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Measuring the effect of Non-Pharmaceutical Interventions
(NPIs) on mobility during the COVID-19 pandemic using
global mobility data
Berber T. Snoeijer 1, Mariska Burger 2, Shaoxiong Sun 3, Richard J. B. Dobson3,4 and Amos A. Folarin 3,4,5✉

The implementation of governmental Non-Pharmaceutical Interventions (NPIs) has been the primary means of controlling the
spread of the COVID-19 disease. One of the intended effects of these NPIs has been to reduce population mobility. Due to the huge
costs of implementing these NPIs, it is essential to have a good understanding of their efficacy. Using aggregated mobility data per
country, released by Apple and Google we investigated the proportional contribution of NPIs to the magnitude and rate of mobility
changes at a multi-national level. NPIs with the greatest impact on the magnitude of mobility change were lockdown measures;
declaring a state of emergency; closure of businesses and public services and school closures. NPIs with the greatest effect on the
rate of mobility change were implementation of lockdown measures and limitation of public gatherings. As confirmed by chi-
square and cluster analysis, separately recorded NPIs like school closure and closure of businesses and public services were closely
correlated with each other, both in timing and occurrence. This suggests that the observed significant NPI effects are mixed with
and amplified by their correlated NPI measures. We observed direct and similar effects of NPIs on both Apple and Google mobility
data. In addition, although Apple and Google data were obtained by different methods they were strongly correlated indicating
that they are reflecting overall mobility on a country level. The availability of this data provides an opportunity for governments to
build timely, uniform and cost-effective mechanisms to monitor COVID-19 or future pandemic countermeasures.
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INTRODUCTION
The pandemic caused by the coronavirus disease 2019 (COVID-19)
has had a huge impact on global health and economies, with
costs of $11 trillion, projected (as of June 2020) by the
International Monetary Fund (IMF)1. The implementation of
governmental Non-Pharmaceutical Interventions (NPIs) has been
the primary means of controlling the pandemic. NPIs have been
issued by governments worldwide in response to the COVID-19
pandemic and collected by Assessment Capacities Project
(ACAPS)2. ACAPS NPIs were standardised and included a
secondary review and categorisation into five groups: social
distancing, movement restrictions, public health measures, social
and economic measures and lockdowns. These standardised NPIs
and the corresponding methodology and data coding insights of
ACAPS are freely available along with the actual interventions
issued per country and the corresponding classifications2. The
main parameters governing communication of infectious disease
are duration of infectious period, infectiousness, susceptibility and
opportunity. Of these parameters, opportunity is the most readily
modulated without use of pharmaceuticals. It has been widely
demonstrated in epidemiological studies that mobility is impor-
tant in limiting opportunity for infection and several NPIs
therefore target mobility. A strong reduction in mobility has a
positive effect on reducing COVID-19 transmission by limiting
opportunity for the virus to spread in the population and thus
reducing the effective reproduction number “Rt”. The positive
effect of issuing NPIs on the reduction of COVID-19 has already
been reported for different regions and countries like Wuhan3,
China4–6, Hong Kong7, the UK8, Spain9 and Europe10. Due to the

huge costs of implementing these NPIs, it is essential to have a
good understanding of their benefits. It is plausible that NPIs with
the same intention and thus classification may have different
effects in different countries, as substantiated and reported by
Haug et al.11 The corresponding variation in effectiveness can be
approximated by assessing the change in mobility in each country
by using freely available aggregated phone-derived mobility data
from Apple and Google12,13. Apple mobility data reflect requests
for directions in Apple Maps for driving, walking and train transit,
while Google mobility data shows movement trends by country
across different categories of places, like retail and recreation
(RAR), grocery and pharmacy, transit and stations (TS), parks,
workplaces and residential.
Though the intended positive effects of constrained mobility on

disease reduction are clear, there are substantial negative
consequences on wellbeing14, education15 and the world
economy1. Therefore, it is important that the costs and benefits
are carefully weighed in a timely manner and at a local level. A first
step in this process is to establish appropriate mechanisms and
metrics to measure the effects of NPIs efficiently. Countries/
regions emerging from these measures may have a preference to
shift to more regional or localised NPIs. Smartphone mobility data
provides a real time, passive means to observe mobility at both
population and individual levels.
Deriving meaningful insights from real world data, like Google

and Apple mobility rates, is challenging. Weekday effects, holiday
effects and effects of unexpected events vary from period to
period and from country to country and are reflected in the data.
Standard modelling techniques like deriving inflexion points from
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local regression (LOESS) of fit data is less useful for this kind of real
world time series data. Using mobility and NPI data from several
countries, this study aims to establish a useful model from which
the proportional effects of the NPIs on the mobility state transition
can be assessed between the period before the first significant
drop in mobility and the relative stable period of low mobility after
this first drop (further referred to as pre- and post-lockdown).

