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Abstract 

This thesis is about the growth and placement of dopants in silicon semiconductor devices 
and specifically acceptor dopants as device dimensions enter the nanoscale.  Single-atom 
donor dopant devices have already been demonstrated in the laboratory.  Using density 
functional theory (DFT) and the aluminium atom we now show how acceptor sites might be 
fabricated and characterize their electronic behaviour. 

The thesis opens with a review of the physical basis of statistical doping and the operation 
of the silicon CMOS transistor which is the most widespread microfabricated device by a 
wide margin. We show how downscaling requires ever-increasing accuracy in dopant 
placement and illustrate using some current process techniques.  Next, we describe some 
prototype single-dopant devices and the chapter concludes with a description of a 
phosphorus nuclear spin qubit and its application. 

Chapter 2 outlines the theoretical basis of the DFT nanostructure models found in later 
chapters and chapter 3 presents some elementary calculations intended to validate the local 
DFT environment.  Chapters 4, 5 and 6 are based on published papers produced during the 
course of this work and listed on page 11.  In chapter 4 we introduce patterned atomic layer 
epitaxy (PALE), an experimental fabrication technique for Si nanostructures.  Chapters 5 and 
6 describe how PALE could be applied to locate Al dopant atoms in an Si substrate.  The final 
chapter offers some calculations indicating the electronic behaviour of this dopant when 
embedded in Si nanostructures of various kinds. 
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academic.  Accordingly, most of the material has already been published in the Journal of 
Physics and Condensed Matter.  The knowledge shared in this way builds on existing results 
in the precision doping field, which in due course will become established concepts in the 
semiconductor and nanoelectronics disciplines.  To maximize the immediate impact, we 
selected our topics in liaison with Zyvex Labs Inc., a commercial research organization 
currently developing atomically precise manufacturing (APM) technology.  Therefore, we are 
also confident of the practical relevance of our work.  Moreover,  recent results showing that 
boron is ill-suited to precision doping (Škereň et al., 2020) should stimulate interest in 
aluminium, as we propose here.  

More broadly, the context of this work is the demise of Moore’s law and the ending of a 50 
year period of exponential growth in computing power brought about by downscaling and 
large scale integration.  Over this period key actors (e.g. Metcalfe, 1995; Ballmer, 2007) have 
made predictions which now seem hopelessly mistaken.  However, an earlier forecast 
(Feynman, 1960) appears prescient.  He calculated that a facsimile of the Encyclopedia 
Britannica could be written on the head of a pin with room to spare, as this area would 
provide at least 1000 surface atoms to encode each ‘dot’ of graphical data in the 
Encyclopedia.  Feynman’s example implies a bit density of about 1010 bits/mm2.  In 1970 
Intel announced the first integrated circuit memory, a kilobit DRAM having a density of 102 
bits/mm2.  Since then, sustained development has produced gigabit chips having the 
anticipated pinhead densities, a huge technical accomplishment and principal driver of the 
revolution in computer usage and the emergence of ‘Big Tech’.  

Earlier disruptive technologies such as printing and nuclear fission caused turbulence, but 
society adjusted and eventually found a new equilibrium.  As computer and information 
technologies have matured and become pervasive, their harmful consequences are clearly 
visible.  These include reduced opportunity in labour markets, income inequality and 
corruption of the political process by social media.  Equilibrium has not returned and 
predicting the future remains a risky business. 
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Chapter 1 

Introduction 

This thesis is about the growth and placement of dopants in silicon semiconductor devices 
as the scale of those devices is reduced.  In the limit of downscaling we can anticipate devices 
containing individually addressable dopant atoms.  Silicon-based devices based on donor 
dopants have already been demonstrated in the laboratory.  Using density functional theory 
(DFT) we now show how acceptor sites might be fabricated and characterize their electronic 
behaviour. 

In this chapter we review the physical basis of silicon (Si) doping and the operation of the 
CMOS transistor which is the most voluminous microfabricated device by a wide margin.  We 
show how downscaling requires ever-increasing accuracy in dopant placement and illustrate 
using some current process techniques.  Next, we describe some prototype single-dopant 
devices and conclude with a description of the rather more speculative nuclear spin qubit 
and its application.   

1.1 Crystalline silicon 

Although DFT analysis can in principle reveal all the electronic properties of Si that are of 
interest, it is helpful to start from a qualitative viewpoint.  The structure of Si in the solid 
state (MP/°C ≈ 1420) is determined by the nature of its inter-atomic bonding which in turn 
depends on its (Ne)3s23p2 electronic configuration. One of the 3s orbitals is notionally 
‘promoted’ to the 3p level yielding a (Ne)3s↑3px3py3pz configuration.  The 3s and 3p orbitals 
now hybridize to form four sp3 orbitals, each containing one valence electron and identical 
except for their orientation in space.  These hybrid orbitals overlap with those of 
neighbouring atoms to form covalent bonds, so that each atom has four neighbours 
arranged in a tetrahedral coordination.   Overall stability is increased, more than offsetting 
the initial hybridization cost.   When large numbers of Si atoms bond in this way they form a 
homogeneous, periodically ordered structure or, in other words, a crystal.  However, perfect 
ordering is rarely achieved throughout a sample: it will usually have a ‘polycrystalline’ state 
consisting of many microscopic zones of perfect ordering separated by defects and 
impurities.      
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Crystalline silicon has the same structure as carbon atoms in a diamond crystal, consisting of 
two interleaved face-centred cubic lattices, with their origins at (0,0,0) and (¼, ¼, ¼).  This 
organization (figure 1.1) yields a packing density of 34%, with 8 atoms in the unit cell and a 
lattice dimension a ≈  5.43 Å.  The relatively open structure encourages the fast diffusion of 
impurities (dopants) in silicon. 

1.2 Band gap formation 

In solid state physics the band gap in a crystal (a prerequisite of semiconductor behaviour) 
is attributed to Bragg reflection of the electronic wavefunctions by the ionic cores (Kittel, 
1995).  The reflections cause standing waves and accumulations of electrons having differing 
potential energies.  This energy difference is the band gap and its width depends on the 
strength of the periodic ionic potential.  However, we can continue to view the silicon crystal 
as a large molecule and borrow from the molecular orbital (MO) theory of chemistry to 
account for the band gap and basic semiconductor behaviour. 

In the MO model each pair of overlapping hybridized orbitals are linearly combined to form 
a bonding and an anti-bonding orbital.  The bonding orbital corresponds to constructive (in-
phase) overlap and the anti-bonding orbital to a destructive (out-of-phase) overlap.  In 
aggregate, all the bonding orbitals lie in a group of closely spaced energy values or valence 
band.  The anti-bonding orbitals behave in a similar way to form the conduction band.  If the 
valence and conduction bands do not overlap, an energy or band gap is said to exist.  The 
tetrahedral bonding accounts for all four of silicon’s valence electrons and means that each 
3s and 3p orbital is half-filled.  A fully filled valence band and a band gap are the essential 
prerequisites for a semiconductor.  At very low temperatures there will be no free electrons 

 

Figure 1.1 Intersecting face-centred cubic lattices (yellow, pink; a = 5.43 Å) 
give rise to tetrahedral coordination of the Si atoms with a bond length of 
2.35 Å.    
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available to transport charge and the material behaves like an insulator (figure 1.2(a)).   At 
higher temperatures, electrons may be sufficiently excited to cross the band gap to one of 
the many unoccupied states in the conduction band.   When this happens a vacancy or hole 
is left in the valence band, forming an electron-hole pair (EHP) or intrinsic charge carrier.  
The width of the band gap depends on the strength of the periodic ionic potential, and in 
silicon is found experimentally to be ≈  1.12 eV.  EHP concentration is ≈ 1010 cm−3 at room 
temperature and the resulting resistivity (≈  2x105 Ωcm) is high.  But it is possible to create 
additional charge carriers (and greater levels of conductivity) by purposely introducing 
impurities into the crystal – a process called doping.  

 
1.3 Doping 

Silicon is in column IV of the periodic table.  If an atom from column V (e.g. phosphorus or 
arsenic) occurs in the silicon crystal as a defect it would make four covalent bonds with 
neighbouring atoms and also introduce an additional electron not involved in bonding, and 
to some extent delocalized.  In silicon, the surplus electrons due to a column V impurity 
occupy energy levels about 0.03 − 0.05 eV below the edge of the conduction band at 𝑇𝑇 = 0 
and at ≈ 100 K all the donor atoms are ionized, with the electrons promoted to levels within 
the conduction band.  When silicon is doped with arsenic at a concentration of 1016 atoms 
cm-3, the electron population in the conduction band increases by about five orders of 
magnitude compared with undoped material at room temperature.  Its resistivity falls to 
about 5 Ωcm over a wide temperature range.  This is characterized as n-type behaviour, and 
the electrons as extrinsic charge carriers (figure 1.2 (centre)).   

An equivalent scenario unfolds when a column III impurity (e.g. boron) is used as dopant.  
These impurities have only three valence electrons, so some bonding orbitals are unfilled 
and MO theory cannot readily account for the resulting current flows.  But one can observe 
that, in a fixed volume of space, the same current flows into specific unoccupied states as 

Figure 1.2  (Left) band gap Eg in ultrapure crystalline Si at low temperature, showing occupied valence band 
states (shaded) and unoccupied conduction band states.  Fermi level Ef is the energy at which the probability 
of occupation is ½.  (Centre) n-type Si doped with a group V donor element.  Donated electrons occupy states 
ΔEn beneath the conduction band.  (Right) p-type silicon doped with a group III acceptor dopant with holes 
ΔEp above the valence band  (adapted from Greenwood;  Earnshaw (1985) page 333).  
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would flow from all the remaining states if they were occupied by particles of charge +𝑒𝑒 
(opposite to the electronic charge) i.e. holes.  So, whenever convenient, one can consider 
current to be carried entirely by hole carriers filling states unoccupied by electrons.  In this 
case (figure 1.2 (right)) the silicon valence levels are not fully filled, and conductivity 
controlled by holes apparently having positive charge.  At room temperature, hole 
concentration in the valence band far exceeds free electron concentration in the conduction 
band and holes comprise the majority carrier, otherwise characterized as p-type behaviour  
(Streetman; Banerjee, 2015).  

1.4 Junctions 

Real semiconductor devices possess at least one junction between p-type and n-type 
material.  When the materials are joined a single crystal is formed with holes diffusing from 
the p side to the n, and electrons from the n to the p.  This diffusion current causes an 
electrostatic field to build across the junction, causing an opposing drift current that reduces 
the net current flow to zero.  At equilibrium (figure 1.3) the potential gradient is maintained 
in the near vicinity of the junction, resulting in a region depleted of charge carriers and 
known as the space-charge or depletion region.  Its presence means the conduction band 
does not reflect the doping profile exactly, a phenomenon known as band-bending. The 
width of the depletion region depends on the relative carrier concentrations in the p and n 
regions.  With moderate doping (p and n concentrations ≈ 1016 cm−3), the gradient across 
the depletion region in Si would be about 0.6 V, and the width about 2 μm. 

 

 
If an external voltage is applied across the junction the voltage drop appears across the 
depletion region.  If the p side is made positive the depletion region narrows, and charge 
carriers can flow across.  When the external polarity is reversed, the region widens and no 
current flows.  This is the rectifier action characteristic of a two-terminal p-n junction device 
or diode.   The bipolar junction transistor (BJT) is a three-terminal device with two junctions, 

Figure 1.3 p-n junction having common Fermi level showing the contact 
potential gradient 𝑉𝑉0.  The valence and conduction bands are 𝑒𝑒𝑉𝑉0 higher on the 
p side of the junction than on the n side (attribution as fig 1.2). 
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e.g. p-n-p.  In this case an external current flow into the central (base) layer can modulate 
the flow between the outer layers (emitter and collector), giving a switching or amplification 
function. 

1.5 Fabrication basics 

A brief description of silicon device fabrication is provided so that recent developments in 
the field can be visualized.  The essential point is that fabrication is a planar process with 
devices constructed in layers in a sequence of low-level operations. The starting material is 
an optically flat disk of crystalline silicon or wafer typically 300 mm in diameter and capable 
of accommodating several hundred devices, each potentially containing many millions of 
junctions.  The devices are later separated by sawing.  The operations are oxidation, 
implantation, lithography, thin-film deposition and epitaxy (Franssila, 2010). 

1.5.1 Oxidation 

A silicon surface contains unsatisfied bonds and is highly reactive.  A thin oxide film (SiO2) 
forms on exposure to the atmosphere but layers of controllable thickness are produced by 
heating the wafers in an O2 flow at 1100 − 1300 K , yielding an oxide layer with thickness 
in the range 0. 01 − 1 µm.  The oxide creates a non-conducting barrier between layers and 
can also accept a coating of photoresist in preparation for lithography. The widespread use 
of silicon as a semiconductor material is due in part to the ease of oxidation and insulating 
effect. 

1.5.2 Lithography and etching 

In this operation the oxide surface is spin-coated with an ultraviolet-light sensitive 
photoresist material.  The photoresist is a high molecular weight polymer dissolved in 
organic solvent, characterized by its radius of gyration or tendency to coat evenly.  The resist 
is exposed through a mask defining the extent of each junction.  The photomask is a chrome-
coated glass plate carrying a pattern created in a process analogous to laser printing.   With 
positive resist, the exposed areas are polymerized.  When the wafer is placed in a developer 
the polymerized resist softens and can be washed away. The oxide cover on the unmasked 
areas can then be selectively etched away and the area doped to create semiconductor 
junctions.  In this ‘wet-etch’ scenario SiO2 is etched by dilute hydrofluoric acid leaving a H-
passivated Si surface, a key benefit.  In an alternative process, often referred to as reactive 
ion etching (RIE) the etchant is a plasma of gas such as carbon tetrafluoride CF4.  Here Si-O 
bonds are broken and replaced by thermodynamically favoured Si-F bonds.     RIE is capable 
of finer resolution than wet-etching and is preferred as device dimensions are reduced.  
However, ultimate resolution is set by the combined limitations of the optical, resist, 
developing and etching processes.   Advances in all these areas and some ingenuity make it 
possible to etch 7 nm features with an extreme (sub-100 nm) UV light source (Samsung, 
2019). 

  



17 
CHAPTER 1.  INTRODUCTION 

 
 

1.5.3 Ion Implantation 

Ion implantation is how dopant impurities are introduced into the silicon lattice.  It works by 
accelerating impurity ions to high energies (between 10 keV and 200 keV) shooting them 
into the semiconductor.  This causes disorder in the lattice, which is repaired by subsequent 
heat treatment. Implantation is blocked by the oxide layer or by a resist or photomask, 
provided it is thick enough.  The final dopant concentration has a Gaussian profile peaking 
at a depth determined by the beam energy and exposure time and damage to the lattice 
outside this region is not significant.  Implantation has supplanted gas diffusion as device 
dimensions have reduced, because it is easier to produce shallow localized regions having 
relatively high dopant concentrations.  However, some limited diffusion always occurs 
naturally, following an implantation.  

1.5.4 Thin-film deposition 

Metallic thin-film deposition provides the means to connect junctions to the outside world. 
Sputtering is a form of physical vapour deposition (PVD) in which a metal (e.g. aluminium) is 
ionized by bombarding a sample with highly charged argon ions in a vacuum chamber. The 
metal ions land on a masked wafer, to form conductive tracks.  The tracks make ohmic (low 
resistance, non-directional) interconnections between devices or to pads that will make the 
external connections. Later, the pads are joined to terminals on the device package by 
welding. 

In chemical vapour deposition (CVD) the film is created from gas phase components, 
catalysed by the silicon surface.  An important CVD process involves gaseous tungsten 
fluoride WF6 and silane SiH4 precursors.  This reaction deposits metallic tungsten that can fill 
holes in the substrate, allowing the interconnection of metallization layers and an increase 
in circuit density.  

1.5.5 Epitaxy 

Epitaxy is a special form of thin-layer deposition.  Whereas CVD and PVD generally form an 
amorphous or polycrystalline layer, epitaxy produces a film that is an extension of the 
substrate that preserves its lattice structure.  In molecular beam epitaxy (MBE) each 
constituent to be deposited is heated in in a cylindrical cell with an aperture, and the cells 
and the substrate are located in a vacuum chamber.  Narrow beams of atoms flow out of the 
cells and impinge on the substrate forming a molecular layer. 

1.6 Field effect transistors 

Although the junction transistor was prevalent circa 1960 by the end of the decade it had 
been superceded by the field effect transistor (FET).  An n-channel metal-oxide-silicon 
(NMOS) FET is formed by implanting two heavily doped n regions (the source and drain) into 
a lightly doped p substrate.  The substrate is covered in a thin insulation layer and a third 
layer of metal (the gate) bridges the channel between the n regions beneath.  The drain 
electrode is maintained at a positive potential (relative to the substrate which is connected 
to the source) but the p-n junction potentials prevent current flow across the channel.  When 
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a positive gate potential is applied the potential barrier is lowered and an electron current 
can flow from the source to the drain.  In the complementary p-channel form p and n regions 
are interchanged, and the PMOS devices can be fabricated on the same substrate as the 
NMOS as shown in figure 1.4.  The principal advantage of the FET over the BJT is that it is a 
voltage-controlled device where the gate presents a capacitive load, so gate current flows 
only when the device changes state.  This simplifies interconnection and reduces power 
consumption. 

 

Designers can combine complementary MOSFETs (CMOS) to realize Boolean logic functions.   
A simple example is the inverter or NOT function shown at figure 1.5, from which any other 
Boolean function can be realized.  Two of these, suitably coupled, can form a single-bit static 
memory cell (SRAM) that will retain its contents while power is applied.   An integrated circuit 
or IC (e.g. a microprocessor or memory array) is formed when large numbers of gates and 
memory elements are fabricated on a single silicon surface and interconnected by 
metallization layers.  CMOS ICs (complementary MOS) devices are the core product of the 
modern semiconductor industry.  

Figure 1.4 Sketch of CMOS doping profile showing PMOS transistor formed in a 
n-type well on a p-type Si substrate.  The B connections are to the device bodies and 
are strapped to the respective source electrodes in most circuit configurations  
(adapted from an image by R Mirhosseini / CC by 2.0).   

Figure 1.5 CMOS inverter circuit with series connected PMOS and NMOS transistors with 
interconnected drains, and the device body (substrate) connected to the respective source electrodes. 
When the input is grounded (logic 0), the positive supply +VDD (logic 1) appears at the output, and vice 
versa.   The equivalent Boolean NOT symbol is also shown (author’s MS VISIO® image).    
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1.7 Large scale integration and downscaling 

The driver of integration is economic:  wafer processes are capital-intensive, but each wafer 
contains hundreds of dies (chips) and the wafers are processed in batches, so unit costs are 
kept low. But the nature of lithography means that per-chip costs do not rise in proportion 
to the number of transistors, providing the incentive to maximize the functionality per chip.   

Advances in process technology stimulated by economic forces have led to a huge rise in the 
number of devices per chip, and an equivalent reduction in the size of each transistor.  The 
metric for this is feature size, i.e. the size of smallest etched element e.g. the pitch of 
metallized lines in the interconnect layers.   Figure 1.6 shows microprocessor transistor count 
from 1990 to the present day.  This straight-line plot with semi-log vertical axis is the 
exponential relationship known as Moore’s Law (after G. Moore co-founder of the Intel 
Corporation).  Of course, it is not a physical law but an empirical prediction of the interaction 
of semiconductor technology with market economics. 

 

 
 

Reduced areas allow more chips per wafer and lower overall fabrication costs.  MOSFET 
capacitances are also lowered, which improves switching speed and reduces power 
switching dissipation.  However, power dissipation density (W/cm2) will rise excessively 
unless supply voltages are lowered in line with device dimensions.  In the constant field 
scaling model, device dimensions and all terminal potentials are reduced by a factor S (S >

Figure 1.6 Exponential increase in microprocessor transistor count against time, 
showing generic device names (source: manufacturers’ data).     
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1) and dopant concentration increased by factor S to preserve electric field gradients within 
the device, and power dissipation density is unaltered.  However lowered supply voltages 
mean the FET threshold voltage (the gate voltage required to bias the device into conducting 
mode) must also be reduced or switching speed is impaired.  But this degrades switch 
performance (the current ratio ion/ioff) due to current leakage between the electrodes.  In the 
constant voltage model voltages are unaltered, but power density rises by S3 and dopant 
concentration by S2.  In practice voltages have been scaled conservatively (from 5 V to 1 V 
or S ≈ 5), while transistor dimensions have fallen by a factor S ≈ 106   But the resulting 
increased field strengths and dopant concentrations can have adverse side-effects, such as 
breakdown of the gate insulation, channel surface scattering and lowered long-term 
reliability.  
 
Generally, increased circuit density has been achieved incrementally through physical trade-
offs and concurrent improvements in process technology including multi-layered structures 
with internal metallized interconnects, strained semiconductor materials, and new gate 
insulators amongst others.   However, aggressive increases in density have not been 
matched by an equivalent rise in device efficiency, so overall heat dissipation has tended to 
increase.     

1.8 Non-evolutionary change 

Moore’s law is a good description of an empirical, non-fundamental relationship but cannot 
go on for ever.  Extrapolated for another 20 years, the current 10 nm feature size would 
become sub-atomic so the devices of that era could not be the CMOS integrated circuits of 
today.  In any case the device scaling methodology described above does not consider many 
other chip performance and reliability issues, e.g., interconnect performance, device 
isolation and external connection.  In 2016 the authoritative International Technology 
Roadmap for Semiconductors, produced biannually by expert industry groups, announced 
the cessation of publication and signalled the end of Moore’s Law as a useful metric.  A vast 
amount of research is now directed to finding replacement materials and processes that 
would allow scaling to continue, or perhaps presage some new 'beyond-MOS' technology. 
Several proposals for FETs having exotic channel materials have been made, including 
(amongst others) single electron devices and Si nanowires.  At the time of writing (2020) 
none can demonstrate a decisive advantage and it seems likely that the regime of 
incremental improvement will continue for a few years, terminating as feature sizes 
approach 5 nm.     

1.8.1 Single electron devices 

A single electron device (SED) consists of conducting islands separated by tunnel barriers. By 
applying bias voltages to the islands (usually referred to as quantum dots or QDs) it is 
possible control the flow of charge between them on an electron-by-electron basis.  The 
tunnel barrier and the QD can be modelled as 'tunnel' and 'normal' capacitors in series, and 
the charge on the QD is quantized in a Coulomb blockade staircase or CB, see figure 1.7.  To 
be useful as a CMOS substitute the QD is connected to two tunnel capacitors to form a three 
terminal device or single electron transistor (SET) reminiscent of a MOSFET, but with 
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different characteristics.  Nevertheless, it has been shown (Takahashi et al., 2002) that SETs 
can be combined to form inverters and basic logic elements leading in theory to the 
possibility of large scale integration.  Interestingly, the QD charging energy increases as the 
island size is reduced, so it could swamp variations in background energies due to ambient 
conditions.  However, the island size corresponding to a charging energy of 250 meV ≈
10kBT at room temperatures) is ≈ 1 nm, far too small for any current lithographic process.  
A dependency on low-temperature operation seems to preclude adoption as a CMOS 
replacement.  

More fundamentally, the so-called 'offset' problem may prove insurmountable.  This arises 
because the SET has no natural ground to which signal levels can be referred.  The presence 
of background charge tends to shift the SET transfer characteristic away from its optimum 
point, making reliable switching impossible.  If the device were implemented with P donor 
dots atoms on a silicon substrate then some form of isolation (e.g. through the introduction 
of Al acceptor atoms, the subject of this work) would be desirable. 

1.8.2   Si nanowire FET 

This has been regarded as the most promising candidate for mainstream CMOS devices (Iwai 
et al., 2012)  because the fabrication processes are expected to be compatible with existing 
CMOS techniques. The MOSFET channel (currently a fin or thin layer formed from strained 
SOI growth) is replaced by a stack of Si nanowires each of which is jacketed by gate material.  
Gate control is thereby enhanced, reducing current leakage along the wires to low levels (i.e. 
obviating the short-channel effect).  Low leakage reduces the chip's off-state power 
dissipation, permitting a higher packing density.  The wires themselves would be 5 − 10 nm 
in diameter and fabricated by etching, finishing with a hydrogen anneal to provide the gate 
insulation (figure 1.8).  At these dimensions conductivity is dominated by quantum effects.  
Modelling (ibid, 2012) suggests that a thin nanowire restricts the freedom for carrier 
scattering, giving quasi one-dimensional conduction, good electron mobility and high drive 
(on-state) currents. However, some issues remain unresolved including the effect of surface 

 

 
 
Figure 1.7 Equivalent circuit and stability diagram of a single-electron box. In the diagram, n is the 
electron number in the island, and Q and Vg are the external charge and voltage to the normal 
capacitor with a capacitance Cg  (Takahashi et al., 2002). 
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states on conductivity and the fabrication of effective contacts with the source and drain 
electrodes and the early promise of this technology remains unrealized. 

1.9 Quantum computing 

1.9.1 Computable problems 

Even if a successor to CMOS exploiting quantum mechanical effects is discovered, its 
objective would remain limited to the implementation of the classical stored-program 
architecture dating back to the 1950s.  A stored-program computer (SPC) has a central 
processing unit, random access memory capable of holding both data and instructions and 
a logic unit holding the current instruction and its memory address.  The SPC is itself a 
realization of the theoretical Turing machine (after its inventor A. M. Turing).  The value of  
the Turing machine is that it can determine what kind of problems a stored-program 
machine can solve.  If a computation cannot be performed on a theoretical Turing machine, 
then it cannot be performed on any classical machine, no matter how powerful.  If a Turing 
machine can perform the computation, then it is computable.  Turing also showed the 
existence of uncomputable problems, but they must be distinguished from those which 
might be computable but only over an unreasonably long period of time.  

1.9.2 Qubits and qubit registers 

A quantum computer (QC) has a radically different structure and operating principle,  
offering the possibility of attacking uncomputable or otherwise intractable problems. The 
memory of a quantum computer consists of two-state quantum systems called qubits.  A 
qubit can be measured in either of its two basis states, but when it is not measured exists in 
continuum of states that are linear combinations (superpositions) of the basis states. An n-
bit qubit register with n qubits can exist in 2𝑛𝑛 states, each described by a pair of complex 
numbers.  On measurement it will collapse into just one state described by a single real 
eigenvalue, with a probability determined by the incidence of that state in the totality of 
superposed states.   

  

 

Figure 1.8   Si nanowire FET fabrication process.  The ‘gate stack’ is several Si and sacrificial SiGe 
layers formed by epitaxy.  A masked plasma-etch step creates a fin structure and selective chemical 
etch based on HF is used to remove the SiGe layers, leaving freestanding Si wires.  The H2 annealing 
step rounds the nanowire corners and gives a smooth crystalline surface.  Subsequently (not shown) 
wrap-around gates are formed by oxidation and tungsten deposition.  (Iwai, 2012) 
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1.9.3 Gates and networks 

The QC possesses gate circuitry to perform primitive qubit operations, e.g. rotating a base 
state into a superposition of both.  The gates are combined into networks to execute some 
desired transformation on a register and the networks are analogous to the stored program 
in a classical computer. The power of the QC arises from its ability to transform all the 
superposed states of a register in a single operation, creating a superposition of the 
transformed states in another register, suggesting an exponential increase in performance.  
To realize this gain, new quantum algorithms that can exploit parallelism and able to 
interpret the probabilistic nature of the results must be devised.   Some have already 
emerged, notably Shor's algorithm (Shor, 1995) for finding prime factors in polynomial 
rather than exponential time.  It envisages a sequence of classical and quantum procedures, 
the latter calling for gate networks wired for modular exponentiation and the discrete 
Fourier transform.           

1.9.4 Decoherence 

Any real QC will suffer from decoherence, the unavoidable loss of quantum state information 
through interaction with the surrounding environment.  The qubit coherence time 
(persistence) sets a limit on the number of gate operations available to run an algorithm.  
Present-day QC's (e.g. the IBM Q environment) utilize superconductive or ion-entrapment 
phenomena and achieve coherence times of about 100 microseconds.  Quantum transitions 
occur on a femtosecond timescale, but housekeeping overheads will make the effective 
clock rate (gates per second) much slower.   Consequently, attention has focused on qubit 
error correction protocols allowing longer-running algorithms.  These operate analogously 
to the Hamming code scheme for classical bits which can recover single-bit errors by 
encoding additional protection bits.  However, it has been suggested (Preskill, 1996) that a 
QC capable of factorizing a 130-digit integer would require of the order 106 qubits to achieve 
a similar level of protection, far larger than any current QC. 

1.9.5 Solid state qubits 

Several ideas for solid state qubit devices have been advanced, motivated by the prospect 
of exploiting existing Si fabrication expertise to produce a mass qubit memory.  Kane (1996) 
suggests that the two spin states of the 31P atomic nucleus could form a qubit basis.  This is 
attractive because P is an effective Si dopant and its spin coherence time is long at cryogenic 
temperatures.  The nuclear environment is naturally protected and a pure 28Si host crystal 
would have no native spin to interfere with the donor spin states. But current mask-based 
dopant deposition cannot provide the precision needed to accurately locate a single dopant 
nor the metallic control gates envisaged by Kane, and his solid-state qubits have yet to reach 
the prototype stage (figure 1.9). 
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1.10 Summary  

This chapter has provided the technological context in which the development of new 
nanoscale circuit devices will occur, as existing semiconductor processes approach their 
physical limits.   As the latter can already produce sub 10 nm devices it may seem that the 
scope for new processes has diminished but nanoscale research is still in its infancy,  perhaps 
resembling Shockley’s point-contact transistor of 1947.  

DFT modelling of P dopant deposition in phosphine CVD (Warschkow, O et al., 2005) and 
subsequent incorporation (Warschkow, O et al., 2016) has shown that precision doping of 
this impurity is theoretically feasible , and some prototype P-based devices have been 
demonstrated (Fuechsle, M et al., 2012; He et al., 2019).  It is the anticipated requirement 
for complementary acceptor devices that motivates this work, which supplies an analogous 
DFT modelling for the Al dopant and alane gas precursor.  DFT and its application to small 
silicon nanostructures are discussed in chapters 2 and 3.  Chapter 4 describes hydrogen-
passivated PALE (Patterned Atomic Layer Epitaxy), an atomically precise nanostructure 
fabrication technique and also provides some modelling of the passivation process.   Al 
deposition and incorporation are covered in chapters 5 and 6 and the thesis concludes with 
an examination of the electronic behaviour of the Al dopant when embedded in 
nanostructures of various kinds.    

                                

Figure 1.9 Illustration of two cells in a one-dimensional array containing 
31P donors and electrons in a Si host, separated by a barrier from metal 
gates on the surface.  The degeneracy of the nuclear spin states is split by 
the external magnetic field B, and the spin state is flipped by the 
alternating field BAC.  ‘A gates’ control the resonance frequency of the 
nuclear spin qubits; ‘J gates’ control the electron-mediated coupling 
between adjacent nuclear spins (Kane, 1996).  
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Chapter 2 

Theoretical Background 

2.1 Historical note 

In the following chapters, we simulate the processes of silicon nanostructure fabrication at 
the atomic level.   The models imply a knowledge of the total energy 𝐸𝐸 of a system of 𝑁𝑁 
electrons in the presence of ions located at 𝑅𝑅𝐼𝐼.  The potential energy surface 𝐸𝐸(𝑅𝑅𝐼𝐼) or PES 
generally has vast numbers of maxima and minima at unknown locations, but the lowest 
energy corresponds to the ground state structure, and paths between its minima determine 
the feasibility of processes such as adsorption, diffusion and incorporation. 

The present calculations are performed using the Density Functional Theory (DFT) 
formalism.  This is a relatively recent innovation and allows realistic modelling of structures 
containing hundreds of atoms, which were previously inaccessible.  Nevertheless, DFT 
emerges from a stream of work dating from 1926, when the Schrodinger equation (SE) was 
first put forward and the search for approximate and practical methods of application began.  
This chapter will outline DFT as it applies to a crystalline solid such as silicon, but first we 
look briefly at the earlier and complementary Hartree-Fock (HF) approach as it embodies 
ideas that reappear in the DFT setting and also introduces some necessary terminology. 

Both HF and DFT make the Born-Oppenheimer (BO) approximation under which electronic 
and ionic motions can be considered separately and the 𝑅𝑅𝐼𝐼 enter the electronic energy 
calculation only parametrically.  Pathways on PES can be explored by making ground state 
calculations at a sequence of carefully chosen locations {𝑅𝑅𝐼𝐼}, which would ideally include the 
critical saddle points. 

After the BO approximation the Hamiltonian for the 𝑁𝑁-electron system takes the form 
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(1) 

In which the implicit dependence on 𝑅𝑅𝐼𝐼 has been suppressed.  The three terms on the right 
are (in order) the kinetic energy of each electron, the interaction energy of each electron 
with the ions and the interaction energy between different electrons.  The SE  

𝐻𝐻�Ψ = 𝐻𝐻�Ψ(𝑟𝑟1, … 𝑟𝑟𝑁𝑁) = 𝐸𝐸Ψ (2) 
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Is intractable because the electronic states are correlated.  Nevertheless, the first (circa 
1930) results were achieved by neglecting all inter-electronic interaction and assuming 
𝐻𝐻� could be approximated by the sum of 𝑁𝑁 independent one-electron Hamiltonians ℎ�, so that  

𝐻𝐻� = � ℎ�𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

(3) 

and 

ℎ�𝑖𝑖 = −
ℏ

2𝑚𝑚𝑒𝑒
∇𝑟𝑟𝑖𝑖

2 −  𝜐𝜐(𝑟𝑟𝑖𝑖) 
(4) 

Each  ℎ�𝑖𝑖 satisfies the one-electron SE 

ℎ�𝜓𝜓 = 𝐸𝐸𝐸𝐸 (5) 

The eigenfunctions defined by this equation are the spin orbitals of MO theory and can be 
denoted by 𝜒𝜒𝑗𝑗(𝑥⃗𝑥𝑖𝑖), (𝑗𝑗 = 1,2, . . ) where 𝑥⃗𝑥𝑖𝑖 is a vector of coordinates giving the position of 
electron 𝑖𝑖 and its spin state, with corresponding eigenenergies 𝐸𝐸𝑗𝑗.  It is convenient to label 
the spin orbitals so that the orbital with 𝑗𝑗 = 1 has the lowest energy and 𝑗𝑗 = 2 is the next 
lowest, etc.  Then, the eigenfunctions of 𝐻𝐻� are the products of the one-electron spin orbitals 

Ψ𝐻𝐻𝐻𝐻 (𝑥⃗𝑥1, 𝑥⃗𝑥2, … , 𝑥𝑥𝑁𝑁  ) = 𝜒𝜒𝑗𝑗1(𝑥⃗𝑥1)𝜒𝜒𝑗𝑗2(𝑥⃗𝑥2) … 𝜒𝜒𝑗𝑗𝑗𝑗(𝑥⃗𝑥𝑁𝑁)  (6) 

where Ψ𝐻𝐻𝐻𝐻 is called a Hartree product wavefunction whose energy is 𝐸𝐸𝑗𝑗1 + ⋯ + 𝐸𝐸𝑗𝑗𝑗𝑗.  
However, the Hamiltonians of (3) and (5) do not include interelectronic repulsion, which is 
difficult to calculate because it depends not on one electron but all possible simultaneous 
pairwise interactions.  Hartree found that �Ψ𝐻𝐻𝐻𝐻 �𝐻𝐻��Ψ𝐻𝐻𝐻𝐻 � would be minimized if the one-
electron operators ℎ�𝑖𝑖 were defined not as (4) above but by  
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where the final term represents an interaction potential that may be computed as 
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 (8) 

In which 𝜌𝜌𝑗𝑗  is the charge (probability) density associated with electron 𝑗𝑗.  The interaction 
potential (also called the Hartree potential) is analogous to the attractive second term except 
that the nuclei are treated as point charges whereas the electrons are treated as delocalized 
charge densities that must be integrated over all space.  This means each electron feels the 
effect of others in an average, rather than an instantaneous way.  

