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Abstract

In this work we consider numerical efficiency and convergence rates for
solvers of non-convex multi-penalty formulations when reconstructing sparse
signals from noisy linear measurements. We extend an existing approach,
based on reduction to an augmented single-penalty formulation, to the non-
convex setting and discuss its computational intractability in large-scale appli-
cations. To circumvent this limitation, we propose an alternative single-penalty
reduction based on infimal convolution that shares the benefits of the aug-
mented approach but is computationally less dependent on the problem size.
We provide linear convergence rates for both approaches, and their depen-
dence on design parameters. Numerical experiments substantiate our theoretical
findings.
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1. Introduction

In many real-life applications one is interested in recovering a structured signal from few cor-
rupted linear measurements. One particular challenge lies in separating the ground-truth from
pre-measurement noise since any such corruption is amplified during the measurement pro-
cess, a phenomenon known as noise folding [2] or input noise model [1]. It commonly appears
in signal processing and compressed sensing applications, where noise is added to the signal
both before and after the measurement process occurs. This can be modeled as

Au' +v)+ €=y, (1)

where u' € R” is an s-sparse original signal that we want to recover, v € R" is the pre-
measurement noise, & € R” is the post-measurement noise, and A € R"*" is the measurement
matrix. Note that a signal u € R” is called s-sparse if its support consists of at most s elements,
i.e. [supp(u)| = |{i: u; # 0} | < s. Information theoretic bounds state that the number of mea-
surements m required for the exact support recovery of u' from (1) needs to scale linearly* with
n, which leads to poor compression performance [1].

A number of recent studies [3, 15, 16, 21] try and mitigate these issues through a multi-
penalty regularization framework defined as

1 , B
—[|A — e + Zv||?, )
Join, S lA@+v) =yl +fulg + v )

where «, § > 0 are regularization parameters, 0 < ¢ < 2, and 2 < p < co. In particular, to
promote sparsity of the u component we choose g < 1. A natural way to minimize (2) is via

alternating minimization, starting from u’, v € R” and then iterating as

! o
u*T! € argmin E||A(u +vh —yl5 + ;||u||q,

ueR”? (3)
1
V€ argmin [AGCE v - yI3+ v,
veR” p

Whereas the second problem is differentiable and admits an explicit solution, the first problem
requires iterative thresholding for ¢ < 1 [21], for each outer iteration k € N, and becomes non-
convex if ¢ < 1. Moreover, alternating minimization does not lend itself to an easy analysis of
the convergence rate.

1.1. Contribution

In this work we examine the multi-penalty problem (2), for the case 0 < ¢ < 1 and p = 2. We
first show that the augmented approach in [16], which allows to decouple the computation of
u and v components of the solution, can be easily extended to ¢ < 1 to obtain an augmented
single-penalty iterative thresholding algorithm providing solutions to (2). Since this includes
computing the inverse of a possibly high-dimensional matrix, we suggest an alternative single-
penalty iterative thresholding algorithm which is based on an infimal convolution formulation

4 Assume for simplicity v1L&, &€ ~ N(0,0%1d,), and v ~ N(0, 02 1d,). We now write (1) as 'y = Au' + w, where
w:= Av + & represents the effective noise. The covariance matrix of w equals o2 Id,, + 0?AA" =: Q. Assuming
AAT ~ 2 1d,, (as is the case, with high probability, for A with zero mean, 1/m-variance sub-Gaussian entries), and
o, ~ o, we would have Q = o*(1 + C 2)1d,,, for C > 0. Thus, the variance of the noise rises by a factor proportional
to n/m, which when m < n can be substantial.
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of (2) and sidesteps the computational bottleneck of the augmented approach. We show a linear
convergence rate for both approaches, in dependence of design parameters, and in numerical
simulations confirm both the rate analysis and the efficiency gap. In particular, we argue that
the benefits of faster convergence rates are sometimes offset by the computational demands,
which suggests that a preferred method for solving the optimization problem can be chosen
with respect to the size of A.

1.2. Related work

In [21] the authors approach (3), for 0 < ¢ < 1 and p = oo, on separable Hilbert spaces by
applying iterative thresholding algorithms to each of the sub-problems, and show convergence
of the sequence of iterates to stationary points of the underlying problem. The choice p = oo
is of special interest when v models uniform pre-measurement noise. However, the authors
also show that p = 2 exhibits the best (empirical) performance for the reconstruction of u',
for v modelling various common noise types (including uniform noise). It is for this reason
that in this paper we are concerned only with the case p = 2. We add though that more gen-
eral noise types might be of interest in very particular cases, and this is a possible topic for
future research. In [16] the authors reduce the optimization problem (2) to a single-penalty
regularization through an augmented data matrix, for ¢ = 1 and p = 2, and derive condi-
tions on optimal support recovery. The authors provide theoretical and numerical evidence of
superior performance of multi-penalty regularization over standard single-penalty approaches
for the sparse recovery of solutions to (1). In [15] a principled, data-driven parameter selec-
tion approach is derived for ¢ = 1 and p = 2, based on the Lasso path. Instead of through
noise folding, a multi-penalty formulation of the objective function can also be seen from
the perspective of the recovery of a signal that is a superposition of two components, e.g. a
sparse and a smooth component. See [12] and references therein. In spite of these and other
advances, rigorous results regarding convergence rate and error analysis for (2) have not been
established.

Since we reduce (2) to specific single-penalty problems, corresponding convergence results
on classical proximal descent methods are of interest. In [9] important insights on support
stability and convergence of iterative thresholding algorithms on separable Hilbert spaces
have been collected while [28] proved linear convergence rates of the iterative thresholding
algorithm, under certain conditions, if the underlying thresholding operator is not continuous,
though the dependency on the parameters of the optimization scheme are not explicitly derived.
Linear convergence of a single penalty non-convex regularizer with adaptive thresholding was
established in [24], where the influence of the restricted isometry property (RIP) of the design
matrix on the convergence constant can be inferred. A further survey of nonconvex regularizers
for sparse recovery can be found in [25].