RESULTS
Mobility per country
The visualisations of the mobility per country are available as
Supplementary Fig. 1 “Apple mobility profiles per country”,
Supplementary Fig. 2 “Google RAR mobility profiles per country”
and Supplementary Fig. 3 “Google TS mobility profiles per
country”. The Apple Mobility data was available for 59 countries
and the Google data for 124 countries. Of these, we had data from
both sources for 56 countries.

Descriptive analysis of average % mobility lost after
stabilizing
The average % mobility lost after stabilizing was estimated for all
countries for which data was available. Only in 3 cases (2 for Google
RAR and 1 for Google TS) this parameter could not be estimated
based on the derivation method described above. This was due to
too much variation in the mobility data and a less clear lockdown
pattern. It resulted in a slightly lower n for the overall global summary
statistics that were calculated based on this parameter for both
Google RAR and Google TS data [Table 1]. The average % mobility
lost for the Apple data follows a normal distribution with a mean of
60.6%. The smallest % mobility loss was observed for Sweden

(30.2%), which did not have either a partial or full lockdown before
the stabilizing of mobility. The largest % mobility loss was observed
for Spain (86.3%) which had a partial lockdown before the
stabilization of mobility [Fig. 1]. Likewise, both the Google RAR data
as well as the Google TS data followed a normal distribution for this
parameter with slightly lower mean values [Table 1]. The Pearson’s
correlation between the estimated % mobility lost for Google RAR
and Apple data was 0.7824 (p< 0.0001) and between Google TS and
Apple data it was 0.7607 (p < 0.0001) [Fig. 2]. This indicates that both
data sources independently show similar effects of the NPIs issued
despite the different mobility measurement methods.

Table 1. Global summary statistics for the average % mobility lost
after stabilizing.

Statistic Apple (N= 59) Google RAR
(N= 124)

Google TS
(N= 124)

n 59 122 123

Mean (SD) 60.6 (12.2) 56.9 (17.7) 57.2 (15.5)

Median 60.3 60.3 57.5

Range 30.2–86.3 19.8–89.2 20.4–86.5

95% CI (57.4; 63.7) (53.7; 60.1) (54.4; 60.0)

N – Total number of countries.
n – Number of countries included in analysis.
SD – Standard deviation.
CI – Confidence interval.

Fig. 1 Largest and smallest % mobility lost. Plot of Apple normalized mobility data in % deviation from baseline. The smallest % mobility
lost was observed for Sweden (a). The largest % mobility lost was observed for Spain (b). The first vertical (blue small) dotted line indicates the
estimated start of decline. The second vertical (blue large) dotted line indicates the adjusted stable mobility date (ASMD). The horizontal line
indicates the estimate for average % remaining mobility.
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Descriptive analysis of the speed of effect
The speed of the effect of the NPIs was summarized using
descriptive statistics [Table 2]. The derivation method did not
result in an estimate being generated for some of the available
countries. Due to noise, this parameter could not be established
for between 2 to 6 countries, as reflected by the lower n compared
to the number of countries available (N). This was mostly due to
atypical mobility patterns like less clear lockdown effects. The
average rate of reduction in mobility for the Apple data was 7.8%
per day and ranged from 27.9% to 2.9% per day. The country with
the fastest effect was South-Africa, where the effect of the NPIs
was seen almost immediately, while the country with the slowest
effect was the United Arab Emirates, where the effect of the NPIs
was more gradual [Fig. 3]. The speed of effect for Apple data was

normally distributed over all the countries. For Google RAR and
Google TS data, normality could not be established. For this
reason, we did not perform the GLM analysis on speed of effects
calculated for the data from these mobility data sources. The
Pearson correlation coefficient between the slopes calculated for
the Apple data and those of Google RAR and TS data were 0.2566
(p= 0.0637) and 0.5387 (p < 0.0001), respectively [Fig. 4]. South
Africa was, as a clear outlier, excluded from the calculation of
these correlation coefficients. Both Apple and Google calculated
slopes for this country were extremely steep compared to the
other countries. For the other countries, although a relation could
be detected for the Google TS data, this was less clear and the
variation in slopes was much less for the Google data.

