile studies [37]. We compare this thresholded correlation matrix 
method of inferring genomic networks, with the proposed time-varying genomic net-
work inference method. To make this comparison, we have inferred the local network 
structure around the target gene SATB2 by thresholding the correlation matrix of the 
cells assigned to the final time-point in the developmental trajectory (i.e., T = 8 in 
Fig. 2). If we choose to threshold at |ρ| ≥ 0.5 , we do not find any edges in the local net-
work structure around SATB2 from this method. So instead, we threshold at |ρ| ≥ 0.4 . 
The local network structure inferred in this way is shown in Fig. 3. Notably, there are no 
well-known neuro-developmental transcription factors amongst the genes in this local 
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Fig. 2  Time-varying local network structure inferred around the target gene SATB2 with the model of 
“Methods” section. Genes with transcription-factor binding data are shown in green, and other genes are 
shown in blue
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network structure. Many (but not all) of the genes in this local network structure have 
been associated previously with neural development and brain function, although the 
functional role is often less clear than those shown in Fig.  2. The role of the genes of 
Fig. 3 is summarised as follows. DOCK7 is thought to help regulate radial glial prolif-
eration [38] (radial glia are an important type of cortical stem cell). MSI1 is known to 
be expressed in the sub-ventricular zone of neural stem cells [39]. RPL35, SYT11 and 
DMTF1 have been associated in a previous bioinformatic analysis with neurogenesis 
[40]. CNTLN has been correlated with RB-related protection from cell division during 
neurogenesis [41]. FGFBP3 has been previously associated with radial precursor cells 
[28]. TOP2A has previously been found to be expressed in the fetal telencephalon [42]. 
CELF5 is known to be expressed in the brain [43]. PCDH9 is a procadherin which may 
be expressed in the embryonic central nervous system [44]. PSIP1 has previously been 
associated with hereditary hearing loss [45]. Also, expression of PHLDA1 has been cor-
related with intractable epilepsy [46]. We also note that the inference of these gene co-
expression network patterns is static, i.e., they do not vary with time; in other words the 
co-expression network is constrained so that no variation with time is possible. By using 
a softer constraint over time, smooth variation with time is possible.

Consistent regulation across excitatory neuron markers

The model used to infer these results (Eqs. (2)-(3)) is based on the lasso [47], which 
selects a smaller set of predictor variables (i.e., genes in this case) for the fitted model, 
from the full set of variables available (i.e., genome-wide in this case). A well known 
property of lasso-based models is that there may be several possible sets of predictor 
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Fig. 3  Local network structure inferred around the target gene SATB2 from the correlation matrix of cells 
assigned to the final time-point
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variables which can be chosen by the model, each of which fit the data virtually equally 
well. Recent work has tried to overcome this issue, by looking for consistency amongst 
the chosen sets of predictor variables across many model fits [16]. In that work, the 
authors fit the model to several slight variations of the sets of predictor variables which 
are available to choose from, to find predictor variables which are chosen consistently 
across these model fits. An alternative approach which we use here is to fit the model to 
several different target genes, looking for predictor genes which are chosen consistently 
across these model fits. Importantly, these target genes are all taken from a particular 
gene-set of interest. This means that consistency across several model fits informs us 
about genomic regulatory processes which are fundamental to that gene-set of interest. 
Such a gene-set, comprising a highly curated selection of genes which is known to be 
important for excitatory neuronal identity, is given in Additional file  1: Table  S2. Fig-
ure 4 shows the numbers of genes from this excitatory neuron gene-set which are found 
to be regulated by different transcription factors at the final time-point in the inferred 
dynamic network structure (the list of genes inferred as regulated by each TF is shown 
within the relevant bar of Fig. 4).

The transcription factors which appear in Fig. 4 are found to consistently regulate the 
genes of the excitatory neuron gene-set (Additional file 1: Table S2) and are known as 
being important for neural development, as follows. NEUROD2, LHX2, NFIX, MEIS2 
and TFAP2C have been discussed already (“Inferring local structure with the proposed 
time-varying network model” section). Then, TCF4 is thought to be important in corti-
cal and hippocampal neurogenesis [48]. STAT3 is thought to be important for neuronal 
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differentiation [49], and more generally the JAK/STAT pathway is known to be impor-
tant in the transition from neurogenesis to gliogenesis [50]. NFIA is best known as a 
transcription factor involved in the onset of gliogenesis [51] (i.e., following neurogen-
esis). Hence, the role of NFIA during neurogenesis is likely to be repressive. The TEAD 
transcription factors are known to have a role in neural progenitor specification [52], 
although a specific role for TEAD1 in neurogenesis has not yet been widely reported. 
Interestingly however, recent work has shown this gene has an important role in cell 
migration in the aggressive brain cancer glioblastoma [53]. Furthermore, TEAD1 has 
also been shown to be part of a neuronal transcriptional network which is fundamen-
tal to the progression of the pediatric brain cancer medulloblastoma [54]. SOX15 is not 
yet well known in neural development, although the SOX family of transcription fac-
tors are well known as co-factors in lineage specification throughout development [55]. 
HMBOX1, also known as HOT1, is a gene coding for a protein which binds to telomeres 
[56]. It’s unclear what its role could be in neurogenesis, although it may be protective as 
newly generated neurons are known to be hypersensitive to telomere damage [57].