Lastly, approaches representing regularizers as infimal convolution can be found in the con-
text of machine learning and signal processing, cf [17, 18]. Therein primal-dual schemes are
examined for optimizing functionals penalized via infimal convolutions. The results, however,
require piece-wise convexity which is not given in our case.

1.3. Notation

We restrict boldface lettering to matrices (uppercase), e.g. A, and vectors (lowercase), e.g.
u. The ith entry of a vector u is denoted as u;. For m € N we denote [m]:={1,...,m}. For
0 < g < oo the £, norm of a vector u = (Uj,...,U,)" € R" is denoted by Hqu The support

3
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set of u € R" is denoted as
supp(u) = {i € [n] : u; # 0}

and the sign sgn(u) = (sgn(u;))’_, is defined component-wise by

1, ifu >0,
sgn(u) =0, ifu=0,
—1, ifu<O.

For a matrix M € R™*", we use ||[M]| to denote its spectral norm and Apin(M) to denote its
smallest singular value. We denote the n x n identity matrix by Id,. For I C [n], M; € R
represents the submatrix of M containing the columns indexed by 7, and u; € R/l denotes the
subvector of u containing the entries restricted to /. We denote the corresponding orthogonal
projection operator onto I as P; € R*", so that P;u = u;. When indexed by a set T C R”,
P denotes the orthogonal projection onto 7. Finally, the set-valued operator 0 denotes the
limiting Fréchet subdifferential, and dom0f = {x: 9f(x) # 0} is its corresponding domain
when applied to a function f : R" — R U {oo}, cf [20, 23].

2. Main results

Consider the multi-penalty problem (2) for p = 2, i.e. minimizing
q 1 2, Qg By
Top@v):= S [|A+v) —yl; + 5Hu\lq + SVl S
and denote a corresponding solution pair by

(u(qlﬁ, viﬂ) € argmin 77 ;(u, v). 5)

u,veR”

As mentioned above A € R™"y € R", o, # > 0 are regularization parameters balancing the
contributions of the data-fidelity term and the two regularization terms, and 0 < g < 1.

Let us introduce two widely known concepts relevant for the forthcoming discussion. First,
the Kurdyka—L.ojasiewicz (KL) property; a well-established tool for analyzing the convergence,
and convergence rates, of proximal descent algorithms [4].

Definition 2.1. A function f:R" - R U {co} is said to have the KE property at X €
dom f if there exists 1 € (0, 4+00], a neighbourhood €2 of X, and a continuous concave
function ¢ : [0,17) — R such that

(a) p € c'(o, 1), ©(0) = 0 and '(s) > 0 for all s € (0,7)
(b) Forallx € QN {x: f(x) < f(x) < f(x) + n} the KL inequality holds

o' (f(x) — f(X)dist (0, df (x)) > 1.

The KL property is used to describe the speed of convergence through the desingulariz-
ing function ¢. It has been shown that semi-algebraic functions satisfy the KL property with
p(s) = es'? where ¢ > 0 and 6 € [0, 1) is called the KL constant, which characterizes the
convergence speed of proximal gradient descent algorithms [4, theorem 11]. As observed in
[8], corollary 3.6 in [19] may be used to determine the KL constant of piecewise convex poly-
nomials. Even though || - [|# has the Kt property, cf [5, example 5.4], it does not result in

4
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piece-wise convex polynomials for 0 < g < 1, and thus we cannot apply [19, corollary 3.6] to
infer the speed of convergence. We will instead adopt and adapt the ideas from [9, 28].

The second concept relevant for this paper is the RIP, which allows to control eigenvalues of
small submatrices of A € R™*", and to characterize measurement operators that allow stable
and robust reconstruction of sparse signals from m < n measurements.

Definition 2.2. A matrix A € R™*" satisfies the restricted isometry property of order s (s-
RIP) with constant 6, € (0, 1), if for all s-sparse u € R"

(1= 8)llull> < | Aufl> < (1 + 6)]ull.

Remark 2.3. For a detailed treatment of RIP, and measurement operators that fulfill it, we
refer the reader to [14]. Let us only mention that if the entries of A are i.i.d. copies of a Gaussian
random variable with mean zero and variance %, then

m > C6,%s log (%)

measurements suffice to have an s-RIP with constant d; > 0 with high probability, for an
absolute constant C > 0. Consequently, 6, = O (m’l/ 2, /s log(en/ s)) with high probability.

2.1. Augmented formulation

It was observed in [16] that for ¢ = 1, the multi-penalty problem (2) reduces to single-penalty
regularization where measurement matrix and datum are adjusted by the regularization param-
eter 3. We include this result, extended to 0 < ¢ < 1, together with the proof (see section A.1),
which is analogous to [16, lemma 1].

Lemma 2.4. The pair (u}, 5, V! ;) minimizes T,!; in (4) if and only if

(1,6’
v, = ol ) = (81, + ATA) ' (ATy - ATAu ), (©6)

and u’fk 3 is the solution of the augmented problem

. 1 2 @
ul ; € argmin Fs(u), Fs(u):= EHBBU — ygﬂ2 + g||u||q, (7)

uck”

with

AATN AAT\
Bs = (Idm + 5) A and yz;= (Idm + 5) y.

