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Purpose: Real-time low latency MRI is performed to guide various cardiac interven-
tions. Real-time acquisitions often require iterative image reconstruction strategies, 
which lead to long reconstruction times. In this study, we aim to reconstruct highly 
undersampled radial real-time data with low latency using deep learning.
Methods: A 2D U-Net with convolutional long short-term memory layers is pro-
posed to exploit spatial and preceding temporal information to reconstruct highly 
accelerated tiny golden radial data with low latency. The network was trained using 
a dataset of breath-hold CINE data (including 770 time series from 7 different ori-
entations). Synthetic paired data were created by retrospectively undersampling the 
magnitude images, and the network was trained to recover the target images. In the 
spirit of interventional imaging, the network was trained and tested for varying accel-
eration rates and orientations. Data were prospectively acquired and reconstructed in 
real time in 1 healthy subject interactively and in 3 patients who underwent catheteri-
zation. Images were visually compared to sliding window and compressed sensing 
reconstructions and a conventional Cartesian real-time sequence.
Results: The proposed network generalized well to different acceleration rates and 
unseen orientations for all considered metrics in simulated data (less than 4% reduc-
tion in structural similarity index compared to similar acceleration and orientation-
specific networks).
The proposed reconstruction was demonstrated interactively, successfully depicting 
catheters in vivo with low latency (39 ms, including 19 ms for deep artifact suppres-
sion) and an image quality comparing favorably to other reconstructions.
Conclusion: Deep artifact suppression was successfully demonstrated in the time-
critical application of non-Cartesian real-time interventional cardiac MR.
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1  |   INTRODUCTION

MR-guided cardiac catheterization is a growing field that 
has promising applications for right heart catheterization, 
ablation therapy, endomyocardial biopsies, and stent posi-
tioning.1 MR catheter guidance relies on real-time interactive 
imaging2 that is now standard on most commercial systems. 
However, commercially available sequences are often limited 
to moderately accelerated Cartesian acquisitions with rela-
tively low spatial and temporal resolutions.

Developments in iterative reconstruction and non-
Cartesian sampling have shown the possibility to further 
accelerate imaging. Iterative reconstruction techniques (in-
cluding compressed sensing (CS)3), combined with non-
Cartesian undersampling, have been used for retrospective 
reconstruction of high spatiotemporal resolution real-time 
MR acquisitions.4 However, these methods are challenging 
in time-critical applications such as interventional MRI. 
Nevertheless, low latency non-Cartesian frameworks have 
been proposed for both noniterative (radial GRAPPA5) and 
iterative reconstructions.6-9 Indeed, iterative methods have 
been successfully applied to catheter guidance.8 The main 
problem with these approaches is the need for high-end com-
puter hardware, often relying on multi-GPU systems to re-
construct images with low latency.

Recently, it has been shown that deep learning (DL) 
methods are able to reconstruct highly undersampled MR im-
ages10 in many different applications, including cardiac 2D 
CINE11-13 and real-time cardiac MRI.14 Several DL methods 
have been proposed, including end-to-end networks,15 un-
rolled networks with data consistency,11,16,17 and deep artifact 
suppression networks.14,18 Importantly, reconstruction times 
using DL were significantly shorter than conventional itera-
tive techniques, which is relevant when using less powerful 
computer hardware. This is especially true for the single-pass 
deep artifact suppression techniques, opening up the possibil-
ity of DL reconstruction to catheter guidance.

In this study, we propose a framework that combines 
an accelerated interactive radial balanced steady-state free 
precession (bSSFP) sequence with low-latency machine-
learning deep artefact suppression. Our method utilizes 
a U-Net19 with 2D convolutional long short-term mem-
ory (ConvLSTM)20 blocks that exploit spatiotemporal 
redundancies. Importantly, our framework was set up to 
reconstruct images on the scanner, enabling use during 
MR-guided cardiac catheterization. The main aims of this 
study were: 1) to demonstrate the feasibility of using our 
DL framework to reconstruct high-quality real-time images 
with low latency (< 200 ms),1 2) to assess whether the pro-
posed DL method generalizes to different acceleration rates 
and unseen imaging planes, and 3) to assess whether the 
method provides adequate image quality for visual tracking 
of a device during cardiac catheterization.

2  |   METHODS

This study was approved by the local research ethics com-
mittee (ref. 19/LO/1561: site 1; 06/Q0508/124: site 2), and 
written consent was obtained in prospective and retrospective 
cohorts.

In summary, the proposed framework relies on a modified 
interactive tiny golden angle21,22 radial bSSFP acquisition, an 
open-source cross-platform framework (Gadgetron, v4.1.1)23 
for scanner integration, and a local server24 with a network 
ready for deep artefact suppression. The proposed framework 
is illustrated in Figure 1.