Explorative analysis of NPIs
The NPIs that were issued by the governments are categorized. An
overview of the timing of these categorized NPIs in relation to the
ASMD is presented in Table 3. Social distancing measures like the
limitation of public gatherings were implemented in the majority
of the countries (78.0%), followed by school closures (64.4%) and
closure of businesses and public services (55.9%). Of these, school
closure and especially closure of businesses and public services
were issued closer to the ASMD indicating that might have a more
direct effect than the other NPIs issued. By contrast, less
burdensome NPIs in the category of public health measures were
generally issued much earlier.
Based on the Apple data, on average 8.3 NPIs were

implemented within a country before the ASMD. Of these on
average 6.9 were implemented within the last 3 weeks before the
ASMD [Table 4]. Although the same NPI dataset was used, the
results for the Google data differed slightly from the Apple data,
due to slight differences in the estimated ASMD.

Fig. 2 Correlation between Apple and Google mobility data for average % mobility lost. Plot of Apple % mobility lost vs Google RAR (a)
and Google TS (b) % mobility lost after stabilizing including regression line (gray line) and corresponding 95% prediction (dotted line) and
confidence limits (light blue area).

Table 2. Global summary statistics for the speed of effect of the NPIs:
% mobility change/day.

Statistic Apple (N= 59) Google RAR
(N= 124)

Google TS
(N= 124)

n 57 119 118

Mean (SD) −7.8 (3.6) −8.7 (12.1) −6.3 (5.2)

Median −7.1 −5.5 −5.1

Range −27.9 to −2.9 −96 to −1.13 −36.5 to −1.1

95% CI (−8.7; −6.7) (−10.9; −6.5) (−7.2; −5.4)

N – Total number of countries.
n – Number of countries included in analysis.
SD Standard deviation.
CI Confidence interval.
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Fig. 3 Comparison between fastest and slowest effect on mobility. Plot of Apple normalized mobility data in % deviation from baseline. The
fastest effect of NPIs on mobility was observed for South-Africa (a) while the slowest effect was seen in the United Arab Emirates (b). The first
vertical (blue small) dotted line indicates the estimated start of decline. The second vertical (blue large) dotted line indicates the adjusted
stable mobility date (ASMD). The horizontal line indicates the estimate for average % remaining mobility.

Fig. 4 Correlation between Apple and Google mobility data for speed of effect. Plot of Apple vs Google RAR (a) and Google TS (b) speed of
effect (%/day) including regression line (gray line) and corresponding 95% prediction (dotted line) and confidence limits (light blue area).
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The overall results of the cluster analysis for assessing the
associations between different NPIs are presented by the tree
diagram in Fig. 5. To further investigate these correlations, Chi-
square tests between pairs of NPIs were performed [Fig. 6]. As this
was an explorative analysis, the resulting p-values were not
adjusted for multiple testing. p-values close to 0.05 should
therefore be considered with this caveat. From both analyses,
close and significant relations between border closure vs
international flight suspension (Chi-square p < 0.001) and school
closure vs closure of businesses and public services (Chi-square

p < 0.001) were observed. In addition, the limitation of public
gatherings had a strong relation with closure of businesses and
public services (Chi-square p= 0.020) as can be seen from both
analyses as well. Based on the Chi-square analysis, more NPIs seem
to be related to the the businesses/school closure cluster, like
economic measures, strengthening the public health system and
lockdown measures. These relationships and their strength given
the other relationships, are depicted in the tree diagram as well.

Effect of NPIs on mobility
The number of interventions issued before lockdown had an
overall significant effect on the % mobility lost after stabilizing
[Table 5] indicating that the more interventions were issued, the
more the mobility is decreased.
The effect of NPIs on the Apple mobility data is presented in

Table 6. The GLM best fit model showed significant increases in %
mobility lost were attributable to lockdown measures (13.2%) and
the declaration of a state of emergency (7.3%), with an additional
50.4% loss in mobility not attributable to any single NPI.
Awareness campaigns and school closures were included in the
model as well, with smaller, non-significant contributions. For the
speed of the effect, a basic reduction in mobility of 4.9% per day
was found which was not attributable to a single NPI in the model.
This speed of effect was significantly increased by 1.8% per day
after issuing the lockdown measures and by 1.2% per day after
limiting public gatherings. School closures and the declaration of a
state of emergency were included in the model as well with
smaller non-significant contributions to the speed of effect.
The estimates and p-values from the selected best fit model

for the Google RAR and Google TS data are presented in Table 7.
As was seen with the Apple data, the presence of either a partial
or full lockdown in the countries contributed to the largest
increase in the average % mobility lost for Google RAR (16.6%) as
well as for Google TS data (16.4%). The declaration of a state of
emergency within the countries had a significant increase of
4.9% in the average % mobility lost for the Google TS data, where
the closure of businesses and public services had a significant

Table 4. Global summary statistics for the number of distinct NPIs
implemented before ASMD per country.