Remark 2.5. The noise folding forward model (1) is in [2] written in the whitened form
as y=Bul +n, for y=Q %y, B=Q '?A, n=Q *(Av + &), for Q = L(o*Id,, +
02AA") and ¢ > 0 is a constant. Notice that this is particularly related to the augmented
problem in (7). On an unrelated note, improving on the analysis in [2, proposition 2] one can
show (see lemma B.1) that the coherence, defined for a matrix M as

[m/ m,|

coh(M) = max —————,
i#7 |y [Jmjf]>
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where m; is the ith column of M, of the augmented measurement matrix B satisfies

2 2
coh(B;) < (1 4 ”‘;' ) (coh<A>+ ”‘;” ) (®)

In compressed sensing literature the magnitude of the coherence of a matrix is an important
measure of quality for measurement matrices, cf [14, section 5]. The bound in (8) thus suggests
that for small ||A|| or large /3, the linear measurement process modelled by Bj is as information
preserving as the one modelled by A. In addition, lemma B.2 shows that coh(Bg) behaves like
the coherence of a conditioned version of A if 7 — 0. Let us mention that in practice coh(Bg)
behaves well for all 3’s, and even moderate values of [|AA .

q

By lemma 2.4, to estimate the solution pair (u;,

3 Ve ) itis sufficient to first solve (7), and
then insert the computed solution into (6). Since the fidelity term  |[Bsu — y |3 is smooth and
the regularization term [[u[|] non-convex, the common approach is to use iterative thresholding
through a forward-backward splitting algorithm [4, 9]. For F3 and the augmented problem (7),
the resulting thresholding iterations applied are readily written as

Set the initial vector u’

€)

u“t = prox, o e(u* — pBj(Bsu* —yp)).
AT

Each iteration in (9) can be viewed as a thresholded Landweber iteration; we first perform
a step in the direction of the negative gradient of the data fidelity term, and then apply the
proximal operator of the remaining non-convex term.

The proximal operator of a function ¥ : R" — R" is defined by

1
prox,, ,(u) = arg min o |z — u||§ + v¥(z), (10)
zeR" 1%

where pu, v > 0. For separable mappings (10) can be applied component-wise, and we have
prox,, VIH\Z(H) = (prox# ,,Hq(u,-) . In the general case, the proximal operator (10) could be
’ ' i=1

set-valued, since there might be multiple or even no minima. It can be shown though that for
0 < g < 1 the (one-dimensional) proximal operator of |-|? satisfies

-1
(- +vug sgn(-)Hq*l) (u), for |u| >,

0, for Jul < 7,

(11)

prox,, ,..u(U) =

2—q e
where Ty = m(zl/ﬂ(l — q))2*‘1 .

it 15 (=00, =gl U {0} U [\, 00) where A,y = (2 pu(1 — g)) 77, see
[9, lemma 5.1], and it is discontinuous with a jump discontinuity® at [u| = 7,. Note that the
proximal operators in (11) are indeed thresholding operators, and as g goes from O to 1 they
interpolate between hard- and soft-thresholding operators. Moreover, a closed form of the
operator prox is known only in special cases, namely for ¢ = 1/2 and ¢ = 2/3 [26].

The range of prox

a4

3 While the actual proximal operator of ||? is set-valued and simultaneously assumes both possible values at |u| = 7,,,
we follow common practice when restricting the operator to zero at |u| = 7,, to have a single-valued function.

6
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It follows easily that if the step-size p > 0 is small enough (smaller than ||Bs||~2), the dif-
ference of iterates in (9) decreases, i.e. Hu"Jrl —uf ll. — 0 as k — oo, see [9, proposition 2.1].
Note that the iterations in (9) are quite different from those given by alternating minimiza-
tion, where for each k we need to compute u**! through iterative thresholding. The following
lemma makes this more precise; it shows that (9) is equivalent to performing only the first step
of iterative thresholding when computing w**! in (3). The proof can be found in section A.2.

Lemma 2.6. The iterations defined in (9) can be rewritten as

ut! = prox,, o jo(u’ — pAT(Au" + Av(u®) — ),
which corresponds to a single proximal gradient descent step of (3) starting at u.

2.1.1. Linear convergence. We now show that the iterates in (9) converge at a linear rate to
stationary points u* of 7;’{5, i.e. points such that 0 € 67;’{ 5(u¥), and characterize the conver-
gence constant in dependence of design parameters. Let us emphasize that since our analysis
is tailored to ¢ ,-regularization we derive more explicit guarantees (in terms of the involved
parameters) than what would follow by directly applying the more general statements of [28]
to the augmented formulation (7). The proof can be found in section A.3.

Theorem 2.7. Let o, B > 0and 0 < g < 1. Assume the matrix A € R™" has RIP of order
s with a constant §; € (0, 1), and let the stepsize u satisfy 0 < u < ||A||2 + 5", More-
over, assume® w* € R" is such that |supp(u*)| < s and the iterates (9) satisfy u* — u*. Define
I = supp(u*) and dpin = minie;|U}|. Then there exists kg € N such that for all k > ko we have

t—u(1+ ”{?T”Z)_l(l Y

o =[] <

Remark 2.8.

(a) To have linear convergence in theorem 2.7, we have to choose an « such that

. AR (1= 602 ( dinin \ 7
O<a<a—(1+ ﬂ> (1—q)<2> . (12)

This resembles basic assumptions of the main result in [28]. One should thus interpret
theorem 2.7 as an additional refinement, better capable of predicting numerical behavior.

(b) Theorem 2.7 suggests that the convergence constant depends on the sparsity of the signal
and properties of A. Namely, if the signal is sparser (and thus ¢, smaller) then the conver-
gence constant decreases. Similarly, the constant decreases if we increase the number of
measurements.

(c) Assuming a = ca”, for ¢ € (0, 1), it is straight-forward to check that the rate in theorem
2.7 becomes minimal by choosing y ~ ||A||~2 4+ 3~'. In this case the result transforms
into

k41 *H 1— HAH_2(1 - 6s)2

_ k%
e Y Ur Aol

6 The sequence u* converges provably to a stationary point since T, is among other things coercive and has the KL-
property, cf [5, theorem 5.1]. The assumption thus is not about whether u; converges but about the specific limit point
which mainly depends on the concrete choice of initialization.