The Hartree product is an uncorrelated or independent electron wavefunction because 
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|Ψ𝐻𝐻𝐻𝐻 (𝑥⃗𝑥1, 𝑥⃗𝑥2, … , 𝑥𝑥𝑁𝑁  )|2𝑑𝑑𝑥⃗𝑥1, 𝑑𝑑𝑥⃗𝑥2, … , 𝑑𝑑𝑥⃗𝑥𝑁𝑁 (9) 

which is the probability of finding electron-one in a volume element 𝑑𝑑𝑥⃗𝑥1 centred at 𝑥⃗𝑥1, 
electron-two at 𝑑𝑑𝑥⃗𝑥2 is equal to the product of the probabilities 

�𝜒𝜒𝑗𝑗1(𝑥⃗𝑥1)�2𝑑𝑑𝑥⃗𝑥1�𝜒𝜒𝑗𝑗2(𝑥⃗𝑥2)�2𝑑𝑑𝑥⃗𝑥2 … �𝜒𝜒𝑗𝑗𝑗𝑗(𝑥⃗𝑥𝑁𝑁)�2𝑑𝑑𝑥⃗𝑥𝑁𝑁  
(10) 

i.e. the probability of finding an electron at one point in space is unaffected by the positions 
of all the other electrons.  But electrons are fermions and the Hartree product should 
therefore change sign when two electrons are interchanged, which is not the case with the 
simple product formulation.   If the one-electron orbitals are combined in a determinantal 
form (the Slater determinant) the wavefunction is both antisymmetric and independent of 
electron labelling.  This can be seen for two electrons with spin orbitals 𝜒𝜒𝑗𝑗  and 𝜒𝜒𝑘𝑘  occupied:   

Ψ𝑆𝑆𝑆𝑆(𝑥⃗𝑥1, 𝑥⃗𝑥2) =  2−1 2⁄ �
𝜒𝜒𝑗𝑗(𝑥⃗𝑥1) 𝜒𝜒𝑘𝑘(𝑥⃗𝑥1)
𝜒𝜒𝑗𝑗(𝑥⃗𝑥2) 𝜒𝜒𝑘𝑘(𝑥⃗𝑥2)�  

 

(11) 

where the 2−1 2⁄  is a normalization factor.  When the rows (electrons) are interchanged, the 
wavefunction changes sign in accordance with the antisymmetry principle.  If the spin 
orbitals are expressed as products of spatial and spin eigenfunctions and the determinant 
expanded, Ψ𝑆𝑆𝑆𝑆 is shown to be uncorrelated for electrons of opposite spin but  correlated for 
electrons of the same spin.  The resulting exchange correlation energy causes a small 
increase in the energy of the 𝑁𝑁-electron system.  

However, the presence of the Hartree interaction potential makes the set of one-electron 
equations non-linear and not directly soluble for the 𝜒𝜒𝑖𝑖.  To find solutions, trial 
wavefunctions are approximated as linear combinations of a finite set of functions {𝜙𝜙𝑖𝑖}, 
(𝑖𝑖 = 1, . . , 𝐾𝐾) so that 

𝜒𝜒𝐽𝐽(𝑥⃗𝑥) = � 𝛼𝛼𝑗𝑗,𝑖𝑖

𝐾𝐾

𝑖𝑖=1
𝜙𝜙𝑖𝑖(𝑥⃗𝑥) 

(12) 

The functions {𝜙𝜙𝑖𝑖} are called a basis set and usually formed from hydrogenic atomic orbitals 
or Gaussians.  The 𝛼𝛼𝑗𝑗,𝑖𝑖 are then treated as parameters in an iterative (referred to as a self-
consistent field or SCF) procedure that relies on the variational principle, that the trial 
wavefunctions will always yield a total energy greater than the exact ground state energy 
𝐸𝐸𝑔𝑔: 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 =
∫ Ψ𝐻𝐻𝐻𝐻

∗ 𝐻𝐻Ψ𝐻𝐻𝐻𝐻 𝑑𝑑𝑑𝑑
∫ Ψ𝐻𝐻𝐻𝐻

∗ Ψ𝐻𝐻𝐻𝐻 𝑑𝑑𝑑𝑑 
≥ 𝐸𝐸𝑔𝑔 

(13) 

The variational method involves choosing the 𝛼𝛼𝑗𝑗,𝑖𝑖 so that 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 is minimized: 

𝛿𝛿𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆

𝛿𝛿𝛼𝛼𝑗𝑗,𝑖𝑖
= 0 

 

(14) 

producing a new Ψ𝐻𝐻𝐻𝐻 and 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆.  The procedure is then repeated until 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 converges, i.e. 
approaches a limiting value to within some preset tolerance, e.g. 10−5 eV.  Such 
convergence is not guaranteed, and it may be necessary to use a different basis set that 
better spans the wave function space (Szabo; Ostlund,  1996) or delivers shorter calculation 
times.  When the converged spin orbitals are combined in a Slater determinant the resulting 
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wavefunction is the best variational ground state approximation available at this level of 
theory.  This is the essence of the Hartree-Fock method that remains a staple of 
computational chemistry, with a huge volume of ensuing development aimed at improving 
the many-body wavefunction to take fuller account of electron correlation.  One approach 
is to form excited determinants that include one or more unoccupied spin orbitals and use 
these as basis functions to approximate the 𝑁𝑁-electron wavefunction.  Correlation energy is 
defined as the difference between the true ground-state energy and the best possible HF 
approximation known as the Hartree-Fock limit.  Unsurprisingly, the correlation problem 
arises again in DFT, which includes an explicit (albeit approximate) correlation energy 
contribution in the Hamiltonian (see sections 2.4 and 2.5 below).      

A general drawback of these ‘post-HF’ developments is the complexity of the 𝑁𝑁-electron HF 
wavefunction.  This creates a so-called ‘exponential wall’ of calculation (Kohn, 1998), 
becoming insuperable in configurations of more than 10 or 20 chemically active atoms.  Dirac 
(1930) suggested that the atomic state was completely determined by the 3-dimensional 
electronic density, foreseeing a great reduction in the burden of calculation.  However, it 
was not until the 1960s that a rigorous proof of this was advanced, and the accompanying 
formalism employed several ideas from HF theory, including the one-electron assumption, 
the Hartree energy and self-consistent calculations. 

2.2 Density functional theory 

DFT is another approach to the solution of the SE for a system of atoms where the electronic 
Hamiltonian can be written in the form of (1) above, i.e. where the Born-Oppenheimer 
approximation has been applied.   DFT provides universal prescriptions for the kinetic and 
electrostatic interaction components of the Hamiltonian:  

 
𝑇𝑇� = −

ℏ
2𝑚𝑚𝑒𝑒

� ∇𝑖𝑖
2

𝑁𝑁

𝑖𝑖=1

,    𝑈𝑈� =
𝑒𝑒2

8𝜋𝜋𝜖𝜖0
�

1
�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�

𝑖𝑖≠𝑗𝑗

 

 

(15) 

where 𝑇𝑇�  is the kinetic energy of the electrons and 𝑈𝑈� the sum of all the Coulomb interactions 
with each other.  The notation 

 𝐻𝐻�0 = 𝑇𝑇� + 𝑈𝑈� (16) 

refers to the Hamiltonian of the electronic system by itself.  When 𝐻𝐻�0 is treated as system-
independent all Coulombic systems having the same number of electrons differ only in their 
external potential  

 
𝑉𝑉� = � 𝑣𝑣(𝑟𝑟𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

 
(17) 

which is the sum of all Coulomb interactions of the electrons with the nuclei.  The SE is then: 

 �𝐻𝐻�0 + 𝑉𝑉��Ψ(𝑟𝑟1, 𝑟𝑟2 … , 𝑟𝑟𝑛𝑛) = 𝐸𝐸Ψ(𝑟𝑟1, 𝑟𝑟2 … , 𝑟𝑟𝑛𝑛) (18) 
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and we want the ground-state energy 𝐸𝐸𝑔𝑔 for any potential 𝑣𝑣(𝑟𝑟).   This is essentially the same 
intractable SE that arises in the HF theory when the Hartree and exchange energies were 
included.  There some electronic correlation effects were neglected and Ψ approximated as 
a product of one-electron wavefunctions.  DFT provides a way of including some correlation 
effects within a tractable computational method, which is usually easier to apply than 
advanced HF methods.  This is done by promoting the electronic density 𝜌𝜌(𝑟𝑟) from just one 
of many observables to become the key variable, on which all other observables can depend.  
The assumption that 𝑇𝑇 and 𝑉𝑉 could be treated as functionals of electronic density, computed 
with no reference to a wavefunction was first advanced by Thomas and Fermi in 1927, 
without a rigorous justification.   This was eventually provided in two fundamental theorems 
dating from 1964 known as the Hohenberg-Kohn theorems, stated in the following section 
with proofs shown in Appendix A.1.     

2.3 The Hohenberg-Kohn theorems 

The aim is to calculate the ground-state energy 𝐸𝐸𝑔𝑔 of the system and the electronic density 
distribution 𝜌𝜌𝑔𝑔(𝑟𝑟) in the ground state.  (This energy is not the total energy since it excludes 
the contribution from Coulombic inter-nuclear interactions, but this is constant in the BO 
approximation and can be added back later.)  𝐸𝐸𝑔𝑔 is the expectation value of 𝐻𝐻�0 +
𝑉𝑉�  computed with the many-electron ground-state wavefunction Ψ:  

 𝐸𝐸𝑔𝑔 =  �Ψ∗�𝐻𝐻�0 + 𝑉𝑉��Ψ� 

 
(19) 

assuming Ψ to be normalized so that  ⟨Ψ∗|Ψ⟩ = 1.  The electron density is also an 
expectation value: 

 𝜌𝜌(𝑟𝑟) =  ⟨Ψ∗|𝑛𝑛�(𝑟𝑟)|Ψ⟩ 
 

(20) 

where 𝑛𝑛�(𝑟𝑟) is the operator defined as: 

 
𝑛𝑛�(𝑟𝑟) =  � 𝛿𝛿(𝑟𝑟 − 𝑟𝑟𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

 

 

(21) 

If the (non-degenerate) ground state energy is known, then in principle Ψ and hence 𝜌𝜌(𝑟𝑟) 
are uniquely determined by 𝑉𝑉(𝑟𝑟). although Ψ is far too complicated to calculate exactly.  DFT 
assumes the converse – that specifying the electronic density 𝜌𝜌(𝑟𝑟) is enough to uniquely 
determine the ground state properties, including the ground state energy 𝐸𝐸𝑔𝑔.   The first 
Hohenberg-Kohn shows that this assumption is justified. 

• Theorem 1:  It is impossible that two external potentials 𝑣𝑣(𝑟̃𝑟) and 𝑣𝑣′(𝑟𝑟) whose difference 
𝑣𝑣(𝑟𝑟) −  𝑣𝑣′(𝑟𝑟) is not a constant give rise to the same ground-state density 
distribution 𝜌𝜌𝑔𝑔(𝑟𝑟). 

The corollary is that the (non-degenerate) ground-state density 𝜌𝜌(𝑟𝑟) uniquely determines 
𝑣𝑣(𝑟𝑟) up to an additive constant, and hence Ψ and 𝐸𝐸𝑔𝑔.  The proviso about the additive 
constant simply reflects the fact that if the external potential is changed by adding a constant 
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to it (equivalent to shifting the zero of energy) then this does not change the ground state 
Ψ or the ground state 𝜌𝜌𝑔𝑔(𝑟𝑟). 

The theorem implies that the ground-state energy can be expressed as: 

𝐸𝐸𝑔𝑔 = � 𝑑𝑑𝑟𝑟𝜌𝜌(𝑟𝑟)𝑣𝑣(𝑟𝑟) +  𝐹𝐹[𝜌𝜌(𝑟𝑟)] 

 

(22) 

where 𝐹𝐹[𝜌𝜌(𝑟𝑟)] is some universal  functional of the density 𝜌𝜌(𝑟𝑟) representing the expectation 
value of 𝐻𝐻�0 = 𝑇𝑇� + 𝑈𝑈� (the total kinetic energy plus the total electron-electron interaction 
energy) when the ground-state density is 𝜌𝜌(𝑟𝑟).  

Because of theorem 1, specifying the ground state density uniquely determines the value of 
𝐹𝐹 and hence the total ground state energy.  However, the theorem does not indicate how 
the functional or density can be calculated.  But Theorem 2 asserts that the ground state 
energy will be found by a minimization procedure:  

• Theorem 2:  The ground state energy for a given external potential 𝑣𝑣(𝑟𝑟) is correctly 
obtained by minimizing the functional 𝐸𝐸𝑔𝑔 = ∫ 𝑑𝑑𝑟𝑟𝜌𝜌(𝑟𝑟)𝑣𝑣(𝑟𝑟) + 𝐹𝐹[𝜌𝜌(𝑟𝑟)] with respect to 
𝜌𝜌(𝑟𝑟) subject to a fixed number of electrons N, and the resulting 𝜌𝜌(𝑟𝑟) gives the correct 
density distribution of the ground-state. 

In order to turn these theorems into a useful procedure for calculating ground-state 
energies, it is necessary to reformulate the total energy expression.  This is the subject of the 
next section.   

2.4 Terms in the total energy 

Now we want to express 𝐹𝐹[𝜌𝜌(𝑟𝑟)] as a sum of kinetic energy, Hartree energy, exchange 
energy and correlation energy.  The Hartree energy is the same electrostatic interaction 
energy seen in the HF theory.  It is usual to lump the exchange and correlation energies 
together into a term called ‘exchange-correlation energy’.  This term therefore includes the 
the energy arising in quantum-mechanical effects acting between parallel and antiparallel 
spin electrons omitted in the HF formulation.   The ground-state energy can then be 
expressed as functionals of 𝜌𝜌(𝑟𝑟): 

 𝐸𝐸𝑔𝑔 = � 𝑑𝑑𝑟𝑟𝜌𝜌(𝑟𝑟)𝑣𝑣(𝑟𝑟) + 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘[𝜌𝜌(𝑟𝑟)] + 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)] + 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟̃𝑟)] 

 

(23) 

with the RHS terms defined as follows.  The first term is the exact expression for the 
interaction of the electrons with the external potential as before.  The second term is defined 
to be the kinetic energy of non-interacting electrons having the density distribution 𝜌𝜌(𝑟𝑟), i.e. 
it is not the expectation value 〈𝑇𝑇�〉 in the Hamiltonian at equation (15) above, which applies 
to a system of interacting electrons.   In practice the KE is obtained from notional single 
electron wavefunctions rather than an explicit functional, as will be seen later.  The third 
term is the Hartree energy which appears as   
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 1
2

𝑒𝑒2 � 𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟′ 𝜌𝜌(𝑟𝑟)𝜌𝜌(𝑟𝑟′)
|𝑟𝑟 − 𝑟𝑟′|  

 

(24) 

when written in atomic units in terms of electronic density.  The factor 1 2⁄  prevents double-
counting, but the density integral will include an erroneous element of self-interaction 
excluded from the Hamiltonian summation.  The final term 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)] is the exchange-
correlation energy and defined to be that part of the energy not accounted for in the other 
terms 𝐸𝐸𝑉𝑉 = ∫ 𝑑𝑑𝑟𝑟𝜌𝜌(𝑟𝑟)𝑣𝑣(𝑟𝑟), 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 and 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻  Under this definition, 𝐸𝐸𝑥𝑥𝑥𝑥 includes components 
to compensate for the kinetic energy error mentioned above.  Unfortunately, there is no 
known formula for calculating 𝐸𝐸𝑥𝑥𝑥𝑥 exactly so any offset is only partial.  But it is possible to 
make good approximations to 𝐸𝐸𝑥𝑥𝑥𝑥 which we describe in the next section.  

2.5 Exchange-correlation functionals 

Although 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)] has ‘difficult’ constituents the first HK theorem means that it is a unique 
and universal functional of the electronic density.  This suggests a strategy for the 
construction of XC functionals: start with an approximate theoretical model and enhance it 
progressively with new levels of theory or even empirical data.   An approximation for 
𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)] that works surprisingly well is the Local Density Approximation (LDA) based on the 
exchange-correlation energy per electron 𝜖𝜖𝑥𝑥𝑥𝑥

0 (𝜌𝜌) of the uniform electron gas (UEG) and  
proposed by Kohn and Sham (1965) although their paper acknowledges earlier work by 
Thomas, Fermi and Slater.  It was later extended to spin-polarized systems (Von Barth and 
Hedin, 1972).  In the UEG model a system of 𝑁𝑁 electrons with finite, slowly varying density 
moves against a background of positive charge, so that the whole system is neutral.  Ignoring 
spin polarization, the exchange energy contribution per electron 𝜖𝜖𝑥𝑥

0 can be written as:    

𝜖𝜖𝑥𝑥
0(𝜌𝜌) = −𝐶𝐶𝜌𝜌

1
3(𝑟𝑟) (25) 

where 𝐶𝐶 is a constant and the minus sign indicating that the exchange contribution lowers 
the total energy.  This can be rationalized as the presence of an exchange hole surrounding 
electrons with parallel spin and a consequence of the Pauli principle.  This absence of charge 
increases the inter-electron distance and hence lowers their interaction energy. 

Unfortunately, no simple analytic form for the correlation energy 𝜖𝜖𝑐𝑐
0�𝜌𝜌(𝑟𝑟)� has been 

discovered.  However, its value can be accurately calculated point-by-point for a wide range 
of values of 𝑟𝑟𝑠𝑠 in quantum Monte-Carlo (QMC) simulations (Ceperley and Alder 1980) and a 
functional form obtained by curve fitting.  The following expression is an example, valid for 
an unpolarized gas in the high-density range �0 < 𝑟𝑟𝑠𝑠 < 1, 𝑟𝑟𝑠𝑠 = [3 4𝜋𝜋𝜋𝜋(𝑟𝑟)⁄ ]1 3⁄ � (Perdew 
and Zunger, 1981): 

𝜀𝜀𝑐𝑐
0[𝜌𝜌(𝑟𝑟)] = 𝐶𝐶1 + 𝐶𝐶2 ln 𝑟𝑟𝑠𝑠+ 𝑟𝑟𝑠𝑠(𝐶𝐶3 + 𝐶𝐶4 ln 𝑟𝑟𝑠𝑠) (26) 

where 𝜀𝜀𝑐𝑐
0 is the per-electron correlation energy contribution and all the 𝐶𝐶𝑖𝑖 are constants.   

Another formula applies when 𝑟𝑟𝑠𝑠 ≥ 1. This contribution is also negative and generally 
significantly smaller than the exchange contribution.  It can be characterized as the 
interaction between antiparythgallel electrons leading to a charge displacement referred to 
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as a correlation hole.  The XC energy of the LDA can be calculated by multiplying 𝜀𝜀𝑥𝑥𝑥𝑥
0 [𝜌𝜌(𝑟𝑟)] 

by the local electron density and integrating over space 

𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)] = � 𝜌𝜌(𝑟𝑟) 𝜖𝜖𝑥𝑥𝑥𝑥
0 [𝜌𝜌(𝑟𝑟)]𝑑𝑑3𝑟𝑟 = � 𝜌𝜌(𝑟𝑟) �𝜖𝜖𝑥𝑥

0[𝜌𝜌(𝑟𝑟)] + 𝜖𝜖𝑐𝑐
0[𝜌𝜌(𝑟𝑟)]�𝑑𝑑3𝑟𝑟 (27) 

 

The LDA is generally successful in predicting structures and macroscopic properties but has 
shortcomings e.g. a tendency to overbind, overestimating cohesive energies and 
underestimating lattice parameters.  In a real system electron density does not vary slowly 
as assumed in the LDA model.  Unfortunately, simply adding a partial dependency on density 
gradients (the gradient expansion model or GEA) did not yield a systematic improvement 
when tried.  One of the reasons for this failure was the violation of the sum rule for the 
exchange and correlation holes1.  Generalized gradient approximations (GGAs) are 
constructions based on the LDA but include a functional dependence on the density 
gradient: 

  𝐸𝐸𝑥𝑥𝑥𝑥
𝐺𝐺𝐺𝐺𝐺𝐺[𝜌𝜌(𝑟𝑟), 𝑠𝑠] = � 𝜖𝜖𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌(𝑟𝑟)]𝜌𝜌(𝑟𝑟)𝐹𝐹(𝑠𝑠)𝑑𝑑3𝑟𝑟 (28) 

where 𝐹𝐹(𝑠𝑠) is an enhancement factor fitted to enforce various physical constraints.  Here 𝑠𝑠 
depends on the both the electron density and its gradient: 

 
𝑠𝑠 = 𝐶𝐶

|∇𝜌𝜌(𝑟𝑟)|
𝜌𝜌4 3⁄ (𝑟𝑟)

 
(29) 

GGAs are typically (but not always) more accurate than the LDA, for example reducing the 
error in bond dissociation energy calculations.  But unlike the LDA, there is no single universal 
form and many GGAs have evolved, each with its own version of 𝐹𝐹(𝑠𝑠).  The Perdew-Wang 
91 functional (PW91) (Perdew, 1991;  Perdew, Wang 1992) is constructed so that it satisfies 
the sum rule for the exchange hole, ensures that the exchange part of the density is always 
be negative and satisfies the Lieb-Oxford bound2 condition (Lieb, Oxford 1981).  Although 
PW91 depends on statistical UEG data it is nonempirical and has become a standard 
functional in the field of in solid state physics. 

The PBE (Perdew, Burke, Ernzerhof 1996) functional employed here is a simplified and 
improved version of PW91 yet satisfying most of its constraints.  It has proven to be accurate 
and efficient and is supported by the PAW pseudopotentials found in VASP.   In the PBE form 
the exchange enhancement factor is given by: 

 𝐹𝐹𝑥𝑥
𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠) = 1 + 𝜅𝜅 − 𝜅𝜅 (1 + 𝜇𝜇𝑠𝑠2 𝜅𝜅⁄ )⁄  

 
(30) 

where 𝜅𝜅 and 𝜇𝜇 are fitted constants.  The form for correlation is expressed as the local 
correlation plus an additive term 𝐻𝐻: 

 
1 The hole is the displaced charge that forms around a point test charge.  For the exchange hole, the 
sum of the displaced charge should the negative of the test charge.  For the correlation hole, it should 
be zero. 
2 A lower bound on the exchange energy 𝐸𝐸𝑥𝑥 ≥ 𝐶𝐶 ∫ 𝜌𝜌4 3⁄ 𝑑𝑑3𝑟𝑟 where 𝐶𝐶 lies between −1.44 and −1.68.   
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𝐸𝐸𝑐𝑐

𝑃𝑃𝑃𝑃𝑃𝑃[𝜌𝜌↑(𝑟𝑟), 𝜌𝜌↓(𝑟𝑟)] = � 𝜌𝜌(𝑟𝑟)[𝜖𝜖𝑐𝑐
0(𝑟𝑟𝑠𝑠, 𝜉𝜉) + 𝐻𝐻(𝑡𝑡, 𝑟𝑟𝑠𝑠, 𝜉𝜉)] 𝑑𝑑3𝑟𝑟. 

(31) 

Here 𝜉𝜉 = (𝜌𝜌↑ − 𝜌𝜌↓) (𝜌𝜌↑ + 𝜌𝜌↓)⁄  is the relative spin polarization and 𝑡𝑡 a scaled density gradient 
𝑡𝑡 =  |∇𝜌𝜌(𝑟𝑟)| 2𝜌𝜌(𝑟𝑟)𝑔𝑔𝑘𝑘𝑠𝑠⁄  where 𝑔𝑔 = �(1 + 𝜉𝜉)2 3⁄ + (1 − 𝜉𝜉)2 3⁄ � 2⁄  and 𝑘𝑘𝑠𝑠 = (4𝑘𝑘𝐹𝐹 𝜋𝜋⁄ )1 2⁄  is 
the local screening wave vector, 𝑘𝑘𝐹𝐹 being the Fermi wavevector.  Unlike exchange energy, 
correlation energy is dependent on relative spin polarization and cannot be separated into 
spin-up and spin-down parts, complicating the formulation.  An expression for 𝐻𝐻 and its 
derivation are given in (Perdew, 1991) and (Perdew, Burke, Ernzerhof 1996). 

There are other classes of XC functional, including meta-GGA (containing a dependency on 
second-order density gradients) and hybrid (a fraction of the exchange energy is derived 
from an orbital-dependent HF calculation) both of which consume more (for hybrids, 
typically tenfold) processing power than GGAs. 

However, all functionals are approximations and none is accurate in all properties of interest.  
No matter what functional is invented, someone will always find a case where it fails.  A 
notable example is the underestimation of the band gap in crystalline Si, observed in all LDA 
and GGA functionals.   This is returned to in the next chapter. 

2.6 The Kohn-Sham equation 

Following the publication of the Hohenberg-Kohn theorems Kohn and Sham provided a 
practical means to exploit them (Kohn, Sham 1965).  The Kohn-Sham ansatz is that the exact 
ground state density can be written as the ground state density of a fictitious system of 
noninteracting particles.  The ground state is then determined by minimising the total energy 
with respect to 𝜌𝜌(𝑟𝑟) while holding the total number electrons constant.  This is done by 
taking the ground state density 𝜌𝜌𝑔𝑔(𝑟𝑟) and making a small change so that 𝜌𝜌(𝑟𝑟) =  𝜌𝜌𝑔𝑔(𝑟𝑟) +
𝛿𝛿𝛿𝛿(𝑟𝑟), and requiring the resulting change 𝛿𝛿𝛿𝛿 is zero be zero to the first order in 𝛿𝛿𝛿𝛿(𝑟𝑟).  Using 
the total energy expression (23) we can write the total energy as: 

 𝐸𝐸 = � 𝑑𝑑3𝑟𝑟𝜌𝜌(𝑟𝑟)𝑣𝑣(𝑟𝑟) + 𝑇𝑇[𝜌𝜌(𝑟𝑟)] + 𝐺𝐺[𝜌𝜌(𝑟𝑟)] 

 

(32) 

where 𝑇𝑇 = 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘[𝜌𝜌(𝑟𝑟)] and 𝐺𝐺 = 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)] + 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)].  Then:  

𝛿𝛿𝛿𝛿 = 0 = � 𝑑𝑑3𝑟𝑟 �𝑣𝑣(𝑟𝑟) +
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑟𝑟) +
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑟𝑟)� 𝛿𝛿𝛿𝛿(𝑟𝑟) 

 

(33) 

subject to the constraint:  

 � 𝑑𝑑3𝑟𝑟𝛿𝛿𝛿𝛿(𝑟𝑟) = 0. 

 

(34) 

This notation employs functional derivatives3, e.g. 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿(𝑟𝑟)⁄ .  For (33) to be true for any 
arbitrary 𝛿𝛿𝛿𝛿(𝑟𝑟) satisfying (34) the ground-state condition on 𝜌𝜌(𝑟𝑟) is: 

 
3 See Appendix A.3  
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 𝜇𝜇 =  
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑟𝑟) +
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑟𝑟) +  𝑣𝑣(𝑟𝑟) 

 

(35) 

where 𝜇𝜇 is a Lagrange undetermined multiplier4.  The DFT ‘trick’ is to write:  

 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑟𝑟) +  𝑣𝑣(𝑟𝑟) = 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) 

 

(36) 

so that the ground state condition becomes: 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑟𝑟) + 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) = 𝜇𝜇 

 

(37) 

and to recall that 𝑇𝑇 was defined as the kinetic energy of non-interacting electron systems 
where 𝐺𝐺 = 0, since 𝐺𝐺 is the sum of the Hartree and exchange-correlation energies and both 
of these vanish for non-interacting electrons.  So, we have from (36) 𝑣𝑣(𝑟𝑟) = 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)  and 

 
  

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑟𝑟) + 𝑣𝑣(𝑟𝑟) = 𝜇𝜇 

 

(38) 

and we see that the ground-state density of the interacting system in the electrostatic field  
𝑣𝑣(𝜌𝜌) is identical to the ground-state density of the non-interacting system in the field 
𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝜌𝜌).  Because the kinetic energy is now easy, we can solve the SE:  

�−
ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)� 𝜓𝜓𝑛𝑛(𝑟𝑟) = 𝜖𝜖𝑛𝑛𝜓𝜓𝑛𝑛(𝑟𝑟), 

(39) 

where the eigenvalues 𝜖𝜖𝑛𝑛 appear in place of 𝜇𝜇.  Then the lowest 𝑁𝑁 2⁄  states 𝜓𝜓𝑛𝑛(𝑟𝑟) can be 
filled with a spin-up and spin-down electron and the density obtained as: 

 
𝜌𝜌(𝑟𝑟) =  2 �|𝜓𝜓𝑖𝑖(𝑟𝑟)|2

𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖

 
(40) 

The equation (39) is a set of coupled one-electron orbital SEs in the same form seen in HF 
theory.  As in HF theory the nuclei are fixed and electronic energy is minimized in a SCF 
scheme, resulting in a new electronic density distribution.  A geometrical optimization may 
follow, in which the nuclei are moved classically to lower-energy configurations.   The entire 
process is repeated until the inter-atomic forces acting on each atom are acceptably close to 
zero and the position on the PES is a stationary point.  Some further detail is provided at 
page 48 below. 

In the DFT context (39) is usually called the Kohn-Sham equation and the effective potential  
𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 the Kohn-Sham potential, denoted by 𝑣𝑣𝐾𝐾𝐾𝐾.  However, apart from the highest energy 
level (corresponding to ionization energy) the Kohn-Sham eigenstates 𝜓𝜓𝑖𝑖(𝑟𝑟) and eigenvalues 
𝜖𝜖𝑖𝑖 do not have a physical meaning.  The electron density 𝜌𝜌(𝑟𝑟) is the only variable with a 
physical reality.  

 
4 See Appendix A.4, where the object function 𝑓𝑓 replaces 𝐸𝐸 and constraint 𝜙𝜙 replaces 𝜌𝜌. 
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2.7 The Kohn-Sham potential 

To calculate the KS potential appearing in (39) the functional derivative 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿(𝑟𝑟)⁄  must be 
known.  Since 𝐺𝐺 =  𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)] + 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)]: 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑟𝑟) =

𝛿𝛿𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻

𝛿𝛿𝛿𝛿(𝑟𝑟) +
𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥

𝛿𝛿𝛿𝛿(𝑟𝑟) . 

 

(41) 

But 𝛿𝛿𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻 𝛿𝛿𝛿𝛿(𝑟𝑟)⁄  is the Hartree potential: 

 𝛿𝛿𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻

𝛿𝛿𝛿𝛿(𝑟𝑟) = � 𝑑𝑑𝑑𝑑′ 𝜌𝜌(𝑟𝑟′)
|𝑟𝑟 − 𝑟𝑟′| = 𝑣𝑣𝐻𝐻𝐻𝐻𝐻𝐻(𝑟𝑟) 

 

(42) 

and similarly, 𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥 𝛿𝛿𝛿𝛿(𝑟𝑟)⁄  is an exchange-correlation potential.  If the LDA were adopted, 
then: 

 𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥

𝛿𝛿𝛿𝛿(𝑟𝑟) =
𝑑𝑑

𝑑𝑑𝑑𝑑(𝑟𝑟) �𝜌𝜌(𝑟𝑟)𝜖𝜖𝑥𝑥𝑥𝑥
0 �𝜌𝜌(𝑟𝑟)�� = 𝑣𝑣𝑥𝑥𝑥𝑥(𝑟𝑟) 

 

(43) 

using whatever formula has been adopted for 𝜖𝜖𝑥𝑥𝑥𝑥
0 . 

The KS potential is therefore: 

 𝑣𝑣𝐾𝐾𝐾𝐾(𝑟𝑟) = 𝑣𝑣(𝑟𝑟) + 𝑣𝑣𝐻𝐻𝐻𝐻𝐻𝐻(𝑟𝑟) + 𝑣𝑣𝑥𝑥𝑥𝑥(𝑟𝑟) (44) 
 

i.e. the sum of the external (ionic) potential 𝑣𝑣(𝑟𝑟), the Hartree potential 𝑣𝑣𝐻𝐻𝐻𝐻𝐻𝐻(𝑟𝑟 ) and the 
exchange-correlation potential 𝑣𝑣𝑥𝑥𝑥𝑥(𝑟𝑟).  Although the KS equation appears to treat the 
system using one-electron orbitals (as though correlation did not exist) correlation is being 
included via the exchange-correlation potential 𝑣𝑣𝑥𝑥𝑥𝑥(𝑟𝑟).  

2.8 Periodic supercells and Bloch’s theorem 

The preceding sections have shown how the ground-state energy of an N-electron system 
can be found by mapping it into an equivalent observable in a single-particle system.  But for 
crystalline silicon we still need to represent wavefunctions extending over the entire solid 
for an infinitely large number of electrons.  This is done by recognizing the periodic nature 
of the solid and this section introduces some terminology used to discuss periodic systems 
(Ashcroft; Mermin, 1976).    

If 𝑎𝑎�1,𝑎𝑎�2 and 𝑎𝑎�3 are three linearly independent vectors then a Bravais lattice consists of all 

the points with position vector 𝑅𝑅�⃗ , a linear combination of the lattice vectors 𝑎𝑎�1,𝑎𝑎�2 and 𝑎𝑎�3 

such that 𝑅𝑅�⃗ = ∑ 𝐿𝐿𝑖𝑖𝑎𝑎�𝑖𝑖
3
𝑖𝑖=1   and 𝐿𝐿𝑖𝑖 are integers in the range minus infinity to infinity. 

A primitive cell is a volume that exactly fills the entire space when translated through all the 
vectors of the Bravais lattice.  If the cell exactly fills the space when translated through a 
subset of the lattice points it is called a unit cell or supercell.  
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The reciprocal lattice of a Bravais lattice is the set of wave vectors �𝐺⃗𝐺� that have the same 
periodicity as the original lattice i.e.  

 𝑒𝑒𝑖𝑖𝐺⃗𝐺.(𝑟𝑟+𝑅𝑅�⃗ ) = 𝑒𝑒𝑖𝑖𝐺⃗𝐺.𝑟𝑟 (45) 

or 

 
𝑒𝑒𝑖𝑖𝐺⃗𝐺.𝑅𝑅�⃗ = 1 

(46) 

The reciprocal lattice is itself a Bravais lattice.  The reciprocal lattice of the reciprocal lattice 
is the original (sometimes called direct) lattice. 

The first Brillouin zone (BZ) is the smallest volume entirely enclosed by planes that are 
perpendicular bisectors of the reciprocal lattice vectors drawn from the origin.  This 
definition (Kittel, 2008) is analogous to that of the Wigner-Seitz cell in real space.  It is a  
primitive cell of the reciprocal lattice having its translational symmetry and can be taken to 

be the lattice cell containing the point 𝐺⃗𝐺 = 0.   

We can assume that the KS potential 𝑣𝑣𝐾𝐾𝐾𝐾(𝑟𝑟) will also be periodic with the periodicity of the 
supercell: 

 𝑣𝑣𝐾𝐾𝐾𝐾(𝑟𝑟) =  𝑣𝑣𝐾𝐾𝐾𝐾�𝑟𝑟 + 𝑅𝑅�⃗ �. (47) 

Bloch’s theorem states that in a periodic potential each electronic wavefunction can be 
written as the product of a cell-periodic part and a wavelike part:  

 𝜓𝜓𝑘𝑘�⃗ (𝑟𝑟) = 𝑒𝑒i𝑘𝑘�⃗ .𝑟𝑟 𝑢𝑢𝑘𝑘�⃗ (𝑟𝑟) 
 

(48) 

where 𝑘𝑘�⃗  is a wavevector and 𝑢𝑢𝑘𝑘(𝑟𝑟) has the same periodicity as the supercell.  The implication 
of this is that the eigenfunctions fall into classes, each class having a particular wavevector 

𝑘𝑘�⃗  and that it is possible to solve the SE for each value of 𝑘𝑘�⃗  independently.  This is an 
important result in solid state physics, which surprised Bloch when he discovered it in Vienna 
in 1927.  However, the physicist Werner Heisenberg was on hand and confirmed Bloch’s 
calculation (Hoddeson et al., 2007). 

Since 𝑢𝑢𝑘𝑘�⃗ (𝑟𝑟) is periodic it can be expressed as a Fourier series: 

 𝑢𝑢𝑘𝑘�⃗ (𝑟𝑟) =  � 𝑐𝑐𝑘𝑘�⃗ +𝐺⃗𝐺𝑒𝑒i�𝑘𝑘�⃗ +𝐺⃗𝐺�.𝑟𝑟

𝐺⃗𝐺

 

 

(49) 

The periodic boundary conditions 

 𝜓𝜓(𝑟𝑟 + 𝐿𝐿𝑖𝑖𝑎⃗𝑎𝑖𝑖) = 𝜓𝜓(𝑟𝑟) 
 

(50) 

where 𝐿𝐿𝑖𝑖 is an integer number, together with Bloch’s theorem (48) imply that electronic 

states are allowed only at some of the 𝑘𝑘�⃗  vectors in the periodic system: 

 𝜓𝜓𝑘𝑘(𝑟𝑟 + 𝐿𝐿𝑖𝑖𝑎𝑎�𝑖𝑖) = 𝑒𝑒𝑖𝑖𝐿𝐿𝑖𝑖𝑘𝑘�⃗ .𝑎𝑎�𝑖𝑖𝜓𝜓(𝑟𝑟), 𝑖𝑖 = 1,2,3. 
 

(51) 

This requires 
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𝑒𝑒𝑖𝑖𝐿𝐿𝑖𝑖𝑘𝑘�⃗ .𝑎𝑎�𝑖𝑖 = 1. 

