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Abstract
Models that employ latent variables to capture
structure in observed data lie at the heart of
many current unsupervised learning algorithms,
but exact maximum-likelihood learning for pow-
erful and flexible latent-variable models is al-
most always intractable. Thus, state-of-the-art ap-
proaches either abandon the maximum-likelihood
framework entirely, or else rely on a variety of
variational approximations to the posterior dis-
tribution over the latents. Here, we propose an
alternative approach that we call amortised learn-
ing. Rather than computing an approximation to
the posterior over latents, we use a wake-sleep
Monte-Carlo strategy to learn a function that di-
rectly estimates the maximum-likelihood parame-
ter updates. Amortised learning is possible when-
ever samples of latents and observations can be
simulated from the generative model, treating the
model as a “black box”. We demonstrate its ef-
fectiveness on a wide range of complex models,
including those with latents that are discrete or
supported on non-Euclidean spaces.

1. Introduction
Many problems in machine learning, particularly unsuper-
vised learning, can be approached by fitting flexible para-
metric probabilistic models to data, often based on “local”
latent variables whose number scales with the number of
observations. Once the optimal parameters are found, the
resulting model may be used to synthesise samples, detect
outliers, or relate observations to a latent “representation”.
The quality of all of these operations depends on the appro-
priateness of the model class chosen and the optimality of
the identified parameters.

Although many fitting objectives have been explored in the
literature, maximum-likelihood (ML) estimation remains
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prominent and comes with attractive theoretical properties,
including consistency and asymptotic efficiency (Newey
& McFadden, 1994). A challenge, however, is that ana-
lytic evaluation of the likelihoods of rich, flexible latent
variable models is usually intractable. The Expectation-
Maximisation (EM) algorithm (Dempster et al., 1977) offers
one route to ML estimation in such circumstances, but it
in turn requires an explicit calculation of (expected values
under) the posterior distribution over latent variables, which
also proves to be intractable in most cases of interest. Conse-
quently, state-of-the-art ML-related methods almost always
rely on approximations, particularly in large-data settings.

Denote the joint distribution of a generative model as
pθ(z,x) where z is latent and x is observed, and θ is the
vector of parameters. EM breaks the ML problem into an it-
eration of two sub-problems. Given parameters θt on the tth
iteration, first find the posterior pθt(z|x); then maximise a
lower bound to the likelihood that depends on this posterior
to obtain θt+1. This bound is tight when computed using
the correct posterior, ensuring convergence to a local mode
of the likelihood.

The intractability of pθ(z|x) forces some combination of
Monte-Carlo estimation and the use of a tractable parametric
approximating family which we call q(z|x) (Bishop, 2006).
To avoid repeating the expensive optimisation in finding
q(z|x) for each x, amortised inference trains an encoding
or recognition model, with parametersφ, to map from any x
directly to an approximate posterior qφ(z|x). Examples of
amortised inference models include the Helmholtz machine
(Dayan et al., 1995; Hinton et al., 1995) trained by the wake-
sleep algorithm; and the variational auto-encoder (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014) trained
using reparamerisation gradient methods. With consider-
able effort on improving variational inference (reviewed in
(Zhang et al., 2018)), complex and flexible generative mod-
els have been trained on large, high-dimensional datasets.

However, approximate variational inference poses at least
three challenges. First, the parametric form of the approx-
imate posterior q(z|x), and particularly any factorisations
assumed, must be crafted for each model. Second, methods
such as reparameterisation require specific transformations
tailored to the type of latent variables, whether they are
continuous or discrete, and whether or not the support is
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Figure 1. VAE trained on binarised MNIST digits. Top: mean im-
ages generated by decoding points on a grid of 2-D latent variables.
Bottom three rows show five samples of real MNSIT digit (top),
the corresponding true posteriors (middle) found by histogram and
the approximate posteriors computed by the encoder.

Euclidean. Third, given a flexible generative model, such
as one with conditional dependence modelled using neural
networks, the true posteriors may be irregular in ways that
are difficult to approximate. We illustrate this latter effect
using a standard VAE with two-dimensional z trained on
binarised MNIST digits (Figure 1). The exact posterior may
be distorted or multi-modal, even though only Gaussian
posteriors are ever produced by the encoder.

When inference is only approximate, the M-step of EM may
not increase the likelihood, and so approximate methods
usually converge away from the ML parameter values. The
dependence of learnt parameters on the quality of the pos-
terior approximation is not straightforward, and the error
may not be reduced by (say) approximations with lower
Kullback-Leibler (KL) divergence (Turner & Sahani, 2011);
indeed errors in posterior statistics that enter the objective
function may be unbounded (Huggins et al., 2019).