7
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(d) Since a and (3 control the strength of regularization in ’7;’1 L their choice depends on the
expected noise level. Consequently, when setting v and 3 one needs to make a trade-off
between their regularizing effect and the desired convergence speed.

2.1.2. Computational complexity. Once Bg has been computed, executing (9) for a constant
number of iterations costs O(mn) operations: O(mn) for matrix-vector products and O(n) for
evaluating the proximal operator. But this gets dominated by the operations needed to obtain

B3, which involve a matrix square root and a matrix—matrix linear system and have to be done
_1 . .
in advance. This turns out to be a computational bottleneck as soon as m > nr-T as it requires

O(m”) operations, where p € [2.37, 3] depends on the used algorithmic method [11]. Such a
computational cost can be prohibitive for high-dimensional applications.

2.2. Infimal convolution formulation

To overcome the computational limitations observed above, we consider an alternative
approach. Define a new program by

1 « I6]
i, = argmin Jlaw =yl + (21 1585113 ) oo, (13)

weR” 2

where the infimal convolution is given by

-:g.qé.2 :-gqﬁ_z
s = (1-19A5 1 1) o0 = it ©fully+ 5 1wl (14

For a detailed treatment of infimal convolution and its properties, see [6]. It is straight-forward
to check that an equivalence between minimizing (4) and (13) holds.
Lemma2.9. The pair (uf ;,v! ;) minimizes T 5 in (4) if and only if w}, ; + V{, 5 solves (13)
while u?m attains the infimal value of (% [ - HgAg I| - ||%) (u(qlﬁ + V(qlﬁ).

In order to solve (13) via iterative thresholding (i.e. proximal gradient descent), we need

to efficiently evaluate the proximal operator of (14). A helpful observation is that (14) can be
interpreted as the Moreau-envelope of || - ||, which for a function fand ¢ > 0 is defined as

1 1
00 = (£ 1412) 09 = oo, 0+ x— pros,

where the last equality only holds if prox,«(x) # (. It has been observed in [7, theorem 6.63]
that computing the proximal operator of the Moreau envelope reduces to computing the prox-
imal operator of the underlying function. Though stated only for convex functions in [7], it is
straight-forward to generalize the result.

Lemma2.10. Lerf : R" — R be alower semi-continuous function with f(0) = min f. Then,

t LA
ProX;, sy, (%) = - Tk o o PrOX 4 7). (X)-

The proof is in section A.4. Define now the proximal gradient descent for (13) by

(15)

Set the initial vector w°
w

K1 — prox,, (W — uAT(AW' — y)).

"8

8
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We denote by u* = prox L QH4Hq(w") the sequence of minimizers attaining g(w’), and set
B°q q

vk = wk — u¥. Note that with this notation w¥ and u¥ can also be characterized via

Wi argmin - [lw — w* 1 pAT AW = B+ 2w — w2
weR” ZM 2 (16)
= argmin u— w3 + % ul
ucR” 2 q
Unlike (15), the representation in (16) does not yield a practically viable algorithm, since
wk and u* are not decoupled. It does though lend itself to theoretical analysis of the iterations,
cf section A.S5.

2.2.1. Linear convergence. Though g in (14) is continuous and separable, i.e. g(w) =
>, gi(wy), it is not continuously differentiable, such that we cannot apply [28] to deduce
linear convergence of (15). Nevertheless, using the KKT-conditions of the objective functions
in (16), we get linear convergence of the iterates in (15) by a similar strategy as in theorem 2.7.

Theorem 2.11. Leta, 3 > 0and 0 < g < 1. Assume” that 0 < p < ||A]| "2 and w* — w*.
Let I C [n] denote the support of w* = prox%,%n,HZ(w*) and define dmi, = min;ey |ul*| Then
there exists ko € N such that for all k > ko we have
1/2
P, — uA] AP [P — pALAJP
(1-ona -y 7)Y

The proof of theorem 2.11 is given in section A.5.

k

W = ws < I =W

Remark 2.12. On the one hand, in theorem 2.11 the assumption on p and the rate differ
from theorem 2.7; there is no influence of /5 on admissible step-sizes and the rate is split in two
distinct components. On the other hand, since, for p < ||A[| 72,

|P; — A, Al = ||P;Id, — pATA)|| < ||1d, — pATA|| < 1and
(7
P — pAfAl = |[Pre(Id, — pATA)| < |1, — pATA|| < 1,

the rate in theorem 2.11 suggests to choose (3 large to dominate the second term of the rate in
which case the assumptions on p agree in both theorems. Moreover, this reduces the rate to

< ( [P — AT A|
L= ap(l —g)(%g~)

where the denominator is as in theorem 2.7. In light of (17), we get linear convergence of
15)if

e+l

||w w

qz+owlg|w—wwﬁ

O<a<a =

L [P — pA/ A (@)2_4
(1 —q) 2 '

As already discussed in remark 2.8, a trade-off between regularization and convergence rate
has to be taken into account when choosing « and .

7 Along the lines of footnote 6 in theorem 2.7. Just note that g in (14) has the KL-property by [27, theorem 3.1] and,
hence, the objective function in (13) has it as well.
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Remark 2.13. For ¢ = 1, an alternative viewpoint on (16) is given by

1
WoH = arg min = [|w — Wt + AT (AW — )3 + 2w — w2
weR" 2//’/ 2
! B
= argmin 2—||w — W+ uAT AW — )3+ S| w — proxa w3 (18)
weRn M 2 gl

1 «
= arg min 2—||w —w+ uAT AW —y)|3 + —HVM%HAHI(W)H%,
weRrn 2[4 2 /

where we used [22, equation (3.3)] in the last step, meaning that

k+1

k T A wk
witl = prOX%HVM%H.HI(‘)H%(W — pA ' (AW* —y))

is a proximal gradient descent sequence of |[VMa . () |13, the squared ¢,-norm of the gradient
of the smooth Moreau approximation of ||-||,. From this perspective, multi-penalty regular-
ization resembles a Newton-type method by searching for zeros of the derivative of a smooth
approximation of the ¢;-norm. However, transferring this intuition to the case g < 1 is non-
trivial. On a technical level the equations in (18) break down in the third line, which does not
hold for g < 1 due to non-convexity of || - [|{.