(52) 

If 𝑘𝑘�⃗  is expressed as a linear combination of the reciprocal lattice vectors 

 𝑘𝑘�⃗ = � 𝑥𝑥𝑖𝑖
𝑖𝑖

𝑏𝑏�⃗ 𝑖𝑖 (53) 

where 𝑏𝑏�. 𝑎𝑎� = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑖𝑖 , and this expression substituted in (52) which becomes: 

 
𝑒𝑒2𝜋𝜋𝜋𝜋𝐿𝐿𝑖𝑖𝑥𝑥𝑖𝑖 = 1 

(54) 

and so, the only allowed 𝑘𝑘�⃗  vectors are of the form 

 
𝑘𝑘�⃗ = �

𝑚𝑚𝑖𝑖

𝐿𝐿𝑖𝑖
𝑏𝑏�𝑖𝑖

3

𝑖𝑖=1
 

(55) 

where 𝑚𝑚𝑖𝑖 must be an integer.    

However, since 𝑅𝑅�⃗  is infinitely large there will still be an infinitely large number of 𝑘𝑘�⃗  points in 

the first BZ.  But the electronic wavefunctions at 𝑘𝑘�⃗  points which are close together will be 

almost identical and the electronic wavefunctions over a region of 𝑘𝑘�⃗  space can be replaced 

by the wavefunction at a single point.  Moreover,  at each 𝑘𝑘�⃗  point we need consider only the 
energies of occupied KS orbitals corresponding to the Lagrange multipliers of equation (34) 
above, as these define the ground state energy.  However,  a practical calculation will usually 
include a small number of unoccupied orbitals.  In any event, we can anticipate a feasible 

calculation involving a finite number of electronic states and finite number of 𝑘𝑘�⃗  points.   

A frequently used procedure for acquiring the location of 𝑘𝑘�⃗  points is the Monkhorst-Pack 

(MP) mesh (Monkhorst and Pack, 1976).  According to the MP prescription, the set of 𝑘𝑘�⃗  
points is obtained from the formula: 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑏𝑏�1 + 𝑤𝑤𝑗𝑗𝑏𝑏�2 + 𝑤𝑤𝑘𝑘𝑏𝑏�3, 𝑤𝑤𝑟𝑟 =
(2𝑟𝑟 − 𝑞𝑞𝑟𝑟 − 1)

2𝑞𝑞𝑟𝑟
, 𝑟𝑟 = 1,2,3, … , 𝑞𝑞𝑟𝑟  

 

(56) 

and 𝑞𝑞𝑟𝑟 is an integer that determines the number of points in the set in the 𝑟𝑟-direction of the 

reciprocal axes.  With this construction the set contains (𝑞𝑞1 × 𝑞𝑞2 × 𝑞𝑞3) 𝑘𝑘�⃗  points uniformly 
spaced in the Brioullin zone.  If the 𝑞𝑞𝑖𝑖are all odd, the set contains the reciprocal image of the 

real-space origin, i.e. the Γ point.  The 𝑘𝑘�⃗  point mesh is sufficiently dense for a calculation if 

the total energy has converged with respect to the number of 𝑘𝑘�⃗  points.  A denser mesh is 
needed for metals than other materials, to overcome discontinuities in the Fermi surface.  
However, this is a numerical integration characteristic rather than a material property.     

2.9 Plane wave basis sets 

Although the wavefunction integrations in reciprocal space are now (in principle) tractable, 
the wavefunction expansion (49) still contains an infinite number of plane wave terms and 
is not a basis for practical calculations.   However, these terms have a simple interpretation 
in terms of Schrodinger’s equation: they have kinetic energy 𝐸𝐸 
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𝐸𝐸 =

ℏ2

2𝑚𝑚𝑒𝑒
�𝑘𝑘�⃗ + 𝐺⃗𝐺�

2
. 

 

(57) 

The infinite sums can be truncated by removing all terms with kinetic energy greater than 
some cut-off value: 

 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 =  

ℏ2

2𝑚𝑚𝑒𝑒
�𝐺⃗𝐺𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜�

2
 

 

(58) 

with the justification that terms with lower energies will be more important physically than 
those with very high energies.  The higher energy terms are plane waves that are oscillating 
on short length scales in real space.  These are associated with the tightly bound core 
electrons that have little effect on the chemical environment, which is determined by the 
valence electrons.  The infinite sum then reduces to: 

 𝜓𝜓𝑘𝑘�⃗ (𝑟𝑟) =  � 𝑐𝑐𝑘𝑘�⃗ +𝐺⃗𝐺𝑒𝑒i�𝑘𝑘�⃗ +𝐺⃗𝐺�.𝑟𝑟

𝐺⃗𝐺<𝐺⃗𝐺𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜

 

 

(59) 

and these plane wave expansions can be substituted into the KS equation (39) and 
eventually determine the ground-state energy for the system of atoms.  The cut-off energy 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 appears as an external, user-defined parameter of the calculation.  The more 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 is increased, the greater the variational freedom over the orbitals in search of the 
ground state.  Therefore, an increase in 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 must yield a decrease in the calculated 
ground state energy.  In practice the ground state energy is found to converge, so that 
increasing values of 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 do not enhance the overall accuracy of the calculation.  This 
relative ease of systematic improvement contrasts with the hierarchy of Gaussian basis sets 
found in HF calculations, each based on a distinct level of theory.  

But the plane wave basis set is generally large. Under a Fourier transform a length scale 𝛿𝛿 in 
real space becomes 𝑞𝑞 = 2𝜋𝜋 𝛿𝛿⁄  in reciprocal space.  In a solid the number of plane waves 
𝑁𝑁𝐺𝐺  will be:   

𝑁𝑁𝐺𝐺 ∼  
4
3

𝜋𝜋𝑞𝑞3 ×
1

Ω𝐵𝐵𝐵𝐵
 

 

(60) 

i.e. the volume of a sphere of radius 𝑞𝑞 divided by Ω𝐵𝐵𝐵𝐵 =  (2𝜋𝜋)3 Ω⁄  is the volume of the 
Brillouin zone and Ω the equivalent volume in the real-space lattice. An estimate can be 
made from fig 2.1, which shows the spatial extent of the electronic wavefunctions of the H 
atom in atomic units (i.e. Bohr radius ∼ 0.5 Å).  These decay exponentially with nuclear 
distance, but remain significant at ∼ 4  a.u.  Furthermore, the 1𝑠𝑠 wavefunction should be 
sampled on an interval  𝛿𝛿 ∼ 0.1 a.u. if curvature near the nucleus is to be represented 
accurately.  Scaling to obtain an estimate of 𝑁𝑁𝐺𝐺  for the silicon lattice (where 𝑎𝑎0 ∼ 5 a.u.) 
and substituting in (60) gives: 

𝑁𝑁𝐺𝐺 ∼
4𝜋𝜋
3

× �
2𝜋𝜋
0.1

�
3

× �
5

2𝜋𝜋
�

3

 ∼ 105 

(61) 
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A basis set of this size is impractical, so the potentials and wavefunctions must be 
transformed to remove the influence of core states.  Without these rapidly varying 
components, the smoother valence wavefunctions can be represented with a larger 
sampling interval, leading to a smaller basis set.  This is the motivation for the 
pseudopotential method, the subject of the next section. 

2.10 Pseudopotential method 

In order to achieve convergence with a manageable size of plane wave basis set, the strong 
electron-ion interaction must be replaced with a sufficiently weak simulated potential, or 
pseudopotential.  The basic idea of the pseudopotential method is to project the SE for the 
valence electrons onto the subspace orthogonal to the core orbitals, eliminating the nodal 
structure of the valence orbitals close to the core but without modifying them in the 
interstitial region where chemical bonding occurs.  Simulated potentials that retain the core 
electrons have been devised e.g. FLAPW (Blügel and Bihlmayer, 2006) but these are complex 
and demand considerable expertise in their usage.  However, these all-electron methods can 
deliver the highest accuracy and set the standard against which others are judged.  

Several pseudopotential schemes have been proposed, to satisfy the conflicting 
requirements of accuracy, transferability and computational efficiency.  A description of the 
so-called norm-conserving pseudopotential method follows, which is known to result in 
‘hard’ (requiring a very large basis set) pseudopotentials when applied to the first-row 
elements and systems with d or f electrons.  The projector augmented-wave (PAW) scheme, 
which combines plane waves in the interstitial region with spherical waves around the core, 
is also described.  PAWs take the core electrons into account but avoid the need for large 
basis sets.  It is the preferred scheme in the VASP package.        

Fig 2.1.  Hydrogenic 1s, 2s and 2p wavefunctions in atomic units (1 a.u. ≈ 0.5 Å), computed from Legendre 
polynomials.  Their gradients and spatial extent determine the number of plane waves needed for an accurate 
representation in reciprocal space (author’s MATLAB® image).  
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2.10.1 Removal of core electrons 

This is based on the observation that core orbitals have a limited spatial extent and much 
lower energy than the valence orbitals.  They are therefore relatively unaffected by the 
chemical environment of the valence orbitals and can be held fixed (frozen) during energy 
minimization.   Freezing the core electrons reduces the calculation size but they cannot be 
discarded because without them the valence orbitals would collapse towards the nucleus as 
minimization proceeded, since the requirement that they remain orthogonal to the core 
orbitals would no longer exist.  It turns out that when the depth of the nuclear potential well 
is artificially reduced (forming a pseudopotential) the lowest bound states of the valence 
electrons can have energies identical to those found in the true potential field when the 
lowest bound states are occupied by core electrons, as shown in fig 2.2.  This can be 
rationalized through the removal of the nuclear screening afforded by the core electrons.  
However, the adjustment in well depth is different for valence s, p and d states.  The 
dependence on angular momentum is called non-locality.  Nevertheless, the shape of the 
valence orbitals beyond the core radius is unaltered by the change in potential, so the DFT 
variational procedure still converges even in the absence of the core electrons, and the 
energetics of the whole system are correctly reproduced. 

 

2.10.2 Transferability and norm conservation 

In addition to correctly reproducing valence eigenvalues and long-range atomic 
wavefunctions, a ‘good’ pseudopotential should be usable in a variety of chemical 
environments without change.   It has been found that transferability improves when two 
further conditions are imposed on the pseudopotentials and pseudoorbitals. 

The first, norm conservation requires that the integrals from 0 to 𝑟𝑟 of the real and pseudo 
charge densities agree for 𝑟𝑟 = 𝑟𝑟𝑐𝑐 , for each valence state (𝑟𝑟𝑐𝑐 is the core radius). This 
guarantees (by Gauss’s law) that the potential field produced outside 𝑟𝑟𝑐𝑐 is the same for the 

Fig 2.2.  Comparison of a wavefunction in the Coulomb potential of the nucleus (blue) to the one 
in the pseudopotential (red). The real and the pseudo wavefunction and potentials match above a 
certain cut-off radius rc called the core radius (image by W Quester / CC by 2.0)). 
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real and pseudo charge distributions.  The second condition is that the logarithmic 
derivatives of the real and pseudo wavefunctions and their first energy derivatives agree for 
𝑟𝑟 = 𝑟𝑟𝑐𝑐.  This ensures the quantum scattering properties of the ionic potential wells are 
reproduced with minimum error as bonding or banding shifts eigenenergies away from the 
atomic levels. 

Fortunately, the two conditions are equivalent so that if a pseudopotential is norm-
conserving it will automatically meet the other condition.  Norm conservation can be 
expressed as: 

 
� 𝑑𝑑𝑑𝑑𝑟𝑟2

𝑟𝑟𝑐𝑐

0
𝜓𝜓2(𝑟𝑟) = � 𝑑𝑑𝑑𝑑𝑟𝑟2

𝑟𝑟𝑐𝑐

0
𝜒𝜒2(𝑟𝑟) 

(62) 

 
where 𝜓𝜓(𝑟𝑟) is the valence wavefunction given by an all-electron calculation in a real 
potential field and 𝜒𝜒(𝑟𝑟) the corresponding valence pseudo wavefunction.  As noted above 
𝜓𝜓(𝑟𝑟), 𝜒𝜒(𝑟𝑟) and 𝑟𝑟𝑐𝑐 are evaluated independently for each angular momentum quantum 
number.  These integrals are related to the logarithmic derivatives by the identity (Hamann, 
1979): 

 
2𝜋𝜋 �(𝑟𝑟𝑟𝑟)2 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑

𝑑𝑑𝑑𝑑
ln(𝜓𝜓)�

𝑟𝑟𝑐𝑐

= 4𝜋𝜋 � 𝜓𝜓2𝑟𝑟2𝑑𝑑𝑑𝑑
𝑟𝑟𝑐𝑐

0
 

 

(63) 

For the best accuracy 𝑟𝑟𝑐𝑐 should be as small as possible but for some elements (e.g. third-row 
transition metals) this would mean the inclusion of fluctuating semicore orbitals in the 
pseudo wavefunction.  The resulting pseudopotential is termed hard and requires large basis 
sets and high cut-off energy energies, making calculations relatively expensive.  The norm-
conserving condition can be relaxed, leading to ultrasoft pseudopotentials having a 
smoother, more economical wavefunction.   These were first derived by Vanderbilt (1990).  
The correction for the missing charge is handled by placing an augmentation charge density 
inside the core region. 

2.10.3 Projector augmented-wave method 

The projector augmented-wave  scheme (PAW) was first proposed by Blöchl (1994) and later 
shown to be related to the ultrasoft scheme by Kresse and Joubert (1999).  The PAW 
pseudopotentials are implemented in VASP and preferred by its authors over the original 
ultrasoft types.  It is motivated by the desire to reproduce the oscillatory behaviour of 
valence electron wavefunctions (near the ionic cores) without the need for a fine sampling 
grid and large basis set. 

In the PAW method the required wavefunction |𝜓𝜓⟩ (i.e. the true single-particle all-electron 
KS wavefunction) is mapped by a linear transformation from a fictitious auxiliary 
wavefunction �𝜓𝜓��, which is smooth and hence converges quickly when expanded in a plane 
wave basis.  Physical properties are evaluated by reconstructing the true wavefunctions.  The 
operator for a back transformation from the auxiliary to the true wavefunctions is defined 
as: 
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𝑇𝑇� = 1 + � 𝑆̂𝑆𝑅𝑅 ,         
𝑅𝑅

|𝜓𝜓⟩ = 𝑇𝑇��𝜓𝜓�� (64) 

where the summation runs over atomic sites.  The operator 𝑆̂𝑆 acts only within a spherical 
augmentation region Ω𝑅𝑅 surrounding site 𝑅𝑅, so �𝜓𝜓�� is modified only within the augmentation 
region and both wavefunctions are equal outside the region.  The augmentation region 
corresponds to the core region of other pseudopotential schemes.  Inside Ω𝑅𝑅 the true 
valence wavefunctions can be represented in a basis of partial waves 𝜙𝜙𝑖𝑖

𝑅𝑅,  typically solutions 
of the KS Schrodinger equation for an isolated atom, i.e. the product of a radial wave function 
and a spherical harmonic.  The index 𝑖𝑖 is needed to index the angular momentum quantum 
numbers.  For each of these partial waves we define a corresponding smooth auxiliary partial 
wave 𝜙𝜙�𝑖𝑖

𝑅𝑅, such that: 

 �𝜙𝜙𝑖𝑖
𝑅𝑅� = �1 + 𝑆̂𝑆𝑅𝑅��𝜙𝜙�𝑖𝑖

𝑅𝑅� ⟺ 𝑆̂𝑆𝑅𝑅�𝜙𝜙�𝑖𝑖
𝑅𝑅� = �𝜙𝜙𝑖𝑖

𝑅𝑅� − �𝜙𝜙�𝑖𝑖
𝑅𝑅� 

 
(65) 

for all 𝑖𝑖, 𝑅𝑅.  This completely defines 𝑇𝑇�, given 𝜙𝜙 and 𝜙𝜙�. 

Outside Ω𝑅𝑅 𝑆̂𝑆𝑅𝑅 should do nothing so (65) implies that the auxiliary partial waves are equal 
to the partial waves.  Inside, they can be any smooth continuation, e.g. a linear combination 
of polynomials or Bessel functions.  Because the operator 𝑇𝑇�  is linear, the expansion 
coefficients 𝑐𝑐𝑖𝑖 can be written as an inner product with a set of so-called projector functions 
|𝑝𝑝�𝑖𝑖⟩: 

𝑐𝑐𝑖𝑖 = �𝑝𝑝�𝑖𝑖
𝑅𝑅�𝜓𝜓��. 

 
(66) 

It can then be shown that (Rostgaard, 2009): 

𝑇𝑇� = 1 + � ���𝜙𝜙𝑖𝑖
𝑅𝑅� − �𝜙𝜙�𝑖𝑖

𝑅𝑅��
𝑖𝑖

⟨𝑝𝑝�𝑖𝑖|
𝑅𝑅

 

 

(67) 

so that the all electron KS wavefunction |𝜓𝜓⟩ can be obtained from the transformation: 

|𝜓𝜓⟩ = �𝜓𝜓�� + � ���𝜙𝜙𝑖𝑖
𝑅𝑅� − �𝜙𝜙�𝑖𝑖

𝑅𝑅��
𝑖𝑖

�𝜙𝜙�𝑖𝑖
𝑅𝑅�𝜓𝜓��

𝑅𝑅

 

 

(68) 

This decomposition separates the original wavefunctions into auxiliary wavefunctions which 
are smooth everywhere and an oscillating contribution confined to the augmentation 
spheres.  These are treated separately, with the localized part (indicated by the superscript 
𝑅𝑅) represented on atom-centred radial grids.  Smooth functions are indicated by a tilde ~. 
The delocalized parts (no superscript 𝑅𝑅) are all smooth and so can be represented on coarse 
Fourier or real-space grids. 

The PAW method retains the frozen core approximation and the core electrons are 
decomposed in a similar way.  However, no projector functions are necessary in this case.   

2.11 Calculations in reciprocal space 

In previous sections it was shown that the key problem of DFT calculations is the solution of 
the KS equations (39) and (44) i.e. 
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𝐻𝐻�𝐾𝐾𝐾𝐾(𝑟𝑟)𝜓𝜓𝑖𝑖(𝑟𝑟) = �−
ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝐾𝐾𝐾𝐾[𝜌𝜌](𝑟𝑟)� 𝜓𝜓𝑖𝑖(𝑟𝑟) =  𝜖𝜖𝑖𝑖𝜓𝜓𝑖𝑖(𝑟𝑟),  

𝑣𝑣𝐾𝐾𝐾𝐾  =  𝑣𝑣𝑃𝑃𝑃𝑃(𝑟𝑟) + 𝑣𝑣𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌](𝑟𝑟) +  𝑣𝑣𝑋𝑋𝑋𝑋[𝜌𝜌](𝑟𝑟) 

where 𝑣𝑣𝑃𝑃𝑃𝑃 now denotes the external potential as derived from a pseudopotential 
approximation as discussed in the preceding section.  Solutions are obtained by expanding 
the KS wavefunctions 𝜓𝜓𝑖𝑖 in a basis set and applying a variational procedure to determine the 
basis set coefficients.   The following sections show how these equations are converted into 
matrix form and solved by numerical optimization methods. 

2.11.1 The KS Hamiltonian matrix 

Each wavefunction can be expanded in a plane wave basis set (59) 

𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟) =  � 𝑐𝑐 𝑖𝑖,𝑘𝑘�⃗ +𝐺⃗𝐺 𝑒𝑒i�𝑘𝑘�⃗ +𝐺⃗𝐺�.𝑟𝑟

𝑘𝑘�⃗ +𝐺⃗𝐺<𝐺⃗𝐺𝑐𝑐𝑐𝑐𝑐𝑐

 

where the coefficients 𝑐𝑐 are refined at each iteration.  Substituting this expansion into the 
KS equation results in a matrix eigenvalue equation in reciprocal space: 

� 𝐻𝐻𝑘𝑘�⃗ +𝐺⃗𝐺,𝑘𝑘�⃗ +𝐺⃗𝐺′𝑐𝑐𝑖𝑖,𝑘𝑘�⃗ +𝐺⃗𝐺′ = 𝜀𝜀𝑖𝑖𝑐𝑐𝑖𝑖.𝑘𝑘�⃗ +𝐺⃗𝐺
𝐺⃗𝐺′

  (69) 

where 𝐻𝐻𝑘𝑘�⃗ +𝐺⃗𝐺,𝑘𝑘�⃗ +𝐺⃗𝐺′ is the matrix element of the Hamiltonian 𝐻𝐻�𝐾𝐾𝐾𝐾 between states 

𝑘𝑘�⃗ + 𝐺⃗𝐺, 𝑘𝑘�⃗ + 𝐺⃗𝐺′.  𝑐𝑐i,𝑘𝑘�⃗ +𝐺⃗𝐺 and 𝜀𝜀𝑖𝑖  are the eigenvectors and eigenvalues for the discrete set of 

solutions of the matrix equations labelled 𝑖𝑖 = 1,2, …  for a given 𝑘𝑘�⃗ .  The matrix elements can 
be shown to be:  

𝐻𝐻𝐺⃗𝐺,𝐺⃗𝐺′�𝑘𝑘�⃗ � =  �𝑘𝑘�⃗ + 𝐺⃗𝐺�𝐻𝐻�𝐾𝐾𝐾𝐾�𝑘𝑘�⃗ + 𝐺⃗𝐺′� 
 

 

                  =
1
2 �𝑘𝑘�⃗ + 𝐺⃗𝐺�

2
𝛿𝛿𝐺⃗𝐺,𝐺⃗𝐺′ + 𝑣𝑣𝑃𝑃𝑃𝑃�𝐺⃗𝐺 − 𝐺⃗𝐺′� + 𝑣𝑣𝐻𝐻𝐻𝐻𝐻𝐻 �𝐺⃗𝐺 − 𝐺⃗𝐺′� + 𝑣𝑣𝑋𝑋𝑋𝑋�𝐺⃗𝐺 − 𝐺⃗𝐺′�.   

 

(70) 

(69) and (70) are the basic Schrodinger equations in a periodic crystal and support the 
practical calculations to be described in the following sections.  The equations show that the 

SE must be solved for each 𝑘𝑘�⃗  separately and that the eigenvalues and eigenvectors are 

independent unless they differ by a reciprocal lattice vector.  At each 𝑘𝑘�⃗  point the eigenstates 
(again labelled 𝑖𝑖 = 1,2, …) may (in principle) be found by diagonalizing the Hamiltonian 

matrix (70) in the basis of the Fourier components 𝑘𝑘�⃗ + 𝐺⃗𝐺.  In practice, the matrix is too large 
to diagonalize by conventional methods and an approximate, partial diagonalization is 
achieved using iterative numerical optimization.                                                                                                                                                                                                                                                          

2.11.2 Fast Fourier Transforms 

In reciprocal space the kinetic energy term in (70) is diagonal and easy to obtain, but the 
exchange correlation  and Hartree potentials 𝑣𝑣𝑋𝑋𝑋𝑋  and 𝑣𝑣𝐻𝐻𝐻𝐻𝐻𝐻 are defined in terms of the real 
space electronic density 𝜌𝜌(𝑟𝑟).  This density is given by  (40) above: 
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 𝜌𝜌(𝑟𝑟) =  2 �|𝜓𝜓𝑛𝑛(𝑟𝑟)|2

𝑜𝑜𝑜𝑜𝑜𝑜

 

 

(71) 

or 

 𝜌𝜌(𝑟𝑟) =  
2
Ω

� � 𝑐𝑐𝐺⃗𝐺
∗ 𝑐𝑐𝐺⃗𝐺′

𝐺⃗𝐺,𝐺⃗𝐺′𝑜𝑜𝑜𝑜𝑜𝑜

𝑒𝑒𝑖𝑖�𝐺⃗𝐺−𝐺⃗𝐺′�.𝑟𝑟 

 

(72) 

and 

 𝜌𝜌�𝐺⃗𝐺� =  
2
Ω

� � 𝑐𝑐𝐺⃗𝐺
∗ 𝑐𝑐𝐺⃗𝐺′

𝐺⃗𝐺,𝐺⃗𝐺′𝑜𝑜𝑜𝑜𝑜𝑜

 

 

(73) 

in terms of the plane wave coefficients, where Ω =  𝑎𝑎�1. (𝑎𝑎�2 × 𝑎𝑎�3)  is a normalising factor 
equal to the volume of the originating real space cell.  Unfortunately, to obtain the electronic 
density using (73) would need 𝑁𝑁𝐺⃗𝐺

2 evaluations of the basis coefficients 𝑐𝑐, a relatively large 
computational overhead.   However, it is possible to apply a fast Fourier transform (FFT) to 
get the wavefunctions in real space and form a simple point product to get the electronic 
density.  Then the inverse transform can be applied to return to reciprocal space.  Crucially, 
the computational cost of FFT scales as 𝑁𝑁𝐺𝐺 log 𝑁𝑁𝐺𝐺 and is small compared to matrix 
diagonalization, although some efficiency is lost in parallel computing architectures.  

Because the supercell is periodic the reciprocal vectors 𝐺⃗𝐺 are discrete with constant spacing.  
Imposition of a kinetic energy cut-off imposes a maximum value on �𝐺⃗𝐺� resulting in a limited 

number of 𝐺⃗𝐺, and these define a grid in reciprocal space.  The grid should enclose the sphere 
of 𝐺⃗𝐺 vectors so it can reproduce any function that can be expressed as a linear combination 
of the 𝐺𝐺 vectors. Any excess will be orthogonal to those inside the 𝐺⃗𝐺 vector sphere and 
represent energies above the cut-off value.   

Although the electronic density 𝜌𝜌 is a real quantity (73) shows that it arises from the inner 

products of complex vectors with moduli in the range �0 → �𝐺⃗𝐺𝑐𝑐𝑐𝑐𝑐𝑐��.  It will therefore be a 

function containing vectors with moduli in the range �0 → 2�𝐺⃗𝐺𝑐𝑐𝑐𝑐𝑐𝑐��.  If the density is to be 
represented without loss of accuracy, a grid spacing at least twice as dense as that required 
to represent the plane wave expansion of the KS wavefunctions is needed.  For the 
transformation to be invertible the same mesh density is required in real space, although 
the spacing is different. 

The role of FFT in the calculation of the Hartree energy is shown schematically in fig. 2.3 
below.  The same idea can be applied to the other energy components, but the detail will 
depend on the pseudopotential approximation and XC functional adopted for the 
calculation. 
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2.12 Electronic optimization 

In the preceding sections it has been shown that solution of KS equation (39) requires that 
the inverse of the Hamiltonian matrix 𝐻𝐻 in equation (69) be successively approximated 
within an SCF procedure.  The objective is to find the electronic density distribution that 
minimizes the total energy, which will then approximate the ground-state energy.  Arriving 
at this self-consistent density is the core problem of DFT and is often referred to as electronic 
optimization or static relaxation, as the atoms remain stationary throughout.  The matrix 
coefficients 𝐻𝐻𝑖𝑖𝑖𝑖 are derived from the basis set coefficients, and for matrices of reasonable 
size (say 𝑁𝑁 ≤ 500)  diagonalization could be done exactly e.g. by the Cholesky-Householder 
(CH) procedure.  However, the computation time scales as 𝑁𝑁3 irrespective of the number of 
eigenvalues returned.  In the DFT setting this is a real difficulty, since the basis set consists 
of many (𝑁𝑁 ≈ 104−5) plane waves and a CH calculation would be impractical.  Moreover, it 
would yield 𝑁𝑁 eigenvalues when a much smaller number (roughly one half the number of 
occupied orbitals plus a few unoccupied) are sought.  Consequently, plane wave energy 
calculations adopt iterative optimizing techniques that avoid treating the KS matrix in its 
entirety. 

There are a several of these each with its own claims e.g. blocked Davidson and residual 
minimization/direct inversion in the iterative subspace (RMM/DIIS) (for a comparative review 
see Woods et al., 2019).  They vary in their efficiency, but all yield the same result: the ground 
state total energy.  Studies (Science, March 2016) confirm that calculations in solids yield 

Fig 2.3.  The Hartree energy is difficult to calculate in real space, because the integrand contains 
the singular factor  1 (𝑟𝑟 − 𝑟𝑟′)⁄ .  Schematic shows the FFT action on the reciprocal space 
wavefunction coefficients 𝑐𝑐𝑘𝑘�⃗ 𝑖𝑖  producing the equivalent real space coefficients 𝑢𝑢𝑘𝑘�⃗ 𝑖𝑖. The 
electronic density observable is then calculated in real space and projected back to reciprocal 
space where the Hartree integral takes on a simple form, via Poisson’s equation.  The result is 
then returned to real space for inclusion in the KS potential.  The FFT operations are inexpensive 
to compute, imposing an overhead scaling as 𝑂𝑂(𝑁𝑁 log 𝑁𝑁), where 𝑁𝑁 is the number of grid points.   
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energies differing by as little as ~1 meV per atom irrespective of the choice of algorithm and 
pseudopotential.  Their significance arises because static relaxation is the rate-limiting factor 
in a DFT calculation and ultimately determines the effectiveness of the entire method.  Some 
schemes (e.g. RMM-DIIS) show superior scaling on multiple-core machines.  We describe a 
generic Quasi-Newton (QN) algorithm included in the VASP package (Kresse et al., 2009) 
which is reasonably efficient and simpler to present than some other schemes (Kresse, 
Furthmüller, 1996). 

Most iterative algorithms build an expansion set of trial vectors {|𝑏𝑏𝑖𝑖⟩, 𝑖𝑖 = 1, … , 𝑁𝑁𝑎𝑎} from 
which the best approximation to the exact eigenvectors and eigenvalues is calculated.  This 
set is much smaller than the number of plane waves 𝑁𝑁𝑎𝑎 ≪ 𝑁𝑁𝑔𝑔 and usually slightly exceeds 
the number of occupied bands 𝑁𝑁𝑏𝑏.  All algorithms generate correction vectors which are 
combined with the trial vectors in various ways.  A sequential algorithm optimizes one band 
at a time whereas a blocked algorithm can process several bands at each step.  In this 
sequential scheme, the expansion set is primed with a guess at |𝑏𝑏1⟩.  

A key quantity is the residual vector 𝑅𝑅�⃗  

|𝑅𝑅(𝜙𝜙𝑛𝑛)⟩ = �𝐻𝐻 − 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎�|𝜙𝜙𝑛𝑛� 
(74) 

where 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜙𝜙𝑛𝑛 are an approximate eigenpair solution of the SE 𝐻𝐻𝐻𝐻 =  𝜖𝜖𝜖𝜖 that 
minimizes the Rayleigh quotient 

𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 =
⟨𝜙𝜙𝑛𝑛|𝐻𝐻|𝜙𝜙𝑛𝑛⟩

⟨𝜙𝜙𝑛𝑛|𝜙𝜙𝑛𝑛⟩  
(75) 

which is stationary at the exact solution.  The norm ⟨𝑅𝑅|𝑅𝑅⟩ can be taken as a measure of the 
error in the residual vector.  The strategy adopted by iterative methods is find a vector 
increment |𝛿𝛿𝛿𝛿𝑛𝑛⟩ which, if added to |𝜙𝜙𝑛𝑛⟩ yields a very small (ideally zero) residual vector, i.e. 

|𝑅𝑅(𝜙𝜙𝑛𝑛 + 𝛿𝛿𝜙𝜙𝑛𝑛)⟩ =  |𝑅𝑅(𝜙𝜙𝑛𝑛)⟩ + �𝐻𝐻 − 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎�|𝛿𝛿𝜙𝜙𝑛𝑛� = 0. 
(76) 

and �𝜙𝜙�𝑛𝑛� = |𝜙𝜙𝑛𝑛⟩ + |𝛿𝛿𝜙𝜙𝑛𝑛⟩ results in a minimum residual vector and satisfies  

�𝐻𝐻 − 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎��𝜙𝜙�𝑛𝑛� = 0 
(77) 

i.e. �𝜙𝜙�𝑛𝑛� is an eigenvector of 𝐻𝐻.  Unfortunately, the formal solution     

is no easier to solve than the diagonalization of 𝐻𝐻 as it requires matrix inversion.  So, we seek 
a matrix 𝐾𝐾 (referred to as the preconditioning matrix) which, when multiplied with the 
residual vector, produces an approximate correction vector: 

|𝛿𝛿𝜙𝜙𝑛𝑛⟩ = 𝐾𝐾|𝑅𝑅⟩. 
(79) 

𝐾𝐾 might be derived by simply assuming that �𝐻𝐻 − 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎� is diagonal so that  

|𝛿𝛿𝜙𝜙𝑛𝑛⟩ = −�𝐻𝐻 − 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎�−1|𝜙𝜙𝑛𝑛⟩ = 0 
(78) 
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𝐾𝐾 =  − �
|𝑞⃗𝑞⟩⟨𝑞⃗𝑞|

�𝑞⃗𝑞�𝐻𝐻 − 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎�𝑞⃗𝑞�
𝑞𝑞�⃗

 
(80) 

where 𝑞⃗𝑞 runs over all the plane waves in the basis set.   This diagonal approximation to |𝛿𝛿𝜙𝜙𝑛𝑛⟩ 
could be a basis for iteration: |𝜙𝜙𝑛𝑛⟩ would be replaced by |𝜙𝜙𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛⟩ = |𝛿𝛿𝜙𝜙𝑛𝑛⟩ + |𝜙𝜙𝑛𝑛⟩ and 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 
by 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛 =  ⟨𝜙𝜙𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛|𝐻𝐻|𝜙𝜙𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛⟩ ⟨𝜙𝜙𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛|𝜙𝜙𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛⟩⁄ , which is called a Newton step after its 
resemblance to the Newton-Raphson iterative procedure for finding the zeros of function.  
However, the process is not guaranteed to converge for an arbitrary Hamiltonian 𝐻𝐻 and 
some further refinement is needed.  

In a sequential algorithm it is usual to make a new correction vector orthogonal to the 
current expansion set, by removing the projections of the existing vectors along the new 
vector:    

|𝛿𝛿𝜙𝜙𝑛𝑛
⊥⟩ =  �|𝛿𝛿𝜙𝜙𝑛𝑛⟩ − �|𝜙𝜙𝑚𝑚⟩⟨𝜙𝜙𝑚𝑚|

𝑚𝑚

𝛿𝛿𝜙𝜙𝑛𝑛⟩� 
(81) 

where the expression in brackets is the Gram-Schmidt orthogonalization formalism5 with 
𝑚𝑚 ranging over the expansion set.   Now the preconditioning matrix is 
(1 −  ∑ |𝜙𝜙𝑚𝑚⟩⟨𝜙𝜙𝑚𝑚|𝑚𝑚 ) × 𝐾𝐾 and iteration sequence 

     |𝑔𝑔𝑛𝑛⟩ =  �1 − �|𝜙𝜙𝑚𝑚⟩⟨𝜙𝜙𝑚𝑚|
𝑚𝑚

� × 𝐾𝐾𝐾𝐾 
(82) 

should generate a preconditioned residual vector |𝑔𝑔𝑛𝑛⟩ orthogonal to all its predecessors at 
each step.  In the QN iteration, |𝑔𝑔𝑛𝑛⟩  is used to define a small auxiliary eigenvalue problem 

�𝑏𝑏𝑖𝑖�𝐻𝐻 − 𝜀𝜀�𝑏𝑏𝑗𝑗� = 0 (83) 

with basis set (at step 𝑁𝑁) 

�𝑏𝑏𝑖𝑖,𝑖𝑖=1,𝑁𝑁−1� =  �|𝜙𝜙𝑛𝑛⟩,|𝑔𝑔𝑛𝑛
1⟩,|𝑔𝑔𝑛𝑛

2⟩,|𝑔𝑔𝑛𝑛
3⟩, … , |𝑔𝑔𝑛𝑛

(𝑁𝑁−1)⟩� 
(84) 

The auxiliary eigenvectors are linear combinations of |𝜙𝜙𝑛𝑛⟩ and the preceding residual 
vectors. The lowest can form input to the next step, while the current residual vector is 
added to the expansion set.  The process terminates when the energy is converged or norm 
of the residual falls below some predetermined value, resuming with the next band.  

In this scheme (and most other optimization methods) 𝐻𝐻 is neither stored nor fully 
evaluated.  Partial inversion of 𝐻𝐻 is achieved row-by-row in a restricted subspace, namely 
the expansion set, using matrix-vector and vector-vector multiplications.  