2.1  |  Training and test data

The training data for our DL model consisted of pairs of 
ground truth and synthetically undersampled (created from 
the ground truth data) magnitude cines (2D+time). The 
ground truth data were breath-hold, retrospectively cardiac-
gated, Cartesian, bSSFP CINE data collected from 2 adult 
patient populations (site 1: adult heart disease patients, age: 
56 ± 15 years old, heart rate: 76 ± 24 beat per min, 25 frames 
per cine, 385 CINEs; site 2: congenital heart disease patients, 
34 ± 12 years old, heart rate: 69 ± 11 beats per min, 40 frames 
per cine, 385 CINEs) acquired at 2 clinical sites with differ-
ent scanner models, Aera 1.5 Tesla (Siemens Healthineers) 
(site 1) and Avanto 1.5 Tesla (Siemens Healthineers) (site 
2), from the same manufacturer (Siemens Healthineers, 
Erlangen, Germany). For both sites, the nominal sequence 
parameters were flip angle 58°, TR/TE 3.2/1.6 ms, matrix 
size 272 × 272, pixel size: 1.45 × 1.45 mm2, slice thickness: 
10 mm, receiver bandwidth 793 Hz/pixel, and GRAPPA25 
with acceleration factor of 2.

In total, 110 cines were collected in each of 7 orientations—
short axis (SA or SAX), 4 chamber (FCH), left ventricular 
long axis (LVLA), right ventricular long axis (RVLA), left 
ventricular outflow tract (LVOT), right ventricular outflow 
tract (RVOT), and pulmonary artery (PA). This resulted in 
a total of 770 cines (magnitude only) that were spatially 
downsampled (bicubic interpolation) to the target pixel size 
used for prospective real time imaging (1.67 × 1.67 mm2) to 
create the appropriate target “ground truth” images.

To create the pairs of corrupted and ground truth im-
ages, the “ground truth” cine data were first Fourier-
transformed and gridded onto an undersampled tiny golden 
angle (~23.63°) radial trajectory. The undersampled data 
were then regridded and inverse Fourier-transformed 
back into image space. Both the ground truth and artifact-
contaminated images were normalized to have signal inten-
sities in the range [0, 1], and the center region was cropped 
to a 128 × 128 matrix to constrain the learning problem to 
the anatomy of interest (heart).
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2.2  |  Architecture and training

The proposed deep artifact suppression network consists of a 
modified residual U-Net, trained to recover the ground truth 
images from the corrupted input images. In this study, we 
replaced the 2D convolutional layers of the original U-Net 
with 2D unidirectional ConvLSTM20 layers that reconstruct 
the current frame while retaining information about previous 

frames. 2D ConvLSTM are performed at each scale of the 
proposed U-Net for both encoding and decoding blocks. A 
schematic of the proposed network is shown in Figure 2.

Parameters of the network included an input size 
of 128 × 128, 3 scales, and 32 filters learned per con-
volution (with 8 convolutions per ConvLSTM layer) at 
the first scale with a filter size of 3 × 3. A 2 × 2 max-
pool layer is performed within each encoding block and 

F I G U R E  1   Proposed framework for real-time deep artifact suppression. An interactive bSSFP acquisition continuously collects radial spokes 
incremented by the tiny golden angle. The data are sequentially coil-compressed, transmitted to the external computer, preprocessed, gridded, 
and artifact-suppressed using the proposed network on a local (warmed-up) server before being sent back to the scanner for visualization. bSSFP, 
balanced steady-state free precession; gRPC,remote procedure call

F I G U R E  2   The proposed 2D residual U-Net with multi-scale operations, skip connections, and ConvLSTM layers to de-alias the current 
image exploiting spatial and previous temporal information. Each ConvLSTM block has its own state (Ht−1) and memory (Ct−1). Following 
the input of the current 2D frame (Xt), the states and memories are updated. The updated state (Ht) is kept in memory but also forwarded to the 
following layer through skip connections, 2 × 2 max-pooling, or 2 × 2 upsampling. ConvLSTM, convolutional long short-term memory
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a 2 × 2 upsampling within each decoding block. The 
ConvLSTMs’ states (Ht) and memory cells (Ct) are up-
dated as originally proposed.20

The network was implemented and trained using Python 
(v3.7.7) and TensorFlow (v2.2.0).24 Training was per-
formed using 100 epochs, an initial learning rate of 0.001, 
batch size of 4, and an adaptive moment estimation algo-
rithm (Adam).26 The data are split into time series of 8 
frames at training (for memory considerations); however, 
the states and memory cells are reset only at the end of the 
complete time series. Training was performed on a Linux 
workstation (Ubuntu 18.08, Intel Core i9-7900X, 3.3 GHz) 
using an NVIDIA Quadro GP100 (16 GB memory). All 
networks trained in this experiment had ~1.79 million 
trainable parameters and took 8 h and 40 min to train when 
training on the full dataset.