Statistic Total NPIs

before stabilizing

NPIs within
3 weeks before
stabilizing

Apple

(N= 59) Mean 8.3 6.9

Median 8.0 7.0

Mode 7 7

Range 2–16 1–12

Google RAR

(N= 124) Mean 8.5 7.3

Median 8.5 7.0

Mode 9 9

Range 0–17 0–15

Google TS

(N= 124) Mean 8.7 7.6

Median 8.5 8.0

Mode 8 9

Range 0–17 0–14

Fig. 5 Tree diagram of correlations between individual NPIs. Tree diagram based on Cluster analysis between individual NPIs. Linked NPIs
are more related (issued in same countries). The shorter the branch, the stronger the relationship.
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increase of 5.8% in the average % mobility lost for the Google
RAR data.

DISCUSSION
In this study, we utilized Google and Apple mobility data12,13 to
assess (1) the magnitude of the change in mobility and (2) the rate
of transition between the pre- and post-lockdown states during
the COVID-19 pandemic. We hypothesise that the magnitude of
mobility loss describes the capacity for a given country’s
population to self-isolate and the rate of the mobility loss reflects
the degree of urgency at which NPIs are enacted. Although the
Apple data and Google (RAR and TS) data are derived from

Fig. 6 Heatmap of pairwise Chi-square associations between NPIs. Heatmap based on the p-values obtained from individual Chi-square
tests indicating whether NPIs occurred in the same countries or not.

Table 5. Effect of the number of NPIs on the % mobility lost after
stabilizing.

Data source Effect parameter Estimate P-value

Apple Intercept 47.36 <0.0001

Number of NPIs 1.90 0.0008

Google RAR Intercept 45.65 <0.0001

Number of NPIs 1.53 0.0057

Google TS Intercept 44.66 <0.0001

Number of NPIs 1.67 0.0005

Table 6. Estimates and p-values from the selected best fit model from
the GLM analysis for the Apple data.

Endpoint Parameter Estimate P-value

Average % mobility
lost (extent of the
effect)

Intercept 50.4 <0.001

Overall model
p-value= <0.001

Awareness campaigns 5.598 0.090

Lockdown (partial/full) 13.249 <0.001

School closures 4.766 0.084

Strengthening the public
health system

−3.917 0.167

State of emergency
declared

7.261 0.008

Slope (speed of the effect in %/day)

Overall model
p-value= <0.001

Intercept −4.876 <0.001

Limit public gatherings −1.222 0.075

Lockdown (partial/full) −1.787 0.006

School closures −1.028 0.080

State of emergency
declared

−0.93 0.101

Table 7. Estimates and p-values from the selected GLM best fit model
for the Google data.

Endpoint Parameter Estimate P-value

Google RAR

Average % mobility
lost (extent of the
effect)

Intercept 45.699 <0.001

Overall model
p-value= <0.001

Lockdown (partial/full) 16.622 <0.001

Closure of businesses and
public services

5.791 0.040

State of emergency
declared

5.040 0.071

Google TS

Average % mobility lost (extend of the effect)

Overall model
p-value= <0.001

Intercept 50.344 <0.001

General recommendations −4.000 0.1156

Lockdown (partial/full) 16.371 <0.001

State of emergency
declared

4.868 0.046
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different mobility sources, the magnitude of change, represented
by the mean average % mobility lost after stabilizing for these
different data sources, were comparable. An average decrease in
mobility of 60.6% was observed for the Apple mobility data while
those of the Google RAR data and the Google TS data were 56.9%
and 57.2% respectively. The high and significant correlation
between the independently estimated parameters of Apple and
Google (RAR: r= 0.7824, p < 0.0001; TS: 0.7607, p < 0.0001) indicate
that, in general, both show similar effects on mobility. While Apple
data (generated when requesting directions in Apple maps)
includes requests from Apple computers, most of the requests are
likely issued from mobile phones as the penetration of these
devices is higher and phones are typically the devices used for
navigation. The global penetration of mobile subscriptions is high
with 104 subscriptions /100 inhabitants in 201816. However, for a
number of countries, especially in African countries, like Eritrea
with 20/100 in 2019, it is considerably lower. The Apple dataset
only included countries that had a high penetration of mobile
subscriptions with the lowest for India (84 subscriptions/100
inhabitants) and highest for Hong Kong (209/100)16. Although
Apple market share worldwide is only 13.5% in Q2 of 202017 this
varies greatly between countries. Apple states that the inclusion of
countries in the dataset is based on the number of requests issued
within the country12. With the knowledge that Apple and Google
datasets are derived from a large proportion of the national
populations, and using different modes of measuring mobility, the
high correlation between the Apple and Google data indicates
they are indeed representative of phone user mobility trends in
general. While there may be some intrinsic biases, these are likely
small and at the very least the trends can be said to apply to the
substantial fraction of the population who contributed
mobility data.
While the Apple data was based on direction requests, Google