2.2.2. Computational complexity. While (9) requires computing B, which can be costly, the
infimal convolution formulation (15) does not incur additional computational costs and thus
directly inherits efficiency and linear convergence of the proximal descent method. Indeed, for a
fixed number of iterations the number of operations performed in (15) is O(mn) (the additional
convex combination when evaluating the proximal operator by lemma 2.10 is negligible). This
is considerably lower than O(m”), for p € [2.37,3], which is the computational cost of the
augmented formulation, particularly if m is large. In numerical simulations, this effect is easy
to observe, cf section 3.

3. Numerical experiments

We now present experimental results that focus on two aspects of our study. First, we examine
the convergence rate of the proposed algorithms, confirming linear convergence and in case of
the augmented formulation, the dependence of the convergence constant on the parameters of
the problem. Second, we examine their efficiency by studying the overall computational effort
on larger scale problems.

3.1. Convergence rate

Via the RIP-constant d, theorem 2.7 gives a direct dependence of the convergence rate on the
sparsity of the solution and the properties of the matrix, whereas theorem 2.11 is harder to inter-
pret: it is straight-forward to deduce the existence of parameter regimes in which linear conver-
gence occurs but hard to quantify the rate in terms of the parameters. While numerical evidence
for linear convergence of the infimal convolution formulation is observed in section 3.2, we
continue by validating theorem 2.7 in two experiments. In both, we take ¢ = 1/2, and add pre-

and post-measurement Gaussian noise terms, v and &, with noise level HH“V'HHZZ = HHfTHHZz =0.1.

We choose an admissible o according to remark 2.8 and tune it such that the reconstructed

10



Inverse Problems 37 (2021) 055008 Z Kereta et al

100

lu = wa/f[u” 2

10"

4
10

1 10"

L L L L L L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400
k-#iterations k-#iterations

(a) Varying 8. (b) Varying m.

Figure 1. In the left panel we consider A € R?%0%600 and vary the parameter 3, whereas
in the right panel we consider A € R”*%% and vary the number of measurements
m € 100,200,300, 400}.

signal shares its support size with the ground-truth. Both illustrations in figure 1 plot the rel-
ative error between the iterates u* and the stationary point u* against the number of proximal
gradient descent steps.

Varying the penalty parameter. In the first experiment we take a Gaussian matrix A €
[R200%600 "5 20-sparse signal u', and vary /3. Theorem 2.7 predicts that smaller values of /3 allow
to take larger stepsizes, though the convergence constants are (essentially) the same. This effect
is readily observed in figure 1(a). Note that we can also observe that for smaller (3 the algorithm
reaches the steep part of the curve faster. This is due to the fact that the convergence of iterates
is initially slow (until the support is identified) and larger step-sizes allow to reduce the support
size faster. The overall speed-up allowed by a smaller /3 can be by up to a two-fold, in terms
of the number of iterations needed to reach the desired accuracy level.

Varying the measurements. In the second experiment we consider a Gaussian matrix
A € R™0 for m € {100,200, 300,400}, and a 20-sparse signal u'. Varying the number of
measurements changes the RIP of the measurement matrix (a larger m decreases d, see remark
2.3), and per theorem 2.7 should affect the convergence constant. Figure 1(b) shows exactly
that. An analogous effect can be observed for different classes of measurement matrices, such
as partial Toeplitz, or partial circulant matrices with Rademacher or Gaussian entries, but those
results have not been included for the sake of brevity.

3.2. Computational comparison

Iteration count. In order to provide numerical evidence for our initial statement that alternating
minimization is highly sub-optimal, in figure 2(a) we look at the decay of the relative error over
the number of basic iterations, i.e. the number of thresholded gradient descent steps, of all three
discussed approaches: alternating minimization (3), augmented formulation (9), and infimal
convolution (15). In this experiment, we use a Gaussian matrix A € R!%5% the original signal
is 14-sparse, ¢ = 1/2 and the parameter «, /3, and p are selected so that each method returns
a 13-sparse vector. The x-axis refers to the number of times the proximal operator is called
while the y-axis shows the relative error. The considerably worse performance of alternating
minimization is due to the fact that it requires (too) many thresholded gradient steps to solve,
for each k € N, sub-problems for the u* component up to pre-fixed accuracy € = 1078, Thus,
the algorithm performs hardly any alternating steps.

1
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Figure 2. In the left panel we look at the relative error with respect to the number of
times the proximal operator is called for A € R'%*3%0 and uf € R is 14-sparse. In
the right panel we compare average running time of augmented and infimal convolution
formulations when reconstructing a 100-sparse signal u’ € R> from m measurements,
that vary from 1000 to 8000.

Computation time. To now illustrate the differences between augmented and infimal con-
volution formulation in terms of computational complexity, we perform the following exper-
iment. We set the parameters generically to v = 0.02, 8 = 0.2, and p = 0.1, and recon-
struct a 100-sparse signal u' € R from measurements y € R, for m varying from 1000
(sub-sampling) to 8000 (over-sampling). We again take ¢ = 1/2, and add pre- and post-
measurement noise terms, v and &, with noise level 0.1. Averaging over 20 random realizations
of uf, we record for augmented (9) and infimal convolution approach (15) the time needed to
perform 50 iterations. After only this many iterations none of the two algorithms has con-
verged, though this already suffices to make a point regarding the computational cost since
both algorithms incur the same cost (i.e. the gap remains the same) in the remaining iterations.
As figure 2(b) shows, the additional computation of Bg in (9) causes a massive additional
workload leading to limited applicability of the augmented approach in large-scale settings. In
contrast, the infimal convolution formulation is hardly affected by the increase in the number
of measurements. Though the augmented approach tends to converge in fewer iterations, cf
figure 2(a), the additional iterations needed by the infimal convolution formulation to reach a
comparable level of accuracy do not close the gap in computation time. Note that we do not
include alternating minimization here since it requires many more iterations (in the sense of
single thresholded gradient descent steps) to show similar reconstruction performance as both
proximal descents, and hence could not compete with those two algorithms.