Here, we propose a novel approach to ML learning in flexi-
ble latent variable models that avoids the complications of
posterior estimation, instead learning to predict the gradient
of the likelihood directly—an approach we call amortised
learning. The particular realisation we develop here, amor-

tised learning by wake sleep (ALWS), requires only that
sampling from the generative model pθ(z,x) be possible,
and that the gradient∇θ log pθ(z,x) be available (possibly
by automated methods), but otherwise does not make as-
sumptions about the latent variable form or distribution. We
test the performance of ALWS on a wide range of tasks and
models, including hierarchical models with heterogeneous
priors, nonlinear dynamical systems, and deep models of
images. All experiments use the same form of gradient
model trained by simple least-squares regression. For image
generation, we find that models trained with ALWS can
produce samples of considerably better quality than those
trained using algorithms based on variational inference.

2. Background
2.1. Model Definition

Consider a probabilistic generative model with parameter
vector θ that defines a prior on latents pθ(z) and a condi-
tional on observations pθ(x|z). In ML learning, we seek
parameters that maximise the log (marginal) likelihood

log pθ(x) = log

∫
pθ(z)pθ(x|z)dz (1)

averaged over a set of i.i.d. data D = {x∗m}Mm=1. One
approach is to iteratively update θ by following the gradient

∆θ(x) := ∇θ log pθ(x) (2)

at each iteration1

2.2. Variational Inference for Learning

For many models of interest, the integral in (1) cannot be
evaluated analytically, and so direct computation of the
gradient is intractable. A popular alternative is to maximise
a variational lower bound on the marginal likelihood defined
by a distribution q(z):

F(q,θ) := Eq(z)[log pθ(z,x)] + H[q] ≤ log pθ(x), (3)

where H[q] is the entropy of q. Thus, the parameter θ can
be updated by following the gradient of F(q,θ) w.r.t. θ

∇θF(q,θ) = ∇θEq(z)[log pθ(z,x)]

= Eq(z)[∇θ log pθ(z,x)]. (4)

When q(z) = pθ(z|x), the lower bound in (3) is tight,
and the gradient in (4) is equal to that of the likelihood
(see Appendix A.3). Variational approximations attempt
to bring q close to pθ(z|x), usually by seeking to min-
imise DKL[q(z)||pθ(z|x)] (which corresponds to maximis-
ing the bound F w.r.t. q). However, although minimising

1We define the likelihood gradient for a single data point here
and throughout; an actual update will typically follow the gradient
averaged over i.i.d data.
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DKL[q(z)||pθ(z|x)] over q ensures consistent optimisation
of a single objective, the resulting gradient in (4) will often
be a poor approximation to the likelihood gradient (2).

2.3. Conditional Expectation and LSR

Our approach is to avoid the difficulties introduced by ap-
proximating pθ(z|x) with q(z) in (4), and instead estimate
the conditional expectation directly using least-squares re-
gression (LSR). Let x and y be random vectors with a joint
distribution ρ(x,y) on Rdx × Rdy . In LSR, we seek a
(vector-valued) function f that achieves the lowest mean
squared error (MSE) Eρ(x,y)

[
‖y − f(x)‖22

]
. The ideal so-

lution is given by fρ(x) := Eρ(y|x)[y], as the problem can
be cast as the minimisation of Eρ(x)

[
‖fρ(x)− f(x)‖22

]
,

where ρ(x) is the marginal distribution of x (see Ap-
pendix A.1). Note that fρ(x) takes a similar form as the
desired (4). In practice, the distribution ρ(x,y) is known
only through a sample {(xn,yn)}Nn=1

i.i.d.∼ ρ(x,y); thus,
LSR can be understood to seek a good approximation of fρ
based on the sample.

2.4. Kernel Ridge Regression

In LSR, as the target fρ is unknown, it is desirable to con-
struct an estimate without imposing restrictions on its form.
Kernel ridge regression (KRR) is a nonlinear regression
method that draws the estimated regression function from
a flexible class of functions called a reproducing-kernel
Hilbert space (RKHS) (Hofmann et al., 2008). The KRR
estimator is found by minimising the regularised empirical
risk

min
f∈H

1

N

N∑
n=1

‖yn − f(xn)‖22 + λ‖f‖2H, (5)

where λ > 0 is a regularisation parameter, and H is
the RKHS corresponding to a matrix-valued kernel κ :
Rdx × Rdx → Rdy×dy (Carmeli et al., 2006). The solution
can be found conveniently in closed-form, which allows a
further simplification detailed in Section 3.2. In this paper,
we use a kernel of the form κ(x, x′) = k(x, x′)Iy, where
Iy is the identity matrix, and k is a scalar-valued positive
definite kernel; therefore, the matrix-valued kernel κ can be
identified with its scalar counterpart k. In particular, in the
scalar output case dy = 1, this choice of κ coincides with
KRR with the scalar kernel k. Importantly, the closed-form
solution f̂λ of KRR in (5) can be expressed as

f̂λ(x∗) = Y(K +NλIN )−1k∗, (6)

where Y is the concatenation of the training targets
[y1, . . . ,yN ] ∈ Rdy×N , K ∈ RN×N is the gram matrix
whose element is (K)ij = k(xi,xj), IN is the identity
matrix and k∗ = (k(xi,x

∗))Ni=1 ∈ RN for a test point x∗.