data is based on actual visits to specific places. As the Google data
did not depend on the type of smartphone used (iOS or Android),
the coverage of this data is more than twice that of the Apple data
(124 vs 59 countries). Google uses data from people with a google
account who have their location history switched on to assess
crowding of specific places. Due to the large number of
contributing users we consider this data to be as good an
approximation of general mobility in a country as is presently
possible. Data for Retail and Recreation (RAR) and Transits and
Stations (TS) showed clear lockdown effects like the Apple data
did. However, as RAR and TS are more specific for a location than
the Apple data, it might depend more on the country’s
infrastructure, traditions and habits whether effects are visible.
To improve consistency and reduce variability, combining the
Google data for different modalities could provide an even more
consistent pattern than was established in this study.
The number of unique NPIs implemented within the 3 weeks

before stable low mobility had a significant effect on the average
% mobility lost after stabilizing. This was also observed by Islam
et al.18, who saw an additive effect on incidence rates of COVID-19
of five of the main NPIs issued. Our finding of close correlation
between NPIs may, in part, explain why, in their study, the
sequence of NPIs did not show a consistent association pattern
with COVID-19 incidence. We found that effects of individual NPIs
on the decrease in mobility were hard to distinguish as they were
often issued within a few days from each other. Two of the most
closely associated NPIs were school closures and closure of
businesses and public services. The latter effect was selected in
the Google RAR model while the first was selected in the more
general Apple direction model. This as well indicates that although
comparable, the Google data is slightly more specific to certain
activities and national habits.
The Apple data showed a 50.4% mobility loss that was not

attributable to a single NPI in the best fit model. The Google TS
model was similar in this regard (50.3%), while the Google RAR

model was more specific with 45.7% unattributable loss in
mobility. This relatively large unattributable part is likely to be
caused by the high association of individual NPIs with each other.
Despite that, all models showed an additional significant
reduction in mobility attributable to lockdown measures (Apple:
−13.2%, Google RAR: −16.6% and Google TS: −16.4%). Further
NPIs that contributed to the loss in mobility were “state of
emergency declared” (Apple: −7.2% [p= 0.008], Google RAR:
−5.0% [p= 0.071] and Google TS: −4.7% [p= 0.046]) and “school
closure” (Apple: −4.8% [p= 0.084]) or “closure of businesses and
public services” (Google RAR: −5.8% [p= 0.040]). Although not
significant, awareness campaigns seem to have an additional
effect on mobility reduction (Apple: −6.0% [p= 0.090]). In the
toolkit of NPIs, school closures and lockdowns (state of
emergency) while potent, are also highly costly to the economy,
while awareness campaigns are potentially effective but less
costly. These findings also noted by Haug et al.11 and could
provide a lower cost NPI option, which could in the future be
optimised based on the mobility data and put to greater use.
For the speed of the effect observed between the start of

decline and the ASMD, analysis of the Apple data showed a
reduction in mobility of 4.9% per day which was not attributable
to a specific NPI. Although the implementation of a lockdown is
expected to differ greatly between countries (partial to full
lockdown), an average effect on increase in speed of mobility
reduction of 1.8% per day was still observed. Contrary to the
magnitude of the mobility loss model, limiting of public
gatherings was selected as having an effect in the speed of effect
model (decrease 1.2%/day, p= 0.075), suggesting that these
limitations had a speeding up effect on the NPIs issued in a
country.
Most studies to date assessed the impact of NPIs on COVID-19

case numbers, deaths and the basic reproduction number (Rt)
7,10.