4. Discussion

In the present work we discussed the benefits of multi-penalty regularization for support recov-
ery of signals when pre-measurement noise is amplified by the measurement operator and
numerical challenges in solving the corresponding variational formulation. Since alternating
minimization is for this task sub-optimal in terms of both the computational efficiency and theo-
retical analysis, we proposed a novel reduction to single-penalty regularization based on infimal
convolution, and compared this new approach to an existing reduction based on augmented
formulations. Moreover, we established linear convergence for both single-penalty reductions

12
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and showed that our new approach omits a computational bottleneck that is unavoidable in
the augmented approach, and causes a significant additional computational workload if the
number of measurements increases. There are several interesting open questions left for future
work.

First, in remark 2.13 we observed, for ¢ = 1, a connection between the infimal convolution
formulation and the proximal descent on the ¢,-norm of the gradient of a Moreau-regularized
¢;-functional. As we have not seen a comparable relation in the context of multi-penalty regu-
larization so far, we are curious whether this observation can be extended to the case 0 < g < 1.
If so, this might provide valuable insights into non-convex optimization.

Second, as the reader might have noticed, great parts of the arguments we used (support
stabilization, sign stabilization, etc.) are not restricted to finite dimensions. In light of more
general settings of multi-penalty regularization in [21] and single-penalty regularization in
[9], it would be fruitful to transfer our findings to general separable Hilbert spaces as well.

Third, we mention that when using the infimal convolution based approach, in some exper-
iments it was possible to choose ;1 much larger than suggested by theorem 2.11, while still
observing reliable convergence of the program. We wonder whether there is an alternative
proof leading to a relaxed condition on x resembling the assumption in theorem 2.7.

Let us conclude by emphasizing that the infimal convolution formulation can as well be
applied if regularizers other than the ¢,-norm are used in the multi-penalty problem, e.g.
smoothly clipped absolute deviation [13], minimax concave penalty [29], and log-sum penalty
[10]. In those cases the more general single-penalty rate analysis in [28] should prove useful
as a tool.
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The data that support the findings of this study are available upon reasonable request from the
authors.
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Appendix A. Proofs

A.1. Proof of lemma 2.4

For a fixed u the minimization of 7;’1 5 in (4) withrespect to v reduces to Tikhonov minimization,
and thus the solution satisfies

v=o(w=(81d,+ATA)" (ATy—ATAu). (19)
Rewriting the above expression we have

Bo(u) = A" (y — Au) — AT Av(u).
Plugging this expression into (4) the minimization problem for u is rewritten as

1
Ty o) = - (A +v(w) — y, Au —y) + %HuHZ .

13
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The Woodbury identity for invertible matrices V.€ R™*” W € R"*" and matrices M; € R"*",
M, € R"*" reads

(VEMW 'M,) ™ = V= VMW + MoV M) MY (20)
Using (19), this gives
A(u+ o) —y = Av(u) + Au —y
_ (Idm — A(S1d, + ATA)’IAT) (Au—y)
AATY !
- (Idm + 5) (Au—y).

Plugging this expression back into 7;‘{5(u, v(uw)), and extracting the square root, we have
ngg(u, v(u)) = Fz(u). Minimizing over u and using the following simple observation gives
the conclusion.

LemmaA.1. Ifu! ;isalocal minimizer of (7), then the pair (u, 5, v(u ;)) with v(u) defined
in (6), is a local minimizer 0f7;qﬂ in (4).

Proof. Let u’éﬁ be a local minimizer of (7) and assume there exists a sequence (u¥, v) —
(u? ;,v(u? ) such that 7 ,(ut, v¥) < T (u? ,, v(ul ))), for all k € N. We then have

Fsu') = T2, o) < T, v < Tl ol ) = Faul ),

where the first inequality follows from the minimality of v(u*). This contradicts the assumption
that u? ; is a local minimizer of (7). O

A.2. Proof of lemma 2.6

First note that

PrOX#,%Mg(uk - NBg(BBuk —¥3)

AAT\ !
— prOX#%HHZ <uk _ /~LAT (Idm —+ ﬂ) (Auk — y))
while
proxm%HA”Z(uk — pAT (AU + Av(u¥) —y)) =
Prox,, aj ¢ (u* — (AT —ATABIA, + ATA)'AT) (Adt —y)) .
Hence, it suffices to show that

AAT
B

Extracting A" from the left and using the Woodbury identity (20) with M; = A,M, = A",
W = 5ld,, and V = 1Id,, the conclusion follows.

—1
AT <1d,,, + ) =A" —ATABId, +ATA)'AT.

14
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A.3. Proof of theorem 2.7

In order to prove theorem 2.7, we have to control the eigenvalues of BgB 5 characterizing the
growth of the data fidelity term in (7).

Lemma A.2. ForBj € R™" defined as in lemma 2.4,
_ -l
L:=|B;Bs| = (|A|?+57") .

is the Lipschitz-constant of the gradient of the augmented data-fidelity term }||Bgu — ;3.
Moreover, for any I C [n],

-1
Min(BLY Bs) > (1 Al Amin(A] A
min\ D3 1 5,1)/ + B mln( 1 1)~

Proof. LetA = UXV' denote the SVD of A.
This gives

) AN
B;B; =Vx' (Idm+ 5 ) =V, 2D

so that |[BBs|| = (||A[I72+ 87"
By (21), we have for any z € R”

3> AN A2\ !
z'B;Bsz| = [z VX' (Idm+ B) oViz) > <1 + |5H> 2" VE'ZV g
AP\
= <1 + M) 2" ATAz], (22)
B
implying the second claim. (]

We can now show that all, up to finitely many, iterates (u*),” generated by (9) share the
same support and sign pattern. The proof is standard and follows [9].