In the limit of N → ∞ and λ → 0, the solution f̂λ will

achieve the minimum MSE in the RKHS (Caponnetto &
De Vito, 2007). In general, the target fρ may not be in the
RKHS2; nonetheless, if the RKHS is sufficiently rich (or
C0 universal (Carmeli et al., 2010)), the error made by the
estimator Eρ(x)

[
‖f̂λ(x)− fρ(x)‖22

]
will converge to zero

(Szabó et al., 2016, Theorem 7).

3. Amortised Learning by Wake-Sleep
3.1. Gradient of Log-Likelihood

As stated above and derived in Appendix A.3, the log-
likelihood gradient function evaluated on observation x
at iteration t (with current parameters θt) can be written

∆θt(x) = ∇θ log pθt(x)
∣∣
θt

= ∇θF(pθt(z|x),θ)
∣∣
θt
, (7)

where the gradient in the second line is taken w.r.t. the
second argument of F ; the posterior distribution is for a
fixed θ at the current θt.

We want to directly estimate of this gradient without explicit
computation of the posterior. Inserting the definition from
(4) into (7) we have,

∆θt(x) = Epθt (z|x)

[
∇θ log pθ(z,x)

∣∣
θt

]
(8)

= ∇θEpθt (z|x)[log pθ(z,x)]
∣∣
θt

= ∇θJθ(x)
∣∣
θt
. (9)

where Jθ(x) := Epθt (z|x)[log pθ(z,x)]. Note that the func-
tion Jθ(x) changes with iteration due to the dependence on
pθt(z|x). It can be regarded as an instantaneous objective
for ML learning starting from θt. Neither (8) nor (9) can be
computed in closed form, and therefore need to be estimated.
We refer to ML learning via the estimation of ∆θt(x) either
through Jθ by (9) or directly by (8) as amortised learning.
The difference between the two equations lies purely in im-
plementation: The former estimates the high-dimensional
∆θt(x) directly, whereas the latter implements the same
computation by differentiating Jθ(x). We term an estimator
of Jθ a gradient model, as it retains information about θ and
is used to estimate the gradient ∆θt(x). In the next section,
we develop a concrete instantiation of amortised learning.

3.2. Training KRR Gradient Model by Wake-Sleep

As discussed in Section 2.3, LSR allows us to estimate the
conditional expectation of an output variable given an in-
put. Thus, although the gradient in (8) (or in (9)) involves
an intractable conditional expectation, we can obtain an
estimate of the gradient ∆θt(x) by regressing from x to

2In this case, fρ is only assumed to be square-integrable with
respect to ρ
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∇θ log pθ(z,x) (or log pθ(z,x)). Any reasonable regres-
sion model, e.g., a neural network, could serve this purpose,
but here we choose to use KRR introduced in Section 2.4.
Other possible forms of gradient model are discussed in
Appendix B.1.

The expression in (8) leads to the following LSR problem

min
f∈H̃

1

N

N∑
n=1

‖∇θ(yθ,n)
∣∣
θt
− f(xn)‖22 + λ‖f‖2H̃, (10)

where yθ,n = log pθ(zn,xn), H̃ is an RKHS and
{(zn,xn)}Nn=1 ∼ pθt . Brehmer et al. (2020) also noticed
that log-likelihood gradient can be obtained by LSR. How-
ever, regressing to a vector-valued∇θ log pθ can be expen-
sive, and evaluating the target yθ,n on all (zn,xn) is slow.
Alternatively, we can use (9) and find an estimator for the
scalar-valued Jθ that keeps the dependence on θ and then
evaluate its gradient by automatic differentiation. Thus, we
construct an estimator by

Ĵθ,γ = arg min
f∈H

1

N

N∑
n=1

|yθ,n − f(xn)|2 + λ‖f‖2H, (11)

where H is the RKHS induced by a kernel kω(·, ·) with
hyperparameters ω, and γ = {ω, λ}. For each data point
x∗ ∈ D, the estimate of Jθ(x∗) is

Ĵθ,γ(x∗) = αθ,γ · k∗ω, (12)

αθ,γ = yθ (Kω + λNIN )
−1
, (yθ)n = log pθ(zn,xn)

Kω,i,j = kω(xi,xj), k∗ω,j = kω(xj ,x
∗)

where IN is the identity matrix of size N ×N . Note that
the dependence of Ĵθ,γ on θ is only through evaluations of
log pθ(z,x) on samples drawn from pθt for fixed θ = θt.
The gradient ∆θt(x) is then estimated as

∆̂θt,γ(x) := ∇θĴθ,γ(x)
∣∣
θt
.

In general, a good estimator of Jθ may not yield a reliable
estimate of its gradient ∇θJθ; however, for the KRR esti-
mate, taking the derivative of Ĵθ,γ w.r.t. θ is equivalent to
replacing yθ in (12) with∇θ(yθ)|θt , which is the solution
for the optimisation in (10), with H̃ being a vector-valued
RKHS given by a kernel κω = kωI (see Section 2.4). We
show in Appendix A.2 that, under mild conditions, the target
of the regression Epθt (z|x)

[
∇θyθ,n

∣∣
θt

]
is square-integrable

under pθt(x) for common generative models.