  

 
5 in matrix notation, ∑ 𝜙𝜙𝑚𝑚⨂𝜙𝜙𝑚𝑚(𝛿𝛿𝜙𝜙𝑛𝑛)𝑚𝑚 = ∑ 𝜙𝜙𝑚𝑚𝜙𝜙𝑚𝑚

𝑇𝑇
𝑚𝑚 (𝛿𝛿𝜙𝜙𝑛𝑛) = ∑ 𝜙𝜙𝑚𝑚(𝜙𝜙𝑚𝑚. 𝛿𝛿𝜙𝜙𝑛𝑛)𝑚𝑚 . 
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2.13 Charge mixing 

In the preceding section it was implied that each successive approximation 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) to the 
electronic density generated within the SCF cycle is returned as 𝜌𝜌𝑖𝑖𝑖𝑖(𝑟𝑟) to the next.   In 
practice this usually leads to an instability known as charge sloshing, preventing 
convergence.  Sloshing is more likely to occur when the Fermi surface is poorly defined, and 
a small change in charge distribution can lead to a relatively large change in the Hartree 
potential.  An empirical remedy is charge mixing, whereby the output of several prior 
iterations is combined to form the input to the next.  In functional terms the objective is to 
minimize the norm of the residual vector 

𝑅𝑅[𝜌𝜌𝑖𝑖𝑖𝑖] =  𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜[𝜌𝜌𝑖𝑖𝑖𝑖] − 𝜌𝜌𝑖𝑖𝑖𝑖 
(85) 

so that self-consistency (𝜌𝜌𝑖𝑖𝑖𝑖~𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜) is achieved in as few iterations as possible.   The simplest 
prescription is linear mixing: 

𝜌𝜌𝑖𝑖𝑖𝑖
𝑛𝑛+1 = 𝛼𝛼𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛 + (1 − 𝛼𝛼)𝜌𝜌𝑖𝑖𝑖𝑖
𝑛𝑛    (86) 

and the VASP package sets 𝛼𝛼 = 0.4 when linear mixing is requested.  Although charge mixing 
can be viewed as a discrete SCF step applied after electronic minimization charge-sloshing 
can be prevented by modifying the preconditioning step described in the preceding section.   
The role of the preconditioner is to reduce the clustering of eigenvalues and to compress the 
eigenvalue spectrum.  This reduces ill-conditioning usually present in the Hamiltonian matrix 
and accelerates convergence towards a minimum, which remains unaltered by the presence 
of the preconditioner.  The Kerker preconditioner (Kerker, 1980) is an example.  This scales 
the Hartree and exchange correlation contributions to the KS potential (44) by confining 
them to a sphere surrounding each space point.  The spherical radius is related to the 
Thomas-Fermi screening length in the UEG, the characteristic length over which electron 
correlation occurs.  The overall effect is to attenuate the long-wavelength components of 
changing electronic density, which cause ill-conditioning.  As the iteration proceeds the 
radius is increased, and the ultimate self-consistency is unaffected.      

2.14 Ionic movement 

DFT calculations have been described in the context of the Born-Oppenheimer 
approximation with static ionic nuclei in a varying electronic density producing a ground 
state energy value for a single ionic configuration.  A DFT code usually contains a relaxation 
scheme for iteratively moving each ion to a nearby PES location having lower energy and 
then recalculating the total energy and forces.  The iteration ends when the force acting on 
each ion approaches zero (e.g. ≤ 0.01 eV/Å) in a stable or optimized configuration which 
may have changed in size or shape but represents a local PES minimum.  This is a reasonable 
stopping criterion since it implies a very small change in total energy:  if any individual atom 
moves by 0.1 Å then Δ𝐸𝐸 ≈ 0.001 eV.  If three-dimensional freedom is not required, 
individual ions can be fixed in space or constrained to move in fewer dimensions.  

 Atomic forces arise from electronic attraction and repulsion by nearby nuclei.  They can be 
calculated using the Hellman-Feynman theorem (Feynman, 1939; Hellman, 1937).  After the 
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BO approximation the ground state energy and wavefunctions depend only parametrically 
on �𝑅𝑅�⃗ 𝐼𝐼� (1) and the theorem states the forces acting on ions are given by the expectation 
value of the gradient of the electronic Hamiltonian in the ground state: 

where because energy is at a variational minimum, derivative terms involving ∇𝐼𝐼Ψ0 vanish.  
The only terms in the Hamiltonian that depend explicitly on nuclear position are the 
interaction 𝐸𝐸𝐼𝐼𝐼𝐼 and the external pseudopotential.  After electronic optimization accurate 
density wavefunctions for Ψ0 are available so the 𝐹⃗𝐹𝐼𝐼 can be obtained easily by differentiation 
of these terms.  If the basis set depends on atomic position an additional term called the 
Pulay force would arise, but the plane-wave basis set is non-local. 

Several schemes exist for determining optimum ionic movement.  The simplest is simply to 
move each ion downwards in the direction of the force.  VASP supports a QN-based force 
minimization in which the ions, rather than the electrons move and the step size is scaled 
from the force by an external parameter.  A variation allows the step size and direction to 
be determined classically in a molecular dynamics calculation conditioned by a damping 
parameter.   The chosen method will depend on how close to optimum the initial 
configuration is, and how aggressively the ions can be moved.   For example, if two 
chemically-bonded atoms are configured with a bond length that is much shorter than the 
equilibrium length, repulsive forces may drive the atoms apart preventing any subsequent 
convergence.            

2.15 DFT algorithm 

With sufficient theoretical and computational detail available, it is possible to present a 
generic algorithm for solving the KS equation (fig 2.4).  The apparent simplicity hides a great 
deal of lower-level complexity, caused by the many processing options offered in a real 
software package and the highly specialized implementations of the numerical methods 
employed. 

For clarity, electron spin has been largely ignored in the preceding discussion.  This is 
reasonable in systems having an even number of electrons in covalent bonds but otherwise 
(e.g. Al-Si bonding) spin would be explicitly considered.  A spin-sensitive calculation can be 
thought of as two (spin up/down) calculations proceeding in parallel, with distinct values for 
𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒

𝜎𝜎  and 𝜌𝜌𝜎𝜎  maintained throughout.  The calculations are coupled because the exchange-
correlation contribution to the KS potential depends on the total electronic density, which 
must be conserved throughout the calculation.  Assuming that self-consistency can be 
achieved the two spin densities are summed and a total energy calculated.  In either case 
the algorithm must be primed with some initial guess at the potential and densities.  This 

   −𝐹⃗𝐹𝐼𝐼 = ∇𝐼𝐼𝐸𝐸0�𝑅𝑅�⃗ � = 𝜕𝜕
𝜕𝜕𝑅𝑅�⃗ 𝐼𝐼

�Ψ0�𝑅𝑅�⃗ ��𝐻𝐻�𝑅𝑅�⃗ ��Ψ0�𝑅𝑅�⃗ �� 

 
                           = ⟨∇𝐼𝐼Ψ0|𝐻𝐻|Ψ0⟩ +  ⟨Ψ0|∇𝐼𝐼𝐻𝐻|Ψ0⟩ +  ⟨Ψ0|𝐻𝐻|∇𝐼𝐼Ψ0⟩ 

 
                                         = �Ψ0�𝑅𝑅�⃗ ��∇𝐼𝐼𝐻𝐻�𝑅𝑅�⃗ ��Ψ0�𝑅𝑅�⃗ �� 

(87) 
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can be done by placing the atomic electron density at each ionic coordinate and taking 
random complex numbers as the basis coefficients of the density wavefunctions.  After a few 
iterations at constant density (allowing the wavefunction to stabilize) the calculation would 
then proceed.  

With 𝜌𝜌𝑖𝑖𝑖𝑖, the current input electronic density to hand, the effective potential 𝑣𝑣𝑘𝑘𝑘𝑘 can be 
calculated.  The electronic density is the independent variable of the calculation.  In principle, 
the effective potential can be calculated in either real or reciprocal space and a procedure 
for the Hartree potential was given earlier.  The next step is the solution of the KS equation.  
This involves calculating the elements of the Hamiltonian matrix and iteratively inverting it 
to find the eigenvalues and wavefunctions.  This latter aspect of the calculation can be 
regarded as a ‘black box’ hiding a numerical procedure that solves the KS matrix equation to 
the required level of accuracy, without treating the matrix in its entirety.  In general, the 
procedure with the lowest convergence time will be preferred.  

Fig 2.4.  Flowchart of the self-consistency loop for the solution of the non-
linear Kohn-Sham equation.  In a spin-sensitive calculation, two loops would 
be iterated in parallel producing electronic densities for both spins (after R 
M Martin, 2004) 
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Finally, a new output density 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 is calculated and a new ground state energy.   If the change 
∆𝐸𝐸 in energy is less than a pre-set stopping criterion (normally 10−4 − 10−5 eV) the 
algorithm terminates, and the current density distribution assumed to be the unique self-
consistent solution of the KS equation.  Otherwise, the new density is subject to any desired 
charge mixing and the new density distribution taken as input to the next iteration.    

2.16 Transition State Theory and NEB methods 

Nudged Elastic Band (NEB) methods are force-based forms of ionic optimization yielding 
discrete representations of the minimum energy path (MEP) between the initial and final 
states of a chemical transition of interest, such as surface diffusion (Jonsson et al., 1998).  At 
a typical activation energy (≈ 0.6 eV) diffusion events occur many times per second at room 
temperature.  But there are ≈ 1010 vibrational periods between such events and no classical 
dynamics simulation could possibly keep track of them.  However, a statistical method, 
namely Transition State Theory (TST) (Eyring, 1935) gives good results over longer 
timescales.  In its harmonic approximation form (hTST) it relates the energy difference ∆𝐸𝐸 
between the initial configuration and a transition state † on the MEP with the reaction rate 
𝑘𝑘 by the equation: 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖→† =
𝜈𝜈†

1 × 𝜈𝜈†
2 × … 𝜈𝜈†

3𝑁𝑁

𝜈𝜈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1 × … × 𝜈𝜈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

3𝑁𝑁−1 𝑒𝑒
−Δ𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇  

(88) 

where 𝜈𝜈†
𝑖𝑖  and 𝜈𝜈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗 are the normal mode vibrational frequencies at the transition state and 
local minimum respectively, 𝑁𝑁 the number of atoms in the simulation, 𝑘𝑘𝐵𝐵 the Boltzmann 
constant and 𝑇𝑇 the prevailing temperature.  At a transition state exactly one of the 𝜈𝜈†

𝑖𝑖  will 
be imaginary, and the remainder real, whereas at a local minimum all the frequencies are 
real.  This formulation assumes the reaction rate is sufficiently slow for a Boltzmann energy 
distribution to be established in the reactants and neglects quantum effects such as zero-
point energy and tunnelling. 

The MEP may have one or more minima between the endpoints representing stable 
intermediate configurations, giving rise to two or more maxima which are transition states 
or saddle points.  The overall rate is determined by the highest energy saddle point.  Locating 
the highest saddle point from the total energy and its first derivative (i.e. ionic force) is the 
motivation of NEB methods.  The resulting energy can be incorporated into (88) along with 
a notional value of 𝜈𝜈 (e.g. 𝜈𝜈 =  1012 −1014 𝑠𝑠−1) to get an estimate of the reaction rate. 

An initial approximation to the MEP may arise intuitively but can otherwise be obtained by 
the linear interpolation between the initial and final states, with the images connected 
with springs to form a band.    A band with 𝑁𝑁 + 1 images can be denoted by 
�𝑅𝑅�0, 𝑅𝑅�1, 𝑅𝑅�2, … , 𝑅𝑅�𝑁𝑁� where 𝑅𝑅�0 and 𝑅𝑅�𝑁𝑁, which are fixed, correspond to the initial and final 
states which have been found in earlier ionic optimizations as described above.  A path is a 
MEP only if the force corresponding to the energy gradient on each image is tangential to 
the path.  Then the 𝑁𝑁 − 1 intermediate images are concurrently adjusted using a 
projection scheme, characteristic of NEB methods.  The force acting on the image is taken 
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to be the sum of the projections of the true (potential-derived) force perpendicular to the 
local tangent and the spring force along the local tangent: 

𝐹𝐹�𝑖𝑖 =  𝐹𝐹�𝑖𝑖
𝑠𝑠�∥ − ∇𝐸𝐸�𝑅𝑅�𝑖𝑖��⊥ (89) 

where the perpendicular component of the true force is given by subtracting out the 
tangential component 

∇𝐸𝐸�𝑅𝑅�𝑖𝑖��⊥ =  ∇𝐸𝐸�𝑅𝑅�𝑖𝑖� − ��∇𝐸𝐸�𝑅𝑅�𝑖𝑖��. 𝜏̂𝜏𝑖𝑖�𝜏̂𝜏𝑖𝑖 (90) 

and 𝐸𝐸 is the energy of the system and 𝜏̂𝜏𝑖𝑖 the normalized local tangent at image 𝑖𝑖.  The spring 
force is:  

𝐹𝐹�𝑖𝑖
𝑠𝑠�∥ = 𝑘𝑘��𝑅𝑅�𝑖𝑖+1 − 𝑅𝑅�𝑖𝑖� − �𝑅𝑅�𝑖𝑖 − 𝑅𝑅�𝑖𝑖−1��𝜏̂𝜏𝑖𝑖. (91) 

The local tangent at image 𝑖𝑖 is estimated from the adjacent images 𝑅𝑅�𝑖𝑖−1 and 𝑅𝑅�𝑖𝑖+1 (e.g. by 
normalizing the line segment between the two) while the true force −∇𝐸𝐸�𝑅𝑅�𝑖𝑖� is obtained 
from a concurrent DFT electronic structure calculation.  The images are all instantaneously 
moved along the force vectors 𝐹𝐹�𝑖𝑖 (Jonnson et al., 1998). The images converge on the MEP 
(𝐹𝐹𝐹𝑖𝑖→0) but will not necessarily coincide with any saddle points. The actual saddle point 
energy must be obtained by interpolation.  This cycle repeats until all the forces fall below a 
convergence criterion. 

In the climbing-image (Cl-NEB) variation employed later (Henkelman, 2000) one image, 
having the highest energy after a few iterations, is selected and constrained by a new force 
projection to move uphill along the elastic band to a saddle point. The projection on this one 
image is now given by: 

𝐹𝐹�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  =  −𝛻𝛻𝛻𝛻�𝑅𝑅�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� + 2𝛻𝛻𝛻𝛻�𝑅𝑅�𝑖𝑖��∥ (92) 

=  −𝛻𝛻𝛻𝛻�𝑅𝑅�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� + 2��𝛻𝛻𝛻𝛻�𝑅𝑅�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚��. 𝜏̂𝜏𝑖𝑖�𝜏̂𝜏𝑖𝑖 . (93) 

while the others continue with the original projection.  The climbing-image force is the true 
force with the component along the local path inverted, and the image does not experience 
any spring forces.  Under this regime the image is pushed up the potential gradient, and 
when 𝐹𝐹�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  converges will be located on the highest saddle point of the MEP. 

2.17 Conclusion 

This chapter has presented some basic DFT theory and the plane-wave pseudopotential 
concept as a mechanism for atomistic modelling.  Its implementation in the VASP package 
(Kresse et al., 2009) supports the calculations described in the following chapters.  The 
purpose of this section is to identify some limitations of the DFT approach and comment on 
the accuracy of the calculations. 

Although the Kohn-Sham equation is derived from a many-electron SE it cannot deliver exact 
solutions.  An intrinsic uncertainty exists because the functional assumed by the Hohenberg-
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Kohn theorem (which leads to the unique ground state energy) is never known exactly.  This 
uncertainty is generally much greater than any due to SCF convergence or other source and 
can only be quantified by careful comparison with experimental measurements. However, 
the non-empirical PBE GGA functional chosen for the present calculations is known to 
perform well in solid-state scenarios.   

There are some situations in which DFT cannot be expected to approach physical accuracy.  
One is the calculation of excited states.   This is simply because the variational principle on 
which the second HK theorem depends does not apply to excited states.   Another well-
known inaccuracy is the underestimation of the band gap in semiconductor or insulating 
materials.  A DFT calculation for crystalline Si typically gives a value ~0.5 eV, but 
experimental values are ~1.0 eV.  This was originally thought to be a shortcoming of the LDA 
or GGA exchange-correlation functionals, but it has been shown (Rinke at al, 2008) that even 
a formally exact functional would suffer from the same underlying problem. 

Finally, a fundamental limitation of DFT is the computational cost of solving the 
mathematical problems it presents.  Even a very large computer with thousands of cores will 
take days to optimize a silicon nanostructure consisting of just a thousand atoms.  But a 
single droplet of water 1 micron in radius contains ~1011 atoms.  No conceivable advance 
in current computer technology would allow DFT examination of a system of this size.   In 
this connection the application of DFT even to small clusters of water molecules has proven 
arduous – a review of recent progress appears in (Gillan et al., 2016).  
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Chapter 3 

Some preliminary calculations 

 Introduction 

For a given choice of exchange-correlation functional and pseudopotential, accurate and 
efficient DFT calculations require judicious specification of the supercell and accompanying 
external parameters, of which the most critical are the k mesh density and the plane wave 
cut-off energy.  In practice the supercell is usually determined empirically, and parameters 
adjusted incrementally until calculated energies are essentially independent of their exact 
values.  In this chapter we document this procedure using simple, generic Si supercells 
representing bulk and surface structures, comparing the results with experimental values 
and similar calculations performed elsewhere.  This serves two purposes: to validate our 
VASP environment and to show how more complex supercells, as featured in subsequent 
chapters were created.  These calculations used the PBE GGA functional (page 32) and PAW 
pseudopotentials (page 41). 

 Reciprocal space and k points 

In chapter 2 It was shown that the KS effective potential is evaluated iteratively during the 
SCF procedure, each iteration involving many Brillouin zone integrations of the form:  

� 𝑔𝑔(𝑘𝑘)𝑑𝑑𝑑𝑑
𝐵𝐵𝐵𝐵

 

 

(1) 
 

where the 𝑔𝑔(𝑘𝑘) are components of the KS effective potential.  On page 35 It was suggested 
that these integrals could be approximated by summing the functions 𝑔𝑔(𝑘𝑘) over a mesh of 
k points given by the Monkhorst-Pack prescription.  This is a numerical integration technique 
requiring the specification of the number of k points in each reciprocal space direction.  As 
noted above, these numbers must be determined empirically for each supercell and species 
configuration and before any other calculation is undertaken.      

Table 3.1 shows the results of total energy calculations in a cubic supercell containing 8 Si 
atoms with an experimental lattice constant value6 of 5.431 Å and with the Monkhorst pack 
k point mesh shown in the first column.  The calculated per-atom total energies (in the 
second column) show that a (5 × 5 × 5) mesh is needed to achieve convergence to ±1 meV, 
and that a denser mesh yields no benefit.   

 
6 Greenwood; Earnshaw (1985), page 373. 
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Mesh 
𝒎𝒎𝒙𝒙 × 𝒎𝒎𝒚𝒚 × 𝒎𝒎𝒛𝒛 

E/atom (eV) No. of k Points in 
IBZ 

𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝝉𝝉𝟏𝟏×𝟏𝟏×𝟏𝟏⁄  

1x1x1 -4.1752 1 1.0 
2x2x2 -5.3447 4 1.2 
3x3x3 -5.4102 14 2.0 
4x4x4 -5.4235 32 2.7 
5x5x5 -5.4243 63 5.7 
6x6x6 -5.4247 108 9.8 
7x7x7 -5.4248 172 16.6 
8x8x8 -5.4248 256 26.2 
9x9x9 -5.4248 365 32.0 

10x10x10 -5.4248 500 46.5 
11x11x11 -5.4248 666 68.3 
12x12x12 -5.4248 864 72.2 
13x13x13 -5.4248 1099 112.3 
14x14x14 -5.4248 1372 131.4 
15x15x15 -5.4248 1688 192.6 
16x16x16 -5.4248 2048 210.0 

The third column shows the number of k points in the irreducible Brillouin zone (IBZ), which 
is the zone that remains after removal of those which are symmetrically equivalent.  The IBZ 
energies are weighted so that the final total is correct.  The VASP software finds a 2-fold 
symmetry in this supercell, because the number of k points in the IBZ is not  
𝑀𝑀 =  𝑚𝑚𝑥𝑥 × 𝑚𝑚𝑦𝑦 × 𝑚𝑚𝑧𝑧 but either 𝑀𝑀 2⁄  or (𝑀𝑀 2⁄ ) + 1.  When 𝑀𝑀 is odd the additional point is 
the Γ point which lies on the IBZ boundary.  Unless the Γ point energy is specifically needed, 
it is more efficient to choose k points lying in the interior of the IBZ.    The last column shows 
the processor time taken for the energy calculation, normalized to the value from the single 
k point calculation.  These times show that achieving ±1 meV accuracy is relatively costly on 
this measure.  A tolerance of ±5 meV, giving ∆𝐸𝐸 values to within ±0.01 eV is usually 
acceptable in the DFT context.  

Mesh E/atom (eV) No. of k Points in 
IBZ 

𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎/𝝉𝝉𝟏𝟏×𝟏𝟏×𝟏𝟏 

1x1x2 -5.0934 2 1.8 
2x2x2 -5.4557 4 3.5 
2x2x3 -5.4528 6 3.6 
3x3x3 -5.4198 14 8.4 
3x3x4 -5.4211 18 7.2 
3x3x5 -5.4208 23 8.8 
4x4x4 -5.4256 32 12.2 
4x4x5 -5.4245 40 15.5 
5x5x5 -5.4246 63 30.9 

Table 3.1 Total energy calculations for bulk Si with 𝑘𝑘 points given by the Monkhorst pack method.  The 
supercell contains 8 atoms.  The processing time 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚ℎ  has been normalized to 𝜏𝜏1.  Supercell size is 
5.43 × 5.43 × 5.43 Å, as shown in fig 1.1 on page 13. 

 
Table 3.2  As table 3.1, for a supercell with 16 atoms. 𝜏𝜏𝑀𝑀 values are comparable with table 3.1.  Supercell size is 
7.68× 7.68 × 5.43 Å. 
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Table 3.2 shows equivalent results for a larger supercell containing 16 Si atoms.   Because  

𝑉𝑉𝐵𝐵𝐵𝐵 =
(2𝜋𝜋)3

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

(2)  

the reciprocal cell is smaller, the volume per k point reduces and integration accuracy 
improves.   In this case the cell is not uniform, and one can assign fewer 𝑘𝑘 points on the 
longer axes without sacrificing accuracy.  So, a given accuracy is achieved with fewer k points.  
This can be seen from the table, with a 4 × 4 × 5 mesh yielding the same accuracy as a 
5 × 5 × 5  in the smaller supercell.   The processing times do not scale with the cube of 
system size (23 = 8 in this case) because some parts of the VASP code scale by smaller 
factors and the prefactor for the cubic part is relatively small. 

The cohesive energy 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 of a crystal can be defined as the energy that must added to 
separate it into free atoms at rest and at infinite separation, at 0 K.  To compare the energies 
of tables 3.1 and 3.2 with published values of 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 for Si the energy of an isolated Si atom 
must be subtracted: 

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚 (3) 

A separate VASP calculation returned −0.8042 eV for 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.  Substituting in (3) gives 
𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 =  −4.62 eV, in good agreement with a published value of −4.63 eV (Kittel, 2008). 

 The cut-off energy 

As noted earlier (page 38) the infinite sums of the Fourier representation of the KS electronic 
wavefunction (49) must be truncated for use in practical energy calculations.  This is done 
by retaining terms having kinetic energy less than a cut-off value, so that the expansion 

consists of plane waves having kinetic energy 𝐸𝐸 < 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 = (ℏ2 2𝑚𝑚𝑒𝑒⁄ )�𝐺⃗𝐺�
2

.  The cut-off 
value then appears as an external parameter to the calculation.  This definition implies that 
the number of plane waves  changes discontinuously with the cut-off value and will be 
different at each k point, but that effect is reduced with a denser 𝑘𝑘 point mesh.  The 

dependency on the 𝐺⃗𝐺 vectors means that the basis set is modified whenever the supercell 
alters in size or shape.     

The actual limit value depends on the pseudopotential species and pseudopotential files will 
contain a default setting that may well have been determined empirically.  If a supercell 
configuration contains mixed species the largest cut-off value must be taken.  For the VASP 
Si PAW pseudopotential the default value is 250 eV, said to produce energies accurate to 
within a few millivolts (Kresse et al., 2009).   Nevertheless, it is worthwhile performing some 
bulk calculations to verify that the recommended value is correct.   For this pseudopotential 
the results of table 3.3 show that total energy is converged with the advertised accuracy with 
the recommended cut-off.  They further show that the total energy value could be lowered 
by up to 0.01 eV using larger cut-off energies.  At 250 eV the calculation generates ≈
45000 plane waves, half the number needed at a 390 eV setting, indicating a large saving in 
processing time with only a moderate loss of accuracy.   
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Cut-off energy 
(eV) 

No. of plane 
waves 

E/atom (eV) ΔE 

90 10368 -5.2865  
95 14112 -5.3093 -0.0228 

100 14112 -5.3286 -0.0193 
110 15680 -5.3480 -0.0194 
130 18000 -5.3672 -0.0192 
150 24576 -5.3785 -0.0113 
170 31104 -5.3898 -0.0113 
190 36288 -5.3996 -0.0098 
210 44800 -5.4070 -0.0074 
230 44800 -5.4115 -0.0045 
250 44800 -5.4160 -0.0045 
270 52920 -5.4195 -0.0035 
290 69120 -5.4219 -0.0024 
310 73728 -5.4233 -0.0014 
330 73728 -5.4241 -0.0008 
350 82944 -5.4247 -0.0006 
370 90000 -5.4252 -0.0005 
390 90000 -5.4256 -0.0004 

 The bulk Si lattice constant 

The diamond structure of crystalline silicon described in chapter 1 is well known and simple 
to parametrize for input to a DFT calculation.  But this structure is only one of several that 
exist at various pressures, each with its own geometry (McMahon and Nelmes, 1993).  
Ranking the stabilities of all possible structures with DFT would be a large undertaking, but 

Figure 3.1  Calculated energies for 16-atom supercell for various values of 
lattice parameter a, with (4𝑥𝑥4𝑥𝑥4) k point sampling.  Quadratic fit is given by 
𝑦𝑦 = 1.6682𝑥𝑥2 − 18.2755𝑥𝑥 + 44.6172. 

Table 3.3  Total energy per atom 𝐸𝐸 against cut-off energy and size of plane wave basis 
set for the VASP Si PAW pseudopotential, in the 16-atom supercell.    k point setting is 
𝑀𝑀 = 4.  The recommended cut-off energy is 250 eV. 
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we can verify that the diamond structure and experimental lattice parameter value do 
represent a minimum energy configuration and then compare a by-product of the 
calculation, the equilibrium bulk modulus with experimental values.  

A series of total energy calculations for the 16-atom supercell of the preceding section with 
M=4, and the lattice parameter values varying between −10% and +10% of the 
experimental value �5.431 Å� is shown graphically in fig 3.1 above.  This supercell and 
sampling mesh are known to yield well converged energy values (table 3.2). 

The graph shows that the energy is minimized near this value, say 𝑎𝑎0.  This is reassuring as it 
indicates that ionic optimizations will tend to converge in this vicinity and not at some 
spurious minimum elsewhere.   The energy can be approximated by a truncated Taylor 
expansion around 𝑎𝑎0:   

𝐸𝐸(𝑎𝑎) = 𝐸𝐸(𝑎𝑎0) + 𝛼𝛼(𝑎𝑎 − 𝑎𝑎0) + 𝛽𝛽(𝑎𝑎 − 𝑎𝑎0)2 (4) 

with 𝛼𝛼 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑|𝑎𝑎0⁄  and  𝛽𝛽 = 1 2⁄ 𝑑𝑑2𝐸𝐸 𝑑𝑑𝑑𝑑2⁄ |𝑎𝑎0.   At 𝑎𝑎 = 𝑎𝑎0 

𝐸𝐸(𝑎𝑎) ≅ 𝐸𝐸(𝑎𝑎0) + 𝛽𝛽(𝑎𝑎 − 𝑎𝑎0)2 (5) 

and we try quadratic curve fitting to estimate 𝐸𝐸(𝑎𝑎0), 𝑎𝑎0 and 𝛽𝛽.  This gives 𝐸𝐸(𝑎𝑎0) =  −5.4254 
eV, in agreement with value in table 3.2 for this k point mesh.  The calculated value of 𝑎𝑎0 =
5.47 Å is greater than the experimental value, showing that the PBE-GGA functional has 
reversed the overbinding tendency of the LGA functional.  The value 𝛽𝛽 = 1.6682 can be used 
to estimate the equilibrium bulk modulus 𝐵𝐵0 using the definition:  

𝐵𝐵0 = 𝑉𝑉
𝑑𝑑2𝐸𝐸
𝑑𝑑𝑉𝑉2 

(6)  

where 𝑉𝑉 is the notional crystal volume occupied by a single atom and the derivative is taken 
at the equilibrium lattice parameter.  Changing the variable in (6) from 𝑉𝑉 to 𝑎𝑎 gives 

𝐵𝐵0 =  
16
9

×
1

𝑎𝑎0
× 𝛽𝛽 ≅ 0.54 eV/Å3 ≅ 86 GPa 

 

(7)  

This compares to a published experimental value 𝐵𝐵0 ≅ 99 GPa (Moll et al., 1995).  Away 
from the lattice equilibrium the energy cannot be represented by a quadratic function, as 
shown by the extrapolation in fig 3.1.  A better approximation is the Birch-Murnaghan 
equation of state, a cubic in 𝑎𝑎  (Birch,  1947).  If this were fitted to the energy data of fig 3.1 
slightly different values of 𝑎𝑎0 and 𝐵𝐵0 would be obtained.  However, the quadratic result 
suffices for the present purpose: to show that the lattice model and other external DFT 
parameter settings yield results consistent with experiment.  This approach is similar to that 
adopted by (Sholl; Stecker, 2009) when examining the crystal structure of Cu.  

 Supercells with surfaces and structures 

The infinitely repeated supercell model can support structures which are seemingly non-
periodic, or periodic in only one or two dimensions, by the introduction of vacuum spaces.  
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The original idea was published by Evastorev at al, (1975) who were able to impose 3-
dimensional translational symmetry on molecular models of solids by regarding them as 
cyclic structures and applying mathematical group theory.  However, translational symmetry 
is implicit in the periodic supercell scheme of VASP DFT and vacuum spaces can be freely 
deployed without code change, as shown in Fig 3.2. 

When a supercell contains vacuum space there will usually be a ‘long’ axis passing through 
the vacuum.  The corresponding reciprocal space dimension will therefore contain regions 
of zero electronic density.  If the vacuum interval is sufficiently large there will be no 
interaction between replica systems and consequently no band dispersion to sample.  A 
single reciprocal space coordinate coordinate is therefore enough, obtained by setting is 
𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 in the Monkhorst-Pack prescription.  The mesh settings in the other axes are 
determined through convergence testing as already described.  

When a bulk surface is cut it leaves undercoordinated atoms on the surface, with fewer 
bonds than they had in the crystal.  In Si these are valence bonds and the electrons remain 
localized, giving rise to dangling bonds.  An energy-lowering  reorganization occurs naturally, 
minimizing the number of such bonds.  On the Si(100) surface this results in dimerization, 
with a dangling bond at each end of the dimer bond.   A further relaxation can occur in which 
the dimer bonds are pairwise tilted (buckled) out of the horizontal plane.  Here surface 
dimerization and buckling are introduced by construction, and the equilibrium  bond lengths 
determined by ionic optimization (page 48).  

It is also important to ensure there is no interaction between surfaces or their periodic 
images.  The structure of fig 3.3 models the buckled Si(100) upper surface with a vacuum 
space of 13 Å above, and the lower passivated with H atoms.  These surfaces together with 
intervening bulk-like Si atoms are the slab of figure 3.2 (left) above, the two vacuum spaces 
having been merged.  The chosen height of the vacuum region is typical in this setting, and 
sufficient for the electronic density to decline to zero before encountering the adjacent 
periodic surface. 

 
Figure 3.2  2-dimensional sketch of 9 supercell replicas of systems with less than 3-dimensional periodicity.  
The dashed lines denote supercell boundaries; shaded areas contain atoms, white depict vacuum.  Left: 
surface slab (2-dimensional periodicity); centre: wire nanostructure (1-dimensional periodicity); right: surface 
slab with adsorbate (2-dimensional periodicity).   
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The reorganization of the upper surface distorts the bulk structure beneath, which is 
compromised when the cell depth is too small.  Table 3.4 shows the change ∆𝐸𝐸 in calculated 
energies as the cell depth is increased.  Each depth increment introduces 16 Si atoms into 
the cell.  Convergence to within 0.01 eV (with respect to cell depth) occurs at ≈ 40 Å,  
although some quantities (e.g. band width at the valence band edge) are not completely 
converged at much greater depths (Sagisaka et al., 2017).  When surface phenomena are 
compared (e.g. adsorption energies) the calculations should be made in cells of the same 
size.  

 

Cell depth �Å� Number of 
atoms 

Total energy 
(eV) 

∆𝑬𝑬 𝝉𝝉 

23.97 40 -194.03964   1.0 
29.40 56 -280.83089 -86.79125 1.9 
34.83 72 -367.60086 -86.76996 3.7 
40.26 88 -454.36843 -86.76757 6.1 
45.69 104 -541.13602 -86.76759 9.2 
51.12 120 -627.90439 -86.76836 13.6 
56.55 136 -714.67235 -86.76796 20.4 
61.98 152 -801.44166 -86.76931 29.5 

 Electronic Density of States  

The density of states (DOS) is a measure of the number of states (eigenstates) existing at a 
given energy 𝐸𝐸 or within an energy window: 

 

Figure 3.3  Optimized supercell with 48 Si atoms (yellow) with dimerized and buckled 
surface in the (100) plane, a 13 Å vacuum region above and 8 passivating H atoms 
(grey) below.  Blue lines represent periodic boundaries.   H positions and the lowest Si 
layer were fixed during optimization.   Cell dimensions are (7.68 × 7.68 × 29.40) Å. 

Table 3.4  Total energies for surface structures as Fig 3.4, of varying depths.   The cell depth 
includes a vacuum space of 13 Å.  Each depth increment incorporates a further 16 Si atoms 
into the structure.  The Monkhorst-Pack k point mesh for all structures was (4 × 4 × 1).   Ionic 
optimization was terminated when forces fell below 0.02 eV Å⁄ .  𝜏𝜏 represents the 
processing time taken to optimize relative to that of the 40 atom cell.     
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𝑔𝑔(𝐸𝐸) = � 𝛿𝛿(𝐸𝐸 − 𝜖𝜖𝑖𝑖)
𝑖𝑖

 (8)  

where 𝜖𝜖𝑖𝑖 denotes the energy of an individual electron.  The electronic DOS condenses the 
electronic properties at all possible locations in reciprocal space into a simple form.  A 
calculated DOS helps analyze the electronic structure of a system and supports experimental 
techniques such as scanning tunnel spectroscopy, where the surface DOS can be related to 
the measured tunnelling current. 

A DFT DOS calculation is performed in two steps.  First, the ground state electronic density 
is obtained from a static SCF calculation using enough k points to ensure a well-converged 
charge density.  A second, non-SCF calculation involving a much finer k point mesh is then 
performed against the ground state density distribution obtained from the first.  This 
technique delivers the eigenstates at many points in reciprocal space in a single electronic 
minimization step, effectively probing the entire Brillouin zone.  The energy window is then 
divided into bins and each eigenstate cast into the appropriate bin, taking account of any k 
point weighting.   

Since the total number of electrons is finite a plot of the eigenstate count against bin number 
(i.e. 𝑔𝑔(𝐸𝐸) against 𝐸𝐸) would be a comb-like set of vertical lines, correctly depicting the DOS 
at 0 K but at odds with experimental spectra which are broadened by thermal fluctuation.  
So, it is usual to apply Lorentzian broadening to the peaks, significantly altering their 
appearance (see Figs 3.4 (𝜎𝜎 = 0.02 eV) and 3.5 (𝜎𝜎 =  0.15 eV), where 𝜎𝜎 is the peak width).   

 
Figure 3.4  Calculated electronic DOS for bulk Si, using the 8-atom supercell and a (16𝑥𝑥16𝑥𝑥16) Monkhorst-
Pack mesh giving 2024 irreducible k points.   The energy window is set to 9 eV and the Fermi level is at 0 eV.  
Gaussian smoothing is employed (𝜎𝜎 = 0.02 eV).  The predicted band gap (≈ 0.6 eV) is in poor agreement 
with experimental values circa 1.1 eV but in good agreement with other DFT calculations (see page 112).  
Author’s MATLAB rendering of VASP DOSCAR data. 
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The step change in electronic density at the Fermi level implies the functions being 
integrated in reciprocal space change discontinuously (from non-zero values to zero), and 
many 𝑘𝑘 points would be needed to yield a converged result.   This complication is avoided 
by ‘smearing’ the wavefunctions, i.e. enforcing continuity by inserting artificial intermediate 
values and which cause partial band occupancies to arise after integration.  The smearing 
can be done in several ways but here the implicit step function is replaced with a smooth 
Gauss-like function: 

𝑓𝑓 �
𝜀𝜀 − 𝜇𝜇

𝜎𝜎
� =  

1
2 �1 − erf �

𝜀𝜀 − 𝜇𝜇
𝜎𝜎

�� 
(9) 

erf(𝑥𝑥) =
2

√𝜋𝜋
� 𝑒𝑒−𝑡𝑡2

𝑥𝑥

0
dt 

(10) 

where 𝜇𝜇 is the Fermi level and 𝜎𝜎 again controls the degree of smoothing.  A small and 
fictitious (≈ 𝜎𝜎) electronic temperature is introduced, creating partial band occupancies 
around the Fermi level and facilitating numeric integration.  It is reassuring that both plots 
show the characteristic ‘narrow’ band gap of bulk Si and that this property is evidently 
insensitive to the value of 𝜎𝜎.  This reflects a relatively simple electronic structure at the Fermi 
level.  For metals with a complex DOS (e.g. Rhodium or Vanadium) a different approach 
might be adopted e.g. the tetrahedron method.  Here the 𝑘𝑘 points define a set of 
tetradhedra that fill the IBZ and an integration performed over each tetrahedron, using 
linearly interpolated coordinates. 