The generalized NPIs, as obtained from the ACAPS database, are
catalogued with best effort and may not be consistent in how
strictly they are implemented and adhered to in different
countries. They are often issued jointly and different NPIs are, as
we saw in this study, moderately correlated. This was also
substantiated by Hale et al.19 who proposed an aggregate
stringency index based on all the NPIs issued in a country. As
this index is a combination of different NPIs and their
characteristics, it is according to Hale et al. a better predictor of
death rates than the individual NPIs. The variability of NPI
implementation and adherence are not provided in the NPI
database. This was illustrated by Drake et al.8 who examined the
effect of NPIs on mobility in the UK using the same Google data.
They observed a decrease in adherence to movement restrictions
over time though this overlooks the between-country-effects of
NPIs. The % remaining mobility in a country, combined with the
duration of low mobility, is therefore likely to be a better estimate
to correlate with the case and death rates than the specific NPIs
issued. This together with other factors influencing the spread of
COVID-19, like infectiousness of the virus and distancing measures,
we argue should yield an improved model for prediction of cases
and deaths in a specific country or sub national regions.
Cases, deaths and Rt are difficult to measure, especially in a

timely manner; additionally they encounter difficulties accounting
for asymptomatic cases without early and large-scale population
testing. Mobility data, on the other hand, could be a useful metric
as it is widely available, implemented continuously, passively and
increasingly uniformly in most countries (with the caveat of
mobile network penetration and device ownership excepted).
When assessing the direct effect of NPIs on COVID-19 cases, there
will be a lag of at least 14 days due to incubation timing and a
delay of disease transfers. Rather than the delayed COVID-19
direct measures like cases and deaths, the effects of loosening the
NPIs and the behavioural rebound of the population can be more
immediately examined using the mobility rates. Based on this,
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more direct and accurate changes in issuing or withdrawal of NPIs
can be made resulting in better health care planning and
governmental policies.
A key issue noted in the early pandemic was the uncertainty

and requirement to “build up” monitoring programmes. While the
Google and Apple data we used has utility in the present, there is
ample opportunity for future expansion of this approach by using
Google and Apple location data to derive more specific measures
around e.g. local population mixing (time-dependent geo co-
localisation at street or postcode level). We argue that this could
be done in a similar, privacy preserving manner, using the
differential privacy approach used in TS and RAR and generating
anonymised aggregate metrics. Even more accurate behavioural
changes in activity after the implementation of NPIs can be
observed in greater detail by analysing data collected directly
through smartphones and wearables20. However, as this actively
requires the permission and cooperation of the user population, as
well as the analysis of huge amounts of data, this is more feasible
for sub-populations in selected countries.
Pre-pandemic data for both Apple and Google data, as is typical

of mobility data, showed strong weekday periodicity which varied
considerably and also characteristically from country to country.
The weekday periodics for Apple data were generally more
pronounced before stabilization and disappeared thereafter as
typical working routines broke down during lockdown. On the
contrary, as the Google data had corrected for weekday effects
obtained from baseline, when the real weekday effect diminished
during lockdown, clear overcorrecting was visible for the Google
data, showing reverse weekday effects in the mobility graphs. For
this study, we strived to correct the (reverse) weekday effects after
lockdown based on the average post-lockdown weekday devia-
tions to get a more accurate % mobility left after stabilization. In

addition, any remaining weekday effects were removed by using
the average of the 2 weeks after the stable mobility date. Visual
inspection of the results showed an accurate overlay of the
resulting % mobility left the actual data. For the speed of effect we
accounted for smaller deviations in mobility to overcome the
weekday effect. However, in case of rapid decreases, i.e. within a
few days, the weekday effect could have resulted in a bias in the
estimates of this parameter.
In a number of countries, the % mobility was less stable, with

increased activity starting again after a few days of stabilization.
Although the resulting estimated % remaining mobility is, in these
cases, higher than the lowest mobility reported, it still gives a
reliable representation of the mobility in the first two weeks of
lockdown. By comparison using the moving weekday average,
with our method, a more accurate adjusted stable mobility date
(ASMD) and start of decline date could be calculated. Due to
inconsistencies in the weekday effects from week to week, there is
still a quantity of variation remaining in the data after correcting
for this based on our method. Therefore, it was not possible to
assess the start of decline and start of stability using standardized
methods like deriving inflexion points from a LOESS fit of the data.
In addition to the weekday effects in some cases, significant

events, other than NPIs, had an effect on mobility, like the flooding
in Egypt of 11 March 202021, Independence Day of 24 February
2020 in Estonia and the elections of 29 February 2020 in Slovakia
[Fig. 7]. Upon visual inspection of the corresponding country plots
and the resulting parameters, these events did not seem to have a
significant effect on the % remaining mobility or the rate of the
decline of mobility although in some cases it had an effect on the
start of the decline date which was not used in the analyses.
Based on visual inspection, the rate of decline, as calculated