In summary, learning proceeds according to the follow-
ing wake-sleep procedure: at the tth step when θ = θt,
the gradient model is first trained using “sleep samples”
(zn,xn) ∼ pθt and evaluations log pθ(zn,xn), keeping the
dependence on θ; then the gradient model is applied to real
data (“wake” samples) x∗ ∈ D to produce ∆̂θt,γ(x∗) by

differentiating Ĵθ,γ and evaluating at θt. See Algorithm 1.
Two points are worth emphasis: (a) The algorithm does
not require explicit computation or approximation of the
posterior, and (b) We only need samples from the model
pθ(z,x) and differentiable evaluations of log pθ(z,x).

3.3. Exponential Family Conditionals

In many common models, the conditional pθ(x|z) lies in
the exponential family (e.g. Gaussian, Bernoulli), and we
can exploit this structure to simplify the estimation of Jθ.
In this case, the log joint can be written as

log pθ(z,x) = log pθ(x|z) + log pθ(z)

= ηθ(z) · s(x)− logZθ(z) + log pθ(z)

= ηθ(z) · s(x)−Ψθ(z)

where ηθ(z), s(x) and Zθ(z) are, respectively, the natural
parameter, sufficient statistics and normaliser of the like-
lihood, and Ψθ := logZθ(z) − log pθ(z). By taking the
posterior expectation, Jθ(x) in (9) becomes

Jθ(x) = Epθt [ηθ(z)]︸ ︷︷ ︸
hη

θ (x)

·s(x)− Epθt [Ψθ(z)]︸ ︷︷ ︸
hΨ
θ (x)

(13)

where pθt stands for pθt(z|x). Therefore, for exponential
family likelihoods, the regression to log pθ(z,x) in (11) can
be replaced by two separate regressions to ηθ(z) and Ψθ(z),
which are functions of z alone. The resulting estimators
ĥηθ,γ and ĥΨ

θ,γ are combined to yield

∆̂θt,γ(x) = ∇θ
[
ĥηθ,γ(x) · s(x)

]∣∣∣
θt
−∇θĥΨ

θ,γ(x)|θt ,

where the Jacobian vector product applies to the first term.

3.4. Kernel Structure and Learning

The kernel kω used in the gradient model affects how well
∆θt(x) is estimated. It can be made more flexible by aug-
menting with a neural network as in (Wilson et al., 2016;
Wenliang et al., 2019)

kω(x,x′) = κσ(ψv(x),ψv(x′))

where κσ is a standard kernel (e.g. exponentiated-quadratic)
with parameter σ (e.g. bandwidth), and ψv is a neural net-
work with parameter v, so ω = {σ,v}. Other details of the
kernel structure are described in Appendix B.2.

The gradient model parameter γ = {ω, λ} can be learned
to further minimise the MSE in (11) using a scheme of
cross-validation by gradient descent (Wenliang et al., 2019).
Specifically, we generate two sets of sleep samples from
pθ; we use one set to compute αθ,γ in closed form; then,
on the other set {(z′l,x′l)}Ll=1, we compute the MSE be-
tween the estimator Ĵθ,γ(x′l) and the ground truth value
log pθ(z′l,x

′
l), and minimise this by gradient descent on γ.

The full ALWS procedure is presented in Algorithm 1.
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Algorithm 1: Amortised learning by wake sleep
input :Dataset D, gradient model parameters γ,

generative model log pθ(z,x), or ηθ and Ψθ
with parameters θ initialised s.t. pθ(x)
covers/dominates the data distribution, max
epoch and any convergence criteria.

while θ not converged within max epoch do
Sleep phase: train gradient model

Sample {zn,xn}Nn=1 ∼ pθ
if p(x|z) is not in exponential family then

Find Ĵθ,γ(·) by computing αθ,γ in (12)
else

Find ĥηθ,γ(·) and ĥΨ
θ,γ(·) similar to (12)

Ĵθ,γ(·) = ĥηθ,γ(·) · s(x)− ĥΨ
θ,γ(·) in (13)

Sleep phase: update γ
Sample {z′l,x′l}Ll=1 ∼ pθ
Compute dl := log pθ(z,x)

Compute Eγ = 1
L

∑L
l=1(Ĵθ,γ(x′l)− dl)2

Update γ ∝ ∇γEγ
Wake phase: update θ

Sample {x∗m}Mm=1 ∈ D
J̄θ = 1

M

∑M
i Ĵθ,γ(x∗m)

Update θ ∝ ∇θJ̄θ
end
return :θ

3.5. Dealing with Covariate Shift

The gradient model is to be used to estimate ∆θt(x) on
x∗ drawn from an underlying data distribution p∗, but it
is trained using sleep samples from pθt . This mismatch in
input data distribution for training and evaluation is known
as covariate shift (Shimodaira, 2000).

