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Abstract

This paper investigates the incentives that drive advantageous positions in sequential

competitions. Sequential competitions have been shown to have either a first- or

last-mover advantage. In contrast, this paper illustrates a general sequential-move

competition where the first- and last-moving agents are the least profitable while the

middle-moving agent is guaranteed to earn the highest possible payoff. This result

provide for a new intuition about the underlying incentives in a sequential decision

structure which are tested using a multiple-round laboratory experiment. Experimental

data aggregated across all rounds support the prediction of a first- and last-mover

disadvantage along with a middle-mover advantage. Furthermore, the data suggest

that subjects learn as they gain experience with this competition. In this manner,

a sequential decision structure with inexperienced agents will benefit the first- and

middle-moving agents, whereas the same decision structure with experienced agents

will only benefit the middle-moving agents.
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1 Introduction

This paper studies an environment where competitors make publicly observable choices

according to an exogenously determined sequence. Previous research suggests that sequential

competitions will endow an advantage to certain positions in the decision sequence. In

most sequential settings, the advantageous position is either the first-mover or the last-

mover.1 The intuition behind these results is relatively straightforward. In some settings,

first-movers can capitalize on a scarce resource, capture a desirable location, narrow down the

competition, or develop a patented product, whereas in other scenarios, last-movers can learn

about unknown market conditions or free-ride off of previous investments. However, a natural

question is whether all sequential competitions can be classified as fair (where no inherent

advantageous position exists), first-mover advantageous, or last-mover advantageous.

The main objective of this paper is to demonstrate a sequential competition which

exhibits both a first- and last-mover disadvantage. In this manner, sections 3 and 4 produce

theoretical and experimental results which suggest a “middle-mover” advantage. The model

presents an exogenously determined sequential competition where agents choose perfectly

observable actions with the motivation of maximizing their symmetric and publicly-known

payoff function (section 3.1). The Limiting Logit Equilibrium (McKelvey & Palfrey 1995)

of this highly symmetric model predicts that agents will earn different payoffs based solely

on their position in the decision sequence (Results 1 and 2). In contrast with the previous

literature, this paper’s equilibrium predicts that first- and last-movers will earn the lowest

expected payoffs (first- and last-mover disadvantage), while the middle-mover is predicted

to earn the maximum possible payoff (middle-mover advantage). Intuitively, the equilibrium

suggests that every agent’s choice is influenced by two combating incentives. The “upstream”

and “downstream” incentives encourage agents to make choices that adversely affect early-

moving and late-moving agents, respectively (section 3.4).

Section 4.1 describes a laboratory experiment used to test the prediction of a middle-

mover advantage. Subjects interact in a sequential voting competition for 20 rounds where,

in each round, subjects are randomly assigned a new group and a new position in the decision

sequence. Section 4.2 discusses the experiment’s main findings which can be summarized with

two points. First, the data support the model’s prediction of a middle-mover advantage along

with a first- and last-mover disadvantage. Second, the repeated context of the experiment

1First- or last-mover advantages are predicted in situations with scarce resources (Main 1955; Prescott &
Visscher 1977), learning behavior (Spence 1981; Spence 1984), patents (Gilbert & Newbery 1982; Bresnahan
1985), asymmetric costs (Schmalensee 1982; Klemperer 1987), signaling incomplete information (Banerjee
1992; Bikhchandani et al. 1992), free-riding (Ghemawat & Spence 1985; Tellis & Golder 1996), and within
evolutionary settings (Poulsen 2007).
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unearths a relationship between a subject’s experience with the competition and that subject’s

responsiveness to the two combating incentives. Inexperienced subjects respond primarily to

the downstream incentive whereas experienced subjects are more equally responsive to both

the upstream and downstream incentives. The relationship between experience and behavior

refines the expected outcome in this type of sequential competition. More specifically,

a sequential competition with inexperienced agents greatly disadvantages the last-movers

whereas the same competition with experienced agents is disadvantageous to both the first-

and last-movers. Section 4.4 summarizes all of the experimental results.

2 Literature Review and Motivation

Strategic behavior in sequential competitions has been studied in a variety of contexts.

This paper contributes to four strands of literature focusing on firm-choices in a sequential-

move market, sequential contests, herding behavior (or information cascades), and sequential

voting.