Lemma A.3 (Support and sign recovery). Assume >0, 0<g <1, and p<
|A|| =2 + 87". Then the iterates (u"):il satisfy [t — k||, — 0 as k — oo. Moreover, all
iterates, up to finitely many, have the same support and sign pattern.

Proof. Since u < ||[A| 247" =7 we have [u*t'—u¥; >0 as k—oo by [9,
corollary 2.1]. Now, since the range of prox,, is (—oo0, —A,,]U {0} U\, 00), it
follows that the the absolute value of a non-zero entry of uf, for k> 1, is at least
Aug- Thus, if supp(u**!) # supp(u®) we have [[u**! —u¥|, > \,,, and analogously, if
sgn(u*t!) £ sgn(u*) we have [[u**! —u¥|, > 2),,. Thus, since |[[u*™" —uf|, > 0ask —

00, sign and support can change only finitely many times. (|

Proof of theorem 2.7. By lemma A.3 there exists ko such that for all k > k, the support of
u is finite, and support and sign of u is equal to that of u*. Thus, by [9, proposition 2.3], u*
is a fixed point of (9). Denote I = supp(u*) with |I| < s. The definition of proximal operator
in (10) and the Karush—Kuhn—Tucker (KKT) conditions yield

* * -1 * .
asgn(u))|ur|” = —BiBpu* —yy), i€l

15
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and
U o sgn(UETH U = uf — pBI Bt —yp)), i€l
Subtracting the two equations on the index set 7, and denoting 1)(u) = $||u||" , we have
w =)+ ap (Yt = ¢'@) = uf —uf — p(BIBs@t —uY),, (23)

where 1'(u) = (sgn(ui)|u,-\"_l),~e[n] is acting entry -wise. Note that since k > ko we have
sgn(uy) = sgn(us ') and |u* — u ||2 = |Juj — uf||,. A straightforward calculation gives

uj —u; — (BB —u)), = (Id, — M) (uf — uf)

where M = BBBB Taking the inner product of (23) with u k“ —uj, and applying the
Cauchy—Schwartz inequality, we get

[yt —wj |3 — ap (Wit —wp @l — ¢ )))
< 10dg — M|t = uf|l2]lug — uj 2.

Since 1) is twice differentiable, and u**! and u* have the same sign and support, we have for
the second term

(ui ! = up ) = ) = W =) (D - v'w)
i€l
=Y et —up?,
iel

*1and uy, and w"(u) (g — DHu?=2. Since uf — u*, we may

for all k > ko and i € 1. Consequently,

where C! lies between uf

assume ko sufficiently large to guarantee uf > ! SU7,

dmin -2
e =l < a-g( %)

Thus,

I — w3 — g (u — up @) — )

<l—ua(l—q)< “““) >| w w2

On the other hand, since 1 < Mmax (M) ™! < ()\mm(M”))", we have

AP\
g — pMys|| = 1 = pAmin(Mzp) < 1 — M(l + | 5” ) Amin(A] A)),

by lemma A.2. Thus,

1
1— (1 + ”A” ) min(ATAI)
2
I — pa(l — g)(%)"
Together with the RIP of A this yields the claim. (]

o+ —wl < s

[

16
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A.4. Proof of lemma 2.10

Let x € R" be fixed and assume f(0) = 0 without loss of generality. We have

!
prox,, \u, ,(X) = arg min 3 |z — x5 + pAM, s (z)

zeR”

1 S HA .
= arg min 1rﬁ§fn EHZ —x|3 + pAf(@) + EHZ - 1|3

zeRn ZE

arg min inf h(z,z).
ZERM zeR"

By f being lower semi-continuous and bounded from below, we have

inf (z,z) = min h(z,z),
Z 2ZER"

z,2€R"

implying prox,, \u, ; (x) # 0. Denote by & = {x + (1 — 0)z : 6 € [0, 1]} the line connecting X
and 7. Since &; is convex, we have h(Pg,(z),2) < h(z,z), forany z,z € R", with equality if and
only if Pg,(z) = z. Consequently, if (z, z) solves the above program, we havez = 0x + (1 — 0)z
for some @ € [0, 1]. Let us define

(1 -0 uNg?

2 +2t

h(B,7Z) = h(0x + (1 — 0)Z,7) = ( >|x—i|§+u>\f(i).

By the above considerations we have

min h(z,Z) = min min (0, ),

z,Z€R" zZeR" 0€[0,1]
where there is a one-to-one correspondence between solutions (z*,z*) of the left side and
solutions (6*,z*). Moreover, it follows easily that for z € R” fixed,

~ 1
0" = argminh(0,z) = —,
0€[0,1] 1+ %

which is independent of z. Thus, the claim follows since

. CpA 1 |x—2)3 )
argmin A(A*, ) = argmin — ——— "= —"12 | )\ f(Z) = prox, , ;(X).
zgew .2 igg]Rn ) HAS(Z) = ProX ), (%)

A.5. Proof of theorem 2.11

As in the proof of theorem 2.7, the first step is to control support and signs of the iterates.
Recall that, for w* as in (15), we denote by u* = prox 1a H‘H"(wk) the sequence of minimizers
B87q q

attaining g(w¥), by v = wkf — uf, and that by (16) we have

o1 _ _
W = arg min = lw — wE !+ pAT AW — )R+ D w - w2
wern 24 2 (24)
o = argmin 2 u — wi B+ ).
uck”? 2 q

17
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Lemma A.4 (Sign and support stability). Assume j < ||A||72. Then the successive
iterates ||[w"T! — wk||,, |[u*t! — uk||,, and ||v¥FT! — vK||, converge to zero and all but finitely
many iterates u* share the same finite support and the same signs.