Here, to ensure that the gradient model performs reasonably
well on p∗, we initialise pθ(x) to be overdispersed relative
to p∗ by setting a large noise in pθ(x|z). Since ML estima-
tion minimises DKL[p∗‖pθ], which penalises a distribution
pθ that is narrower than p∗, we expect the noise to continue
to cover the data before the model is well trained. For im-
age data only, we also apply batch normalisation in ψw of
the kernel. We find these simple remedies to be effective,
though other more principled methods, such as kernel mean
matching (Gretton et al., 2009) and binary classification
(Gutmann & Hyvärinen, 2010; Goodfellow et al., 2014),
may further improve the results.

4. Experiments
We evaluate ALWS on a wide range of generative models.
Details for each experiment can be found in Appendix C. 3

3Code is at github.com/kevin-w-li/al-ws

Figure 2. Gradient estimated using amortised learning and varia-
tional inference. The true gradients are approximated by impor-
tance sampling.

Figure 3. Learning to generate Gabor filters given a 1-D circular
uniform prior. Top images show samples generated by latents
separated by fixed rotation on the circle. For VAE, a 2-D Gaussian
prior was used, and the images are generated by latents on the unit
circle. S-VAEs cannot reliably learn the filters. The errors below
show the squared distance between generated images and data at
each orientation. For each method, an angle offset and direction
are chosen to minimise the total error.

4.1. Parameter Gradient Estimation

First, we demonstrate that KRR can estimate ∆θt(x) well
on a simple toy generative model described by

z1, z2 ∼ N (0, 1), x|z ∼ N (softplus(b · z)− ‖b‖22, σ2
x).

The training data are 100 data points from the model given
b = [1, 1], σx = 0.1. we estimate the gradients of the
log-likelihood w.r.t. b evaluated at a grid of b by ALWS,
and compare them to estimates using importance sampling
(“truth”) and a factorised Gaussian posterior that minimises
the forward KL for each x. For ALWS, we used a Gaus-
sian kernel with a bandwidth equal to the median distance
between samples generated for each b, and set λ = 0.01.
For variational inference, we assumed a factorised Gaussian
posterior for each sample of x, and optimise posterior pa-

github.com/kevin-w-li/al-ws
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Figure 4. Learning hierarchical model with discrete and continuous
latents. From left to right: data sample, component probabilities,
samples of the first latent distribution and samples of generated
data. Colours correspond to different components

rameters until convergence. ALWS tends to estimate better,
especially for small b (Figure 2). For the smallest σx, the
KRR estimates are noisier, whereas variational inference
introduces greater bias.

4.2. Non-Euclidean Priors

The prior p(z) may capture special topological structure in
the data. For instance, a prior over the hypersphere can be
used to describe circular features (Davidson et al., 2018;
Xu & Durrett, 2018). Training models with such a prior is
straightforward using ALWS, while learning by amortised
inference requires special reparameterisation for a posterior
on the hypersphere, such as the von-Mises Fisher (vMF)
used in the S-VAE (Davidson et al., 2018; Xu & Durrett,
2018). We fit a model with uniform circular latent and
neural-network output:

z = [cos(a), sin(a)], p(a) = U(a; (−π, π)),

p(x|z) = N (x; NNw(z), σ2
xI),

(where U is a uniform distribution) on a data set of Gabor
wavelets with uniformly distributed orientations. As shown
in Figure 3, ALWS learns to generate images that closely
resemble the training data. A fixed rotation around the latent
circle corresponds to almost a fixed rotation of the Gabor
wavelet in the image. The VAE with a 2-D Gaussian latent
also generates good filters given latents on the circle, but
the length of the filter varies with rotation. Surprisingly, S-
VAE is not able to learn on this dataset, the vMF posterior
is almost flat for any input image. This hints at potential
optimisation issues with the complicated reparameterisation.
This advantage also extends to priors over the hyperbolic
space, which are used to capture tree-like hierarchical struc-
tures (Nagano et al., 2019; Mathieu et al., 2019).

4.3. Hierarchical Models

Rich hierarchical structures in the data can be captured
with multiple layers of latents. Provided that samples can
be drawn from the hierarchical model and the joint log-
likelihood evaluated, ALWS extends straightforwardly to
hierarchies, even with mixed discrete and continuous latents.
The pinwheel distribution (Johnson et al., 2016; Lin et al.,

truth ALWS VAE

Figure 5. Feature identification. Left, true basis used to generate
images. Middle, basis recovered by ALWS. Right, basis recovered
by VAE. The filters are arranged according to correlations with the
true basis.