 
Figure 3.5  As Fig 3.4, broadened with 𝜎𝜎 = 0.15 eV.  The area under the DOS plot must correspond to 
the total number of states which is unchanged, so broadening will lower the peak values.  However, 
discontinuities in the slope of the DOS can persist.  These are mathematical artifacts known as van 
Hove singularities. 
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The presence of dopant impurities within bulk Si or a nanostructure can be modelled by 
substituting a single dopant atom into a large supercell, while holding the lattice constant 
fixed.  The impurity may give rise to new electronic states near the Fermi level and visible in 
the calculated DOS spectrum.  The manipulation of these states by external electric fields 
opens the prospect of engineered nanoscale devices.  Some DOS calculations of this kind are 
presented in chapter 7. 

 Band structure 

The electronic DOS condenses the properties of the electronic states at all possible positions 
in the IBZ into a simple form.  An alternative view of the same data can be obtained by 
resolving the states into bands.  The band structure represents the energy of available states 
along a series of lines in reciprocal space, usually forming a closed loop beginning and ending 
at the origin (Γ point) and passing through other points of high symmetry (see table 3.5).  
This presentation can help identify possible electronic and optical transitions.  The 
appropriate route through the Brillouin zone depends on the supercell, e.g. for a nanowire 
structure one would take the path corresponding to the axial direction.  For the face-centred 
cubic (fcc) structure of Si (where band dispersion is independent of supercell orientation) it 
is usual to adopt the segments 𝐿𝐿 − 𝛤𝛤 − 𝑋𝑋  or 𝑊𝑊 − 𝐿𝐿 − 𝛤𝛤 − 𝑋𝑋 − 𝑊𝑊.  Here the lattice is 
described by its rhombohedral primitive cell whose translation vectors connect the lattice 
point at the origin with those at the face centres.  In this scheme the Si diamond (consisting 
of two intersecting fcc cells) is obtained with just two Si atoms, one at the origin and the 
other displaced by (𝑎𝑎 4⁄ , 𝑎𝑎 4⁄ , 𝑎𝑎 4⁄ ), where 𝑎𝑎 is the length of the conventional cubic lattice. 

Like the DOS calculation, band structure requires two consecutive runs: a static SCF run and 
another taking the computed charge density and giving the band energies along the 
directions of interest.    A small number (10 or 20) k points, derived by linear interpolation 
between the reciprocal coordinates of table 3.5 is enough to create smooth band structure 
plots. 

 
Symmetry 

point 
Reciprocal 

coordinates 
(units of 𝒃𝒃�𝟏𝟏, 𝒃𝒃�𝟐𝟐, 𝒃𝒃�𝟑𝟑) 

Cartesian 
coordinates 

(units of 𝟐𝟐𝟐𝟐 𝒂𝒂�⁄ ) 
𝛤𝛤 (0,0,0) (0,0,0) 
𝑋𝑋 (1 2⁄ , 0, 1 2⁄ ) (0,1,0) 
𝑊𝑊 (1 2,⁄ 1 4⁄ , 3 4⁄ ) (1 2⁄ , 1,0) 
𝐿𝐿 (1 2⁄ , 1 2⁄ , 1 2⁄ ) (1 2⁄ , 1 2⁄ , 1 2⁄ ) 
∆ (1 4⁄ , 0, 1 4⁄ ) (0, 1 2⁄ , 0) 
𝛬𝛬 (1 4⁄ , 1 4⁄ , 1 4⁄ ) (1 4⁄ , 1 4⁄ , 1 4⁄ ) 

 

Fig 3.6 shows the structure of the first six bands of bulk Si calculated with the two-atom 
supercell, along the path 𝐿𝐿 − 𝛤𝛤 − 𝑋𝑋.  There are four valence bands (occupied at 𝑇𝑇 = 0) of 
which two are degenerate, two conduction bands (unoccupied at 𝑇𝑇 = 0) and an intervening  
band gap (≈ 0.6 eV) as in the earlier DOS plots.  The valence band maximum and conduction 

Table 3.5  A list of high symmetry points in the first Brillouin zone of the face-
centred cubic lattice. 
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band minimum are not vertically aligned in 𝑘𝑘 space, indicating an indirect semiconductor.   
The appearance of the plots indicates that the KS energies and electronic density 
wavefunctions vary smoothly in k space, confirming that k point sampling is a reasonable 
scheme for evaluating the varying quantities in the IBZ.  

By way of comparison, fig 3.7 shows the results of another Si band structure calculation 
based on the ‘𝑘𝑘. 𝑝𝑝’ method.  In this (non-DFT) approach expressions for the energy in the 
vicinity of a high symmetry k point are obtained in terms of parameters whose values are 
experimentally determined (Cardona, Pollack 1966).  Fig 3.6 shows good agreement with the 
𝑘𝑘. 𝑝𝑝 calculation apart from the band gap, where the latter returned a value ≈ 1.20 eV which 
is quite close to the experimental value ≈ 1.1 eV and more than twice the DFT result. 

 

 

That DFT is inaccurate in this respect is to be expected since it fixes the number of electrons 
(𝑛𝑛) and places them all in ground-state levels in the valence band.  But the true band gap is 
the removal/addition energy 𝐸𝐸𝑔𝑔 = 𝜀𝜀𝑛𝑛+1(𝑛𝑛 + 1) − 𝜀𝜀𝑛𝑛(𝑛𝑛) due to an incremental electron 
entering or leaving the conduction band.  The KS version of the band gap is instead 𝐸𝐸𝑔𝑔

𝐾𝐾𝐾𝐾 =
𝜀𝜀𝑛𝑛+1(𝑛𝑛) − 𝜀𝜀𝑛𝑛(𝑛𝑛), with respect to the ground-state electrons.  Another source of inaccuracy 
is partial removal of the self-interaction energy, due the approximate nature of the XC 
energy (page 31).  However, the band gap issue has not prevented the widespread 
application of DFT/GGA to semiconductor problems.  

  

Figure 3.6  Bulk Si band structure calculated with a 2-atom supercell.  The horizontal axis is divided into 
19 equal increments on the 𝐿𝐿 − Γ − X segment of reciprocal space.  Coloured markers represent the 
lowest 6 eigenstates available at each coordinate on the segment.  (Author’s MATLAB rendering of VASP 
EIGENVAL output) 
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Figure 3.7  Bulk Si band structure with further conduction bands, calculated by the 𝑘𝑘. 𝑝𝑝 method and 
showing a band gap of 1.20 eV (Cardona, Pollack 1966).  
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Chapter 4 

H corner diffusion 

4.1 Summary of earlier work 

In a preliminary study DFT was used to study H adatoms on the top and sidewalls of a 
notional Si nanostructure, a pillar defined by Patterned Atomic Layer Epitaxy (PALE) and 
having a (100) growth surface and (110) sidewalls.    A chevron-shaped supercell containing 
the (001) and (110) faces was built and structurally optimized and several H adsorption 
sites were identified.  The availability of those data motivated this study, i.e. the 
identification  of possible diffusion pathways that might remove top surface H during the 
PALE process and thereby compromise it.   The results were subsequently published  (Smith; 
Brázdová; Bowler, 2014), and that paper forms the basis of this chapter. 

4.2  PALE 

Historically, bulk silicon chip fabrication has been a planar process based on repetitive optical 
lithography.  The progressive reduction in device surface area has impaired switching 
characteristics, leading to the introduction of three-dimensional structures (e.g. finFETs) that 
can be realized in planar processes.  This trend has prompted interest in other ways of 
engineering three-dimensional silicon growth, particularly PALE (Martin, 2014; Walsh, 
Hersham 2009; Lyding et al., 1994; Shen et al., 1995) is a thin-film fabrication technique 
capable (in principle) of atomic precision, and here refers to the selective growth of silicon 
structures on the Si(100) surface using monohydride atoms as a mask.  The mask is 
patterned by an adapted scanning tunnelling microscope (STM) and new silicon deposited 
from a disilane (Si2H6) precursor in a CVD (page 17) reaction.  Both the lithography and 
deposition are performed in UHV conditions.  The deposition process is complex and results 
in an incomplete monolayer that is itself hydrogen terminated.  This is caused by an inherent 
nucleation defect referred to as an antiphase boundary or APB and discussed below.  
Consequently, the lithography-deposition cycle must be repeated several times to create a 
monolayer.  The process is depicted in fig 4.1 and the following sections provide additional 
detail. 

4.2.1 Passivation 

Hydrogen passivation of the Si(100) surface is convenient for several reasons.  First, it 
retains the order of the underlying Si(100)2 × 1 reconstruction, in which the surface 
periodicity changes to a pair-wise dimerization.  Second, the passivated substrate is quite 
robust and retains its integrity even after exposure to ambient conditions.  Finally, two
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desorption regimes are available which provide useful control of precision in the lithography 
process.  

The passivated surface is prepared by heating a Si(100) sample to 1250 K to clean it and 
then dosing with gaseous H2 at ≈ 650 K (Lyding et al., ibid).  The H2 molecules are atomized 
by a filament heated to 1500 K situated close to the sample.  These operations are 
conducted in an ion-pumped UHV system (5 × 10−11 Torr).  The exposure required is 
1200 L (1 Langmuir (L) =  10−6 Torr seconds).  Spontaneous desorption (depassivation) 
occurs when the surface temperature exceeds 750 K, with the hydrogen atoms becoming 
mobile at ≈ 650 K.  This implies substantially lower growth temperatures, typically 500 −
550 K. 

4.2.2 STM Lithography 

The optimum values of STM bias voltage and current, together with the electron dosage 
necessary were determined experimentally by (Lyding et al., ibid).  Two desorption modes 
were discovered, determined by the bias voltage.   In the high-bias mode (> 6.5 V) the Si-H 
bond is directly excited from the σ bonding to the σ* antibonding state by injecting electronic 
charge at a rate ≈ 0.1 mC/cm.  This is the electronic dose needed to remove more than 90% 
of the H atoms along a line and results a line width of about 5 nm.  In the low-bias (< 6.5 V) 
mode the desorption yield falls by several orders of magnitude and is dependent on the bias 
voltage and electron dosage.   No incoming electron has enough energy to break the Si-H 
bond but a vibrational mode can be excited which eventually leads to dissociation of the H 
atom through a competitive heating and cooling mechanism.  Electronic dosage in this mode 
can vary from 4 to 20 mC/cm.  

Resolution in the high-voltage mode is limited to ≈ 50 Å, which corresponds to about 20 
atomic rows.  The low-voltage mode was re-examined by (Tong; Wolkow 2006) who found 
that H atoms could be made to desorb in pairs by adjusting the tip tunnelling current.  
Selective pairwise desorption could occur via intradimer, interdimer and interrow pathways 

Figure 4.1 Schematic of the PALE process. Step 1: A H-passivated Si(100) surface is stabilised at growth 
temperature 500 − 550 K under UHV.  Step 2: A pattern is etched by STM lithography.  Step 3: The tip is 
retracted, and disilane is introduced to saturate the pattern.  Step 4: Lithography is repeated to remove the H 
from the adsorbed disilane fragments.  Step 5: The disilane dosing step is repeated.   Step n: After many cycles of 
Steps 4 and 5, multiple monolayers of Si are built up.  (Image courtesy Zyvex Labs LLC) 
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while still yielding atomic precision.   Further study (Ballard et al., 2014) showed the low-
voltage mode could excite spurious desorption away from the patterned area, and 
unwanted repassivation of previously exposed areas.   An idealized representation of H 
desorption leaving the desired a pattern of dangling bonds (DBs) is shown in fig 4.2 below. 

  

.  

4.2.3 Growth using disilane precursor 

This proceeds in cycles as indicated in fig 4.1.  The lithography and dosage steps must be 
done consecutively at constant temperature, since temperature cycling would cause drift 
and difficulty in reacquisition of the STM image.  Disilane (rather than silane) is used as 
precursor because it dissociates at a lower temperature that does not disturb the passivation 
of the unpatterned areas.  Growth temperatures lie in the range 500 − 550 K. 

The adsorption process is complex (Owen et al., 1997) but can be summarized as follows. 
After disilane disassociation the SiH3 groups lose a hydrogen atom and the active adsorbate 
consists of SiH2 ions.  These diffuse across the patterned surface and migrate to locations in 
the trenches between dimer rows, with each Si bonding with a DB from opposing rows.  
Adjacent adsorbate groups react to form Si2H2 groups, evolving an H2 molecule.  There 
follows a dehydrogenation step that creates a new Si dimer in the next molecular layer.  This 
is the start of a dimer island (DI) which can expand by nucleation along the line of the trench 
below.  Most of the nucleation required to form a monolayer occurs in the first litho-dosage 
cycle, but further complete coverage is approached after 3-4 cycles (i.e. steps 4/5 in fig 4.1).  
The successive litho/deposition steps are necessary to treat unreacted disilane fragments 
and growth anomalies caused by APBs (Owen et al, 2011; Chadi, 1987). 

An APB arises when neighbouring DIs grow out of phase – a gap or kink will appear at the 
interface.    APBs can occur either parallel (A-type) or perpendicular (B-type) to dimer rows, 
which mutually interfere to prevent DI nucleation (see fig 4.3).  A defect may become 
embedded in the growth, not filling in in the manner of conventional MBE.   

  

Figure 4.2  Idealized STM lithography of single row of 
the dimerized Si(100)-2x1:H surface.  Dangling bonds 
shown in red, monohydride passivation in green 
(Hashizumi et al., 1996) 
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4.2.4 Outlook for PALE 

As described, Si PALE is a laboratory procedure and great deal of development would be 
required before it could be exploited commercially.   The principal problem is that the growth 
in the second and subsequent monolayers is critically dependent on the removal of the last 
few percent of hydrogen atoms from the surface.  These residual H atoms inhibit diffusion 
of the SiH2 groups and DI formation and are themselves prone to diffuse along trenches in 
the (100) surface with a predicted energy barrier of the order 1.7 eV (Bowler et al., 1998), 
(Durr; Hofer 2013) in approximate agreement with experiment (Owen et al., 1996).    Other 
theoretical calculations on the (110) surface predict somewhat smaller barriers, i.e. 1 eV 
(Brázdová; Bowler 2011).  Surface diffusion effects would be compounded if energetic H 
atoms could diffuse from the walls of a structure (having the (110) orientation) onto the 
(100) growth surface.  This possibility is determined by the PES surrounding the corner 
regions and is examined in the remainder of this chapter. 

A related pattern transfer process avoiding the residual H problem has been described 
(Ballard et al., 2014).  Here a 2D spatial pattern is created by hydrogen depassivation as in 
PALE and CVD used to create a thin (≈ 2 nm), hard mask of titanium dioxide over the 
exposed areas.  The bulk silicon beneath the unmasked areas is removed by conventional 
reactive ion etching (page 16).  Pillar features up to 17 nm tall with lateral dimensions down 
to 6 nm have been demonstrated, while retaining the intrinsic atomic placement accuracy 
of the PALE process. 

In another PALE application quantum-dot cellular automata (QCA) have been implemented 
as arrays of tunnel-coupled DBs on the H-passivated  Si(100) surface (Wolkow et al., 2013).  
The QCA is characterized as bistable and edge-driven i.e. input, output and power are 
delivered to the array edge and no communication with its internals is necessary.  Any 
required computer logic function can be realised as a QCA network (Lent et al., 1993) and a 
functional QCA could form the basis of a post-CMOS electronics architecture.  Wolkow’s 

Figure 4.3  The Si(100) growth surface, showing vertical dimer rows following disilane 
dosing.  Dimer islands (Dis) can form both vertically and horizontally (shown in yellow). 
When the rows are kinked a B type APBB occurs, creating favourable sites for further 
nucleation.  However, the vertical A type APBA can act as a barrier to expansion of the 
horizontal DIs and prevent fill in and island growth.  (Image courtesy Zyvex Labs LLC) 
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devices are of interest due to their low power consumption and ability to operate under 
ambient conditions.            

4.3    Methods 

4.3.1 Computational details 

Energy calculations on the chevron supercell used DFT as implemented in VASP version 
4.6.34, together with the PBE GGA exchange-correlation functional (page 32).  The VASP 
PAW pseudopotentials (page 41) were used and the POTCAR file for the silicon atom was 
dated 5th January 2001 and that for hydrogen 15th June 2001.  The energy cut-off was set to 
200 eV.  The Brillouin zone was sampled with a (6 × 2 × 1) Monkhorst-Pack mesh.   
Gaussian smearing was applied to fractional occupancies with a width of 0.1 eV.  The 
convergence criterion for forces on atoms was 0.01 eV/Å and for total energy 10−4 eV.  
These parameters yield relative energies and energy barriers reliable to within ±0.01 eV.  
Transition state search was performed using the climbing image nudged elastic band (NEB) 
method as implemented in the VASP Transition State Tools (VTST) code (Jonsson, 1998, 
Shepherd, 2008).  The climbing image variation of NEB converges rigorously onto the highest 
saddle point using just a single intermediate point and yields accurate barrier energy values 
(Klimes et al., 2011). 

4.3.2 The supercell 

Calculations were based on a chevron-shaped supercell developed in earlier work, as 
mentioned above.  The H-terminated structure contained 350 Si atoms with a vertical axis 
of 50Å in the (112) direction.  This orientation exposes approximately equal (100) and 
(110) surface areas at the apex.  A smaller supercell with 160 Si atoms was tried initially but 
did not yield converged energies with respect to its depth or width.   It was enlarged and 
convergence achieved when the overall dimensions were 8 Å × 28 Å × 50 Å including a 
vacuum region of 12 Å (fig 4.4). 

 

Figure 4.4  Final unoptimized chevron slab supercell with 
8 Å × 28 Å cross-section and 350 Si atoms and 24 H atoms. The Si 
atoms are coloured yellow and the passivating H atoms (at the base 
of the cell) are outlined in grey.  The blue lines represent the 
computational unit cell.   
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4.3.3 Finding H adsorption sites and diffusion pathways 

The H adsorption sites are likely to be 3-coordinate atoms on the (110) surface or dimers on 
the (001) surface.  In both cases a single dangling bond is exposed and its replacement by a 
covalent Si-H bond causes a reduction in the total energy.  Single H atoms were placed 1.5 Å 
above each potential adsorption site on the reconstructed surface (in the direction of the 
dangling bond) and the structure re-optimized.  Total structure energy was typically reduced 
by approximately 4 eV when compared to the clean structure. Binding energies of the 
adsorbed hydrogen atom were calculated with respect to the energy of a gaseous H2 

molecule: 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1
2
𝐸𝐸𝐻𝐻2  (1) 

where 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐸𝐸𝐻𝐻2represent the total energy of the optimised structure with the 
adsorbed H atom, the optimised energy of the clean Si reconstruction and the total energy 
of gas-phase hydrogen molecule, respectively. A negative binding energy indicates an energy 
gain on adsorption; a positive binding energy indicates an energy loss.  A diffusion pathway 
will be formed between two adjacent adsorption sites provided that the energy required to 
surmount any intervening energy barriers is comparable with the thermal energy acquired 
by the mobile atom.  One selects the lowest energy sites close to the step edge and uses the 
NEB climbing-image optimizer to calculate the diffusion barriers.  The NEB technique is 
discussed again on page 95. 

4.4     Results 

4.4.1 Reconstruction and characterization 

As the (001) surface normal swings through a right-angle to the (110) direction it passes 
through a number of intermediate surface planes e.g. [114], [113], [111] and [331] 
(Battaglia, 2009). Each of these surfaces has its own reconstruction strategy but all contain 
the prototypical 3-coordinate surface atom found on the bulk-truncated (111) surface. 
Consequently, we can expect the reconstruction of the apex region to include the hexagonal 
pattern seen on the (111) unreconstructed surface. This can be seen in fig 4.5 (left), while 
the relaxed structure can be seen in fig 4.5 (right) which also shows the extended bond 
lengths expected in the presence of delocalized electrons.  Away from the apex, the figure 
shows characteristic dimerization and buckling on the (100) surface and out-of-plane 
buckling of the zig-zag rows of the (110) surface.  Distortion in the bulk structure is greatest 
in the region beneath the apex and extends to a depth of 20 Å. These observations suggest 
that the reconstruction is plausible, offering a sensible basis for the calculation of a model 
potential energy surface.  An exhaustive characterization of the step edge reconstruction 
would require examination of larger structures in multiple orientations and would be 
unlikely to have a large effect on the diffusion barriers. 
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4.4.2 The potential energy surface 

16 possible adsorption sites on the reconstructed surfaces were assessed. Six of these gave 
total energies falling within a 0.3 eV range while the remainder was at least 1 eV higher and 
not considered further (an increment of 1 eV reduces the adsorption probability by a factor 
of ≈ 104).  These values are shown in table 4.1 and the sites are depicted in fig 4.6. 

Site Relative 
energy 

Binding 
energy 

1 0.29 -1.66 
2 0.06 -1.88 
3 0.00 -1.95 
4 0.02 -1.92 
5 0.29 -1.65 
6 0.13 -1.81 

Sites 3, 4 and 5 are situated on the chevron apex so a diffusion path consisting of the two 
hops 3 − 4 and 4 − 5 was considered. Each is analogous to the kinetics of a chemical 
reaction with a single transition state corresponding to the highest saddle point in the 
potential energy landscape lying between the end points.  As noted above, the climbing 
image variation of NEB returns the energy at the highest saddle point and so a single-image 
NEB calculation per hop suffices in this case.  Additional images can provide further points 
on the reaction path corresponding to the route taken by diffusing atoms, although the 
computational cost is considerable. Since only relative barrier heights are of interest, single-
image calculations were performed. 

The results of the NEB calculations are shown in table 4.2 and represented graphically in fig 
4.7.  Fig 4.6 (right) gives a rough indication of the actual diffusion path. The effective barrier 
for the path is the greater of the hop barriers and is asymmetrical, due to the differing 
starting energies.  Diffusion from (100) to (110) has a barrier of 1.72 eV, while the reverse 
process has a barrier of 1.99 eV.  These can be compared with published values of 1.66 eV ±

  

Figure 4.5  (Left) The apex of the 350-atom unoptimized chevron slab viewed from the (112) direction, 
showing the (100) and (110) surfaces. (Right) Optimized structure, showing (red) buckled (111)-like 
hexagonal patterns with extended bond lengths �Å�. The bond length in bulk Si is 2.35 Å. 

Table 4.1  Stability of H adsorption sites on the chevron 
surface. All values are in eV.  Site labels are those shown in 
fig 4.6 (left). 
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0.15 eV (Bowler et al., 1998) and 1.75 ± 0.02 eV (Owen et al., 1996) for intrarow H 
diffusion on the (001) surface and 1.17 eV (intrarow) and 1.49 eV (interrow) on the Si(110) 
surface (Brázdová; Bowler 2011).  The diffusion from the top of the pillar (the (001) surface) 
to the side of the pillar (the (110) surface) has a comparable barrier to diffusion on the 
(001) surface, while diffusion in the opposite direction has a significantly larger barrier. 

 

 

 
 
 

 

4.5 Discussion and conclusions 

The stability of hydrogen adatoms at positions near the intersection of the Si (100) and 
(110) surfaces, as might be occur during Si nanopillar growth by patterned ALE, has been 
investigated.  A diffusion pathway around the corner was found and the barrier energies on 
it calculated.  In this configuration, the hydrogen is more stable on the (110) face than the 
(100) face. 

In the PALE context one is concerned with whether hydrogen will leave the top of the 
nanopillar for the sidewall or vice versa. The growth process involves a disilane gas source 
and leaves hydrogen on the sidewalls. Hydrogen migration onto the growth surface would 
interfere with subsequent STM lithography and possibly compromise the entire process. 
From the barriers it is clear that, at least for this configuration, diffusion from the growth 
surface of a nanopillar will only be activated once diffusion on the substrate is activated and 

End point Energy ∆𝐸𝐸(011 → 100) ∆𝐸𝐸(100 → 110) 
3 -1947.01   

barrier -1945.44 1.57 1.55 
4 -1946.98   

barrier -1945.00 1.99 1.72 
5 -1946.71   

  

Table 4.2  End point and NEB barrier energies for a two-hop diffusion 
pathway around the chevron apex. All values are in eV. Site labels are those 
shown in fig 4.6 (left). This data is shown graphically in fig 4.4. 

 

Figure 4.6  (Left) A composite representation of the 6 most stable absorption sites from 
16 surveyed. Si atoms and H atoms yellow and blue, respectively.  (Right) Approximate 
path followed by diffusing H atom (red) in NEB climbing image simulation. 
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diffusion back onto the top will occur only at higher temperatures. The difference in barrier 
energy (≈ 0.3 eV) is significant in DFT terms and equivalent to a process temperature 
increase of ≈ 100 K. 

The actual diffusion rate 𝜈𝜈 (𝑠𝑠−1) can be estimated from the energy barrier by the Arrhenius 
equation: 

𝜈𝜈 = 𝜈𝜈ℎ𝑜𝑜𝑜𝑜 × 𝑒𝑒− ∆𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇 

(2) 

where 𝜈𝜈ℎ𝑜𝑜𝑜𝑜 is the attempt frequency, ∆𝐸𝐸 the energy barrier, 𝑘𝑘𝐵𝐵 the Boltzmann constant and 
𝑇𝑇 the ambient temperature. 𝜈𝜈ℎ𝑜𝑜𝑜𝑜 is generally found to lie in the range 1012 − 1013 s−1 and 
since the rate expression is dominated the negative exponential energy term we can take 
𝜈𝜈ℎ𝑜𝑜𝑜𝑜 = 1013 s−1 to get an upper bound.  If the PALE process temperature of 550 K is 
assumed and adsorption sites are assumed to be occupied with a probability of one, then 
we could estimate a rate of 1.7 × 10−3 s−1 or approximately one diffusion event every 10 
minutes off the nanopillar. The reverse process would be three hundred times less frequent 
at 550 K. 

We can extrapolate from this single event to an entire nanopillar, under the conditions used 
in PALE. A pillar with a side of 5 nm would have 100 edge sites available, generating a 
diffusion event off the pillar every 5 or 6 seconds, assuming that there was an empty site to 
reach. The reverse process produces a diffusion event every half hour.  These results indicate 
that there would be net hydrogen migration off the pillar, which is a desirable outcome in 
PALE terms.  There is little reason to be concerned about higher temperatures, as the process 
temperature of 550 K is chosen to avoid desorption of the hydrogen resist (it begins to show 
mobility at temperatures exceeding 600 K).  Although sidewall hydrogen diffusion may not 
be a critical issue in a PALE manufacturing process other obstacles remain.  Chief amongst 
these is the formation of anti-phase boundaries (APBs) in the growth surface due to the 
collision of islands with different registry. These APBs can trap hydrogen beneath the 
surface, leading to surface roughening and a reduction in the depassivation yield from 
subsequent STM lithography. The reduction in yield can be mitigated by adjusting the STM 
parameters prior to each depassivation step, but the remanent hydrogen causes cumulative 
surface damage which halts epitaxial growth after 2 or 3 monolayers. The remediation of 
APBs and improvement of the quality of the silicon is beyond the scope of this thesis. 
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Figure 4.7  Diffusion barriers for a hydrogen atom traversing the PES in the apex region 
of the chevron slab. The adsorption sites are labelled as in fig 4.6 and the barrier 
energies derived from two NEB climbing-image calculations. The curve is a spline fit 
to the five data points.  Zero energy at adsorption site 3 corresponds to a calculated 
value of −1947.01 eV.  Distance travelled increases in the (110) → (100) direction. 
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Chapter 5 

Alane adsorption and dissociation on the 
Si(100) surface 

5.1 Background 

Ever since the transistor was first developed in 1948, dopants have been used to control the 
characteristics of semiconductor devices.  Although a relatively low dopant concentration (≈ 
1013 atoms cm−3) is sufficient to materially change substrate conductivity each successive 
reduction of device dimensions has required a corresponding increase in dopant 
concentration (Dennard, 1974).  But concentration is ultimately limited by the overlap of the 
ground state wavefunctions of neighbouring impurity atoms and onset of the metallic phase 
(metal-insulator transition) at ≈ 1019 ions cm−3.  

To ensure reliable operation a device requires a statistically significant number (100s or 
1000s) of dopant ions in its active region such as the MOSFET channel.  If there are too few 
charge carriers unacceptable performance variations will arise.  For example, a channel with 
dimensions 50 × 50 × 10 nm3, comparable with present-day devices, might contain as few 
as 100 carriers when strongly doped to a concentration of 5 × 1018 cm−3. 

If dopant atoms can be confined to a 2-dimensional sheet with local concentration 
𝑁𝑁2𝐷𝐷 cm−2 then an equivalent bulk concentration 𝑁𝑁3𝐷𝐷  =  (𝑁𝑁2D)3 2⁄  cm−3  is attained.   This 
process (delta doping) requires accurate placement of the dopant atoms, achievable by 
interrupting substrate growth during MBE or CVD or by ion implantation and annealing.  
Recently, a complete PALE-based strategy for the fabrication of atomic scale silicon devices 
with donor (P) dopants has emerged (Simmons; Fuechsle, 2013).  It includes:  

• A full theoretical understanding of the deposition and incorporation processes 
beginning with the gaseous phosphine precursor;   

• Electronic activation of the dopants by low-temperature Si epitatxial overgrowth, 
while minimizing diffusion and segregation of the dopant structure; 

• Realization of a variety of functional donor doped Si devices including nanowires,  
quantum dots and a single-atom transistor.    

Less progress has been seen with acceptor dopants.  The variety of devices which can be 
fabricated with both p and n-type dopants is much greater than when only p-type is 
available.   These might include p-n junction devices such as the tunnel FET or improved n-
type devices that would benefit from an increased barrier potential around active elements 
e.g. qubit devices. 
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Historically boron has been used as an acceptor dopant, introduced either by ion 
implantation or through direct addition to molten silicon.   However, it is unsuited to 
precision PALE on Si because its diborane precursor can deposit boron atoms in pairs and  
promotes H desorption from the surface (Wang, Hamers 1996; Wang et al., 1996).  Its small 
size would cause a delta-doped layer to be strained (Sarrubi, 2010; Škereň et al., 2020), 
causing relatively fast diffusion within bulk Si and tending to smear out atomically precise 
dopant profiles. Aluminium, adjacent to silicon in the periodic table, may be a better choice. 
Unfortunately, the phosphine analogue alane (AlH3) is not a useful precursor, existing in a 
solid crystalline form at room temperature and decomposing at higher temperatures.  
However, it can be synthesized by evaporating metallic aluminium in a molecular hydrogen 
stream at low pressures (Breissacher, Siegel 1964).  Alternatively, the amine alanes are 
donor-acceptor complexes known to be viable precursors in thin film deposition of Al (Jones; 
Hitchman, 2009).  The trimethylamine complex decomposes in the gaseous phase giving 
alane and the tertiary amines (Gladfelter et al., 1989), and it is plausible that this reaction 
would also be effective in the PALE setting.  This work is motivated by the expectation that 
Al will emerge as a viable acceptor dopant for Si in the PALE fabrication process.  This will 
complement P donor doping, increasing the range and functionality of molecular devices.  
The initial goal will be creation of Si structures with embedded delta-doped Al layers. 

A survey of all possible adsorption and subsequent dissociation modes of the alane molecule 
on the Si(100) surface is attempted.   Although this might seem to imply many configuration 
possibilities, the actual number (≈ 60) remains manageable because the H atoms are 
required to stay near the initial adsorption site at each dissociation.  This approach is similar 
to that of (Warschkow, 2005) for phosphine adsorption and reflects the highly selective 
nature of PALE deposition.  The survey reveals the relative stability of each intermediate 
configuration and the dissociation pathways that are energetically favoured.  The results 
have been published (Smith; Bowler, 2017) and are the basis of this chapter.  

5.2 Methods 

5.2.1 Structural survey 

We use DFT to survey all feasible AlHn structures on Si(100).  We show a progressive 
increase in stability as dissociation proceeds and characterize the more stable surface 
configurations using simulated STM and electron localization plots.   A full kinetic analysis is 
presented in chapter 6.  As noted above, the initial adsorption assumes that any required 
precursor reaction has already occurred and that free alane molecules are available within 
bonding distance of the substrate.  There are four possible initial absorption sites as shown 
in fig 5.1. 
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5.2.2 Computational details 

All calculations used density functional theory as implemented in VASP with the PBE GGA  
functional (page 32).  The VASP PAW potentials for aluminium, silicon and hydrogen were 
used (page 41).  These potentials describe both core and valence electrons and the files 
(POTCAR) were dated 4/5th January 2001 and 15th June 2001, respectively.   A 400 eV energy 
cut-off was used.  This value is required for proper operation of the aluminium PAW 
pseudopotential.  

The convergence criterion for atom forces was set to 0.02 eV/Å and that for total energy to 
10−6 eV. These parameters yield relative energies reliable to within 0.02 eV when the 
Brillouin zone sampling mesh is set appropriately. For the supercell employed here, energy 
values were found to converge with a (3 × 3 × 1) Monkhorst-Pack mesh. These calculations 
used a quasi-Newton algorithm for ionic relaxation. 

5.2.3  Supercell 

The Si(100) surface was modelled on a slab of eight Si layers with a (4 × 2) surface cell 
reconstruction, separated by a 12 Å vacuum gap.  This surface dimension (15.36 Å ×
 15.36 Å) has been adopted in other studies of this kind (Brázdová; Bowler, 2011) and 
accommodates two dimer rows of buckled dimers (four in each row) at approximately 18° 
to the surface plane.  The relatively large surface supports adsorption configurations 
spanning adjacent dimer rows.  There is less agreement over optimum cell depth (Sagisake 
et al., 2107), and the chosen value is a compromise that achieves reasonable convergence 
and acceptable processing times.  The experimental bulk Si lattice parameter (5.431 Å) was 

Figure 5.1:  Perspective views of adsorption sites of AlH3 on the Si(100) surface.  Adatom A binds at a dimer-
end position of a surface dimer; B binds to two Si atoms on the same dimer in the dimer-bridge position, 
leaving the dimer intact; broken-dimer position C is similar to B, but breaks the dimer and D binds to Si atoms 
on two adjacent dimers in the end-bridge position.   Dissociation is modelled by removing an H from the 
adatom and placing it nearby.   This creates a new surface configuration identified by appending a number 
xyy where x indicates the number of H atoms remaining bonded to Al, i.e. x=3 represents the initial 
adsorption, x=0 indicates a fully dehydrogenated Al atom.  yy is an enumerator.  The respective number of 
identified structures appears in parentheses. 
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used and is within 1% of the PBE lattice constant.    The bottom layer of Si atoms was left in 
bulk-like positions, terminated with pairs of hydrogen atoms, and fixed.  

During optimization a single AlH𝑥𝑥 + (3 − 𝑥𝑥)H ensemble is adsorbed on the surface while 
the deepest Si and H termination layers are constrained in fixed positions.   Dissociation is 
modelled by progressively detaching atoms from the Al centre and placing them nearby on 
the surface.  The energy change ∆𝐸𝐸𝐴𝐴𝐴𝐴 𝐻𝐻𝑥𝑥  at each stage is calculated by: 

∆𝐸𝐸𝐴𝐴𝐴𝐴𝐻𝐻𝑥𝑥 =  𝐸𝐸𝐴𝐴𝐴𝐴𝐻𝐻𝑥𝑥+(3−𝑥𝑥)𝐻𝐻 − 𝐸𝐸𝑆𝑆𝑆𝑆(100) − 𝐸𝐸𝐴𝐴𝐴𝐴𝐻𝐻3  (3) 

where 𝐸𝐸𝑆𝑆𝑆𝑆(100) is the energy of the clean optimized supercell, 𝐸𝐸𝐴𝐴𝐴𝐴𝐻𝐻3  the energy of an 
optimized alane molecule in vacuo and 𝐸𝐸𝐴𝐴𝐴𝐴𝐻𝐻𝑥𝑥+(3−𝑥𝑥)𝐻𝐻 the optimized energy of the supercell 
including the adsorbed AlH𝑥𝑥 and dissociated (3 − 𝑥𝑥)H species. 