A large literature focuses on identifying profitable positions in a marketplace with sequential

firm decision-making. Markets with first-mover advantages are predicted when firms can

learn through experience (Spence 1981; Spence 1984), impose R&D patents (Gilbert &

Newbery 1982; Bresnahan 1985), accumulate scarce resources (Main 1955; Prescott & Visscher

1977), or enforce switching costs on consumers (Schmalensee 1982; Klemperer 1987). These

works are summarized in Lieberman & Montgomery’s 1988 award-winning paper entitled

“First-mover advantages”.2 Last-mover advantages are less-commonly predicted but are

expected in markets where rival firms can free-ride, in one way or another, off of initial

investments made by early-moving firms (Ghemawat & Spence 1985; Tellis & Golder 1996).

These works are summarized in Lieberman & Montgomery’s follow-up 1998 seminal paper

entitled “First-mover (dis)advantages”. The focus on first-mover advantages or disadvantages

has garnered thousands of publications. However, to the best of my knowledge, none of these

papers have systematically explored an environment where both incentives exist, which is the

goal of this current paper.

The closest previous work suggesting a middle-mover advantage is Lilien & Yoon’s (1990)

empirical investigation of the success rates of 112 markets with newly introduced industry-

products. On average within each market they find that “Success is lower for the first

and second entrants; higher for third and fourth; and again lower for fifth and sixth, and

subsequent entrants” (pg 578, Result 2). While their finding aligns with “a common premise

of entry timing models in the economic literature” (pg 570, Proposition 4), Lilien & Yoon’s

2Bettis (1998) explains the award selection process and outcome.
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result lacks a formal theory or substantiating explanation. This current paper aims to provide

intuition for empirical works that find a middle-mover advantage.

In contest theory, agents typically make irreversible investments towards one objective

in an effort to claim an available prize. Sequential all-pay contests (or auctions) are richly

studied because there exists many real-world applications such as political lobbying (Becker

1983), patent provision (Wright 1983), sales (Varian 1980), R&D races (Dasgupta 1986),

athletics (Frick 2003), job promotions (Rosen 1986), and wars of attrition (Bulow & Klemperer

1999). Settings have been studied where agents have complete information about each

player’s valuation of the prize (Hillman & Riley 1989; Baye et al. 1993) as well as settings

where agents have private valuations and only know the distribution of agent valuations for

a given population (Amann & Leininger 1996; Moldovanu & Sela 2001). Contests may be

designed to allocate multiple prizes (Barut & Kovenock 1998; Moldovanu & Sela 2006).3

The outcome of a sequential all-pay contest will be affected by many components such as

the information available, the number of agents, heterogeneous abilities, the number or

type of prizes available, participation constraints, and so on. This current paper holds

constant these important concerns in order to solely focus on the relationship between

an agent’s expected payoff and that agent’s position in the decision order of a sequential

contest. Furthermore, instead of modeling agents that invest different levels of a resource

(effort) toward one objective, this paper’s model could be viewed as one where agents direct

their (exogenously determined) level of a resource towards multiple objectives.4 From this

perspective, this paper’s model can be described as a particular sequential all-pay contest

with n homogeneous agents competing over n−1 identical prizes with complete information.

There also exists a rich literature investigating decision structures with observable and

sequential actions that produce information cascades or “herd” behavior. Banerjee (1992)

and Bikhchandani et al. (1992) famously model a sequential decision structure where each

agent is privately endowed with a signal suggesting which action is optimal. After an agent

chooses her action, this action is revealed to all of the agents who choose after her. The

revelation of early actions influences later-moving agents to herd in the same direction as

the earlier agents. Modeling agents with private information is commonly used to elicit

herd behavior in sequential decision structures (Wit 1999; Dekel & Piccione 2000; Battaglini

2005). The model presented in this paper imposes a similar dynamic to these papers, in that

3This research analyzes how different prize allocations can influence the effort levels of the contestants.
Typically, the analysis takes on the perspective of a contest designer who is motivated to maximize the total
effort expended by the contestants. For example, if contestants have incomplete information, then allocating
the entire prize to a “winner-take-all” structure will usually optimize the contestants’ expected total effort
(Moldovanu & Sela 2001; Moldovanu & Sela 2006).