2018) has five clusters of distorted Gaussian distributions
(Figure 4), and can be described by the following model:

p(z1) = Cat(z1;m), p(z2|z1 = k) = N (z2;µk,Σk),

p(x|z2) = N (x; NNw(z2),Σx),

where Cat is the categorical distribution. The parameters
are the logitsm in 10 dimensions, the means and covariance
matrices of the component distributions {µk,Σk}10

k=1, the
weights w in NN, and the diagonal covariance Σx. The
logits m are penalised according to a Dirichlet prior, and
{µk,Σk}10

k=1 by a normal-Wishart prior. After training
with ALWS, the categorical distribution correctly identifies
the five components, and the generated samples match the
training data. We compare these samples with those recon-
structed from a Bayesian version of the model trained by
structured inference network (SIN) (Lin et al., 2018)4. A
three-way maximum mean discrepancy (MMD) test (Boun-
liphone et al., 2016) finds that samples from the two mod-
els are equally close to the training data (p = 0.514,
N = 1, 000 samples). Details are in Appendix C.3.

4.4. Feature Identification

Independent Components. Learning informative fea-
tures from complex data can benefit downstream tasks. We
use ALWS to identify features from data generated by

p(zi) = Lap(zi; 0, 1), p(x|z) = N (x;Wz, σ2I),

where Lap is the Laplace distribution, σ = 0.1 and basis
W contains independent components of natural images
(Hateren & Schaaf, 1998) found by the FastICA algorithm
(Hyvärinen & Oja, 2000). Since this model is identifiable,
we perform model recovery from a random initialisation of
W using ALWS and compare with a VAE. ALWS clearly
finds better features, as shown in Figure 5. On generated
samples, a three-way MMD test favours ALWS over the
Laplace-VAE (p < 10−5) based on 10, 000 samples. Details
are in Appendix C.4.

4github.com/emtiyaz/vmp-for-svae

github.com/emtiyaz/vmp-for-svae
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Figure 6. Beta-Gamma Matrix Factorisation. Top, mean squared
error across 1,000 test inputs compared to G-Rep and VAE. Bottom,
examples of real data, reconstructed and denoised samples.

Matrix Factorisation. A more accurate data model may
improve performance on a downstream task that relies on in-
ference of associated latent variables. Following (Ruiz et al.,
2016), we test post-learning inference on a probabilistic
non-negative matrix factorisation model:

p(zi) = U(zi; 0, 1), p(xi|z) = Bernoulli (xi; x̄i)

x̄i = sigmoid (wi · logit(z) + bi) .

For each element of eachwi, we place a penalty consistent
with a Gamma(w; 0.9, 0.3) prior on each entry and learnW
and b. We include b to the model trained by ALWS as it pre-
vents samples with opposite colour polarity to be generated,
which creates a more severe covariate shift that harms the
gradient model. We evaluate the models on reconstructing
and denoising handwritten digits from the binarised MNIST
dataset. To recover the original image given a clean or noisy
x∗, we generate x given the posterior mode found by max-
imising log p(z,x∗) over z. We compare with a Bayesian
version of the model trained by generalised reparameteri-
sation Ruiz et al. (2016) and a VAE-like model in which
the decoder has the generative structure as above and the
posterior is a reparametrised Beta distribution. The results
for both tasks are depicted in Figure 6. The leftmost panels
show the histograms of MSE on 1 000 test images, and the
other panels show examples of 25 test images and recon-
structions by each method. ALWS achieved significantly
lower error (p < 10−10 for both a two-tailed t-test and a
Wilcoxon signed-rank test).

Figure 7. Modelling blowfly population time series. Black, train-
ing data. Coloured, samples for an extended time period drawn
from trained model.

4.5. Neural Processes

The neural process (NP) (Garnelo et al., 2018) is a model
that learns to infer over functions. Conceptually, the com-
putational goal of NPs is similar to predictive inference in
Gaussian Processes, but without defining an explicit prior
over functions. We review NPs in more detail and illus-
trate how they can be trained by ML using ALWS in Ap-
pendix C.5. We compared ALWS with the original vari-
ational learning method on a toy problem. NP trained by
ALWS produces better prediction and uncertainty estimates
on test inputs. See Figure 10 in Appendix C.5.

4.6. Dynamical Models

In fields such as biology and environmental science, the be-
haviour of complex systems is often described by simulation-
based dynamical models. Estimating parameters for these
models from data is crucial for prediction and policy-
making. (Lintusaari et al., 2016; Sunnåker et al., 2013;
Kypraios et al., 2017)

A dynamical model can be expressed, in discrete time, as

zt = lθ(z1:t−1,x1:t−1,ut, εt), xt = oθ(zt) + et

where lθ describes a latent process that can depend on a
control input ut, a noise source εt and the history of latents
z1:t−1 and measurements x1:t−1. The function oθ maps
the latent zt to measurement with noise et. For ALWS,
we need that pθ(zt, εt|z1:t−1,x1:t−1,ut) and pθ(xt, et|zt)
are tractable so that∇θ log p(z1:T ,x1:T ) can be evaluated,
where T is the length of the data. However, learning using
approximate inference may be challenging due to complex
dependencies between latent variables and across time.