Proof. First, note that g is a proper and coercive function. Second, as g(w) = infycrs f (0, W),
for f continuous, we obtain continuity of g at any point w € R" since by coercivity of f
the infimum can be restricted to a finite ball and the infimum of continuous functions on a
compact set is continuous. Consequently, by [9, corollary 2.1] and the assumption on p we
have ||wt! — wk||; — 0, for w1 = prox,, ,(wk — pAT(AW* — y)). By the KKT-conditions
of (24), we obtain

0 =W — w5 + AT (AW —y) + BuvET!,

0= W —w D+ pATAW! —y) + s,
Subtracting the two equations gives ||[v¥T! — v¥||, — 0, and u* = wk — v¥ yields [u**! —

u¥|[; — 0. The second claim follows as in lemma A.3, since u® is a thresholded version of
wh. O

Proof of theorem 2.11.  First note that w* — w* implies via lemma A.4 that u* — u* and
vk — v*. Furthermore, w* is a fixed point of (15), by [9, proposition 2.3]. By lemma A.4 there
exists ko such that for all k > kq the support of u* is finite, and support and sign of u is equal
to that of u*. Denote I = supp(u*). By the KKT-conditions of (24), we get

ieg sign(UD|UF]7" = — (AT (AW — ),
WA apsign@H U = wh— AT AW — ).,

and

LeT 0 = Buw; + WA (AW* —y));,

For v(u) = é||u\|g with ¢/ (u) = (sgn(U;)|u;|?")icp acting entry-wise, this implies
W — W+ ap' (@) — /@) = (W — W) — pA] AW — w) (25)
and
(1 + pB) W — W = (W — We — pA L AW — w). (26)

Repeating the steps as in theorem 2.7, from (25) we get

d i q72 * * *
(1 —au(l —q)( ;) ) W = w3 < ([P — pA[ Al[[WF = w2 (W = Wl

and from (26) we obtain
1+ uB) W = we|la < [[Pre — pALA]| W — wJ2.

Squaring and summing the last two equations, the claim follows by orthogonality of
(WD — w), and (WEH! — wh) e O
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Appendix B. Coherence bound

The following lemma bounds the coherence of B in terms of the coherence of A. The bound

becomes tight for large choices of 3.

Lemma B.1. We have

2 2
coh(By) < (1 + %) coh(A) + @

Proof. Recall that the coherence of a matrix is defined as

Imm,|
coh(M) = max -,
i [lm|2]|myl]2

where m; is the ith column of M. Define Q = Id,, + 24~ so that B; = Q;;"/’A, and let

A =UXV' be the SVD of A. This gives

-1

AAT >
Q' -Id, = (Idm + ) ~1d,=U (Idm + =
‘ g g
Therefore,
>IN o
—1 B
;5 —Idy|| =||{Id, + —Id,| = ,
jor' 10, | (1.4 ) .
forcs = “?—J‘z, and by triangle inequality and Cauchy—Schwarz
- B
b/b)| = |a Q;'a)l < |a/a;| + Hcﬁ\laillz\laﬂlz,

for all columns b;, b; of Bg. By the same argument we compute

. »xT\
Q{)’ 2 - Idm =U ((Idm + B > - Idm UT,

_ B ~1)2
1Q; 2 =1d,||=1—,/—— =1—(cs+ )"/~
’ IAIP + 8

b1z = [laill> — Q5" — Maill> > (c5 + D)2 |lay

giving

This yields

which implies

19
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) - Idm> u'.
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T .
coh(Bg) = max by |

Cp
DL < (14 ep) (coh(A) + ) .
i |[bill2[[bjll2

14 cp

O

For small 3, the bound in lemma B.1 is lossy. However, we can show that the coherence of
Bj converges to the coherence of a conditioned version of A, for 3 — 0.

Lemma B.2. Let A € R™", for m < n, have full rank. We have coh(Bgz) — coh((AAT)_%
A), for 3 — 0.

Proof. Define Q; = Id,, + 24", 50 that B; = Q;;"/°A, and let A = USV " be the SVD of
A. Define C = \/B(AAT)*%A with columns ¢;. First note, that

-1

AAT 1 1 2
le— — = max - —|= p < e
I} i€[m] o o? ) o2 o,
1+ ; 73[ min 1+ 3" e
and
AATY 2
1 1 1
2 — =maX | —F—— — —F—
Q ( g ) i€lml o2 o2
1+ 7% =
2 _ 2
SR A ik i/ P
2 g,
Omin /B+O-m1n min
Consequently,
B AATY ! All2
[(bi.bj) — (eie;)| = e/ AT (Qsl - ( 5 ) )Aej < 52u
and
1
1 AAT\ 2 A
|||bt||2—||ci||2<||bi—ci||2=H QBZ—(—) Ae| < slal.
B Umin

1
Since we have in addition that [|¢; || < v/B[(AAT) 2A|| = /B, ||bi]|> < 1Q;*All < /B, and
Ibill2 > (IAI? + )~ [aill2v/B. we get

(bi,by)  (cic))
[bill2[[bjll2 [leill2llejll2

_ ‘ ({bi. b)) — (i ¢))) lleill2lesll2 + (i ¢;) (Ileillllesll2 — [Ibil2][bi]2)
[bil2[b 12 €|l el
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|(bi, b)) — (i, ¢))l N leill2 [llejll2 = [bjll2] + [lleilla = [[bill2] [Ib)]]2
[[bi[|2[[bj(2 [[bi]|2[[bj]|2

= OB) + O(/B).

We conclude by noting that coh(C) = coh((AAT)‘%A). ([l
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