2.3  |  Model generalizability

We tested 3 aspects of model generalizability: variable ac-
celeration, catheter visualization, and unseen orientations. 
Networks were compared using mean absolute error (MAE), 
structural similarity index (SSIM), mean squared error, and 
peak SNR ratio computed on frame 5 (when image quality 
stabilizes) to frame 25 of the test data set.

2.3.1  |  Variable accelerations

In this experiment, we assess whether a “generic” network 
trained on varying acceleration rates can provide satisfying 
image quality. Of the 110 cines per orientation in the dataset, 
98 were used for training, 2 for validation, and 10 for testing, 
leading to 686 cines for training, 14 for validation, and 70 
for testing. Input aliased images were simulated using [13, 
17, 21, 25, 29, 33] spokes per frame, leading to acceleration 
factors of R = [23.2, 17.7, 14.4, 12.1, 10.4, 9.1] given 192 
samples per readout.27,28 A “specific” network was trained 
for each individual acceleration rate. A generic network was 
then trained with the same ground truth images but corrupted 
with acceleration rates randomly picked between those previ-
ously simulated, leading to approximately 114 training and 2 
validation cines for each of the 6 acceleration factors consid-
ered (R = [23.2, 17.7, 14.4, 12.1, 10.4, 9.1]). The test set was 
reconstructed and assessed for each acceleration rate using 
both the “specific” and “generic” networks. The design of 
this experiment is summarized in Figure 3A.

2.3.2  |  Catheter visualization

From the test set, 1 imaging series was modified to simu-
late a catheter balloon or guidewire, moving in and out of 

F I G U R E  3   (A) Acceleration 
experiment. The dataset is split into 686 
images for training, 14 for validation, and 
70 for testing, with equal numbers for each 
orientation. Six “specific” networks are 
trained with 6 different undersampling rates. 
A seventh network (“generic”) is trained 
using varying acceleration rates randomly 
selected within the previously studied set. 
(B) Orientation experiment. Seven networks 
are trained, excluding 1 of the orientations 
in each. The resulting networks are tested 
on the left-out orientation test data and 
compared to an eighth network, which is 
trained using all orientations to assess the 
generalizability of the network to unseen 
orientations
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the imaging plane. The balloon was simulated using a single 
moving and vanishing 2D Gaussian with a maximal signal 
decrease of 80% in the blood pool. The guide wire was simi-
larly simulated using 5 moving and vanishing 2D Gaussians. 
Simulations were performed with different acceleration rates 
to investigate the performance of the network when recon-
structing moving structures not seen in the training dataset.

2.3.3  |  Leave-one-out orientation experiment

In this experiment, we assess whether the proposed network 
is robust to “unseen” orientations (necessary for catheter 
guidance). To do this, we trained 7 networks using a leave-
one-out (LOO) strategy for 1 of the orientations (ie, the net-
work was trained using 6 of the 7 orientations: 588 images 
for training and 12 for validation) and tested on the left-out 
orientation (ie, 10 images for testing). An eighth network was 
trained including all orientations (only 84 images per orien-
tation for a total of 588 training images) for reference and 
compared to the LOO networks for each orientation. These 
networks were all trained with random undersampling simi-
larly to the “generic” network. The design of this experiment 
is summarized in Figure 3B.

2.4  |  In vivo study

Prospective data were acquired at site 1 (Aera 1.5 Tesla, 
Siemens Healthineers) with an in-house modified interactive 
radial bSSFP sequence with a tiny golden angle increment (as 
simulated in training). Acquisition parameters included flip 
angle = 58°, pixel size = 1.67 × 1.67 mm2, slice thickness 
= 10 mm, TR/TE = 3.2/1.55 ms, bandwidth = 793 Hz/pixel, 
FOV = 320 × 320 mm2, 17 spokes/frame (ie, ~54 ms/frame). 
Real-time reconstructions were performed on a mid-range 
GPU (GeForce GTX 1650 Ti, 4 GB memory, NVIDIA, Santa 
Clara, CA ) and laptop (Linux Ubuntu 18.08, Intel Core i7, 
2.60 GHz, 8 GB RAM). On-site reconstructions were per-
formed using the Gadgetron framework and TensorFlow 
Serving API. During acquisition, the data are sequentially 
coil-compressed (8 virtual coils), transferred to the external 
computer, preprocessed, gridded, coil-combined (sum of 
squares), deep artifact-suppressed, transferred back to the 
vendor platform, and displayed (Figure 1). More details on 
the implementation can be found in Supporting Information 
Text S1. To reduce initial latency due to “lazy” initializa-
tion of the network, the served network was warmed up using 
2 frames with random Gaussian noise at startup. The effect 
of warmup on the image SSIM of initial frames is shown in 
Supporting Information Figure S1.