4Using the model terminology introduced in section 3, each agent could be viewed as investing in four
proposals where the proposal with the least amount of investment is selected by the group to be unfunded.
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later-moving agents will observe and react to the choices of early-moving agents. However,

this paper’s model is different from previous work because it does not endow agents with

private information, which is necessary to create the inefficiencies that stem from herding

or cascading behavior. Results from this model suggest that, without private information,

there exists two underlying incentives in an openly sequential procedure; one of which is

related to the previous literature’s herding incentive (this paper’s downstream incentive).

This paper studies a setting where the action made by a group has a disproportionate

consequence on a subset of agents. This type of voting or allocation structure is used in events

ranging from informal committee selection problems to decisions made by courts of law. As

an example of an informal selection problem, consider a committee of researchers allotting

funding to research projects. Researchers have preferences over which projects they prefer

and, in many cases, researchers within the committee even have their own proposal that they

wish to have funded. With a limited budget, how should the committee decide which projects

deserve funding? A natural way to proceed is to openly discuss and vote for the merits of each

project until an allocation is agreed upon. A more formal example involves the U.S. Supreme

Court’s process of granting certiorari. Of the 10,000 cases submitted to the Supreme Court

every year, approximately 80 cases are granted a writ of certiorari ;5 thus granting them a

full review by the Court. While the exact method of granting certiorari is not explicitly

defined, many judges have openly verified that the process is carried out in the following

manner: “Inside a closed conference room, the Chief Justice leads the meeting in which the

Justices discuss the petitions and vote aloud on which cases they find more significant and

deserving of deliberation. Voting begins with the Chief Justice and is followed by the Associate

Justices according to seniority”.6 In addition, former-Justice William Rehnquist describes

the decision as an openly sequential process: “I review the memos and indicate on them the

way I intend to vote at the conference. I don’t necessarily always vote the way I had planned

to vote, however; something said at the conference may persuade me either to shift from a

’deny’ to a ’grant’ or vice versa” (Rehnquist 2002, p. 233). A Justice’s relative seniority

determines his or her sequential voting position which may significantly affect their influence

on the decisions made by the Court. A group of people sequentially deciding which projects

deserve to be funded or which cases deserve to be heard may not seem to be a strategic or

competitive setting. However, these sequential settings become highly competitive if an agent

prefers a certain set of outcomes over a different set of outcomes. Using the two examples

above, strategic behavior should be expected in these stylized “citizen-candidate” models

(Osborne & Slivinski 1996) where the people making the funding decisions are the same

5www.supremecourt.gov
6http://supreme.lp.findlaw.com/supreme court/supcthist.html
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people receiving the funding and when Supreme Court Justices have personal preferences

over which cases they prefer to be heard by the court.7 In these applications, the results

from this paper predict that middle-moving committee members and middle-senior Justices

are endowed with a considerable advantage.

3 Model

3.1 Set-up

The model consists of five agents A = {A1, A2, A3, A4, A5} sequentially making choices over

a set of five proposals: P = {P1, P2, P3, P4, P5}. This process is carried out openly and

sequentially in order of the agent’s subscript number. Without losing generality, each agent’s

sequential position is exogenously determined and publicly known by all agents at all times.

Each agent chooses one proposal and whichever proposal is chosen by the most agents is

determined as the group outcome. If Pi is the group outcome, then Ai earns a payoff of π,

and the other four agents earn Π. The payoffs are related so that π = Π−ε, where ε represents

the cost borne by the agent whose favored proposal is selected as the group outcome. The

model generally defines ε > 0 in order to allow for a variety of cost magnitudes while uniquely

determining Π to be greater than π. If one proposal is chosen by more agents than any other

proposal, then the payoff vector consists of four agents earning Π and one agent earning

π. In the case of a tie, agents involved in the tie earn the expected payoff of a randomized

tie-breaking procedure while the agents who are not involved in the tie earn Π. For example,

if two proposals, Pi and Pj, have each been chosen twice then Ai and Aj earn Π+π
2

, while

the other three agents earn Π. If all five proposals are each chosen once then all five agents

earn 4Π+π
5

. This payoff structure is publicly known by all agents at all times.