between the start of decline and the ASMD, was approximately

Fig. 7 Examples of effects of significant events on mobility. Plot of Apple normalized mobility data in % deviation from baseline indicating
the Egypt flood just before lockdown (a) and the elections in Estonia (b). The first vertical (blue small) dotted line indicates the estimated start
of decline. The second vertical (blue large) dotted line indicates the adjusted stable mobility date (ASMD). The horizontal line indicates the
estimate for average % remaining mobility. Red circles mark atypical events, flooding in (a) and elections in (b).
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linear and overlaid per country mobility data. Only for South Africa
did the decline seem to occur in two phases, starting with a slow
degradation and eventually a very fast decline within a few days
which is illustrated by the outlying value for the speed of effect for
South Africa. This two-phase decline can be explained by the
initial lower effective NPIs issued and subsequent full-lockdown
after which mobility was rapidly reduced to a very low level. This
illustrates that the model of speed of decline is more viable in the
initial clear mobility transition and is less usable for the later
periods in the COVID-19 epidemic where NPIs are more gradually
issued and withdrawn. By including additional inferences for
changes in the speed of effect and using a variable rate, this issue
can be accounted for in future analyses.

METHODS
Data sources and availability
Google and Apple mobility datasets were downloaded from the sites of
their respective providers12,13. The Apple mobility data shows a relative
volume of direction requests for driving, walking and train transits per
country compared to a baseline volume on 13 January 2020. Apple data
was extracted on 14 June 2020 and was used in the analysis for the time
period from 13 January 2020 to 14 June 2020 which includes the first
period of clear mobility drop in all countries. All datasets used for the
analyses are prepared with the intent of making them available for the
public. The data available to the public are not individually identifiable and
therefore analysis would not involve human subjects. Analysis of de-
identified, publicly available data does not constitute human subjects
research as defined at 45 CFR 46 and that it does not require IRB review22.
The specific downloaded data sources as well as the derived aggregated
data and parameters are available via https://github.com/MariskaBurger/
Covid-19-analysis-results/tree/master.
The Google mobility data shows movement trends by country across

different categories of places based on the mobility history tracker which is

voluntarily turned on by the users13. This data shows the change in quantity
of visitors to these categorized places compared to baseline. Baseline for the
Google data was defined as the median value from the corresponding
weekday in the 5-week period from 3 January 2020 to 6 February 2020.
Google data was extracted on 7 June 2020 and was used for the time period
of 15 February 2020 to 7 June 2020. As only the RAR and TS categories
showed clear lockdown effects, they were used in the analyses.
The NPIs recorded on a global level were extracted from ACAPS2. Every

action taken by governments in response to COVID-19 is captured in this
database. NPIs could be re-issued or prolonged, which is recorded in the
ACAPs dataset as well. NPI data extracted on 14 June 2020 was used in
the analysis and included interventions starting from 01 January 2020 until
the extraction date.

Analysis methods and derivations
All analyses were performed using SAS® Studio 3.7 Enterprise Edition. We
calculated average mobility per country per day in the Apple data using the
driving, walking and train transit data. In order to make the data comparable
with the Google mobility data, the percentage change values were added or
subtracted from 100%, which is similar to the pre-lockdown mobility.
Weekday effects pre- and post-lockdown were not consistent as can be

seen from the Google RAR and Apple mobility data of Colombia [Fig. 8].
While Apple did not correct for weekday effects by taking a baseline of one
reference day, Google did take a baseline per weekday resulting in
overcompensated post-lockdown data. To get a reliable estimate of
percentage remaining mobility, time series data during lockdown were
smoothed to account for the weekday effect by adding the average
weekday deviation to the % mobility. This was only performed for the post-
lockdown period by starting from the first Sunday where the mobility
decreased below 70%. The weekday deviation was calculated as the
difference between the actual mobility on the specific weekday and the
average mobility for that corresponding week.
To assess the effect of NPIs on the magnitude and rate of the reduction

of mobility, the following two primary parameters were derived after the
smoothing of the weekday effects:

Fig. 8 Comparing weekday effects in Google and Apple mobility data. Plot of Apple (a) and Google RAR (b) normalized mobility data in %
deviation from baseline for Colombia. The first vertical (blue small) dotted line indicates the estimated start of decline. The second vertical
(blue large) dotted line indicates the adjusted stable mobility date (ASMD). The horizontal line indicates the estimate for average % remaining
mobility.
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1. The average % mobility lost after stabilizing to assess the
magnitude of the effect of the NPIs.
2. The rate of transition (gradient) between the start of the decline and

the stabilizing point to assess the speed of the effect of the NPIs.
The initial cut-off value for the start of stable mobility was defined as the