A healthy subject was acquired for: 1) the assessment of 
timings and latency (measured between the data transmission 

of the last spoke from the vendor platform and the moment 
the image is ready for display on the vendor platform (Figure 
1), and 2) the qualitative assessment of the framework’s ro-
bustness to changes in FOV (acquired FOVs of 320 × 320, 
360 × 360, 420 × 420 mm2) and imaging resolution (acquired 
resolutions of 1.5 × 1.5, 1.67 × 1.67, 2 × 2 mm2). In addition, 
data were acquired in 3 adult patients during right heart cathe-
terization (2 patients with pulmonary hypertension associated 
with connective tissue disease and 1 patient with pulmonary 
hypertension associated with congenital heart disease) to as-
sess cardiac, vascular, and catheter visualization. Data were 
reconstructed in real time using 17 spokes per frame (54 ms) 
and were also retrospectively reconstructed with 13, 21, 25, 
29, and 33 spokes per frame—leading to temporal resolutions 
of 41, 67, 80, 93, and 106 ms.

In the patients, our new sequence was visually compared 
to conventional real-time Cartesian Cardiac MR (Cartesian 
bSSFP, flip angle = 50°, pixel size = 2.5 × 2.5 mm2, slice 
thickness = 10 mm, TR/TE = 3.2/1.55 ms, bandwidth = 793 
Hz/pixel, FOV = 320 × 320 mm2, 126 ms/frame), as well 
as a sliding window and CS reconstruction of the radial raw 
data. The sliding window reconstruction21 used a fixed step 
size of 17 spokes and a window width of 99 spokes (cen-
tered on the same k-space line as the gridded reconstruction). 
The CS reconstruction was performed using the Berkeley 
Advanced Reconstruction Toolbox29 with temporal total 
variation regularization.4 Coil sensitivities were determined 
using ESPIRIT30; there were 50 conjugate gradient iterations 
and 5 iterations using alternating method of multipliers,31 
with a regularization strength of λ = 0.01. For memory con-
siderations, the CS time-series were reconstructed in blocks 
of 20 frames.

2.5  |  Statistics

Multiple distributions in the test set metrics appeared non-
normal when tested for normality using Shapiro-Wilk test. 
Therefore, paired Wilcoxon signed rank tests were performed 
to assess the statistical significance of the differences be-
tween “generic” and “specific” networks as well as between 
“seen” and “unseen” orientation networks.

3  |   RESULTS

3.1  |  Variable acceleration

MAE and SSIM for the gridded images, as well as reconstruc-
tions with the specific acceleration and generic acceleration 
networks, are shown in Figure 4A; accompanying images are 
shown in Figure 5 and Supporting Information Figure S2. For 
all reconstructions, MAE and SSIM improved as the number 
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of spokes per frame increased. On visual inspection, the im-
ages became less blurred as the number of spokes per frame 
increased. There were no obvious hallucinated features at any 
of the acceleration factors. The generic acceleration network 
performed slightly worse than specific acceleration networks 
at all acceleration rates for SSIM (P ≤ 0.01) and at 25 and 33 
spokes/frame for MAE (p ≤ 0.01). However, the deterioration 
was negligible, with little visual difference and a maximum 

SSIM loss ≤ 0.02 between the images reconstructed using 
the specific and generic acceleration networks (Figure 5 and 
Supporting Information Video S1). All quantitative results 
can be seen in Supporting Information Table S1, including 
additional mean squared error and peak SNR metrics. The 
worst, median, and best test case images for the generic net-
work in terms of SSIM (averaged over all accelerations) are 
shown in Supporting Information Video S2.

F I G U R E  4   (A) Boxplots from the acceleration experiment showing MAE and SSIM over the test set data for gridded images and the 
reconstructions from the specific acceleration networks and generic acceleration network. (B) SSIM for the test set in the different frames within 
the series, showing the gradual improvement in image quality as the number of previous frames accumulate. (C) Boxplots from the orientation 
experiment comparing gridded reconstructions and network dealiasing, including all orientations at training or excluding the orientation being 
tested. MAE, mean absolute error; SSIM, structural similarity index measure
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In Figure 4B, the frame-by-frame average SSIM shows 
how reconstructed image quality improves as more frames 
are reconstructed. The SSIM quickly reaches a plateau for all 
acceleration rates, although this took more frames at higher 
acceleration rates.

3.2  |  Catheter visualization

Reconstructed image series of the simulated catheter using the 
same generic network for all acceleration rates are shown in 
Supporting Information Video S3. Images successfully depicted 
the appearing and disappearing devices at all acceleration rates. 
The image fidelity and reconstructed device improves with the 
number of spokes per frame. In subsequent experiments, the 
number of radial spokes is set at 17 (ie, 54 ms per frame).