A helpful simplification of the model is to consider a group of agents tasked with selecting

one agent to be eliminated from the group. In this simplification, an agent’s payoff is

maximized so long as they are not eliminated and, in line with this motivation, the model

assumes that agents cannot “vote against themselves” by choosing their own proposals

(c(Ai) 6= Pi). This model is closely related to a dynamic elimination contest (Konrad 2009;

Stracke et al. 2014) with only one round. The timing of the model is as follows:

1. Information. Agents learn the position number and payoff function for all agents.
2. c(A1). A1 chooses a proposal from S1 = {P2, P3, P4, P5}. All agents observe this.

7Rehnquist suggests that Justices, indeed, have personal opinions over Court issues: “Whether or not to
vote to grant certiorari strikes me as a rather subjective decision, made up in part of intuition and part legal
judgment” (Rehnquist 2002, p. 234).
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3. c(A2). A2 chooses a proposal from S2 = {P1, P3, P4, P5}. All agents observe this.
4. c(A3). A3 chooses a proposal from S3 = {P1, P2, P4, P5}. All agents observe this.
5. c(A4). A4 chooses a proposal from S4 = {P1, P2, P3, P5}. All agents observe this.
6. c(A5). A5 chooses a proposal from S5 = {P1, P2, P3, P4}. All agents observe this.
7. Outcome. The group outcome is determined and payoffs are realized.

3.2 Equilibrium refinement

As is commonly observed in sequential games with perfect information, this model has many

Nash and Subgame Perfect Nash Equilibria (SPNE). For instance, if c(A1) = P4, c(A2) = P4,

and c(A3) = P4, then any of the 16 combinations of possible choices by A4 and A5 are SPNE

outcomes. There exists another 16 SPNE outcomes where c(A1) = P5, c(A2) = P5, and

c(A3) = P5. In total, there are 320 SPNE outcomes of this form where three or more agents

choose the same proposal.8 There are additional SPNE outcomes with a tie in the group

outcome.9

Because the SPNE concept offers hundreds of equilibria, this paper achieves a refined

prediction by implementing a bounded rationality equilibrium concept. Intuitively, the

refined equilibrium is solved for in two steps. First, agents are modeled as error-prone decision

makers using the logistic specification of the Agent Quantal Response Equilibrium (McKelvey

& Palfrey 1998). This model allows for different equilibrium predictions corresponding to

different levels error-prone decision-makers in a sequential game. Second, the equilibrium

strategies converge to one SPNE when the error signal is set to be arbitrarily small (McKelvey

& Palfrey 1995; the Limiting Logit Equilibrium). This process is formally defined in what

remains of this section.

The Quantal Response Equilibrium (McKelvey & Palfrey 1995; QRE hereafter) is a

bounded rationality equilibrium concept that has been used to analyze behavior in groups

(Guarnaschelli et al. 2000) and sequential settings (McKelvey & Palfrey 1998). The QRE

concept is a statistical generalization of the Nash equilibrium (Goeree et al. 2016). Similar

to Nash, the QRE is a fixed point where each agent is making choices according to a

response function. Unlike the Nash concept, which assumes best-responding, the QRE’s

quantal response functions allows for the analyst to model agents that commit errors based

on a specified distribution. By changing the model’s free parameter, λ ∈ [0,∞), the

analyst models different levels of error-prone decision-making. When λ = 0, agents are

completely random and choose each available action with a uniform probability. With larger

8There are the suggested 32 SPNE outcomes with the group (A1, A2, A3) choosing either P4 or P5. 32
more SPNE outcomes with the group (A1, A2, A4) choosing either P3 or P5. 32 more SPNE outcomes with
the group (A1, A2, A5) choosing either P3 or P4. And so on.

9For example, c(A1) = P4, c(A2) = P4, c(A3) = P1, c(A4) = P1, and c(A5) ∈ {P2, P3}.
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λ parameterizations, agents are less affected by the error term and become more responsive

to payoff differences in their actions. When λ→∞, agents have an arbitrarily small amount

of noise and respond in a way that is consistent with the Nash Equilibrium.