Inferring regulation by NEUROD2

The transcription factor identified in Fig. 4 as regulating the largest number of excita-
tory neuron genes is NEUROD2. Figure 5 shows the local network structure inferred, 
defined as the genes potentially regulated by NEUROD2. The network structure shown 
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in Fig. 5 is obtained from several model fits, each for a different target gene potentially 
regulated by NEUROD2. This is in contrast to the results for SATB2 in “2.3” section, 
which is obtained from just one model fit around the target gene SATB2.

The genes potentially regulated by NEUROD2 (Fig.  5) are all of interest to neural 
development. CUX1, like SATB2, is an important marker of specific neuronal sub-
types [4]. NEUROG2 is important for cortical laminar fate specification [58]. RORB is 
involved in a mutually-repressive interaction with BRN1/2 to specify cortical laminar 
fate [59]. SOX5 has an important role in neuronal migration and differentiation [60]. ID2 
is required for specification of certain types of neuron [61]. Finally, ADCY1 is a neuronal 
protein thought to have an important role in neuronal signal transduction and synaptic 
plasticity [62].

Consistent regulation across genes significant in a neuronal subpopulation

Similarly to the results of “2.5” section (shown in Fig. 4), we can also look for consist-
ency of potential transcriptional regulators across target genes taken from a much larger 
gene-set. To identify such a gene-set, we used LIMMA and edgeR [63, 64] to identify 
genes which are significantly differentially expressed in a group of cells of interest, when 
compared to all the other cells in the data-set. We defined this group of cells of inter-
est as those cells assigned to the final time-point in the developmental trajectory. This 
group of cells is expected to represent a particular excitatory neuronal subtype of inter-
est. Significant genes were defined here as those genes with false discover rate-adjusted 
p < 0.05 in the differential expression analysis, which also increased their expres-
sion level in the cells of interest compared to all the other cells. Figure 6 shows the top 
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transcription factors in terms of the numbers of significant genes they are inferred to 
potentially regulate (the list of genes inferred as regulated by each TF is given in the 
Additional file 1).

The transcription factors which appear in Fig. 6 are all of interest to neural devel-
opment. Several have been discussed already, and the rest are now discussed as 
follows. At the top of the list is TCF4. The role of TCF4 in neural development is 
not currently well understood, although loss-of-function mutations of this gene 
have been shown to be responsible for severe neurodevelopmental disorders [65], 
as well as conferring risk of schizophrenia [66]. However, recent work points to an 
important role for TCF4 in cortical and hippocampal neurogenesis [48]. Interest-
ingly, HIC2 has no currently reported role in neurogenesis, although parallels have 
recently been drawn between the role of HIC2 in cardiovascular development, with 
the role of BRN3A in neural development [67]. MEIS3 is thought to mediate WNT-
driven organisation of the neural plate in embryogenesis [68]. TCF3 is known as an 
inhibitor of neurogenesis, although interestingly this was reported previously in the 
spinal-cord [69]. JUND is known to have a role in the brain [70], although it may 
not be involved in development. The zinc-finger gene ZNF384 has previously been 
reported as having a role in neurogenesis, as part of the gene regulatory circuitry of 
the ventral neural fate marker PAX6 [71]. THAP1 has previously been reported to 
have a role in neural development [72]. MEIS1 is known to be an important devel-
opmental gene [73]. MGA is ‘MAX gene-associated protein’; MAX is a transcription 
factor involved with cellular proliferation [36].

Coregulation by NEUROD2 and TCF4

Figure  7 shows a particular co-regulated subnetwork structure of interest, at the final 
time-point in the inferred dynamic network. This subnetwork structure comprises the 
neuronal identity genes which are inferred as being potentially regulated by NEUROD2 
and TCF4. It is clear from Fig. 7 that many of these genes are co-regulated by both these 
transcription factors.