3.3  |  LOO orientation experiment

MAE and SSIM for the gridded images, as well as recon-
structions using the LOO and all orientations networks for 
the different orientations, are shown in Figure 4C. For most 
orientations (4 chamber, left ventricular outflow tract, right 
ventricular long axis, and right ventricular outflow tract), 
there were no statistically significant differences in perfor-
mance between the 2 networks (P > .05). The LOO networks 
did perform less well (P < .05) for the pulmonary artery, 
short axis, and left ventricular long axis orientations in terms 
of SSIM. However, the effect size was relatively small, as 
can be seen qualitatively in Figure 6 (4 of 7 orientations) and 

Supporting Information Figure S3 and Video S4 (for all ori-
entations) and as can be seen quantitatively with a maximum 
loss in SSIM of 0.04. All quantitative results can be seen in 
Supporting Information Table S2, including mean squared 
error and peak SNR.

3.4  |  In vivo experiments

Supporting Information Video S5 shows an interactive in 
vivo acquisition from a healthy subject using the proposed 
framework. Changes of orientations were performed interac-
tively both abruptly and through continuous motion between 
right ventricular outflow tract, pulmonary artery, and short 
axis. Transition periods can be observed before convergence 
to good image quality. At the start of the acquisition, image 
quality stabilizes quickly (approximately 100-150 ms). 
However, when the orientation was changed significantly 
during scanning, the image appeared to “morph” between the 
2 orientations over ~10 frames (~0.5 s).

When using 17 spokes per frame, the latency over 100 
measurements between the Gadgetron data transmission 
and image visualization was measured at 39.4 ± 6.3 ms 
(mean ± SD). The lowest/median/highest latency measured 
were 31.9/37.6/81.1 ms. On average, latency included 
1 ms for preprocessing, 6 ms for gridded reconstruction, 
19 ms for denoising, and 13 ms of other tasks (including 
back-and-forth data transmission, scaling, and format con-
versions). These steps can be performed in parallel for the 
different frames, leading to a maximal output frame rate 
of ~52 frame/s (ie, 19 ms/frame). The short reconstruction 

F I G U R E  5   Acceleration experiment. 
Far right: ground truth x-y (t = 15) and 
x-t images (y = 64). Top row: simulated 
gridded images using 13, 17, 21, and 33 
spokes. Middle row: reconstructed images 
obtained using networks specifically 
trained for the corresponding acceleration 
rate. Bottom row: reconstructed images 
obtained using the same “generic” network 
trained from randomly picked acceleration 
rates. Corresponding video including 
all acceleration rates can be found in 
Supporting Information Video S1
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and transmission times meant that there was no increase in 
latency during the scan when acquiring at a temporal reso-
lution of 54 ms/frame.

The network seemed to generalize well when modifying 
the acquired FOVs and imaging resolutions, showing qualita-
tively no differences in image quality in all cases (Supporting 
Information Video S6).

Images were also acquired in 3 catheterized patients. Images 
of a pulmonary artery view (with catheter) reconstructed using 
13, 17, 21, 25, 29, and 33 spokes per frame and compared to 
the conventional Cartesian real-time acquisition are shown in 
Figure 7 (for 4 of 6 accelerations) and Supporting Information 
Figure S4 and Video S7 (for all accelerations). The balloon of 
the catheter was observed at all temporal resolutions, and the 

F I G U R E  6   Orientation experiment. 
From left to right: test set x-y (t = 15) and 
x-t (y = 64) images from FCH, LVLA, 
RVLA, and PA orientations. Gridded 
images (17 spokes), images reconstructed by 
a network including all orientations, images 
reconstructed by a network that had no 
images taken from that particular orientation 
(LOO), and ground truth images are 
compared. Corresponding video including 
all orientations can be found in Supporting 
Information Video S4. FCH, 4 chamber; 
LOO, leave-one-out; LVLA, left ventricular 
long axis; PA, pulmonary artery; RVLA, 
right ventricular long axis

F I G U R E  7   From left to right: x-y (t≈1.36 s) and x-t (y = 64) images of the pulmonary artery view of a catheterized patient reconstructed at 
13, 17, 21, and 25 spokes per frames and corresponding images from a separate conventional real-time Cartesian scan. The balloon is indicated 
with red arrows in the conventional and 33 spokes images. The x-t frames show the first 4.16 s of acquisition. Corresponding video including all 
accelerations can be found in Supporting Information Video S7
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radial real-time images appear visually sharper than the conven-
tional Cartesian real-time data.

Gridded, sliding window, CS, and DL reconstructed 
images for pulmonary artery and right ventricular outflow 
tract orientations are compared in Figure 8 (and Supporting 
Information Video S8). The catheter is seen in sliding win-
dow, CS, and DL reconstructions; however, the sliding win-
dow and CS reconstructions showed more residual aliasing 
artefacts and greater temporal blurring compared to the DL 
reconstruction. Furthermore, the sliding window required 
the acquisition of 41 more spokes before the start of the 
reconstruction, leading to an additional delay of 130 ms 
compared to the proposed DL reconstruction. The CS re-
construction performed on the same computer as the DL re-
construction took 2250 ms/frame, approximately ~57 times 
longer than the DL reconstruction of the same data, and 
only could be performed after the whole time series was 
acquired.