Here, we fit the parameters of two dynamical models: the
Hodgkin-Huxley (HH) model (Pospischil et al., 2008) on
the membrane potential of a simulated neuron, and an eco-
logical model (ECO) on blowfly data (Wood, 2010). The
HH equations describe the membrane potential and three
ion-channel state variables of a neuron that follow compli-
cated nonlinear transitions. Details of the experiment are in
Appendix C.6. Results in Figure 12 show that the trained
model can not only reproduce the training data well but also
predict the response given new inputs ut. ECO describes
nonlinear and non-Gaussian dynamics and has discrete and
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continuous latent variables. Fitting ECO on blowfly data
was used to validate approximate Bayesian computation
(ABC) methods (Park et al., 2016). The model trained with
ALWS can simulated sequences very close to data Figure 7,
and are visibly closer than sequences from the model trained
with ABC (Park et al., 2016, Figure 2b).

4.7. Sample Quality

Finally, we train deep models of images and test sample qual-
ity. We chose six benchmark datasets: the binarised and orig-
inal MNIST (LeCun et al., 1998) (B-MNIST and MNIST,
respectively), fashion MNIST (Fashion) (Xiao et al., 2017),
natural images (Natural) (Hateren & Schaaf, 1998), CIFAR-
10 (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015).
The original un-binarised MNIST is known to be difficult for
most VAE-based methods (Loaiza-Ganem & Cunningham,
2019). Natural images consist of grey-scale images from
natural scenes. All images have size 32 × 32 with colour
channels. For ALWS, we test two variants. In ALWS-F,
gradient model parameters γ are fixed. In ALWS-A, γ
is adapted as described in Section 3.4 except for λ which
is fixed at 0.1. Fixing λ improved quality for the higher-
dimensional CIFAR-10 and CelebA, but lowered quality for
Natural and did not affect much on the other datasets.

We compare these methods with four other approaches:
the vanilla VAE (Kingma & Welling, 2014), VAE with
a Sylvester (orthogonal) flow as an inference network
(van den Berg et al., 2018) (Syl-VAE)5, semi-implicit varia-
tional inference (Yin & Zhou, 2018) (SIVI)6, and reweighted
wake-sleep (Bornschein & Bengio, 2015). Each algorithm
has the same generative network architecture as in DC-
GAN7 with the last convolutional layer removed. We also
run WGAN-GP (Gulrajani et al., 2017)8 for reference, al-
though it is not trained by ML methods. Each algorithm
is run for 50 epochs 10 times with different initialisations,
except for SIVI where we trained for 1000 epochs with a
lower learning rate for stability. To test the generative qual-
ity, we compute both the Fréchet Inception Distance (FID)
(Heusel et al., 2017) and Kernel Inception Distance (KID)
(Binkowski et al., 2018) on 10,000 generated images. The
results are shown in Figure 8. According to FID, ALWS-
A is the best ML method for binarised MNIST, Fashion,
and CIFAR-10. Notably, both ALWS-A and ALWS-F have
much smaller FID and KID on MNIST and Fashion than
other ML methods. WGAN-GP did not produce a good
score on CIFAR-10 within 50 epochs but becomes the best
model for all datasets with further training. Samples are

5github.com/riannevdberg/sylvester-flows
6github.com/mingzhang-yin/SIVI
7pytorch.org/tutorials/beginner/dcgan_

faces_tutorial.html
8github.com/caogang/wgan-gp

shown from Figure 15 to Figure 20 in Appendix C.7 with
additional experiments to show the effectiveness of ALWS.

5. Related Work
5.1. Amortised Variational Inference

Using F(q,θ) as the objective for learning θ, the gradient
for θ is given by an intractable posterior expectation. The
large majority of learning algorithms based on amortised
variational inference use Monte Carlo estimators for the
gradient. The Variational auto-encoder (VAE) (Kingma &
Welling, 2014; Rezende et al., 2014) parametrises qφ(z|x)
by simple distributions using reparameterised samples to
obtain gradients for ψ. Approximate posteriors may also be
incorporated into tighter bounds on log pθ(x) by reweight-
ing (Burda et al., 2016; Bornschein & Bengio, 2015; Le
et al., 2019), although with some loss of gradient signal
(Rainforth et al., 2018). More expressive forms of qφ can
be formed by invertible transformations (normalising flows)
(Rezende & Mohamed, 2015; Kingma et al., 2016; van den
Berg et al., 2018)) that allow H[qφ] to be computed easily, or
by non-invertible mappings (implicit variational inference),
which requires estimating H[qφ] or its gradient w.r.t. φ (Shi
et al., 2018; Li & Turner, 2018; Yin & Zhou, 2018; Huszár,
2017). Reparametrising posterior samples may require non-
trivial methods (Jang et al., 2017; Vahdat et al., 2018; Rolfe,
2017; Ruiz et al., 2016; Figurnov et al., 2018). On the other
hand, amortised learning focuses exclusively on estimating
the gradient for ML learning, making no assumptions on the
type of latent variables.