There are 29 genes connected to both NEUROD2 and TCF4 in the subnetwork of 
Fig. 7, indicating potential co-regulation by this pair of transcription factors. These 29 
genes are: CALCOCO1, CHRDL1, CPSF4, DOCK4, FAM110A, FAM126A, FBLN1, 
GNG3, HDAC2, HECTD4, IGDCC3, ITPR2, KIAA1324, LRP8, MEX3A, NCS1, NFASC, 
PGAP1, RBCK1, RBFOX2, RPL37A, SCAF1, SEZ6, SIDT2, SNAP25, TMEM86A, TRI-
OBP, YWHAG, and ZDHHC20. Several of these are known to be of particular inter-
est, as follows. The gene CHRDL1 promotes neuronal differentiation by inhibiting the 
important neural development gene BMP4 [74]: the ‘bone morphogenetic proteins’ 
(BMPs) have a fundamental, but complex, role in cellular specification throughout neu-
ral development [75]. The chromatin remodelling gene HDAC2 is ‘histone deacetylase 2’, 
which has been shown to control the progression of neural precursors to neurons during 
neural development [76]. The gene KIAA1324 encodes a transmembrane protein, and 
has been shown to be differentially expressed between the ventricular and subventricu-
lar cortical zones [77]. RBFOX2 regulates the alternative splicing of many important 
neuronal transcripts [78]. DOCK4 is thought to play a fundamental role in formation of 
neurites and dendrites [79, 80]. NFASC is thought to be involved in neuronal projection 
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morphogenesis [81]. LRP8 is thought to be involved in neuronal migration via its inter-
action with RELN [82]. GNG3 is expressed in proliferating neural progenitors and 
immature neurons [83]. IGDCC3 is associated with a committed neuron phenotype [84]. 
FBLN1 is required for morphogenesis in neural crest-derived structures [85]. SNAP25 is 
involved in vesicular fusion and neurotransmitter exocytosis, with different isoforms in 
developing and adult tissue [86].

Discussion
In this paper, we have presented a new dynamic genomic network model, for inferring 
patterns of genomic regulatory influence in dynamic cell-biological processes such as 
development. We have applied this method to genome-wide data from human fetal 
cortical tissue, finding genomic interactions which are known to be fundamental to 
excitatory neuron specification. Our method compares very favourably with equivalent 
findings which we obtain from the same data using a popular method for network infer-
ence based on the data correlation matrix.

Our proposed method uses a large repository of publicly-available chromatin acces-
sibility (DNAse-Seq) data, to identify transcription-factor (TF) bindings events that are 
possible in the neural lineage. It then uses expression data to infer potential regulatory 
relationships occurring at different times, guided by the possibilities identified in the 
chromatin accessibility data. We note that a potential regulatory relationship can still 
be identified if the evidence in the expression data is strong enough, even without cor-
responding evidence in the chromatin accessibility data. The evidence in the chromatin 
accessibility data of the possibility of binding of the TF to the regulatory DNA of the 
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target gene effectively reduces the threshold required in the evidence from the expres-
sion data, in order to infer a regulatory relationship between these genes.

We have applied our method to data from human tissue, and have interpreted our 
findings based on knowledge available from the wider literature. Much of what is known 
about neural development and neurogenesis in mammals is the result of rodent studies. 
While the neurodevelopmental principles in humans are likely to be similar to rodents 
in many ways, there must also be key differences due to the much greater size of the 
human and more generally the primate cortex. Hence, the findings from earlier studies 
in rodents which we have sometimes cited can only be taken as an indication of genomic 
regulatory interactions which may take place in human neural development, and par-
ticularly cortical neurogenesis.

Recent advances in single-cell genomic profiling include single-cell chromatin acces-
sibility data, including where these measurements are obtained from the same cells as 
the single-cell RNA-seq measurements. In principle, the methods presented in this man-
uscript should be directly applicable to such data-sets. However, we note that as sin-
gle-cell RNA-seq data-sets become larger in size, some trade-off is necessary between 
run-time and the size of the data-set.

Our method is computationally efficient, and can be applied to genome-wide data with 
tens of thousands of transcripts. However, we note that in order to define and describe 
genomic interactions which are more specifically mechanistic, a finer-grained model will 
be needed. This finer-grained model will necessarily be more complex, and thus would 
not be feasible to run at this genome-wide scale. Hence, the method we propose is most 
appropriate for a course-grained genome-wide discovery or exploration stage. This dis-
covery stage can then be followed by the finer-grained stage of mechanistic modelling, 
which should also incorporate experimental validation.

Conclusions
The method we propose here provides a new mathematical and computational tool, 
which could be used together with targeted experiments in order to reveal important 
new functional genomic regulatory processes in mammalian development.
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