4  |   DISCUSSION

In this study, we demonstrated the possibility of real-time 
imaging and rapid reconstruction with low latency using a 
multi-scale recurrent neural network. The proposed model 
was tested at different acceleration rates and orientations 
showing good generalization properties. The full reconstruc-
tion only required a single gridding step and DL inference, 
making it rapid compared to state-of-art iterative methods. A 

proof-of-concept framework was successfully tested for in-
teractive real-time imaging at the scanner on patients during 
cardiac catheterization.

4.1  |  Network architecture

Real-time Cardiac MR has improved significantly since the 
advent of iterative reconstructions such as CS, particularly 
when combined with non-Cartesian sampling. However, long 
reconstruction times have limited translation into the clini-
cal environment. Recently, machine-learning reconstructions 
have been shown to compare favorably with CS. One exam-
ple used a U-Net to remove aliasing artefact from undersam-
pled gridded radial real-time images and was shown to be ~5 
times faster than a comparable CS reconstruction.14 A benefit 
of this technique is that it only requires magnitude training 
data, which is readily available in most centers from rou-
tinely stored cardiac MRI exams. The short reconstruction 
times of the machine-learning approach make it attractive for 
interventional Cardiac MR.

The previous study14 described above was based on a 
3D (2D+time) convolutional neural network, which re-
constructed multiple frames in batches and is therefore not 
suitable for interactive imaging. A simple 2D U-Net could 
provide low latency visualization, but image quality has 
previously been shown to be poor with significant temporal 
jitter.14 Thus, in our proposed network architecture we used 
a 2D U-Net with ConvLSTM layers at multiple scales. This 

F I G U R E  8   Pulmonary artery (top) 
and right ventricular outflow tract (bottom) 
views in 2 different catheterized patients. 
The x-y (frame = 50) and x-t (y = 64) 
frames are shown for the gridded images 
(input to the network), sliding window (99 
spokes), retrospective CS with temporal 
TV regularization, and proposed real-
time DL reconstructions. The catheter is 
indicated by the green arrow in the proposed 
reconstructions. Residual streaking (red) 
and temporal blurring (blue arrows) are 
highlighted when compared to the proposed 
DL reconstruction. Corresponding video can 
be found in Supporting Information Video 
S8. CS, compressed sensing; TV, total 
cariation; DL, deep learning
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allowed frame-by-frame reconstruction while still being able 
to exploit spatiotemporal redundancies.

4.2  |  Simulation results

A key requirement for catheter guidance is flexibility in terms 
of acceleration and orientation. Although there was a small 
difference in the image quality between specific and generic 
acceleration networks, this was hard to visually perceive. 
Thus, we feel that the generic network is suitable for catheter 
guidance. The theoretical benefit of using a generic network 
is that frame rate could be altered interactively to meet the 
exact requirements of the interventionalist. Differences in 
image quality with LOO/“all orientations” trained networks 
were also difficult to observe. This suggests that our network 
was generalizable enough to reconstruct orientations that 
were not in the training data (as well as catheters and guide-
wires). This is vital for catheter guidance because optimum 
visualization of a devices might not be in a conventional 
orientation.

One issue with using LSTM layers was that it took a few 
frames for image quality to stabilize. This is more apparent 
in the in vivo study and will be discussed in the next section.

4.3  |  In vivo study

The interactive framework was tested in a healthy subject in 
whom we could assess timing and latency in a controlled en-
vironment. Importantly, our framework was run on a simple 
midrange laptop and GPU, demonstrating that this approach 
did not rely on large amounts of computational resources.

Inference time for the proposed model was on average 19 ms  
(longest reconstruction step), with an overall latency between 
coil compression and image visualization of 39 ms, which 
is significantly lower than the acquisition time (54 ms).  
In the proposed framework, the different frames can be 
preprocessed, gridded, and artefact-suppressed in parallel  
(ie, frame 2 can be zero-filled, whereas frame 1 is being 
artefact-suppressed), leading to a maximum output frame 
rate of ~52 frames/s (19 ms/frame), similar to other state-
of-the-art methods8,9 but using only a single mid-range GPU 
rather than multi-GPUs.7,9 At the proposed acquisition speed 
of 54 ms/ frame, larger models with longer inference times 
could potentially be used.

We also showed that the proposed framework could per-
form deep artefact suppression of images acquired with dif-
ferent resolutions and FOV sizes without any further training. 
This is vital for use in clinical practice.