5.2.4  Electron localization function (ELF) 

The ELF (Becke; Edgecombe, 1990) is a function of electronic density which is large in regions 
where electron pair density is high such as covalent bonds and lower in regions of delocalized 
electronic density.   It provides a useful quantitative representation of the chemical bond in 
molecules and crystals (Savin et al., 1997), and is employed here to depict {H0−3𝐴𝐴𝐴𝐴} ↔
Si(100) interactions.  The ELF function 𝜂𝜂(𝒓𝒓) can be computed from the orbitals as the 
definition is: 

𝜂𝜂(𝒓𝒓) =  
1

1 + (𝐷𝐷 𝐷𝐷ℎ⁄ )2, (4) 
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with the electronic density 𝜌𝜌(𝑟𝑟) given by:  

𝜌𝜌 = �|𝜓𝜓𝐼𝐼|2,
𝑁𝑁

𝑖𝑖=1

 
(7) 

and the sums are over the singly-occupied Kohn-Sham (or Hartree-Fock) orbitals 𝜓𝜓𝑖𝑖(𝒓𝒓).   
𝐷𝐷(𝒓𝒓) is the probability of finding an electron near a reference electron of the same spin, and 
𝐷𝐷ℎ�𝜌𝜌(𝒓𝒓)� is the value of 𝐷𝐷(𝒓𝒓) for a homogeneous electron gas.  It is interesting to note the 
same dependency on kinetic energy density (the Laplacian of the orbitals) that occurs in 
‘meta-GGA’ functionals e.g. TPSS (Tao et al., 2003).  The ELF formulation inverts 𝐷𝐷(𝒓𝒓) and 
rescales it with respect to the HEG.  A low probability, leading to a high ELF, implies a 
localized electron and vice versa.  A perfectly localized orbital, such as the H2 bonding 
orbital, would have an ELF of 1.   High ELF in an interatomic region can be interpreted as 
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covalent bonding, with any asymmetries attributed to bond polarity.   The HEG represents a 
fully delocalized state with an ELF of 0.5.   Values lower than 0.5 are more difficult to 
interpret but the ELF generally passes through zero between local maxima, termed 
attractors (Fuster et al., 2000).  An isovalue of 0.8 has proven to be a useful bonding indicator 
in classical valence compounds.       

For the high stability configurations, we show the ELF as contour plots in sections through 
the supercell, rendered by the author’s MATLAB programs.  For dimer-end, dimer-bridge and 
broken-dimer configurations the section is the vertical plane containing the Al atom and the 
dimer, unless otherwise noted.  For the other configurations, the plane is usually horizontal 
or parallel to the dimer row.   The chosen isovalues are separated by an interval of 0.2, with 
an additional contour in the high ELF region. 

 A complete set of ELF plots is available on figshare (Smith; Bowler, 2017). 

5.2.5  Simulated STM images 

Simulated STM images can show that a theoretical adsorption configuration has an 
electronic structure compatible with experimental appearance.  Conversely, they can aid the 
identification of experimental images.  Therefore, we provide topographical (constant 
current) images for the high stability configurations discovered in our survey.  These have 
been prepared using the Tersoff-Hamann approximation (Tersoff; Hamann, 1985) as 
implemented by the bSKAN 3.3 program (Hofer, 2003) with graphics produced by the 
author’s MATLAB programs.  Under this approximation the tunnelling current is proportional 
to the local density of surface states at the centre of the STM tip, whose own electronic 
structure is not explicitly modelled. 

We show representative simulated surface images for both positive (1.5V) and negative 
(-2.0V) bias voltages.  The positive value indicates current flow into unoccupied surface 
states (electrons move from tip to surface) and the negative a flow from occupied surface 
states (electrons move from surface to tip). 

A complete set of STM images is available on figshare (Smith; Bowler, 2017).       

5.3 Results and discussion  

5.3.1  Overview of the entire decomposition pathway 

Some 60 configurations were evaluated, showing progressive increase in stability as 
dissociation proceeds.  Fig 5.2 shows the calculated energies as columns of bars versus the 
dissociation stage horizontally.   Stability of a configuration depends on the nature of the Al-
Si bonding, and the local disposition of the adsorbed H atoms.  Eight incorporation 
configurations are shown to demonstrate feasibility of these structures. 

In each group, there are a few structures notably more stable than any other in the same 
group, and a thermodynamically favoured dissociation pathway is likely to involve these 
configurations.  We have characterized these high stability structures using ELF and 
simulated STM plots and show their relative energies and bond lengths in Table 5.1.  Of 
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course, some structures may be rendered inaccessible by kinetic considerations, and an 
analysis based on DFT NEB (nudged elastic band) calculations is the subject of chapter 6. 

 

 Config. ΔE (eV) Al-Si (Å) Si-Si (Å) 

H3Al: initial adsorption 
D301 -0.84 2.58/(4.41) 2.37/2.36 
A301 -0.78 2.61 2.39 
B301 +0.01 (4.01)/(4.15) 2.36 

H2Al: first dissociation 

D205 -2.31 2.55/2.62 2.35/2.40 
B201 -2.11 2.45/2.81 2.43 
B206 -2.08 2.48/2.54 2.54 
A201 -2.08 2.49 2.44 

HAl: second dissociation 

D106 -3.27 2.49/2.49 2.42/2.43 
D103 -3.22 2.46/2.51 2.38/2.42 
D104 -3.02 2.44/2.58 2.37/2.50 
B101 -2.93 2.40/2.43 2.48 
A103 -2.49 2.58/2.63 2.48/2.52 
C106 -2.24 2.43/2.46 (3.90) 

Al: third dissociation 

D004 -3.85 2.48/2.49 2.42/2.46 
D002 -3.67 2.47/2.47 2.41/2.42 
B008 -3.67 2.42/2.60/2.63 2.40/2.53 
D001 -3.60 2.46/2.47 2.42/2.42 
D005 -3.57 2.48/2.48 2.38/2.39 
A001 -3.28 2.61 2.41 
C004 -3.07 2.37/2.38 (4.75) 

Si: incorporation 

D059 -3.84 2.42/2.42/2.44  
D058 -3.74 2.39/2.39/2.44  
D057 -3.71 2.39/2.39/2.45  
D056 -3.69 2.40/2.40/2.47  
C050 -3.29 2.40/2.41/2.45  

 

Table 5.1:   Calculated relative energies and bond lengths for structures identified in fig 5.2 and 
discussed in the text.  In the initial adsorption and dissociation cases, the Al-Si column gives the 
length of the surface bond(s) with the adsorbed Al.   For the incorporation cases the lengths of 
the two subsurface bonds are given, followed by the length of the Al-Si heterodimer.  Column 
Si-Si gives the length of the adsorbing dimer(s).  For comparison, dimer length on the 
reconstructed bare Si(100) surface is ≈ 2.36 Å in this supercell.   Values in parentheses indicate 
inter-atomic distances, i.e. the absence of bonding.  
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5.3.2  The Si(100) surface 

Fig 5.3 shows ELF and simulated STM output for the bare, reconstructed Si(100) surface.  The 
alternately buckled dimers are 0.2 eV more stable than when parallel to the surface plane 
and are the most stable reconstruction possible.  At ambient temperatures, the dimers ‘flip’ 
at a rate greater than the STM can accommodate, and so the STM images shown may not be 
observed.  However, the presence of an adsorbing Al or H atom will be sufficient to ‘pin’ the 
dimer in the buckled configuration, justifying use of the reconstruction.     

The STM filled state plot shows that reconstruction eliminates one dangling bond and 
concentrates electronic density at the ‘up’ dimer end, and dimer length is found to be ≈
2.36 Å in this supercell.  The filled state STM plot shows the DOS centred on the surface 
atoms.   As the ELF is determined over occupied states it might be expected to correspond 
with the filled-state STM image, although no theoretical basis has been established for this.  

Figure 5.2:  Overview of relative energies for alane dissociation and incorporation configurations considered 
in the survey.  Configurations are grouped on the horizontal axis by the degree of dissociation.  High stability 
(low energy) configurations are labelled using the numbering scheme outlined at fig 5.1. Configuration 
energies are relative to the sum of bare surface and free alane energies.  A full listing of the structures and 
relative energies is available on figshare (Smith; Bowler, 2017).   
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However, the plot reveals large attractor regions above the ‘up’ dimer ends with ELF values 
exceeding 0.9, characteristic of a non-bonding (lone) electron pair. 

  

5.3.3  Initial adsorption: H3Al↔Si(100) 

Stable configurations were discovered at dimer-end, dimer-bridge and end-dimer sites.  No 
stable broken-dimer configuration was found, with an H atom tending to detach and migrate 
to the adjacent dimer row or adopt a central position ‘buried’ beneath the dimer.   The 
dimer-bridge configuration (B301) showed a slight surface repulsion and was not considered 
further.   Fig 5.4 shows the two remaining structures and their relative energies and fig 5.5 
shows the ELF plot and simulated STM images for the dimer-end configuration A301 where 
a bond with stability −0.78 eV was found with the up-atom and the Al atom in pyramidal 
coordination.  No bonding was possible with the down-atom. 

 

 

 

Figure 5.4: Schematic representation of initial adsorption configurations after structural 
optimization, showing relative energies.  Dimers are represented by heavy vertical lines; 
the ‘-/+‘ signs indicate the ‘up/down’ ends, respectively.  All configuration files are available 
on figshare (Smith; Bowler, 2017).  

 

Figure 5 3:  ELF plot and simulated STM images for the bare reconstructed Si(100) surface.  The ELF plot (a) 
is perpendicular to the surface in a plane containing a pair of dimers (indicated).   The simulated STM images 
(b) and (c) correspond to tip bias voltages of −2.0 𝑉𝑉 and +1.5 𝑉𝑉 respectively, and the yellow dotted lines 
mark the position of the contour plane.  The superimposed yellow circles indicate Si dimer atoms.  The 
horizontal scale is 100 ≈ 15.36 Å.    

 



CHAPTER 5.  ALANE ADSORPTION AND DISSOCIATION ON THE Si(100) SURFACE    84 

 

 

 

The electronic structure of the Al atom is [Ne]3𝑠𝑠23𝑝𝑝1.   The alane molecule valence shell 
contains six electrons and a further two would complete the octet.  These are provided by 
the excess electronic density at the surface dimer ‘up’ end and form a dative bond with alane 
acting as a Lewis acid and the substrate as Lewis base.   The Al-Si bond length of 2.61 Å 
obtained here can be compared with ≈  2.08 Å calculated for the dative Al-N bond in 
ammonia alane (Marsh, 1995).  Although both have 𝑠𝑠𝑠𝑠 hybridization the latter has greater s 
character due to the H ligands of the ammonia.  This, together with the greater 
electronegativity of the nitrogen atom, account for the shorter Al-N bond.  However, the ELF 
plots of figs 5.3 and 5.4 are consistent with the Lewis adduct model.   

The adduct model implies that the end-bridge configuration possessing two surface bonds is 
unfeasible.   This was confirmed by our optimization of configuration D301 which resulted in 
an asymmetrical configuration with only one bond substrate bond (see Table 1) and the ELF 
plot (not shown) confirmed the presence of just a single bond.   The increased stability (0.06 
eV) compared with the dimer-end configuration is due to a relative rotation of the alane 
molecule which was not explored during the optimization of the dimer-end configuration. 

These results show the initial alane adsorption modes are analogous to those of phosphine, 
which bonds into the ‘down’ atom at dimer-end sites, but is unstable in the dimer-bridge, 
broken-dimer and end-bridge configurations (Warschkow, 2005).  

5.3.4  First dissociation: {H2Al+H}↔Si(100) 

 

Figure 5.5:  ELF plot and simulated STM images for the initial dimer=end configuration A301.  The ELF plot 
(a) indicates the Al-Si, Al-H and Si-Si bonds.  The high-ELF region surrounding the H ligand shows the polar 
nature of the Al-H bond.   In the STM images (b) (c), the Al, Si and H atom locations are superimposed and 
yellow dotted lines mark the position of the contour plane.   Images (b) and (c) correspond to tip bias voltages 
of -2.0 V and +1.5V respectively. 

 

Figure 5.6:   Schematic representation of high stability configurations after the first dissociation, 
showing and relative energies 
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At this stage the high stability configurations (fig 5.6) show energies decreasing by 1.3 −
1.5 eV below the initial adsorption, with end-bridge configuration D205 the most stable.  In 
the absence of kinetic barriers, these large margins suggest the initial configurations will be 
relatively short-lived on the surface.  The end-dimer A201 and end-bridge D205 
configurations were the most stable of their kind by margins of 0.3 and 0.5 eV respectively 
but two dimer-bridge configurations B201 and B206 had similar energies, differing only in 
the placement of the migrating H atom.  A broken-dimer configuration appeared with the H 
atom placed beneath the dimer level in an apparently three-centred bond, but it was at least 
0.5 eV less stable than the high stability group and not considered further.  Fig 5.7 shows the 
ELF plots and simulated STM images for configurations A201, B206 and D205. 

The end-dimer configuration A201 has the Al atom in trigonal planar coordination and an 
Al-Si bond of length of 2.49 Å, noticeably shorter than that of the A301 configuration.  We 
surmise that the ligands, now having predominantly sp2 hybridization, provide improved 
overlap with the surface orbitals.  This can be seen in the ELF plot as an enlarged inter-
nuclear region with value 0.9 or greater.   The effect of the adsorbed H on the down-dimer 
atom is to level the dimer, with both atoms making 2-centre, 2-electron bonds. 

In the dimer-bridge and end-bridge configurations Al adopts a tetrahedral configuration, 
although the bond angles are far from ideal.  The end bridge configuration is the more stable 
by a margin of 0.2 eV.   In the dimer-bridge cases B201 and B206 the Si-Si dimer bond lengths 
are 2.43 Å and 2.54 Å respectively, with both surface atoms making 2-centre, 2-electron 
bonds with the metal.  In the end-bridge configuration D205 the dimer bond lengths are 
2.35 Å and 2.40 Å, closer to the bare surface value and indicating that the stability gain 
occurs through sharing the adsorption stress across surface dimers.            
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5.3.5  Second dissociation: {HAl+2H}↔Si(100) 

The loss of a further H ligand increased stability by up to 0.9 eV, depending on the surface 
configuration.  In the absence of significant kinetic barriers, this energy loss would prompt 
dissociation in the PALE environment.   The high stability configurations are all end or dimer-
bridge (see fig 5.8); these are the configurations likely to appear on a pathway towards 
complete dissociation and incorporation.  We take D103 as representative of the end-bridge 
configurations and show ELF plots and simulated STM images for B101 and D103 in fig 5.9. 

Figure 5.7:   ELF plots and simulated STM images for first dissociation configurations A201, B206 and D205.  
In the ELF plots (a) and (d) the contour map plane passes through the surface dimers perpendicular to the 
dimer row, and in (g) the plane is parallel to the dimer row.   In the STM images, the Al, Si and H atom 
locations are superimposed and yellow dotted lines mark the position of the ELF contour plane.   Images (b, 
e, h) and (c, f, i) correspond to tip bias voltages of -2.0 V and +1.5V respectively. 

 

 

Figure 5.8:  Schematic representations of high stability configurations after the second dissociation, 
showing relative energies.  These are the 5 most stable of the 28 configurations examined at this 
stage.  The 10 most stable configurations were all bridged. 
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 The ELF plots are like those of the bridged configurations of the previous stage (see fig 5.7) 
with the Al atom now adopting a trigonal planar, rather than a tetrahedral coordination.  In 
the dimer-bridge case B101 the adsorbate bonds shorten to 2.40 Å and 2.43 Å compared to 
2.48 Å and 2.54 Å in B206, allowing the dimer bond to shorten to 2.48 Å from 2.54 Å.  This 
improved bonding can be attributed to the increased 𝑠𝑠 character of the adsorbate bonds 
feeding into the dimer bond.  As before, the sharing of surface stress in the end-bridge 
configuration D103 is responsible for its additional (≈ 0.3 eV) stability.          

The most stable end and broken-dimer configurations are almost 0.5 eV less stable and are 
depicted in fig 5.10.  Although their relative stabilities indicate they are unlikely to participate 
in a dissociation pathway they are of interest because they show the HAl fragment 
preserving a trigonal planar coordination with the substrate surface.  

  

Figure 5.9:  ELF and simulated STM plots for second dissociation configurations B101 and D103.  For B101 the 
ELF  contour map (a) plane passes vertically through the surface dimers.  For D103 (d) the plane is parallel to 
the dimer row.   In the STM images, the Al, Si and H atom locations are superimposed and yellow dotted lines 
mark the position of the ELF contour plane.   Images (b, e) and (c, f) correspond to tip bias voltages of -2.0 V 
and +1.5V respectively.  These configurations are  ≈ 0.6 - 0.9 eV more stable than at the previous stage. 
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The corresponding ELF plots are shown in fig 5.11.  Configuration A103 in fig 5.11 (a) shows 
the Al atom located in a trigonal planar coordination between dimer rows, bridging to an up-
dimer atom in each.  Although the Si-Al-Si bond angle is a near perfect 119° the lack of 
stability is due to the elongated adsorbate and Si-Si dimer bonds of this configuration (Table 
5.1).  Similar results were seen in several other bridged-row configurations in the survey.  In 
the broken-dimer configuration C106 (b) the Al-Si bonds are shorter, but loss of the Si-Si 
dimer bond outweighs any gain in stability. 

 

5.3.6  Third dissociation: {Al+3H}↔Si(100) 

27 configurations were examined; all types were represented but the eight most stable were 
all the end or bridged-dimer variety.  The most stable configuration D004 gains 
approximately 0.6 eV stability over its counterpart at the previous stage; a smaller energy 
loss than was seen in the first and second dissociations.  Several configurations in the survey 
had increased energies, reflecting the reduced coordination possibilities available at this 

Figure 5.10:  Schematic representation of the most stable end and broken-dimer 
configurations after second dissociation.  Structural optimization of dimer-end 
configuration A103 has moved the HAl fragment to a position bridging dimer rows. 

Figure 5.11:   ELF plots of end-dimer (a) and broken-dimer (b) configurations after the second dissociation.  
Both show the HAl fragment in trigonal planar coordination with the Si(100) surface, bridging a single dimer 
row (C106) or adjacent tows (A103).  These are the most stable configurations of their type, but are ≈ 0.5 eV 
less stable than any bridged and end-dimer configuration at this stage. 
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stage.  The five most stable span configurations span an energy range of less than 0.2 eV and 
are depicted in fig 5.12. 

After optimization, the dimer-bridge configuration B008 had the Al adatom located between 
adjacent dimers, adopting a trigonal pyramidal coordination with three surface bonds.  To 
illustrate this the ELF plot fig 5.13 (a) is taken in the horizontal plane containing the Al atom, 
above the dimers and at roughly the same elevation as nearby H atoms.  Attempts to induce 
a square planar Al configuration, with four surface bonds and no surface H were 
unsuccessful.  The bright STM images in the unfilled state images Figs 13 (c) and (f) reflect 
the adsorbate’s vacant p orbital in this coordination.     

 

 

Figure 5.12:   Schematic representations of high stability configurations after the third dissociation.   In 
configuration B008 structural optimization has moved the Al atom from its starting dimer-bridge position to 
a mid-dimer location making three surface bonds.  In configuration D005 a H atom has been placed on the 
adjacent dimer row, but the Al does not bridge the rows.  

 

Figure 5.13: ELF plots and STM images of bridged and end-dimer configurations after the third dissociation.  The 
dimer-bridge ELF plot B008 (a) is taken in a horizontal plane (parallel to the surface) and shows the Al atom with 
three surface bonds.  The end-bridge plot D002 (d) is taken in a vertical (perpendicular to the surface) plane.  In 
the STM images, the Al, Si and H atom locations are superimposed and yellow dotted lines mark the position of 
the ELF contour plane.   Images (b, e) and (c, f) correspond to tip bias voltages of -2.0 V and +1.5V respectively. 
These configurations are  ≈ 0.3 - 0.6 eV more stable than at the previous stage. 
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The four end-bridge configurations D001, D002, D004 and D005 are similar in character, 
differing in H placement only, and we take D002 as representative.  ELF and simulated STM 
images for this configuration are shown at fig 5.13 (d), (e) and (f).   The ELF plot fig 5.13 (d) 
is taken perpendicular to the surface and shows the Al adatom in trigonal planar 
coordination with two surface bonds and a large hybridized lone-pair region above. 

The most stable end (A001) and broken-dimer (C004) configurations are shown 
schematically at fig 5.14.  Configuration A001 has Al and three H atoms adsorbed on adjacent 
dimers, saturating them.  The corresponding ELF plot at fig 5.15 (a) shows the Al veering 
along the trench between the dimer rows, but not bridging them as was seen for 
configuration A103 (fig 5.11 (a) above).  Here the Al-Si bond length of 2.61 Å is identical to 
that found in the initial adsorption case A301 with similar lengths in the respective Si-Si 
dimers (Table 1).   This suggests the same dative covalent character for the surface bond, 
with the unpaired Al valence electrons arranging themselves to maximize mutual repulsion.   
However, the single surface bond means that the configuration ≈ 0.3 eV less stable than any 
of the bridged modes.  Several other mid-trench configurations were tried, but none proved 
particularly stable.    

The broken-dimer configuration C004 at fig 5.15 (b) has a perfectly linear Al coordination 
with predominantly sp hybridization with Al-Si bond lengths of ≈ 2.37 Å, the shortest in the 
survey.   It is interesting that this is a minimum energy configuration even though the Al-Si 
bonds do not pass through the regions of highest ELF.  However, elimination of the surface 
dimer prevents any gain in overall stability, yielding a configuration ≈  0.5 eV less stable than 
any bridged mode at this stage.  

  

Figure 5.14:   Schematic representation of most stable end 
and broken-dimer configurations after the third dissociation. 
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5.4 Incorporation 

In the PALE process the surface reaction terminates when all unpassivated bonding sites 
become occupied, either by precursor fragments or hydrogen adatoms.  The dopant atoms 
must then be incorporated into the surface as Si-Al heterodimers, prior to the deposition of 
further Si layers.   The replacement of an Si-Si dimer by the heterodimer involves the 
breaking of surface bonds and requires elevated temperatures.  Successful incorporation 
would result in the appearance of ejected Si atoms as surface adatoms and could be 
confirmed by STM examination.  After ejection from the surface the Si adatom could reside 
in any one of the three bridged sites B, C or D and a systematic survey of all heterodimer 
structures having three adsorbed H, an incorporated Al and an Si adatom is beyond the 
present scope.  Instead we have optimized a small number of configurations of each type to 
illustrate the energetics of Al incorporation. 

We examined eight incorporation configurations.  Each has an ejected Si adatom with two 
surface bonds and an incorporated Al forming a Si-Al heterodimer.  Their relative energies 
appear in Table 5.1 and are represented graphically in the rightmost column of fig 5.2.  The 
four configurations with the greatest stability were of the end-bridge variety and are shown 
schematically at fig 5.16.  They differ only in the placement of H atoms and fall within a 
0.15 eV energy span.  The most stable (D059, −3.84 eV) has almost the same stability 
(𝛥𝛥𝛥𝛥 =  0.004 eV) as configuration D004 at the final stage of dissociation.   This margin is 
less than DFT accuracy and would result in a theoretical 50% incorporation assuming both 
states were equally stable and both kinetically accessible.  

  

Figure 5.15:  ELF plots of end-dimer (a) and broken-dimer (b) configurations after the third and final 
dissociation.  The plot for the end-dimer configuration (A001) is taken parallel to the surface through the 
midpoint of the Al-Si bond.   The plot for the broken-dimer configuration C004 is taken in a vertical plane 
containing the dimer atoms.  These are the most stable configurations of their type but are respectively ≈
 0.3 𝑒𝑒𝑒𝑒 and 0.5 𝑒𝑒𝑒𝑒 less stable than bridged and end-dimer configurations at this stage. 

 

Figure 5.16:  Schematic representation of high stability configurations after 
incorporation. 
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We take configuration D058 as representative and show ELF and simulated STM plots at fig 
5.17.  Although the Al atom replaced an ‘up’ Si it becomes the ‘down’ atom after 
incorporation.  It has a pyramidal coordination with two subsurface bonds of length 2.39 Å 
and the heterodimer of 2.44 Å.  The adjacent dimers are levelled.  The ELF plot fig 5.17 (a) 
confirms the covalent character of these bonds.  The filled-state STM image fig 5.17 (b) 
shows the absence of a dangling bond.      

5.5 Conclusion 

DFT has been employed to study the structure and energetics of the AlHx species which come 
from the adsorption and dissociation of AlH3 on the Si(100) surface, also considering several 
incorporation scenarios.  A progressive, though declining, gain in stability is found as the 
dissociation and incorporation proceeds. The initial surface bond is dative and tetrahedral 
with the adsorbate fragment adopting trigonal geometries as dissociation proceeds. At each 
stage, high stability structures are likely to occur on any dissociation pathway and dimer 
bridging dominates. Structure have been characterized using ELF plots and simulated STM 
images to aid experiment. 

As noted above, the methodology of this chapter follows that of (Warschkow et al., 2005) 
who offered a rigorous DFT study of phosphine adsorption and dissociation on a confined 
Si(001) surface area.  The conclusion, that adsorbed PH3 undergoes a progressive 
deprotonation through PH2+H, PH+2H and P+3H remains unchallenged, and the 
intermediate forms seen in the accompanying STM observations were successfully assigned 
to the adsorption structures of fig 5.1 above.   Warschkow found PH3 was likely to adsorb 
intact and calculated a stability gain of ~0.6 eV, confirming an earlier finding of (Hamers; 
Wang, 1996) that the molecule bonds datively with the electron-poor ‘down’ atom of the 
buckled substrate dimer whereas we find AlH3 bonding datively with the ‘up’ atom, with a 
gain of ~0.8 eV.  The thermodynamics of AlH3 decomposition, i.e. an overall calculated 
stability gain of ~3.0 eV are broadly similar to PH3 which gains an equivalent ~2.4 eV.  
However, the adsorbed P atom stabilizes by a further ~0.5 eV on incorporation while the 
respective Al configurations are likely to be metastable.  Both dopants are then in end-bridge 
configurations,  D2 in Warschkow’s notation and D004 in ours.  P incorporation was already 
known to occur at an annealing temperature of ~ 350 C (Curson; Schofield et al., 2004) and 

Figure 5.17:   ELF and simulated STM images for incorporation configuration D058. The ELF plot is taken in 
the horizontal plane containing the Al atom.  The STM images have the locations of the Al, Si and H atom 
locations superimposed.   Images (b) and (c) correspond to tip bias voltages of -2.0 V and +1.5V respectively. 
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the process was not seen as problematic.  Moreover, the lithographic H atoms of PALE could 
be sacrificed in the construction of a planar device, where incorporation is followed by Si 
overgrowth.  This technique was employed in the precision doping of a P atom transistor 
(Fueschle et al., 2012), a significant milestone en route to the Australian group’s ultimate 
objective, a silicon-based qubit memory. 

The ability to incorporate acceptor dopants as well as donors in Si(001) with atomic 
precision should significantly advance the capabilities of patterned ALE.  It opens the 
possibility of p-n junctions fabricated with atomic precision, as well as local control of the 
electrostatic potential using both positive and negative dopant ions.  We keenly anticipate 
experimental measurements of these structures as a first realisation of this. 
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Chapter 6 

Reaction paths of alane dissociation on 
the Si(100) surface 

6.1 Background 

In the previous chapter, alane (aluminium hydride AlH3) was proposed as a suitable 
precursor for Al deposition as an acceptor dopant.  Although difficult to synthesize, an 
energetic analysis implies that it will adsorb and dissociate on the Si(100) surface, yielding 
Al bonded in dimer-bridging modes.  It was assumed that the H ligands of alane would detach 
sequentially, re-adsorbing in the immediate vicinity as should occur in a PALE process.  Some 
surface configurations having an incorporated Al atom were also investigated.  Many were 
less stable than the bridging configurations available as starting points (this relative stability 
is also seen with P incorporation (Warschkow, 2007)).  In the absence of kinetic barriers, one 
might expect reversal of the incorporation reaction, unless another forward pathway leading 
to a configuration with better stability is available. 

This chapter now resolves these results by providing a kinetic analysis of the available 
dissociation and incorporation pathways of alane on the Si(100) surface.  DFT calculations 
yield the activation energies and hence the expected reaction rates of each step under PALE 
process conditions. The maximum energy (transition state) configurations are shown in 
diagrammatic form and an incorporation procedure based on removal of dissociated H and 
Si surface diffusion, prior to incorporation.  

These findings have been published (Smith; Bowler 2018) and together with the earlier 
results provide a testable route to Al incorporation in the Si(100) surface to support 
experimental work in this area. 

6.2 Methods 

6.2.1  Terminology 

We continue with the configuration naming scheme introduced earlier and summarized at 
fig 1.  A pathway segment is defined by a starting and ending configuration e.g. A301-B202 
is a path between the initial dimer-end adsorption configuration A301 and the bridged-dimer 
first-dissociation configuration B202.   Fully dissociated configurations (having a bare Al 
adatom) have zero as the second character of the name e.g. B002, D004.  Incorporation 
configurations are categorized as end-bridge (because they give rise to an Si adatom in that 
configuration) and are numbered sequentially from 50 upwards, i.e.  D050, D051 and so on.   
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6.2.2  Computational details 

The supercell and VASP parameterization introduced in chapter 5 were retained for these 
calculations. 

Transition state search was performed using the climbing image nudged elastic band 
(CL-NEB) method (Henkelman et al., 2000) as implemented in the VASP Transition State 
Tools (VTST).  The theoretical basis of the method was provided at page 51 and it is known 
to yield accurate barrier energy values (Klimes, 2010).  The calculation was initialized using 
by six intermediate images on each path segment, obtained by linear interpolation from the 
minimum-energy end points.  The convergence criterion for atom forces was set to a 
maximum of 0.05 eV/Å, and the maximum number of image optimizations was set to 200 
(see the following section).  We used the FIRE algorithm (Bitzek, et al., 2006) to optimize the 
intermediate images.  This is one of several force-based optimizers that could have been 
used and is known to perform well in the VTST environment.   

6.2.3  NEB convergence considerations 

In some path segments, images constructed by linear interpolation can result in atomic 
trajectories rather far from the MEP.  When inter-atomic distances become small, large 
repulsive forces are generated, and the NEB algorithm can sample high-energy regions of 
the potential energy surface without ever satisfying the convergence conditions.  When this 
situation arose the trajectory was adjusted manually, while the force criterion was 
progressively increased from its initial setting of 0.02 eV/Å to a maximum of 0.05 eV/Å.   If 
convergence could not be achieved, the segment was discarded. 

Figure 6.1:  Perspective views of adsorption sites of AlH3 on the Si(100) surface, reproduced 
from [7].  Adatom A binds at a dimer-end position of a surface dimer; B binds to two Si 
atoms on the same dimer in the dimer-bridge position, leaving the dimer intact; broken-
dimer position C is like B, but breaks the dimer and D binds to Si atoms on two adjacent 
dimers in the end-bridge position.  Dissociation is modelled by removing an H from the 
adatom and placing it nearby.  This creates a new surface configuration identified by 
appending a number xyy where x indicates the number of H atoms remaining bonded to 
Al, i.e. x=3 represents the initial adsorption, x=0 indicates a fully dehydrogenated Al atom.  
yy is an enumerator.  The respective number of identified structures appears in 
parentheses. 
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Difficulties also arise when the dissociating H in an interpolated image approaches that in 
another known configuration.  Since the latter is located at a local energy minimum 
subsequent movement will be confined.  The resulting MEP must then traverse steep energy 
gradients as the spurious Si-H bond is broken, and the calculation may again terminate 
without result.  In most such cases the intermediate configuration appeared as an end-point 
on other MEPs, so no further action was needed.  In others, the intermediate configuration 
showed a small gain in stability, attributed to the shallow valleys in the energy surface 
associated with rotational movement of the H ligands.  In these cases, the intermediate 
configuration was re-optimized and replaced an original survey point.  

6.2.4  Activation energy and reaction rate 

The energy difference between the initial configuration and the highest saddle point on an 
MEP is the activation energy 𝐸𝐸𝐴𝐴 which is related to the reaction rate 𝑘𝑘 by the Arrhenius 
equation:   

𝑘𝑘 = 𝜈𝜈𝑒𝑒−𝐸𝐸𝐴𝐴 𝑘𝑘𝐵𝐵𝑇𝑇⁄  (8) 

where 𝜈𝜈 is the attempt frequency, 𝑘𝑘𝐵𝐵 the Boltzmann constant and 𝑇𝑇 the prevailing 
temperature.  This simple formulation arises from harmonic transition state theory  (Keeler, 
Wothers 2003) and assumes the reaction rate is sufficiently slow for a Boltzmann energy 
distribution to be established in the reactants and neglects quantum effects such as zero-
point energy and tunnelling.  Since the rate is dominated by the exponent term it is common 
to use an estimate of 𝜈𝜈 (e.g.  𝜈𝜈 = 1012 −1014 𝑠𝑠−1).  An expression for 𝜈𝜈 in the harmonic 
approximation is given on page 51. 

In table 6.1 below we show the activation energies yielding a single transition attempt over 
various timescales for range of process temperatures.  These are estimates based on the 
Arrhenius rate using the boundary values of 𝜈𝜈 given above and may assist the reader in 
determining the feasibility of the reactions to be presented later. 

 

  PALE process 
temperature (K) 

Activation energy (eV) causing 1 attempt in interval:  
1 second   1 minute 1 hour 

150 0.36-0.42 0.41-0.47 0.46-0.55 
200 0.48-0.56 0.55-0.63 0.62-0.70 
250 0.60-0.69 0.68-0.78 0.77-0.87 
300 0.71-0.83 0.82-0.94 0.93-1.05 
350 0.83-0.97 0.96-1.10 1.08-1.22 
400 0.95-1.11 1.09-1.25 1.23-1.39 
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6.3 Results and discussion  

6.3.1  Reaction pathways 

In chapter 5, approximately 70 surface configurations at various stages of dissociation were 
evaluated.  Although one expects any minimum energy pathway (MEP) to traverse the more 
stable configurations at each stage, many sterically feasible segments involving end 
configurations of lower stability were nevertheless examined.  A segment was considered 
feasible if it possessed an unobstructed H migration route but did not call for re-diffusion of 
previously dissociated H and the high energy levels needed to break an Si-H bond.  Under 
these constraints approximately 110 feasible segments were available, of which 40 yielded 
converged results in the MEP calculation.  A calculation was considered non-converging 
when it exceeded the nudging algorithm’s iteration limit, as discussed above.  This limit (and 
the number of intermediate images) were chosen pragmatically bearing in mind the 
relatively large number of computationally expensive calculations undertaken.   Some non-
converging calculations were repeated with altered intermediate locations and relaxed 
convergence conditions, but without additional result.   

The 40 MEP segments can be combined to give 14 pathways from initial adsorption to full 
dissociation, with an Al adatom and three surface H.  These fall into two groups of seven, 
differing only in their initial configurations, i.e. the A301 dimer-end configuration and the 
D301 end-bridge configuration.  Earlier, it was concluded that these configurations were 
similar in character, differing only by a correlated rotation of the three H ligands, and this is 
consistent with the present NEB findings.  Therefore, the discussion is limited to the 
pathways that start with the A301 configuration, focussing on those that play out on 
adjacent dimers in a single row.   

Fig 6.2 compares the stabilities and activation energies of the seven pathways, which include 
the final incorporation MEPs.  The data points are summarized at table 6.2.  For comparison, 
a similar figure in the preceding chapter (fig 5.2 on page 82) shows D301 and other 
configurations not lying on any pathway.   The figshare repository (Smith; Bowler 2017) 
includes a complete set of VASP configuration files.  

 

450 1.07-1.25 1.23-1.41 1.39-1.57 
500 1.19-1.39 1.37-1.57 1.54-1.74 
550 1.31-1.53 1.50-1.72 1.70-1.92 

Table 6.1 Calculated activation energies (from the hTST/Arrhenius equation with 𝜈𝜈 =  1012 −1014 𝑠𝑠−1)  to give rates of 1 
per second, 1 per minute and 1 per hour  (e.g. a reaction with 𝐸𝐸𝐴𝐴 =  1.00 eV would be activated within 1 hour at 300 K).  
At temperatures greater than 550 K the H passivation layer, essential to the PALE process, becomes mobile and ultimately 
desorbs from the substrate.  