midpoint between 100% and the average percentage mobility of the 5
lowest reported mobility rates. The initial stable mobility date was then
calculated as the first date where the mobility dropped below this initial
cut-off value and did not increase more than 10% (absolute day-to-day
change) for at least 7 consecutive days. To establish mobility after the
transition, the average % remaining mobility after stabilizing was
calculated as the average of the mobility for the 2 weeks following the
stable mobility date and then subtracted from 100% to produce the
average % mobility lost after stabilizing. To get a more precise estimate
of the start of stable mobility, an adjusted stable mobility date (ASMD)
was determined for each country as the first date where the mobility
dropped below the average % remaining mobility after stabilizing. Visual
inspection of the resulting parameters showed an accurate estimation for
nearly all countries included in both Apple and Google data (see
supplementary Figures 1 “Apple mean mobility per country”, Supplemen-
tary Fig. 2 “Google RAR mean mobility per country” and Supplementary
Fig. 3 “Google TS mean mobility per country” https://github.com/
MariskaBurger/Covid-19-analysis-results/tree/master).
In order to calculate the speed of the effect of the NPIs, the start of the

decline of the mobility was calculated as the last occurrence before the
adjusted stable mobility date (1) with changes in mobility rate of less than
+7% (so slight increases were also considered); (2) without 3 or more
consecutive changes between −2% and 7%; and (3) with a total decline from
the beginning of the decline to the last declining observation of more than
60% of the average % mobility lost after stabilizing. This was done to exclude
periods where the % mobility stayed relatively constant for a period of time
before declining. These cut-off values accounted for potential weekday effects
and were determined by iteration through different values and visual
observation of the resulting estimates. After finding the start of the decline
date for each country, the gradient of the line connecting the start of the
decline and the ASMD date was calculated as the speed of effect.
The correlation between the different Google and Apple mobility data

sources (Apple, Google RAR and Google TS) was examined by creating
correlation graphs and calculation of Pearson correlation coefficients for
the derived parameters average % lost after stabilizing and speed of effect
for those countries where both sources were available.
For each country, the total number of unique NPIs implemented before the

ASMD and the number of unique NPIs implemented within 3 weeks before
ASMD were calculated. These numbers were slightly different between the
two mobility data sources due to slight differences in the ASMD estimated for
the different data sources. In case of re-issuing of an NPI, only the first
implementation date for each NPI was used as reissued NPIs were generally
extensions of the NPIs already issued and the first date of the NPI represented
the earliest time point the mobility could be affected. For the statistical
analyses, each country and NPI was dichotomized to whether NPI was
implemented within 3 weeks before the ASMD or not.
In order to determine the correlation in occurrence of different NPIs, we

performed cluster analysis based on the centroid method. This method
measures the (squared) euclidean distance between the centroids or
means of the clusters and results in unique clusters of different NPIs. For
this analysis, Jaccard coefficients between each pair of NPIs were
calculated as the number of countries that are coded as 1 for both NPIs
(in each pair) divided by the number of countries that are coded as 1 for
either or both NPIs (in each pair). To verify the results of the cluster
analysis, the association between the different NPIs was further analysed
using a Chi-square test for all possible combinations of NPIs. In accordance
with the analyses of NPIs on the parameters derived from Apple and
Google data, both Cluster and Chi-square analyses were performed on the
NPIs which were issued within the last 3 weeks before ASMD and occurred
in more than 20% of the countries. Results for these analyses based on the
ASMD of the Google data sources were slightly different from the Apple
data due to small shifts in the ASMDs. They however are equivalent and
corresponding Google results are therefore not presented in this article.
The effect of the NPIs on average % mobility lost after stabilizing and speed

of the effect were analysed using generalized linear models (GLM). We used
the lowest Akaike’s Information Criterion (AIC) value to determine the best fit
model. All assumptions related to generalized linear models were verified to
hold true (residual errors are independent, normally distributed and have
constant variance). NPIs that occurred more than 3 weeks before the
adjusted stable mobility date were less likely to have an effect on lockdown

and seemed to have an obscuring effect on the analysis results. By classifying
the time before stabilization (as presented in Table 3) in the analysis and
testing the resulting models, the 3-week cut-off appeared to give the best
univocal results. Therefore we have disregarded NPIs issued before from
further analysis. In addition, for the same reason of convergence of models
and reliability of model effects, we have excluded NPIs that occurred in less
than 20% of the countries.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
For the analyses described in this article we have used freely available data sources
from Apple, Google and ACAPs. The corresponding used data can be downloaded via
their respective websites2,12,13. The downloads used for the described analyses and
datasets with derived parameters are available via https://github.com/MariskaBurger/
Covid-19-analysis-results/tree/master.

CODE AVAILABILITY
Code for data cleaning and analysis is provided as part of the replication package. It is
available at https://github.com/MariskaBurger/Covid-19-analysis-results/tree/master
for review.
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