One issue with our framework is that it takes a number 
of frames for the image quality to stabilize. This is a prop-
erty of unidirectional LSTM layers because they accumulate 

and maintain some memory of previous frames through the 
hidden state. This aids artefact suppression by leveraging 
spatiotemporal redundancies but does result in the “mor-
phing” artefact seen during abrupt changes in orientation 
(see Supporting Information Video S5). Although the tran-
sition times are relatively short (~0.5 s), they are visually 
distracting and need to be remedied for general clinical 
use. The most obvious solution is to either reset the hid-
den states after large changes in orientation or train the net-
work to start from non-zero states (by not re-setting states 
between time series at training). However, this will require 
some changes to our framework, particularly in the use of 
TensorFlow Serving.

The patient part of this study was performed to ascertain if 
the catheter could be visualized using our DL reconstruction, 
and to compare image quality to a sliding window and CS 
reconstruction of the same data and to conventional Cartesian 
real-time imaging.

Although not present in any images in the training or vali-
dation dataset, the catheter balloon was visible in all patients 
using the DL reconstruction. This is in keeping with the sim-
ulation study and suggests that our method could be used 
with a range of MR compatible catheters. Higher temporal 
and spatial resolutions were reached with our DL reconstruc-
tion than with the Cartesian real-time data. Interestingly, our 
DL reconstruction provided a good combination of artefact 
removal and temporal fidelity, with less residual artefact and 
temporal blurring than both the sliding window and the CS 
reconstructions.

Increasing regularization may have removed these arte-
facts in the CS reconstruction, but this would also have re-
duced motion fidelity. More importantly, it would not have 
been possible to achieve a sufficiently low latency with CS to 
enable catheter guidance.

4.4  |  Study limitations

The main limitation of this study was that our framework 
was not used to perform actual catheter guidance. This was 
because it is a proof-of-concept study, and we believe that 
this method should be further tested (possibly in large animal 
models) prior to clinical use.

Another limitation is that the current method was not 
tested against state-of-the-art real-time reconstructions 
(real-time GRAPPA5 or fast nonlinear inverse reconstruc-
tions9) because frameworks are prohibitively complicated 
to implement. Comparisons of image quality and latency 
between techniques on the same imaging data and using the 
same hardware would be relevant. The current reconstruc-
tion relies on GPUs, which are not available on all com-
mercially available scanners. Future works will potentially 
investigate reducing further the inference time by reducing 
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the model size or through quantization and pruning for CPU 
based real-time reconstructions enabling full integration in 
MR systems.

Although no ground truth is available in vivo, lower 
image quality of both the cardiac structures and the cath-
eter was observed when compared to simulations. In the 
simulated images, the catheter balloon tip was represented 
by a simple Gaussian, which was either fully in or out of 
the slice. The actual balloon has a more complex geome-
try and will be partial volumed, explaining the mismatch 
between the simulated and actual catheter visualization. 
More generally, there is a mismatch between the simulated 
undersampled images and the acquired multi-coil gridded 
images. Improving the simulation accuracy, integrating 
previously measured coil sensitivity maps, and further im-
provements to the acquisition scheme could help improve 
the final reconstructed images.

Finally, a possible risk with our approach is “hallu-
cination” of features, particularly because our network 
architecture does not include any data consistency. In 
our study, we did not observe any obvious hallucinated 
or missing features. This is in keeping with previous 
studies that show that tiny golden angle radial sampling 
enables accurate reconstruction, even as a postprocess-
ing step.14 Nevertheless, further optimizations (use of 
data consistency terms, unrolled optimizations,11,12 
and complex valued networks32,33) might increase re-
construction accuracy and further improve image qual-
ity.17,32 However, these will be heavily constrained by 
reconstruction times and the lack of large amounts of 
raw k-space data for training. Other approaches could 
be investigated, such as including an additional loss in 
k-space to penalize data inconsistency while keeping 
reconstruction times short. Furthermore, these rely on 
complex image/raw k-space data for training of the net-
works, which is less available than the DICOM magni-
tude data used for training in this study.