CHAPTER 6.  REACTION PATHS OF ALANE DISSOCIATION ON THE Si(100) SURFACE  98 

 

  

Figure 6.2 Seven continuous dissociation and incorporation pathways of alane, on Si(100).  
Vertical columns of bars show relative configuration energies (eV) at each stage.  Energies are 
relative to the sum of bare surface and free alane energies.  A pathway is indicated by a succession 
of bars of the same colour, e.g. the pathway 5 through configurations A301-B202-B101-D004-
D076 is coloured yellow.  The intervening columns of shorter bars indicate the calculated relative 
transition state energies, i.e. the highest saddle-point energy along the MEP between adjacent 
configurations.  The data points appear in table 2 below.  
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Pathway MEPs 
𝐸𝐸𝐴𝐴/∆𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (eV)  

1 
A301-B202 B202-B101 B101-B006 B006-D084 
0.00/-2.05 -0.01/-2.93 0.58/-3.01 1.06/-3.33 

2 A301-B202 B202-B101 B101-B004 B004-D083 
0.00/-2.05 0.01/-2.93 0.95/-2.97 1.26/-3.27 

3 A301-B202 B202-B101 B101-B008 B008-D085 
0.00/-2.05 0.01/-2.93 0.24/-3.67 1.40/-3.01 

4 A301-B202 B202-D103 D103-D002 D002-D073 
0.00/-2.05 0.34/-2.29 0.37/-3.67 1.56/-3.13 

5 
A301-B202 B202-B101 B101-D004 D004-D076 
0.00/-2.05 0.01/-2.93 0.94/-3.85 1.87/-3.20 

6 
A301-B201 B201-D106 D106-D006 D006-D074 
0.00/-2.11 0.67/-3.33 0.59/-3.32 1.23/-2.87 

7 
A301-B201 B201-D106 D106-D005 D005-D075 
0.00/-2.11 0.67/-3.33 0.60/-3.78 1.63/-2.86 

An ideal pathway would pass through successive low-energy configurations, gain stability at 
each stage, and terminate in incorporation.  As seen in chapter 5, the energetics favour end-
bridge configurations as dissociation proceeds with some intermediate configurations of this 
kind acquiring greater stabilities than succeeding fully dissociated or incorporation scenarios 
which are our real interest.  Any kinetic barrier should be surmountable at temperatures not 
impairing PALE passivation through H diffusion, say 450 − 500 K.  One can also expect 
incorporation to be hindered kinetically by the breaking of surface bonds.  If a pathway fails 
to yield a progressive gain in stability, then (in the absence any other possibility) its reactions 
will tend to reverse, and the sequence terminate on the lowest energy configuration which 
is both stable and kinetically accessible at the prevailing temperature.   

Table 6.2 shows the energy changes and activation energies for each dissociation and 
incorporation MEP, for each pathway.  The remainder of our discussion is structured as 
follows:  in sections 6.3.2 and 6.3.3 the first and second dissociations, where the relative 
absence of kinetic barriers characterizes all pathways, are discussed.  In section 6.3.4 we 
describe two pathways (1 and 2 in table 6.2) that, while not involving the lowest-energy 
configurations, are nevertheless kinetically and thermodynamically feasible and appear to 
terminate in stable incorporation.  In section 6.3.5 we discuss pathways 3, 4 and 5 where 
low-energy fully-dissociated configurations are sampled but do not lead to stable 
incorporation.  Pathways 6 and 7 in table 6.2 involve configurations occupying two surface 
dimer rows and are of lesser interest and not discussed, but the calculation results are 
available in the figshare repository.  Finally, in section 6.3.6 we describe an incorporation 
scenario involving surface migration of the ejected Si adatom. 

6.3.2  First dissociation: AlH3 → AlH2+H 

There are two MEPs involved in the first dissociation, resolving to the dimer-bridge 
configurations B201 (−2.11 eV, fig 6.3(a)) and B202 (−2.05 eV, fig 6.3(b)) respectively, 
differing only in the ultimate location of the dissociated H ligand.  No MEP was found to the 

Table 6.2   Pathway number, per-MEP activation energy 𝐸𝐸𝐴𝐴 and relative cumulative energy change 
∆𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for the seven dissociation and incorporation pathways shown at fig 6.2.  Activation energies are 
derived from a six-image VASP Cl-NEB calculation.  A lowering of relative energy (i.e. a negative energy change) 
indicates a gain in stability, and vice versa.    
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other low-energy configurations B206 (−2.08 eV) and D205 (2.32 eV), which are assumed 
to be sterically inaccessible.  An MEP to configuration A201 (−2.08 eV) was discovered but 
gave rise to a relatively unstable configuration at the second dissociation (D109, −2.63 eV) 
from which no onward MEP was found.   

The MEPs show similar stability gains (1.34 eV and 1.27 eV respectively) and are 
characterized by the absence of kinetic barriers, indicating that dissocation should occur 
immediately after the initial adsorption and proceed independently of the ambient 
temperature.  The diagrams suggest a shallow PES basin in the vicinity of the Al-Si bond.  

 

6.3.3  Second dissociation: AlH2+H → AlH+2H 

The second dissociation can proceed through three MEPs, terminating in the dimer-bridge 
configuration B101 (−2.93 eV, fig 6.4(a)) and the end-bridge configurations D103 and D106 
(−3.07 eV, −3.33 eV figs 6.4(b), (c) respectively).  However, whereas the transition to 
configuration B101 proceeds without significant kinetic barrier, those to the end-bridge 

Figure 6.3   Representations of two MEPs of the first dissociation of alane adsorbed on Si(100), corresponding 
to segments A301-B201(a) and A301-B202(b).  The reaction proceeds from left to right through intermediate 
points 1/6, 2/6 etc.  In both cases the drop in relative energies indicates the absence of kinetic barriers.  Images 
are derived from a VASP Cl-NEB calculation and each represents a single row of alternately buckled Si dimers, 
viewed from above, with Si, Al and H atoms coloured yellow, pink, and grey respectively.  The atom numbers 
are zero-based indices into the originating VASP coordinate files.           
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configurations encounter barriers of 0.34 eV and 0.67 eV respectively.  The incomplete 
pathway to configuration D109 (−2.63 eV) mentioned above also encounters a barrier of 
0.60 eV.  The TST/Arrhenius relation (equation (1) above) indicates that even the lowest of 
these barriers would slow the second dissociation rate by a factor of 106 compared to the 
barrier-free rate.  Given that the adsorbed fragment samples all directions equally one may 
assume reaction kinetics will dominate to ensure the onward pathways from B101 are 
sampled ahead of the others, possessing slightly increased stabilities.         

 

Figure 6.4  Representations of three MEPs of the second dissociation of alane adsorbed on Si(100), 
corresponding to segments B202-B101 (a), B202-D103 (b) and B201-D106 (c).  MEP (a) shows an 
insignificant forward barrier of 0.02 eV at image 3, whereas MEPs (b) and (c) have barriers of 0.34 eV and 
0.67 eV both at image 4.  Image numbering and colouring convention as for fig 6.3.  In MEP (a), Al atom 0 
is obscured by H ligand 34 in the images labelled ‘5/6’ and ‘B101’. 
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6.3.4  Pathways 1 & 2:  stabilization on incorporation 

These pathways are characterized by incorporation MEPs that show increased stability (see 
figs 6.5(a), (b)).  The lowering of energy (by 0.32 eV and 0.30 eV respectively) stabilizes the 
incorporation through a corresponding increase in the energy barrier to reversal.  The 
forward energy barriers (1.06 eV and 1.26 eV) are surmountable within the constraints of 
the PALE process and so we might consider conditioning the PALE environment to favour 
these pathways while frustrating others involving configuration B101.  This would be feasible 
using an automated STM, where complex operational sequences can occur under program 
control.  For example, on pathway 2 the dissociation plays out on just two adjacent dimers, 
i.e. atoms (74, 76) and (84, 93) in the figures.  If these were initially de-passivated an ambient 
temperature of ≈  350 K would allow the exclusive evolution of the fully-dissociated 
configuration B004.  Then, after de-passivating a third dimer and adjusting the temperature 
to ≈  450 K, incorporation in configuration D083 should follow. 

Figure 6.5   MEP representations of pathways 1 (a) & 2 (b) of the third dissociation of alane adsorbed 
on Si(100), followed by stability-enhancing incorporation steps.  On pathway 1, incorporation (B006-
D084) imposes an activation energy barrier of 1.06 eV and results in a stabilization of 0.32 eV.  For 
pathway 2, the barrier to incorporation (B004-D083) is 1.26 eV and the stabilization is 0.30 eV.  Even 
so, these pathways fail to yield stable incorporation (see text).  Image derivation and colouring 
convention as for fig 6.3.  In the images of configuration B101, Al atom 0 is obscured by H ligand 33. 
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Unfortunately, this scenario is unrealistic since the Al atom in configuration B004 will migrate 
to the lower energy end-bridge configuration D004 (seen on pathway 5, fig 6.6) as soon as 
the third dimer is cleared.  This Al migration MEP B004-D004 (not shown) does not exhibit a 
significant activation energy and will be sampled before incorporation into D083, which 
presents a relatively large energy barrier.  Incorporation on pathway 1 is frustrated similarly.   

6.3.5  Pathways 3, 4 & 5: metastable incorporation 

Fig 6.6 shows the third dissociation and incorporation stages of pathways characterized by 
destabilization on incorporation.  Such destabilization (> 0.50 eV) imply that the end 
configurations (respectively D085, D073 and D076) are metastable and that the 
incorporation reactions would rapidly reverse, unless onward routes yielding sufficiently 
lowered energies were available.  These reactions all require elevated temperatures and 
those on pathways 4 and 5 are not feasible under the temperature constraint of the PALE 
process.  

At room temperatures, the kinetic barriers to incorporation are not surmountable and the 
fully dissociated configurations of pathways 3 (B008) and 4 (D002) should be visible by STM 
inspection.  The effective (considering adsorption and dissociation only) activation energies 
are respectively 0.24 eV and 0.37 eV.  Both configurations have the same stability of 
−3.37 eV, but B008 is kinetically favoured and more likely to occur by a factor ≈ 102.  
Although the fully dissociated configuration D004 on pathway 5 is the most stable 
encountered, its activation energy of 0.94 eV means it is even less likely to be observed at 
room temperature (by a factor ≈ 1012).  

If the expected evolution to configuration B008 is found to occur in practice, one could then 
consider some selective de-passivation that would enable stable incorporation by allowing 
migration of the ejected Si adatom to a new location having suitably low energy.  A possible 
scenario is described in the next section. 

6.3.6  Post-incorporation Si migration  

In the structural survey of chapter 5, a group of incorporation configurations (fig 6.7, D056-
8) with stabilities comparable with the low-energy fully-dissociated configurations (fig 5(a) 
B008, (b) D002, (c) D004) emerged.  However, all these incorporation configurations possess 
a 3-coordinated surface Al atom with an ejected Si adatom bridging a pair of Si-Si dimers.  
This organization will not evolve naturally during a low-temperature incorporation, which 
necessarily results in a 4-coordinated Al with the Si adatom bridging the Al-Si heterodimer 
and adjacent Si-Si dimer.  The 4-coordinated configurations are seen to be less stable than 
those having 3-coordinated Al, which (in the PALE environment) could only be attained by 
exposing additional dimers so that the Si adatom could migrate away from the Al end of the 
heterodimer.    
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Figure 6.6   MEP representations of pathways 3 (a), 4 (b) & 5 (c) for the third dissociation of alane adsorbed 
on Si(100), followed by incorporation.  A stability loss of at least 0.50 eV in the incorporation segments B008-
D085, D002-D073 and D004-D076 indicate the end configurations are metastable.  The activation energies 
for incorporation on pathways 4 and 5 (1.56 eV, 1.87 eV) are unachievable at PALE process temperatures.  
At room temperatures, fully-dissociated configuration B008 on pathway 3 is likely to predominate (see text).  
Image derivation and colouring convention as for fig 6.3.               
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Earlier, it was suggested that migration of the ejected Si adatom might lower the energies of 
our metastable incorporation configurations, thereby yielding an unconditionally stable 
configuration.  Focussing on migration away from configuration D085 on pathway 3, 
configurations with relative energies significantly less than its predecessor B008 (−3.67 eV) 
were sought but without success.  Some configurations did exhibit lowered energies, but 
none sufficiently low to stabilize the incorporation.  

Equivalently, configuration B008 was destabilized by removing its adsorbed H atoms (H34, 
H35 and H36, see fig 6.6(a)).  The new configuration, B021, was structurally optimized and 
showed Al-Si bond lengths increased by ≈ 1% compared to B008, with the adsorbate 
coordination remaining unchanged.  A relative energy of -2.96 eV was obtained by 
subtracting the bare surface energy.  Additional configurations simulating a feasible onward 
migration and incorporation pathway, were also produced, bearing in mind the restricted 
size of the simulation cell.   

Fig 6.8 shows the MEPs for these reactions.  Incorporation (B021-D095) remains metastable 
but the stability loss is reduced to 0.14 eV from 0.66 eV obtained in the presence of 
adsorbate H.  The first post-incorporation migration step (D095-D096) yields no stability gain 
but the second (D096-D097) indicates a gain of 0.25 eV, now sufficient to overcome the loss 
on incorporation.  The energy barrier to incorporation is 1.17 eV, corresponding to a PALE 
process temperature of 400 K for reasonable activation within 60 seconds.  The migration 
steps have lower barriers (respectively 0.65 eV and 0.80 eV) which would be surmountable 
at this temperature.  The effective barrier to migration is lower than that presented by the 
reversal of incorporation, and so migration is favoured on both kinetic and thermodynamic 
grounds.  

 

  

Figure 6.7   High stability incorporation configurations discovered in the structural survey of 
chapter 5.  These are more stable than the fully dissociated configurations on pathways 3 and 4 
while D059 has a stability comparable with that of D004 on pathway 5.  This is due to the more 
favourable 3-coordination of the Al atom seen here.     
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6.4 Conclusion 

Building on the results of an earlier structural survey, climbing-image NEB DFT calculations 
and transition state theory have been used to analyse the decomposition and incorporation 
of alane (AlH3) on the H-passivated Si(100) surface.  Decomposition, resulting in a bridged 
Al adatom and surface H, proceeds without significant kinetic barrier but, as with P, the 
energetics of the incorporated Al are close to those of the Al adatom.  Furthermore, the 
constraints of the PALE scenario, where reactions are confined to an area spanning three or 
four adjacent dimers, prevent the natural evolution of a stable incorporation configuration.  
Rather, one would expect Al adatoms to become ‘trapped’ on the surface at room 
temperature and incorporate reversibly at elevated temperatures.   

However, in an alternative scenario in which a bridged Al adatom is destabilized by the 
removal of dissociated H after decomposition, incorporation is eventually stabilized by 
surface migration of the ejected Si adatom.  The migration pathway is determined by the 
extent of the surface exposure after decomposition and it is likely that other routes to stable 
incorporation could be found.           

As already mentioned (page 92), the methodology of this and the preceding chapter follows 
that of Warschkow and others in their studies of PH3 behaviour on the Si(100) surface.  Their 
earlier DFT work was supported by STM observations showing decomposition pathways 
which could not be rationalized as simple temperature-dependent transitions between low 
energy intermediate configurations.  Schofield; Curson et al., (2006) proposed a diffusion 
mechanism whereby the intermediate PH2 fragment could move along a dimer row, or jump 
to an adjacent row prior to adopting a stable PH+2H configuration.  This work did not cover 

Figure 6.8   MEP representation of an Al incorporation and Si migration pathway from the fully-dissociated 
configuration B021 to a low-energy configuration D097 via metastable configurations D095 and D096.  
Configuration B021 was derived from B008 by removing its dissociated H.  Configurations D095 and D096 
are isomeric and a consequence of the restricted cell size.  The migrating Si atom is 76.  Ultimately, 
configuration D097 is kinetically and thermodynamically favoured (see text).  Energies are relative to the 
bare surface energy.  Image derivation and colouring convention as for fig 6.3. 
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the transition to P+3H but the entire dissociation sequence was later dealt with exhaustively 
by (Warschkow; Curson et al., 2016).  The latter paper concluded that dissociation to P+3H 
would require an activation energy of ~1 eV, consistent with experiment and comparable 
with the barriers to Al+3H found here.  Intra-row diffusion of the P adatom during 
incorporation was reported by (Bennett; Warschkow, 2009); this paper also covered surface 
diffusion of ejected Si atoms and predicted incorporation at 530 C, lower than the 
experimental value of 650 C, but still too high for PALE compatibility.  This is especially 
relevant to our findings for AlH3, even in the absence of experimental data, as we see that 
some surface diffusion of the adatom is needed to achieve incorporation.  But although PH3 
decomposition on the Si(100) surface has been studied extensively, the goal of incorporation 
at room temperature remains elusive. 

However, the ability to incorporate acceptor dopants as well as donors in Si(100) with 
atomic precision will significantly advance the capabilities of patterned ALE.  It opens the 
possibility of p-n junctions fabricated with atomic precision, as well as local control of the 
electrostatic potential using both positive and negative dopant ions.  We keenly anticipate 
experimental measurements of these structures as a first realisation of this. 
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Chapter 7 

Al doped Si nanostructures  

7.1 Introduction 

In chapter 1 it was shown how doping can determine the electronic properties of bulk Si.   
Later chapters described the fabrication of Si nanostructures and the atomically precise 
incorporation of Al dopants using PALE.  These structures would be combined as building 
blocks with donor-doped equivalents to form basic circuit elements such as diodes, 
transistors and inverters, and eventual integration into larger-scale devices (Cui, Lieber 
2001).  These devices would be junction-based and created by p and n co-doping of a single 
structure (Colinge et al., 2010; Ng, Tong 2011).   We now examine some primitive Al doped 
structures which might be built with PALE to see how their properties depend on shape, size, 
surface treatment and dopant location.  

Nanowires (NWs) are the simplest one-dimensional nanostructure.  They are of particular 
interest since they be can fabricated as both interconnects and as building blocks from from 
which computational circuit elements could be assembled (Huang et al., 2001).  Existing 
literature describes fabrication and doping of Si NWs using non-lithographic means such as 
the vapour-liquid-solid (VLS) mechanism (Peng; Lee 2011, Wagner; Ellis 1964) but only 
relatively small examples  (diameter ≤ 10 nm) can be investigated by atomistic methods.  
Even with a very large computer (as here) VASP calculation times can become excessive 
when structure sizes exceed 1000-1500 atoms.  This problem does not arise with O(𝑁𝑁) codes 
(e.g. CONQUEST) that calculate interactions on a per-atom basis within a local part of space 
rather than for the totality of atoms in the system.  Computational effort then scales with 
the local volume and ultimate performance depends on efficient implementation of the local 
basis set (Bowler, Miyazaki 2010). 

The VLS process produces NWs whose diameter follows that of catalytic gold nanoclusters.  
Growth is conditioned by the surface energetics of the Au/Si LS interface, and for smaller 
NWs occurs in the [110] direction with hexagonal cross section (Wu al., 2004).  DFT models 
can readily employ an H terminated hexagonal slab of variable depth as supercell 
(Kumarasinghe, Bowler 2020; Ng et al., 2011).  On the PALE Si(100) surface atoms are 
situated on a 3.84 Å square grid and both octagonal and square-section models are 
geometrically convenient, although other configurations are possible.  We select the square 
section as we wish to investigate NWs in lateral contact with a Si substrate.  Further, we 
model small cuboid (cell, pillar) structures, accessible to VASP.  The required calculations 
were described in chapter 3 and should reveal the electronic behaviour near the Fermi level 
(which characterizes a functional dopant) and how it is affected by surfaces, dopant locations 
and concentration.   We model NWs of increasing size (the largest equivalent to ~5 nm 



 
 CHAPTER 7.  AL DOPED SI NANOSTRUCTURES              109 

 

 

diameter) and establish qualitative trends in behaviour.   Then we choose smaller, but 
representative dimensions for the 3D structures so that calculation times remain 
manageable.   

Aluminium is a p-type dopant that can enter the silicon lattice substitutionally as shown in 
the ELF plot fig 7.1 (a).  This suggests the Al nucleus abstracts electronic density equivalent 
to one electron from the lattice to form four covalent bonds (also see page 84).  The Al-Si 
bonds each have length ~2.40 Å compared with ~2.35 Å seen for bulk Si-Si bonds.  Once 
incorporated, it is essential that the dopant remain static and not diffuse within the lattice.  
Fig 7.1(b) shows that two adjacent Al have defective lattice bonding, compromising any p-
type character of the neighbourhood.  The calculations of this chapter assume that dopant 
atoms are isolated, immobile and distant from each other.       

 

 
  

Figure 7.1 (a) ELF representation of Al atom (pink) 
incorporated into the bulk Si lattice (yellow).   The 
Al atom forms covalent bonds with 4 Si neighbours. 
(b) 2 adjacent Al atoms are incorporated, each 
forming 3 covalent Al-Si bonds. The Al atoms have 
not bonded and cannot function as acceptors.  
(Author’s VMD rendering of VASP ELFCAR output)  

 

7.2 Methods 

All the calculations of this chapter are based on DFT as implemented in the VASP package.   
The GGA PBE functional and PAW pseudopotentials are discussed at pages 32 and 39 
respectively, and the techniques for state density and band structure calculations are 
described at pages 60 and 63 respectively.   DFT total energies were converged to within 
10−5 eV with a 400 eV energy cut-off.  For the NW structural relaxations used a Monkhorst-
Pack mesh with a density of  (1x1x2) where the NW is taken to lie along the 𝑧𝑧 direction.  The 
NW was constrained axially but free to expand radially.  The NWs were placed in supercells 
with 11 Å vacuum spacing and relaxed with an atomic force criterion of 0.05 eV/Å.   The 
ridge, cell and pillar nanostructures were handled similarly, i.e. allowed to expand along 
surface normals but otherwise constrained.   

The graphical images were created in MATLAB from VASP text output files, using programs 
written by the author and briefly described in Appendix B. 

  

(a) (b) 
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7.3 Results and discussion 

7.3.1  Pure Si NWs 

Reported studies usually describe catalysed vapor-liquid-solid (VLS) growth in the [110] and 
[111] directions, creating NWs with hexagonal cross-section (Ma et al., 2003; Wu et al., 
2004).  STM-based PALE naturally creates structures having square or rectangular cross-
section where growth occurs in the [001] direction.  Fig 7.2 shows schematic diagrams of 
the smallest (a) and largest (c) square section NWs considered, in terms of side length, which 
varies from 1.92 nm to 6.56 nm.  The supercells containing these structures allow for an  

 

 

  

 

Figure 7.2 (a), (c) and (d): Cross-sectional view of [001] oriented H passivated undoped square 
Si NWs of side length 1.92 nm, 3.72 nm and 6.56 nm, respectively.  (b) shows the side elevation 
[010] of the smallest NW and the different simulation cell lengths employed – 4, 8 and 12 
layers.  These are representations of freestanding NWs, and do not show the surrounding 
vacuum region of the supercell. 
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11 nm vacuum gap in both the 𝑥𝑥 and 𝑦𝑦 directions and extend indefinitely in the 𝑧𝑧 (axial) 
direction.  The side view (b) shows the layers included in the simulation cell (4, 8 or 12 layers) 
along with H passivation of the [010] surface. 

We start by considering the effect of side length on electronic structure, using a repeat 
length of 4 layers.  Fig 7.3 (a) shows the band gap increasing as the side length is reduced (a 
quantum confinement effect) and declining towards the calculated bulk value as the side 
length is increased.   The largest NW considered here has a side length of 6.56 nm or 36 Si 
layers (fig 7.2 (d)).  This is large enough to approximate bulk behaviour in the central region 
of the NW.  Fig 7.3 (a) also shows that experimental band gaps (in approximately circular 
cross-section NWs) converge to the room temperature bulk value (~1.1 eV) with increasing 
diameter.   The calculated results for these square section NWs show a similar convergence  

 

  

 
Figure 7.3: (a) Band gap as a function of diameter for small Si nanowires showing 
experimental (diamond markers) measurements (Lee at al., 2003) and the present 
calculated results for square section wires.  Also shown is the bulk silicon Si bandgap, both 
experimental and the calculated result of found in chapter 3. (b) Density of states for 
undoped square section wires of side 1.92nm, 3.72nm and 6.56nm, scaled to ease 
comparison.  Arrows indicate the declining influence of surface atoms on states density at 
valence band edge, with increasing side length.  Energies are relative to the Fermi level 
reported by VASP. 
 

(b) 

(a) 
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to the calculated bulk band gap which differs from the experimental value, a well-known DFT 
discrepancy arising from the use of a GGA functional.  This could be avoided (at increased 
processing cost) with a hybrid functional, but it is usually ignored in theoretical work.  

Fig 7.3 (b) shows DOS for the full NW strongly affected by side length, and the smoothing 
effect caused by the presence of more atoms in the simulation.  The appearance of DOS and 
PDOS plots also depends on the level of artificial smoothing applied in the calculation, as 
discussed at page 60.  

All the state density plots of this chapter employ the Gaussian smoothing technique 
implemented in VASP, with the smoothing parameter  value 𝜎𝜎 set to 0.08 eV.  This value was 
chosen empirically to avoid excess detail and ease qualitative comparisons.  The action of a 
dopant hinges on its effect on electronic states near the edges of the conduction and valence 
bands, which dominate charge transport properties.  In a confined nanostructure it is 
important to know which atoms contribute most to these states.  Fig 7.4 shows partial 
densities of states (PDOS) projected onto individual atoms situated at varying distances from 
the NW centre.  At the valence band edge (VBE), locations nearer the surface contribute 
least irrespective of NW size.   Conversely, centrally located atoms always make a greater 
contribution.  In these models, relaxation leaves Si-Si bond lengths near the surface 
unchanged from the bulk and the effects on the PDOS must be due to passivation, with the 
Si-H bonds contributing relatively fewer states.  Similar radial PDOS behaviour has been 
noted in other NW studies (Ng, Tong, 2012).  However, in the smaller NWs and at lower 
energies (e.g. where indicated by an arrow on the energy axes) the PDOS oscillates and is 
greater at some asymmetric dopant positions.  This effect is not seen in H-passivated 
hexagonal Si NWs grown in the [110] direction (Kumarasinghe, Bowler 2020) and can be 
attributed to the sharper corners present here.  In the presence of an acceptor dopant the 
Fermi level moves closer to these states and performance might be improved, as proper p-
type behaviour requires a plentiful supply of states in this region.  In the largest NW (c) 
surface effects are diluted and the PDOS resembles that seen in hexagonal NWs (ibid.).   

7.3.2  Al doped Si NWs 

We now examine the effect of doping in the two smaller NWs shown in fig 7.2, with the aim 
of showing how the Al dopant and its radial positioning affects the electronic band structure.   
As before, dopant locations are chosen to reveal the influence (if any) of the NW surfaces on 
the band structure.   The large NW of fig 7.2 (side length 6.56 nm (d)) has been excluded, 
allowing examination of larger axial dimensions within manageable calculation times.  Fig 
7.3 (a) shows that the band gap of the undoped NW tends towards the bulk value as the side 
length is increases from 4 to 5 nm, and we assume that study of larger NWs would not reveal 
any new qualitative behaviour. 

In these calculations the open shell of the trivalent Al atom gives rise to a non-zero relative 
spin polarization:  

𝜁𝜁 =
𝜌𝜌↑ − 𝜌𝜌↓

𝜌𝜌↑ + 𝜌𝜌↓
 (1)  
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where 𝜌𝜌↑, 𝜌𝜌↓ are the densities of ‘spin-up’ and ‘spin-down’ electrons, respectively.  With just 
a single dopant atom spin the effect of 𝜁𝜁 might be expected to be small and spread over the 
entire lattice, but this can be confirmed by performing spin-sensitive calculations as 
described in chapter 2.   Spin sensitivity is exposed in the exchange correlation functional.  
Exchange energy is independent of spin polarization but in the LDA and GGA functionals 
correlation energy is represented an elaborate function of 𝜁𝜁 fitted to quantum Monte Carlo 
data from the homogeneous electronic gas (Perdew at al, 1996).     

  

  

 

 

 

The spin-sensitive calculation produces two energy eigenvalues for each band.  The lower of 
these is conventionally taken to correspond to a 'spin-up' orientation and the higher to 'spin-
down'.  This terminology is somewhat misleading because the spin direction is arbitrary, 
although it is assumed to be same for all electrons.  DFT allocates a spin-up and spin-down 
electron to each band in ascending energy order, representing the electronic ground state 
configuration at 𝑇𝑇 = 0.   With a single dopant atom all bands are doubly occupied except the 
highest, which defines the VBE and has its spin-up state occupied and its spin-down state 
unoccupied (alternatively, occupied by a hole state).  The Fermi level can be taken to lie at 
the VBE, where the electronic density should ideally experience a step change to zero.   DFT 
packages generally smear the step edge to ease the numerical integration of the density 
wavefunctions in 𝑘𝑘 space, causing non-integer occupancies to arise (also see chapter 3 pages 

(a) (b) 

(c) 
Figure 7.4  Partial density of states (PDOS) for Si 
atoms at varying positions in square NWs of 
different sizes.  Distances (Å) are diagonal distances 
from a central atom shown in blue.  The selected 
atoms are approximately coplanar.  (a)-(c) show the 
PDOS for Si atoms in NWs with sides 1.92 nm, 3.72 
nm and 6.56 nm, respectively.   The vertical arrow 
on the energy axis shows a larger PDOS on off-
centre atoms (e.g. red trace in (a) and (b)).   Energies 
are relative to the Fermi level reported by VASP. 
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60-63).  The band structure diagrams of this chapter have been produced with minimal 
Gaussian smoothing (𝜎𝜎 = 0.01 eV) and non-integer occupancies occur at only a few 𝑘𝑘 points 
per band with values close to 0 or 1.  These artificial values must be distinguished from 
partial occupancy where a band may be occupied over a range of adjacent 𝑘𝑘 points but 
unoccupied over a neighbouring range.  This can be seen in some of the following band 
structure diagrams, where edge occupancies are indicated by circular markers.  At each 𝑘𝑘 
point a filled marker indicates the highest energy occupied band (the HOMO of Molecular 
Orbital theory) and an unfilled the lowest unoccupied (LUMO) and partial occupancy is 
indicated by connected markers traversing the band gap.  Prior to making this determination, 
any smearing occupancy is eliminated by rounding.  

The effect of increasing the axial length of a doped NW can now be tested, using the NW of 
fig 7.2 (a) of side length 1.92 nm and depths of 0.55 nm (4 layers), 1.1 nm (8 layers) and 1.6 
nm (12 layers)  as shown in  fig 7.2 (b).   Each structure contains a single Al dopant atom, so 
these depths are also the dopant spacings and yield concentrations (Al/Si ratio) of 1/121, 
1/241 and 1/362 respectively.  Fig 7.5 compares the band structures of these NWs in the 
axial direction which is the only symmetric path in the Brillouin zone.    The diagrams show 
band curvature varying with the number of supercell layers.   This is a dispersive effect 
caused by the interaction of adjacent periodic images (i.e. in the limit of dopants interacting 
on a solely nearest neighbour basis, the band would become parabolic).   In the 4-layer 
model (a) the dopant spacing is only 0.55 nm, leading to some electronic delocalization and 
partial occupancy appearing at the VBE.  The 8-layer (c) and 12-layer (d) models show a 
flattening of the bands as the dopant spacing increases, indicating negligible interaction at a 
spacing of 1.1 nm and beyond and an absence of partial occupancy.  The spin-up 4-layer 
band structure (b) contains no unoccupied band at the VBE and resembles that of the same 
sized undoped NW (e).  This indicates spin-up states are not involved in the acceptor doping 
mechanism and spin-up band structures have not been calculated for the other 
nanostructures considered later in this chapter. 

The HOMO-LUMO energy interval contributes to the width of the depletion region (page 15) 
formed when p and n-type regions come into contact and is typically ~0.7 V in a 
conventionally doped silicon diode or transistor.   An ideal p-type nanostructure would show 
a uniform transition over an interval of a few tenths of a volt, but confinement and 
concentration effects may result in a non-uniform or non-existing transition as seen in the 
4-layer model.     When the axial length of the NW is extended to 8 and 12 layers, a sharp 
transition (< 0.1 eV) is sustained throughout the NW.   

Figs 7.6 (a), (b) compare the total DOS of the NWs of fig 7.5, for both spin orientations.   An 
increased state density near the VBE and a shifted Fermi level compared with the undoped 
is visible.    These effects are greater in the 8 and 12-layer models but the spin-up 
configuration does not introduce an extra hole band level as noted above.   

Figs 7.6 (c), (d) show the DOS projected onto the dopant atom, again for both spin 
orientations.  These show that the hole state is localized on the impurity, as would be 
expected at 𝑇𝑇 = 0.  There is little difference in the PDOS for the 8 and 12-layer cells, but 
both are markedly greater than that of 4-layer cell.  This confirms at least 8 layers are needed 
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if interaction between the dopant images is to be avoided.  Accordingly, subsequent NW 
calculations employ a repeat length of 2 (8 layers), allowing the modelling of larger wires 
with negligible dopant interaction. 

 
 

  

                              
 

 

To investigate the effect of dopant positioning on the DOS, PDOS and band structure, square 
section H-passivated NWs of sides 1.92 nm and 3.72 nm were modelled.  The results for the 
smaller NW in an 8-layer supercell with 241 Si atoms are shown in fig 7.7.  An Al atom 
substitutes for an Si atom near the centre (position 1, (b)), in a corner (position 3, (d)) and 
approximately mid-way between (position 2, (c)).   To aid interpretation, band structure,  

Figure 7.5 (a)-(d) Comparison of band structures 
in the axial direction of Al doped Si NWs of side 
1.92 nm.  The single Al dopant is centrally placed, 
and the axial lengths vary from 4⎓12 layers with 
effective dopant density diminishing with 
increasing length.  Spin-down structures show 
empty or partially occupied bands at the VBE.   
The spin-up structure (b) shows no unoccupied 
band and resembles that of a non-spin calculation 
for an undoped 4-layer NW (e).  Circular markers 
indicate occupancy at the band edges (see text).  
Energies are relative to the Fermi level.  



 
 CHAPTER 7.  AL DOPED SI NANOSTRUCTURES              116 

 

     

  

  
 

 

DOS and PDOS plots are shown with a common energy axis.    Comparing the PDOS and band 
structure plots it is apparent that the LUMO band corresponds to the state projection on the 
Al atom, irrespective of its position.  The LUMO is flat, leading to a localized peak in the DOS 
which can also be seen.   The state density projection onto the dopant changes with its 
location.  At the centre the Al hole state and a relatively small number of surrounding Si 
valence states predominate, i.e. the surface induced PDOS peaks around −0.4 eV are 
relatively small.   As the dopant moves towards the surface these increase in size, reflecting 
the change in dielectric from NW to vacuum.  The declining permittivity increases the 
attractive Coulombic force exerted by the nuclei, lowering electronic energy and  
accentuating the PDOS below the Fermi level.   

Fig 7.8 shows corresponding results when the NW side length is increased to 3.72 nm.  This 
supercell has 8 layers and contains 577 Si atoms.  The lowered confinement immediately 
reduces the band gap width, as was seen in fig 7.3 (a), but this effect is not dopant related.  

Figure 7.6 (a), (b) comparison of DOS of doped (solid lines) NWs of side 1.92 nm.  Cell lengths of 4,8 and 
12 layers are compared for wires containing a single, centrally placed Al dopant for the spin-down and spin-
up orientations of the Al electron, respectively. The DOS for an undoped (dashed line) 4-layer NW is shown 
for comparison. (c), (d) comparison of the PDOS experienced by the Al atom in the same three doped NWs, 
for both spin orientations.  In each case, energies are shown relative to the Fermi level, indicated by vertical 
dotted lines. 
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Figure 7.7  Comparison of band 
structure and density of states of Si 
NWs with square (side 1.92 nm) 
cross section and depth 8 layers, with 
the Al dopant in varying positions as 
indicated at (a).  The NW contains 
241 Si atoms. 

The band structure, DOS and PDOS 
for Al position 1 (at the centre of the 
NW), position 2 (between the centre 
and corner) and position 3 (close to 
the corner) are shown in (b)-(d), 
respectively.  Figures reflect the spin-
down configuration of the odd Al 
electron and the indicated energies 
are relative to the Fermi level 
notified by VASP. 

 

   

Atoms in the central region are relatively isolated from surface effects, compared to the 
smaller NW.  Although the PDOS plots show dopant-induced states at the Fermi level the 
band structure plots show holes occupying distinct, closely spaced bands near the VBE 
and an eventual reversion to intrinsic behaviour, dependent on dopant location.  These 
effects were not seen in the smaller NW of fig 7.7, suggesting that the perturbing effect 
of the dopant was sufficient to lift any band degeneracy in that case.  While the 
breakdown of p-type behaviour might be due to reduced dopant concentration its onset 
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Figure 7.8  Comparison of band 
structure and density of states of 
Al doped Si NWs with square 
(side 3.72 nm) cross section and 
depth 8 layers, with the single Al 
dopant in varying positions as 
indicated in (a).  The NW contains 
577 Si atoms. 

The band structure, DOS and 
PDOS are shown for Al at position 
1 (the centre of the NW), 
position 2 (between the centre 
and corner) and position 3 (close 
to the corner) in (b)-(d), 
respectively.  Figures reflect the 
spin-down  configuration of the 
odd Al electron and the indicated 
energies are relative to the Fermi 
level notified by VASP. 