Our approach is related to at least two other algorithms
inspired by the original Helmholtz machine (HM) (Dayan
et al., 1995; Hinton et al., 1995). The distributed distribu-
tional code HM (DDC-HM) (Vértes & Sahani, 2018) rep-
resents posteriors by expectations of pre-defined and finite
nonlinear features, which are used to approximate ∆θt(x)
by linearity of expectation. ALWS differs from DDC-HM in
two ways. First, our gradient model integrates the inferential
model and the linear readout for ∆θt(x) in DDC-HM using
adaptive and more flexible KRR. Second, using (9) avoids
explicit computation of ∇θ log pθ and makes ALWS easily
applicable to more complex generative models. Reweighted
wake-sleep (RWS) (Bornschein & Bengio, 2015) addressed
covariance shift by training an inferential model to increase
the likelihood of not only sleep z given sleep x as in the
HM, but also weighted posterior samples given data x∗.
ALWS does not make assumptions about the posterior dis-
tributions, and we found that simple strategies mitigated
covariate shift in practice, but this is a point that deserves
further investigation.

https://github.com/riannevdberg/sylvester-flows
https://github.com/mingzhang-yin/SIVI
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/caogang/wgan-gp
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Figure 8. FID and KID scores (lower is better) for different datasets and methods. Red dot is the score for a single run. Bars are medians
of the dots for each method. Short bars on KID dots shows standard error of the estimate. All models are trained for 50 epochs.

5.2. Training Implicit Generative Models

Implicit generative models, including generative adversarial
networks (GANs) (Goodfellow et al., 2014) and simulation-
based models considered by approximate Bayesian compu-
tation (ABC) (Tavaré et al., 1997; Marin et al., 2012), do not
have an explicitly defined likelihood function, but can be
trained using simulated data. Amortised learning requires
an explicit joint likelihood function pθ(x, z), but can also
train simulation-based generative models (Section 4.6). In
GANs, the generator is improved by a discriminator that is
concurrently trained to tell apart real and generated samples.
The approach is able to synthesise high-quality samples in
high dimensions. However, the competitive setting can be
problematic for convergence, and the discriminator needs to
be carefully regularised to be less effective at its own task
but more informative to the generator. (Arjovsky et al., 2017;
Gulrajani et al., 2017; Arbel et al., 2018; Mescheder et al.,
2018). In amortised learning, a better gradient model al-
ways helps when training the generative model. Importantly,
amortised learning can directly train real-world simulators
for which samples of x are not differentiable w.r.t. θ, such as
the Galton board, where GANs are not directly applicable.

Rather than performing maximum likelihood estimation,
ABC estimates a posterior of θ using simulated data and
a chosen prior on θ. Amortised learning can be seen as
maximum likelihood learning based on simulations, since
the gradient model is trained using data from the genera-
tive model. In particular, ALWS is similar to Kernel-ABC
(Nakagome et al., 2013) in which the posterior is found by
weighting prior samples using KRR on pre-defined sum-
mary statistics. The kernel recursive ABC (Kajihara et al.,
2018) iteratively updates the prior over θ by herding from a
kernel embedding (Song et al., 2009) of the posterior, con-
verging to a maximum likelihood solution. ALWS does not
maintain a distribution of θ, but iteratively updates them by
gradient methods so that the model distribution approaches
the data distribution. Also, ALWS performs well even when

the number of parameters is large for which traditional ABC
methods are likely to be expensive.

6. Discussion
Direct estimation of the expected log-likelihood and its gra-
dient in a latent variable model circumvents the challenges
and issues posed by explicit approximation of posteriors.
The KRR gradient model is consistent, easy to implement,
and avoids the need for explicit computation of derivatives.
However, we observe the following issues with the cur-
rent instance of amortised learning. First, its computational
complexity limits the number of sleep samples that can be
used to train the gradient model and thus the quality of the
approximation. Techniques such as random feature- and
Nystrom-approximations could make KRR more efficient.
Second, the KRR prediction is a linear combination of the
set {∇θ log pθ(zn,xn)}Nn=1, but the true gradient function,
which can be much higher-dimensional than N , may lie
outside this span—an issue that might be compounded by
covariate shift. Further, hyper-parameter learning using the
meta-learning method described in Section 3.4 improves
the estimation of Jθ rather than ∇θJθ, which might ex-
plain why adapting λ on some tasks worsens the results.
Therefore, alternative amortised learning models may be
worth future exploration. Nonetheless, we have found here
that ALWS based on KRR provides accurate parameter esti-
mates in many settings where approximate inference-based
approaches appear to struggle.

ALWS can be extended to training generative models of
other types of data, such as graphs, as long as an appro-
priate kernel is used. Another useful extension is to train
conditional generative models, which we explored briefly
in the neural processes experiment. In this case, the gradi-
ent model needs to depend on any conditioning variables
(or sets). Finally, while we used LSR to approximate the
gradient of the model w.r.t θ, other useful quantities could
also be estimated in a similar fashion Brehmer et al. (2020).
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