5  |   CONCLUSION

Deep artifact suppression was successfully demonstrated 
in the time critical application of non-Cartesian real-time 
interventional cardiac MR, showing promising perfor-
mance in terms of both image quality and reconstruction 
times when compared to CS reconstructions of the same 
raw data.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 SSIM through time corresponding to images of 
the same data reconstructed without warm up, with random 
Gaussian noise warm up and with array of zeros warm up. 
Warm up with arrays of zeros affects the SSIM more durably 
while Gaussian noise quickly reaches a similar SSIM to the 
framework without warm up while reducing initial latency
FIGURE S2 Acceleration Experiment. Far right: Ground 
truth x-y (t = 15) and x-t images (y = 64). Top row: Simulated 
gridded images using 13, 17, 21, 25, 29 and 33 spokes. 
Middle row: Reconstructed images obtained using networks 
specifically trained for the corresponding acceleration rate. 
Bottom row: Reconstructed images obtained using the same 
“generic” network trained from randomly picked accelera-
tion rates. Corresponding video can be found in Supporting 
Information Video S1
FIGURE S3 Orientation Experiment. From left to right: Test 
set x-y (t = 15) and x-t (y = 64) images from four chambers 
(FCH), left ventricular long axis (LVLA), right ventricu-
lar long axis (RVLA), pulmonary artery (PA), left ventric-
ular outflow tract (LVOT), right ventricular outflow tract 
(RVOT) and short axis (SA) orientations. Gridded images 
(17 spokes), images reconstructed by a network including all 
orientations, images reconstructed by a network which had 
no images taken from that particular orientation (LOO), and 
ground truth images are compared. Corresponding video can 
be found in Supporting Information Video S4
FIGURE S4 From left to right: x-y (t≈1.36 seconds) and x-t 
(y = 64) images of the pulmonary artery view of a catheter-
ized patient reconstructed at 13, 17, 21, 25, 29 and 33 spokes 
per frames and corresponding images from a separate con-
ventional real-time Cartesian scan. The balloon is indicated 
with red arrows in the conventional and 33 spokes images. 
The x-t frame show the first 4.16 seconds of acquisition. 
Corresponding video including all accelerations can be found 
in Supporting Information Video S7
TABLE S1 Acceleration Experiment. The mean absolute 
error (MAE), mean squared error (MSE), peak signal-to-noise 
ratio (PSNR) and structural similarity index measure (SSIM) 
reported for the different reconstructions. Average differences 
and Wilcoxon rank test p-value to assess differences between 
specific and generic deep artifact suppression are reported
TABLE S2 Orientation Experiment. The mean absolute 
error (MAE), mean squared error (MSE), peak signal-to-
noise ratio (PSNR) and structural similarity index measure 
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(SSIM) reported for various orientations for gridded images 
and reconstructed images using a network which has seen all 
orientations and one which has seen all but the tested orienta-
tion (“LOO”). Bias and Wilcoxon rank test p-value to assess 
differences between seen and unseen denoising are reported
VIDEO S1 Acceleration Experiment. Far right: Ground truth 
images. Top row: Simulated gridded images using 13, 17, 21, 
25, 29 and 33 spokes. Middle row: Reconstructed images 
obtained using networks specifically trained for the corre-
sponding acceleration rate. Bottom row: Reconstructed im-
ages obtained using the same “generic” network trained from 
randomly picked acceleration rates
VIDEO S2 Acceleration Experiment. From top to bottom: 
Test set images exhibiting the worst, median and best mea-
sured SSIM (averaged over all accelerations). From left to 
right: Gridded (13 spokes), denoised (13, 17, 21, 25, 29, 33 
spokes) and Ground Truth images
VIDEO S3 Catheter Visualization. Top row: Simulated cath-
eter balloon images reconstructed at 13, 17, 21, 25, 29 and 
33 spokes per frame using the “generic” network and ground 
truth images. Bottom row: Corresponding images with a sim-
ulated guidewire
VIDEO S4 Orientation Experiment. From left to right: Test 
set videos from four chambers (FCH), left ventricular long 
axis (LVLA), right ventricular long axis (RVLA), pulmonary 
artery (PA), left ventricular outflow tract (LVOT), right ven-
tricular outflow tract (RVOT) and short axis (SA) orienta-
tions. Gridded images (17 spokes), images reconstructed by 
a network including all orientations, images reconstructed by 
a network which had no images taken from that particular 
orientation (LOO), and ground truth images are compared

VIDEO S5 Proof of concept interactive acquisition in a 
healthy subject. Changes of orientations are performed in-
teractively both abruptly and through continuous motion be-
tween RVOT, PA and SAX. Short transition periods can be 
observed before convergence to good image quality
VIDEO S6 Separate acquisitions of the same pulmonary ar-
tery view with (top) varying acquired field of views (FOV) 
of 320 × 320 mm2, 360 × 360 mm2, 420 × 420 mm2 (fixed 
resolution: 1.67 × 1.67 mm2) and (bottom) resolutions of 2 
× 2 mm2, 1.67 × 1.67 mm2 and 1.5 × 1.5 mm2 (fixed FOV: 
320 × 320 mm2)
VIDEO S7 From left to right: Pulmonary artery view of a 
catheterized patient reconstructed at 13, 17, 21, 25, 29 and 33 
spokes per frames and corresponding images from a separate 
conventional real-time Cartesian scan. The images are shown 
with the different framerates corresponding to the acquisition 
framerate
VIDEO S8 Pulmonary artery (top) and right ventricular 
outflow tract (bottom) views in two different catheterized 
patients. The images are shown for the gridded images (17 
spokes/frame), sliding window (99 spokes/frame), retrospec-
tive compressed sensing (CS with temporal TV regulariza-
tion) and proposed real time ML reconstructions
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