 

 

 

 

   

also depends on dopant location and so surface confinement must play a role.  It seems that 
surface proximity accentuates the state density at lower energies (e.g. fig 7.9 (d), red plot) 
and contributes to consistent p-type behaviour throughout the IBZ.  To clarify this point, we 
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make two further calculations for this NW at an increased dopant density.  In fig 7.9 (a)  
there are 4 centrally placed Al atoms while in fig 7.9 (c) a dopant atom is located at each 
corner.  These configurations are similar to those employed by (Ng and Tong, 2012) in a 
study of B and P co-doped NWs.  The increased concentration (1 144⁄ ) configurations 
may be compared with dopant positions 1 and 3 in fig 7.8 (a) where the concentration is 
(1 577⁄ ).  After structural optimization, the Si-Al bond lengths of the closely spaced 
dopants of fig 7.9 (a) were all found to lie in the range 2.39 to 2.40 Å and so proper 
covalent bonding can be assumed.  The band structure shown at fig 7.9 (b) shows hole 

Figure 7.9  The NW of fig 7.8, but containing 4 Al and 574 Si atoms.  In configuration (a) 4 Al 
dopants are centrally placed, while at (c) they occupy corner locations.  In (b) the blue PDOS 
plot is the sum over the Al atoms at positions 1 − 4.  In (d) it is the single Al in position 1 but 
the projections at positions 2 − 4 are similar.    
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 states at the VBE throughout the IBZ, but again they do not appear uniformly as a single 
band.  This indicates that the breakdown of the band structure seen in the larger NW of fig 
7.8 has been suppressed (but not eliminated) by increasing the dopant concentration, and 
full coverage of the IBZ has been restored.  The PDOS plot shown in fig 7.9 (b) is the 
summation of the projection onto the 4 dopant atoms.  With the 4 dopants situated in the 
corners (fig 7.9 (c)) the Si-Al bond lengths lie in the range 2.42 to 2.45 Å reflecting the 
increased stress of those locations.  Fig 7.9(d) shows the coverage of unoccupied states at 
the VBE level remains incomplete and resembles that of the low concentration 
configuration 3 of fig 7.8 (d), where the dopant also occupies a corner location.   This is due 
to the occluded character of the corner locations when compared to the centre.  In some 
applications (e.g. co-doped p-i-n devices) non-uniform coverage and the presence of an 
intrinsic Si region might be desirable and therefore sought by design. 

7.3.3  Ridge nanostructure 

The ridge is a NW structure placed horizontally on a substrate of Si atoms.  It might function 
as an interconnect between p-doped regions at the same potential, with the substrate 
boundary acting as passivation.  The supercell consists of the 1.92 nm square structure of 
fig 7.7 (a) stacked sideways on an 8-layer substrate as shown at fig 7.10 (a) below.  The 
combined structure has a repeat length of 8 layers in the 𝑥𝑥 direction and H-passivation is 
applied to the ridge surfaces, the substrate surfaces and the substrate base.  The supercell 
has an 11 Å vacuum spacing and contains 619 Si atoms of which 288 occupy the substrate.   
Four dopant positions are modelled: top corner (1), near centre (2), near base (3) and just 
inside the substrate (4) and the results summarized in figs 7.10 (b)-(e).  These calculations 
were repeated with substrate depths of 4 and 12 layers for the same ridge dimensions, with 
similar results. 

In this structure the ridge is electronically confined in the 𝑦𝑦 direction, but the substrate is 
not.  Separated, the NW would have a wider band gap than the more bulk-like substrate, as 
was seen in fig 7.3 (b) above.  When combined, this disparity causes dispersal at both band 
edges (fig 7.7 (b)-(d)) which moderates when the dopant is moved into the substrate region 
(fig 7.7 (e)).  However, inside the ridge incomplete p-type behaviour is apparent irrespective 
of dopant location.   

As the ridge dopant concentration (1 619⁄ ) is comparable with that of the large NW 
considered above (1 577⁄ ), it is worthwhile repeating this calculation at the increased 
concentration used in that case.  The results for 4 centrally placed Al dopants are shown in 
fig 7.11 below, where the PDOS plot (b) is again the summation over the dopant locations.  
The band structure shows some irregularity in the HOMO levels (presumably caused by the 
band gap disparity already noted) but a fully delocalized LUMO at the Fermi level now 
appears.  The result shows that with proportionate doping the p-type ridge could function 
as an active element in a complex nanostructure configuration.     
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Figure 7.10  Comparison of band structure and density of states of an Al doped ridge structure consisting of a 
square (side 1.92 nm) section Si NW grown on an 8-layer Si substrate.  The combined structure contains 619 
Si atoms.  (a) shows a cross sectional view perpendicular to the axis of the ridge with 4 dopant positions 
labelled 1⎓4, and an overhead view along the z-axis. The ridge atoms are coloured dark yellow, and the 
substrate atoms light yellow.  Passivating H atoms are coloured grey.  The simulation cell depth is 8 layers, in 
the 𝑥𝑥 direction.  The band structure, DOS and PDOS are shown for Al at positions 1⎓4 in (b)-(e), respectively.    
 

(a) 
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7.3.4  Cell nanostructure 

The cell is an isolated cubic structure passivated on all surfaces.  When doped, it could be 
useful in shielding applications.   The shielding effect arises from the superposition of an 
external field with the induced field within the cell.  The Fermi level adjusts to make the net 
internal field zero, and an opposing charge appears on the exterior of the cell.  There is no 
charge transfer to or from the cell (Griffiths, 1999).  One might envisage a network of 
interconnected cells protecting some sensitive circuit element.   

Here the supercell contains 11x11x12 layers with 399 Si and 204 H atoms and an 11 Å 
vacuum spacing, as shown in fig 7.12 (a) below.  Since the cell does not possess periodic 
boundaries a single 𝑘𝑘 point suffices, taken to be 𝑘𝑘 = 0.  This makes the Bloch phase factor 
unity and the charge distribution independent of 𝑘𝑘 (page 35).  Consequently there is no band 
dispersion or structure in the usual sense,  only a set of eigenenergies remaining constant 
throughout the IBZ as shown in figs 7.12 (b) and (c) corresponding to the dopant positions 
labelled 1 and 2.   This lack of band structure would be true in any isolated molecule. 

In (b) an unoccupied energy level appears at the VBE, consistent with p-type semiconductor 
behaviour.   Although appearing to coincide with the HOMO this is a purely graphical 

 

  

Figure 7.11  The ridge structure of 
fig 7.10, but containing 4 centrally 
placed Al and 616 Si atoms, as 
shown at (a).  In (b) the blue PDOS 
plot is the sum over the projections 
onto the Al atoms at positions 1 −
4.   
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artefact.  The calculation returns over 1000 distinct eigenenergies most of which are 
unresolved by this presentation.   In (c) the LUMO is elevated, due to the increased PDOS 
seen beneath the Fermi level at locations near the surface (compare figs 7.7 (c) and 7.8 (c) 
on pages 117 and 118).  This preserves charge neutrality in the larger structure.  Both cell 
configurations show a wide (~ 1.5 eV) band gap, slightly greater than that calculated for the 
square NW of comparable side length (page 111) and consistent with increased 
confinement.   Of course, this underestimates the actual band gap due to the GGA basis.  
However, the absence of partial occupation suggests that the p-doped cell could function as 
active nanocircuit element, if satisfactory ohmic connections could be made.  

 
 
 
 

 

 

Figure 7.12  Energy levels and 
density of states for an Al doped cell 
structure of 11x11x12 layers.  (a) 
shows the side view with single 
dopants placed centrally (1) and in a 
corner location (2), together with an 
overhead view along the 𝑧𝑧 axis. The 
cell atoms are coloured in dark 
yellow and passivating H atoms in 
grey.  The corresponding energy 
levels, DOS and PDOS are shown at 
(b) and (c).  The energy levels 
(constant throughout the IBZ in 
these calculations) are  shown for a  
similar but undoped cell at (b).  
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7.3.5  Pillar nanostructure  

Finally, we consider the pillar nanostructure, a square section Si cell grown on an 8-layer Si 
substrate. The supercell repeats indefinitely in the 𝑥𝑥 and 𝑦𝑦 directions, with a vacuum gap of 
11 Å and H termination is applied on all the surfaces, as shown at fig 7.13 (a) below.   The 
structure contains 744 Si and 276 H atoms, and of the Si atoms 348 reside in the pillar and 
the remainder (396) in the substrate.   VASP run times for structures of this size can be 
excessive, even when large scale computing resources can be deployed.  To limit run times 
the cell dimension is reduced from 11x11 to 9x9 layers, which tends to accentuate 
confinement effects when compared with the NW and ridge structures having a larger cross-
sectional area.  

The band structure, DOS and PDOS plots corresponding to 4 dopant locations are shown in 
7.13 (b)-(e).  The IBZ path chosen for the band structure plots corresponds to the 𝑥𝑥 axis.  
When the path taken corresponds to the 𝑧𝑧 (vertical) axis the structure would become 
aperiodic and yield flat, cell-like energy levels.  The number of 𝑘𝑘 points on the 𝑥𝑥 axis path is 
10 (reduced from 20 elsewhere) again to manage run-time requirements.   

As might be expected, the cell-like character of the pillar reduces band dispersion  compared 
with the ridge of fig 7.10, with the substrate exerting less influence on the overall electronic 
structure.   This results in relatively flat LUMO bands without partial occupation, even when 
the dopant is placed inside the substrate region, as in seen in (e).  When the dopant occupies 
a corner location two distinct peaks appear in the state projection (b, blue plot). The peak at 
the Fermi level is due to the dopant atom, whereas the larger one immediately beneath is 
due to surface confinement.   This can be compared with the ridge structure result at fig 7.10 
(b), where the dopant is also in a corner location, but where only a single peak beneath the 
Fermi level is seen.  This is an interesting result as it indicates that uniform p-doping is 
facilitated by confinement, permitting lowered concentration levels. This was also seen in 
the large NW (fig 7.8 (d) above) where asymmetric dopant placement yielded better p-type 
coverage in the low concentration setting.  Additionally, the pillar format would assist in the 
design of complex 3-dimensional circuit configurations.  However, here the pillar size is small 
and probably difficult to fabricate.  In a sufficiently large pillar, it is likely that partial LUMO 
occupation would occur unless concentration were increased.  This calculation should 
therefore be repeated for larger pillars, perhaps using the CONQUEST package already 
mentioned, although the maximum structure size is limited to ≈ 3000 atoms when running 
in its DFT (exact diagonalization) mode.     
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Figure 7.13  Comparison of band structure and density of states in an Al doped pillar structure consisting 
of a square section Si cell (side 1.66 nm) grown on an 8-layer Si substrate.  (a) shows a cross sectional view 
through the cell perpendicular to the 𝑥𝑥 axis and an overhead view along the 𝑧𝑧 axis, with 4 Al dopant 
positions labelled 1 − 4.  The cell atoms are coloured in dark yellow, and the substrate atoms light yellow.  
Passivating H atoms are coloured grey.  The band structure, DOS and PDOS are shown for Al at positions 
1 − 4 in (b)-(e), respectively.    

(a) 
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7.4 Conclusion 

The electronic structure of square section Al doped and undoped Si NWs with edge lengths 
ranging from ~2 to ~6 nm has been studied.  Related ridge, cell, and pillar nanostructures 
containing up to 1000 atoms have also been investigated.  For the undoped NWs, the band 
gap declines with increasing side length and converges to the theoretical bulk valued for Si.  
Atoms near the surfaces contribute less to states at the band edges, due to extended Si-Si 
bond lengths, when compared to centrally located atoms.  However, in smaller NWs 
confinement can cause wide variations in the projected state density on atoms in 
asymmetric locations.   

In the doped structures a uniform p-type behaviour is desirable for participation in junction-
based circuit configurations.  This is evidenced by the appearance of a flat LUMO band at the 
VBE, and the absence of partial hole occupation.   This has been demonstrated in the smaller 
wires and the more confined cell and pillar structures but is hindered by the lowered dopant 
concentration and the more bulk-like nature of the ridge and larger NW structures where 
the onset of non-uniform behaviour occurs as dopant density falls below ~ 1 500⁄ .  On the 
other hand, uniform p-type behaviour is enhanced by the increased confinement of  NW 
corner locations and the cell and pillar structures.   We find that uniform behaviour is 
restored when dopant concentration is increased using small clusters of dopant atoms.  

Since P is a widely used donor dopant, it is unsurprising that references to its use crop up 
throughout the literature.  In the context of this chapter (Reuβ et al., 2006) described 
narrow, heavily P doped planar NWs, exhibiting low resistivity and of interest in interconnect 
applications.  The electronic structure of δ-doped Si-P was investigated by (Carter et al., 
2009) using large slab supercells containing a single P layer of varying dopant density.  These 
showed the same qualitative behaviour seen in Al i.e. a shifted Fermi level and conduction 
bands pulled into the band gap by the dopant potential.  In the study by (Ng;  Tong, 2012) 
the authors found the onset of bulk-like behaviour in H passivated P doped NWs occurred at 
a diameter of ~5 nm; at smaller diameters the band gap widens, as seen for B and Al.  Finally, 
(Watson et al., 2017) reported on a qubit memory based on a double quantum dot made 
from P atoms by PALE, a direct descendant of the P atom transistor mentioned at the close 
of chapter 5. 

The scope of these calculations was constrained by processing times, which can become 
excessive when large structures are optimized with VASP.  Our results show that structures 
should be modelled at actual size, because performance parameters are size dependent.  
The 3-dimensional structures are relatively small and should be enlarged and the 
calculations repeated in a suitable DFT environment, as indicated in the text.       
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Chapter 8 

Summary 

This work presents a study into the use of Al as an atomically precise acceptor dopant in 
silicon semiconductor nanostructures.   It is motivated by recent progress with P as donor 
(page 76) and more generally by the demise of Moore’s law, which has stimulated a 
widespread search for alternatives to current CMOS technology.  After addressing an area 
of concern in the proposed fabrication process we model the adsorption of alane (AlH3) on 
the Si(100) surface and the subsequent migration and incorporation of the dopant atom.  
Finally, we investigate the electronic behaviour of Al doped Si nanowires and other cuboid 
structures.  All the calculations were made on optimized structures within density functional 
theory using the gradient corrected functional of Perdew, Burke and Ernzerhof (PBE) as 
implemented in the VASP code, embodying periodic boundary conditions with plane wave 
basis sets (chapter 2).  The results delivered by this approximation (i.e. the PBE functional 
and the associated projector-augmented wave pseudopotentials) were checked and found 
to agree with experimental data for crystalline Si (chapter 3). 

Patterned Atomic Layer Epitaxy (PALE) is a layer-by-layer growth process for nanoscale 
structures under a mask of of passivating atoms.  The original patent application (Randall et 
al., 2008) gives a general description without identifying the atomic species involved, but 
here the term refers to CVD growth of an Si nanostructure (e.g. a pillar) on an exposed area 
created by STM lithography of the H-passivated Si(100) surface.  The surface energetics of 
the walls differ from those on the growth surface and chapter 4 applies transition state 
theory (TST) to calculate the probability of H diffusion from the walls back onto the growth 
surface, concluding that such contamination is unlikely.  Unfortunately, the dimer-led 
growth process is frustrated by the appearance of antiphase boundaries (page 68), impeding 
epitaxial coverage and reducing the effectiveness of successive CVD cycles.  This problem 
(and the inherently slow nature of PALE) represent real obstacles to future progress, but for 
now it is assumed that appropriate  technological solutions will emerge in due course. 

Chapter 5 investigates accurate placement of an Al dopant within a Si nanostructure.  In the 
proposed scenario PALE growth cycles using the disilane precursor are interrupted, the 
surface repassivated and a small target area exposed by fresh lithography.  A PALE cycle  
using an alane (ALH3) precursor is then inserted.  The amine alanes might serve in this role, 
but new experimental work is needed to confirm their effectiveness in the PALE setting.  
Some 60 possible alane decomposition pathways are subjected to TST analysis, predicting 
an initial adsorption of the Al atom, facile dissociation of the H ligands with the adatom 
finally making either 2 or 3 surface bonds.  Incorporation (to a subsurface location) is less 
straightforward, as no significant gain in stability accrues; an analogous situation arises 
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during P doping with phosphine.  However, in chapter 6 we show that incorporation is 
achieved after some selective depassivation around the adsorption site which allows surface 
migration, incorporation and activation at a temperature ~400℃, well within PALE process 
limits.    

With a route to fabrication established, chapter 7 turns to the electronic performance of the 
doped nanostructures.  We choose square nanowire and cuboid ridge, cell and pillar 
formations with edge lengths between ~2 and ~6 nm, in the expectation that these will 
emerge naturally from PALE growth.  P type semiconductor behaviour is characterized by 
the retention of the intrinsic band gap, the location of the Fermi level at the valence band 
edge (VBE) and appearance of unoccupied states nearby.  With a single Al atom present this 
behaviour is evident in each formation, fading towards intrinsic behaviour at concentrations 
<  1/500 in the relatively low confinement of the ridge and larger nanowires.  In these cases, 
uniform behaviour is easily restored by an increase in dosage.  On the other hand, the more 
confined cell and pillar formations permit concentrations as low as ~1/800 while 
maintaining uniform p type behaviour.  

These results are encouraging and suggest that a theoretical study of P and Al co-doped 
junction diodes and transistors could be undertaken.  These devices, together with a 
capacitive element could form a memory cell and the basis of future large scale integration.  
The footprint of such a cell would indicate the ultimate physical packing density achievable 
with this technology, ideally comparable with the pinhead densities referred to in the Impact 
Statement at the start of this thesis.  However, the viability of these devices also depends on 
their electrical characteristics, which are not revealed in static electronic structure 
calculations but require an electron transport model and a non-equilibrium DFT, such as 
density functional perturbation theory (DFPT).  These are challenging calculations and the 
capabilities of VASP and CONQUEST in this area should be assessed.     
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Appendix A   

The Hohenberg-Kohn theorems 
 

This appendix provides proofs for the Hohenberg-Kohn theorems quoted in chapter 2.  It 
also introduces two supporting topics: the functional derivative and Lagrange’s method 
undetermined multipliers.  The latter material draws on notes of lectures delivered by 
Dr Michael Gillan. 

 

A.1 The first Hohenberg-Kohn theorem 

•  It is impossible that two external potentials 𝑣𝑣(𝑟̃𝑟) and 𝑣𝑣′(𝑟𝑟) whose difference 
𝑣𝑣(𝑟𝑟) −  𝑣𝑣′(𝑟𝑟) is not a constant give rise to the same ground-state density 
distribution 𝜌𝜌𝑔𝑔(𝑟𝑟). 

The proof is a reductio ad absurdum argument.  Let 𝐻𝐻� =  𝐻𝐻�0 +  𝑉𝑉�  and 𝐻𝐻�′ =  𝐻𝐻�0 + 𝑉𝑉� ′ be the 
Hamiltonians associated with the two potentials 𝑣𝑣(𝑟𝑟) and 𝑣𝑣′(𝑟𝑟) and their ground state 
many-electron wavefunctions be called Ψ and Ψ′.  These wavefunctions are necessarily 
different.  Then by the variational principle of QM: 

 𝐸𝐸′ = ⟨Ψ′|𝐻𝐻′|Ψ′⟩ < ⟨Ψ|𝐻𝐻′|Ψ⟩ =  ⟨Ψ|𝐻𝐻0 + 𝑉𝑉 + (𝑉𝑉′ − 𝑉𝑉)|Ψ⟩ (9) 
 Hence: 

 𝐸𝐸′ < 𝐸𝐸 +  ⟨Ψ|𝑉𝑉′ − 𝑉𝑉|Ψ⟩ = 𝐸𝐸 + � 𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)(𝑣𝑣′(𝑟𝑟) −  𝑣𝑣(𝑟𝑟)) (10) 

and similarly (after interchanging primed and unprimed quantities): 

 𝐸𝐸 < 𝐸𝐸′ + � 𝑑𝑑𝑟𝑟𝜌𝜌′(𝑟𝑟)(𝑣𝑣(𝑟𝑟) −  𝑣𝑣′(𝑟𝑟)). (11) 

Adding the two equations, we get: 

 
𝐸𝐸′ + 𝐸𝐸 < 𝐸𝐸 + 𝐸𝐸′ − � 𝑑𝑑𝑑𝑑(𝜌𝜌′(𝑟𝑟) − 𝜌𝜌(𝑟𝑟)(𝑣𝑣′(𝑟𝑟) − 𝑣𝑣(𝑟𝑟)) 

(12) 

so that 𝜌𝜌(𝑟𝑟) cannot equal 𝜌𝜌′(𝑟𝑟), otherwise the inequality would not hold.   

A.2 The second Hohenberg-Kohn theorem 

• The ground state energy for a given external potential 𝑣𝑣(𝑟𝑟) is correctly obtained by 
minimizing the functional 𝐸𝐸𝑔𝑔 = ∫ 𝑑𝑑𝑟𝑟𝜌𝜌(𝑟𝑟)𝑣𝑣(𝑟𝑟) + 𝐹𝐹[𝜌𝜌(𝑟𝑟)] with respect to 𝜌𝜌(𝑟𝑟) subject to 
a fixed number of electrons N, and the resulting 𝜌𝜌(𝑟𝑟) gives the correct density distribution 
of the ground-state. 

It is necessary to show that, if 𝐸𝐸𝑔𝑔 is the ground-state energy associated with external 
potential 𝑣𝑣(𝑟𝑟) then:  
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 𝐸𝐸𝑔𝑔 ≤ � 𝑑𝑑𝑟𝑟𝑣𝑣(𝑟𝑟)𝜌𝜌′(𝑟𝑟) + 𝐹𝐹[𝜌𝜌′(𝑟𝑟)], (13) 

where 𝜌𝜌′(𝑟𝑟) is the density associated with any arbitrary potential 𝑣𝑣′(𝑟𝑟).  The equality holds 
only if 𝜌𝜌′(𝑟𝑟) =  𝜌𝜌(𝑟𝑟) when (by the first theorem) 𝑣𝑣′(𝑟𝑟) and 𝑣𝑣(𝑟𝑟) differ by at most an additive 
constant. 

The theorem follows directly from the variational principle.  Let Ψ and Ψ′ be the many-
electron ground-state wavefunctions associated with different external potentials 𝑣𝑣(𝑟𝑟) and 
𝑣𝑣′(𝑟𝑟).  As the ground states are assumed to be not degenerate Ψ and Ψ′ are uniquely 
defined.  Then: 

 𝐸𝐸𝑔𝑔 < ⟨Ψ′|𝐻𝐻0 + 𝑉𝑉|Ψ′⟩ = � 𝑑𝑑𝑟𝑟𝑣𝑣(𝑟𝑟)𝜌𝜌′(𝑟𝑟) + 𝐹𝐹[𝜌𝜌′(𝑟𝑟)] (14) 

proving the theorem. 

A.3 Functionals 

In DFT, the total energy 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 depends on the electronic density distribution 𝜌𝜌(𝑟𝑟) and we 
consider the variation of when 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 when the function 𝜌𝜌 changes.  So, we need notation to 
discuss quantities that depend not on a discrete set of variables, but on a function.  Such a 
quantity is called a functional.  

Consider a quantity 𝐸𝐸 that depends on a function 𝑓𝑓(𝑥𝑥), with 𝑓𝑓 depending on a single 
variable x.  To indicate that 𝐸𝐸 depends on 𝑓𝑓(𝑥𝑥), it is usual to write 𝐸𝐸 = 𝐸𝐸[𝑓𝑓(𝑥𝑥)] and 
express 𝐸𝐸 in the form of an indefinite integral e.g.:   

 𝐸𝐸[𝑓𝑓(𝑥𝑥)] = � 𝑝𝑝(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 (15) 

 
 𝐸𝐸[𝑓𝑓(𝑥𝑥)] = � 𝑓𝑓(𝑥𝑥)2𝑑𝑑𝑑𝑑 (16) 

where the function p(x) is a fixed function and the integrals are taken over some chosen 
interval, e.g. range (−∞, +∞).  In each case, for any chosen function 𝑓𝑓(𝑥𝑥), 𝐸𝐸 has some 
numerical value. 

A.3.1  The functional derivative 

The rate of change of a functional with variation of the function on which it depends is called 
a functional derivative.  Instead of being a number (or a set of numbers, in the case of partial 
derivatives), it  is a function.   When the function 𝑓𝑓(𝑥𝑥) is changed to 𝑓𝑓(𝑥𝑥) + 𝛿𝛿𝑓𝑓(𝑥𝑥) in equation 
(15) above, the corresponding change in 𝐸𝐸 is: 

 𝛿𝛿𝛿𝛿 = � 𝑝𝑝(𝑥𝑥)𝛿𝛿𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 (17) 

So 𝛿𝛿𝐸𝐸 can be expressed as an integral involving 𝛿𝛿𝛿𝛿(𝑥𝑥).  This is true even when 𝑓𝑓(𝑥𝑥) is 
multiplied by a function which is not constant, as in (16): 

 𝛿𝛿𝛿𝛿 = � 2𝑓𝑓(𝑥𝑥)𝛿𝛿𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 (18) 
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Generally, when the 𝑓𝑓(𝑥𝑥) on which 𝐸𝐸 depends is changed infinitesimally, the change 𝛿𝛿𝐸𝐸 can 
be expressed as an integral of some other function times the change 𝛿𝛿𝛿𝛿(𝑥𝑥).  The function 
appearing in the integral is called the functional derivative and written 𝛿𝛿𝐸𝐸 𝛿𝛿𝛿𝛿(𝑥𝑥)⁄ .  The 
functional derivative is therefore defined by: 

 𝛿𝛿𝛿𝛿 = �
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑥𝑥) 𝛿𝛿𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 
(19) 

in the limit of 𝛿𝛿𝛿𝛿(𝑥𝑥) becoming infinitesimally small.  In the examples given above, the 
functional derivatives are: 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑥𝑥) =  𝑝𝑝(𝑥𝑥) 

(20) 

 
 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑥𝑥) = 2𝑥𝑥 
(21) 

In the DFT setting 𝑓𝑓(𝑥𝑥) is approximated by a linear combination of fixed basis functions.  Let 
these be 𝜙𝜙𝑖𝑖(𝑥𝑥) (𝑖𝑖 =  1, 2, . . . 𝑃𝑃 ), which are not allowed to change.  Then we consider all 
functions 𝑓𝑓(𝑥𝑥) that can be expressed as: 

 
𝑓𝑓(𝑥𝑥) = � 𝑐𝑐𝑖𝑖𝜙𝜙𝑖𝑖(𝑥𝑥)

𝑃𝑃

𝑖𝑖=1

 
(22) 

where 𝑐𝑐𝑖𝑖  are coefficients.  Then 𝐸𝐸[𝑓𝑓(𝑥𝑥)] depends only on the 𝑐𝑐𝑖𝑖 and the only allowed changes 
𝛿𝛿𝛿𝛿(𝑥𝑥) have the form: 

 
𝛿𝛿𝛿𝛿(𝑥𝑥) = � 𝛿𝛿𝑐𝑐𝑖𝑖𝜙𝜙𝑖𝑖(𝑥𝑥)

𝑃𝑃

𝑖𝑖=1

 
(23) 

so that the resulting change of 𝐸𝐸 is: 

 
𝛿𝛿𝛿𝛿 = �

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑥𝑥) 𝛿𝛿𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 = � 𝛿𝛿𝑐𝑐𝑖𝑖 �

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑥𝑥) 𝜙𝜙𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 

𝑃𝑃

𝑖𝑖=1

 
(24) 

From this, the partial derivative of E with respect to ci is expressed in terms of the functional 
derivative as: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

= �
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑥𝑥) 𝜙𝜙𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 
(25) 

A.3.2  Stationary point of a functional 

In DFT, we must minimize the total energy with respect to the electronic density distribution.  
The general functional 𝐸𝐸[𝑓𝑓(𝑥𝑥)] is stationary with respect to variation of 𝑓𝑓(𝑥𝑥) when its 
functional derivative is zero: 𝛿𝛿𝐸𝐸 𝛿𝛿𝛿𝛿(𝑥𝑥)⁄ = 0 for all x. This means that the variation of E to 
linear order in δf (x) is zero: 

 𝛿𝛿𝛿𝛿 = �
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑥𝑥) 𝛿𝛿𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 = 0 
(26) 



 

 
 APPENDIX A.  THE HOHENBERG-KOHN THEOREMS            132 

 

If 𝐸𝐸 is approximated by basis functions as in (22) this condition is satisfied when 
𝜕𝜕𝜕𝜕 𝜕𝜕𝑐𝑐𝑖𝑖⁄ = 0 for all 𝑖𝑖 and the problem is equivalent to minimizing 𝐸𝐸 over 𝑃𝑃 variables.  
To invoke Lagrange’s method of undetermined multipliers (see A.4 below) we 
impose an additional constraint on 𝐸𝐸, chosen to be: 

 
� 𝑐𝑐𝑖𝑖

𝑃𝑃

𝑖𝑖=1

� 𝜙𝜙𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑁𝑁  
(27) 

where N is some constant.  Then, the Lagrange condition (37) is that the quantity 
𝐸𝐸 − 𝜇𝜇𝜇𝜇 be minimized, where 𝜇𝜇 is the undetermined multiplier.  The condition for 
the minimum is  

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

= 𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

 
(28) 

From (19) and (27) this is equivalent to 

 �
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑥𝑥) 𝛿𝛿𝛿𝛿(𝑥𝑥)𝑑𝑑𝑑𝑑 =  𝜇𝜇 � 𝜙𝜙𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 
(29) 

for all 𝑖𝑖.  In the limit of the 𝜙𝜙𝑖𝑖  forming a complete basis as 𝑃𝑃 → ∞, this requires 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿(𝑥𝑥) =  𝜇𝜇 

(30) 

and this is the general condition for a stationary point of 𝐸𝐸, subject to the constraint in the 
form of (27) above. 

A.3.3 Functions of more than one variable 

In DFT the total energy 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 depends on 𝜌𝜌(𝑟𝑟), itself a function of the positional vector 𝑟𝑟 
consisting of three variables (𝑥𝑥, 𝑦𝑦, 𝑧𝑧).  The definition (19) still applies, so 

 𝛿𝛿𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡

𝛿𝛿𝜌𝜌(𝑟𝑟) 𝛿𝛿𝜌𝜌(𝑟𝑟)𝑑𝑑𝑟𝑟 
(31) 

where the integral is now over the volume of the system.  The condition for a stationary 
point of 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 is: 

 𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡

𝛿𝛿𝜌𝜌(𝑟𝑟) = 0 
(32) 

when there is no constraint.  If a constraint of the form: 

 � 𝜌𝜌(𝑟𝑟) = 𝑁𝑁  (33) 

Is applied, the stationary point is: 

 𝛿𝛿𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡

𝛿𝛿𝜌𝜌(𝑟𝑟) = 𝜇𝜇 
(34) 

 



 

 
 APPENDIX A.  THE HOHENBERG-KOHN THEOREMS            133 

 

A.4 Lagrange’s method of undetermined multipliers 

Suppose we have a function 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃) depending on 𝑃𝑃 variables 𝑥𝑥𝑖𝑖,, 𝑖𝑖 = {1,2 … , 𝑃𝑃}.  
The condition that 𝑓𝑓 has a stationary point (i.e. a minimum, a maximum, or a saddle point) 
for given values of the variables 𝑥𝑥𝑖𝑖 is: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (35) 

for all 𝑥𝑥𝑖𝑖.  Let 𝑥⃗𝑥 ≡ {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃} denote the 𝑃𝑃-dimensional vector whose components are 
𝑥𝑥𝑖𝑖 and 𝑥⃗𝑥∗ be a stationary point.  Then at a nearby point 𝑥⃗𝑥 =  𝑥⃗𝑥∗ + 𝛿𝛿𝑥⃗𝑥, a Taylor series 
expansion shows that 

𝛿𝛿𝛿𝛿 = 𝑓𝑓(𝑥⃗𝑥∗ + 𝛿𝛿𝑥⃗𝑥) − 𝑓𝑓(𝑥⃗𝑥∗) = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖 + 𝑂𝑂�𝛿𝛿𝑥𝑥𝑖𝑖
2�

𝑃𝑃

𝑖𝑖=1

 
(36) 

The term linear in 𝛿𝛿𝛿𝛿𝑖𝑖 vanishes, because 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 0 for all 𝑖𝑖 and so 𝛿𝛿𝛿𝛿 = 0 as expected. 

Now suppose that the 𝑥𝑥𝑖𝑖 are constrained by the condition that another function 
𝜙𝜙(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃) has the fixed value 𝑐𝑐.  In the 𝑃𝑃-dimensional space of vectors 𝑥⃗𝑥, there is some 
surface on which 𝜙𝜙(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃) = 𝑐𝑐.  We seek the stationary points of 𝑓𝑓 subject to this 
constraint. Because of the constraint, it is no longer true that 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 0 for all 𝑖𝑖 at a 
stationary point.  Instead, we can show that the constrained stationary point is an 
unconstrained stationary point of the function 

𝑓𝑓 − 𝜇𝜇𝜇𝜇 (37) 

for an appropriate value of 𝜇𝜇.  The parameter 𝜇𝜇 is called the Lagrange undetermined 
multiplier, because it is initially unknown.  The value chosen for 𝜇𝜇 depends on the constant 
𝑐𝑐, and we search for the value of 𝜇𝜇 that gives the desired value of 𝑐𝑐. 

To verify this, let 𝑥⃗𝑥∗ be an unconstrained stationary point of the function 𝐹𝐹. At this stationary 
point, we have from (35): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (38) 

for all 𝑥𝑥𝑖𝑖.  Then from (36) the change 𝛿𝛿𝛿𝛿at a nearby point 𝑥⃗𝑥 =  𝑥⃗𝑥∗ + 𝛿𝛿𝑥⃗𝑥 is 

𝛿𝛿𝛿𝛿 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖

𝑃𝑃

𝑖𝑖=1

 
(39) 

But if 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 𝜇𝜇 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖⁄  for all 𝑖𝑖, then the change of 𝑓𝑓 is: 

𝛿𝛿𝛿𝛿 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖 = 𝜇𝜇
𝑃𝑃

𝑖𝑖=1

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖

𝑃𝑃

𝑖𝑖=1

 
(40) 

Now for all displacements satisfying the constraint, there is no change of 𝜙𝜙 to linear order 
in 𝛿𝛿𝑥⃗𝑥, so that ∑ (𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖⁄ )𝛿𝛿𝑥𝑥𝑖𝑖 = 0𝑃𝑃

𝑖𝑖=1 , which implies that: 
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�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖 = 0
𝑃𝑃

𝑖𝑖=1

 
(41) 

and that x�⃗ ∗ is a constrained stationary point, as required.   
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Appendix B  

MATLAB programs 

 
This appendix provides descriptions of programs written by the author of this work for 
processing VASP input and output.  

B.1 vasp_menu 

Functions collectively providing job submission and related functionality in the UCL HPC 
(High Performance Computing) environment. 

UCL researchers enjoy access to several HPC sites including SALVIATI, LEGION, GRACE, 
THOMAS and ARCHER.  These are large multi-core systems running Linux nodes and a Sun-
derived job scheduler (batch queueing) system.  However queueing, accounting and login 
policies originate locally, so job submission procedures are to some extent site-specific. 

In this context a job equates to a single invocation of the VASP executable.  Input consists of 
several VASP parameter files and an ionic structure file.  Job submission requires assembly 
of these files (along with an appropriate control script) in an HPC directory which is copied 
to a run-time directory accessible by the processor nodes.  Then the job is enqueued by 
calling the scheduler with the control script.  On successful completion, the run-time 
directory contains VASP output files which the user can copy back to the workstation for 
analysis.  A project containing hundreds of jobs over multiple HPCs will proliferate thousands 
of files and provide ample scope for error.  It is therefore worthwhile automating the job 
procedures provided this can be done at reasonable cost and this is the motivation for 
vasp_menu. 

vasp_menu is a menu-driven program containing job profiles for static optimization, 
structural relaxation, NEB and DOS calculations and providing easy access to editors and 
viewers of the relevant VASP data files.  HPC-specific data transfer and job submission scripts 
are generated dynamically and submitted as WINSCP batch requests.  POSCAR structure files 
are validated and appropriate pseudopotential files automatically assembled.  OUTCAR files 
are checked for normal completion and convergence and energy values extracted.  It is 
impossible to incorporate output files from a failing or unconverged job into input to a 
subsequent job.      

B.2 gen_struct.m 

A function to create Si nanostructure configuration files in VASP POSCAR format.  The 
structures are oriented with an Si(100) growth surface in the z direction and present 
Si(110) surfaces in the x and y directions.  The VMD (Humphrey et al., 1996) molecular 
viewer is called to render a 3-dimensional image of the structure.  A user-written VMD 
extension allows insertion of dopants by double-clicking on selected Si atoms, which are 
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replaced.  The output POSCAR file is placed in a nominated configuration directory 
compatible with the vasp_menu job submission system.     

The function can be called from another function or a MATLAB script and accepts keyword 
parameters as shown in the table below: 

 

keyword allowed values  note 

‘cfg’ ‘wire’|‘ridge’|‘cell’|‘pillar’|‘surface’|‘bulk’ Structure type 

‘side’ numeric  # Si layers 

‘width’ numeric # Si layers 

‘depth’ numeric # Si layers 

‘base’ numeric # Si layers 

‘base_side’ numeric # Si layers 

‘base_depth’ numeric # Si layers 

‘side_vac’ numeric Vacuum interval above 
(100) surface (Å) 

‘h’ ‘y’|’n’  H-terminate surface  

‘dimerize’ ‘y’|’n’ dimerize, buckle and H-
terminate (100) surface 

 

 

 

  

Table B.1  Keyword parameters to the MATLAB gen_struct function.    
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