While the QRE can adopt any distribution for the error terms, the literature typically

specifies that each agent’s errors as being drawn from an i.i.d. type-I extreme value distribution

(Luce 1959). The logit-QRE is one specification within the family of Regular Quantal

Response Equilibria (Goeree et al. 2005). This process generates a probabilistic response

function for an agent in which actions that yield higher payoffs are more likely (but not

necessarily) selected than actions that yield lower payoffs. With this structure, the probability

that Agent i chooses action s is determined by the familiar Equation (1).

pi,s =
eλE(π̃i,s(p−i))∑
s′ e

λE(π̃i,s′ (p−i))
∀s′εS (1)

E(π̃i,s(p−i)) is the expected payoff earned by Agent i when choosing action s while the

other agents within the model make choices according to their own probabilistic response

functions p−i. This λ-weighted expected payoff is divided by the sum of the λ-weighted

expected payoffs earned by Agent i when choosing all other available actions, s′.

The Agent Quantal Response Equilibrium (McKelvey & Palfrey 1998; AQRE hereafter)

extends the QRE concept to sequential games by using the agent-normal form representation

of the game (Selten 1975). Each agent’s strategy is represented by a set of different agents

each who realize a unique sequence of choices made before them. The refined equilibrium

prediction used in this paper is the logit-AQRE when agents are specified to have an

arbitrarily small amount of noise (λ→∞). This “Limiting Logit Equilibrum” (McKelvey &

Palfrey 1995; LLE hereafter)10 can be found by starting at the center of the strategy space

(where λ = 0 and agents are choosing randomly) and tracing the unique (or “principal”)

branch that converges to a Nash Equilibrium as λ→∞.

3.3 LLE predictions

To illustrate the intuition behind the refinement process, consider the logit-AQRE of this

paper’s model with 3 agents.11 Figure 1 shows the extensive form representation along with

the 7 equations required to characterize the logit-AQRE. Given a value for λ, this system

has a unique solution which is solved recursively starting from the decision nodes associated

with the choice of A3 (r1, r2, r3, and r4) followed by the choice of A2 (q1 and q2) and A1 (p).

10The LLE has also been referred to as the “logit equilibrium” when applied to sequential games (McKelvey
& Palfrey 1998).

11As discussed in section 3.4, the logit-AQRE and LLE become computationally difficult with many agents.
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In the 3 agent model, the LLE is the (r1, r2, r3, r4, q1, q2, p) that is solved for when λ is set

to be sufficiently large.12

p =
eλ{q1r1π+q1(1−r1)Π+(1−q1)r2( 2Π+π

3
)+(1−q1)(1−r2)Π}

eλ{q1r1π+q1(1−r1)Π+(1−q1)r2( 2Π+π
3

)+(1−q1)(1−r2)Π} + eλ{q2r3π+q2(1−r3)( 2Π+π
3

)+(1−q2)r4Π+(1−q2)(1−r4)Π}

q1 =
eλ{r1Π+(1−r1)π}

eλ{r1Π+(1−r1)π} + eλ{r2( 2Π+π
3

)+(1−r2)π} ; q2 =
eλ{r3Π+(1−r3)( 2Π+π

3
)}

eλ{r3Π+(1−r3)( 2Π+π
3

)} + eλ{r4Π+(1−r4)Π}

r1 =
eλ{Π}

eλ{Π} + eλ{Π}
=

1

2
; r2 =

eλ{
2Π+π

3 }

eλ{
2Π+π

3 } + eλ{Π}
; r3 =

eλ{Π}

eλ{Π} + eλ{
2Π+π

3 }
; r4 =

eλ{π}

eλ{π} + eλ{π}
=

1

2

Figure 1: The extensive form and logit-AQRE for this paper’s model with 3 agents.

The LLE for the 5 agent model is computed using the same approach. Every decision

node in the extensive form representation has four possible choices and the number of decision

nodes representing each agent is equal to the number of possible histories that an agent can

realize. A1 is the first mover and, therefore, has only one decision node. A2 has 4 decision

nodes corresponding to the 4 possible histories that A2 could realize (either c(A1) = P2,

c(A1) = P3, c(A1) = P4, or c(A1) = P5). A3, A4, and A5 have 16, 64, and 256 decision nodes.

In total, there are 341 unique agents each with a probabilistic choice that can be solved

using 3 equations (|Si| − 1). This means that for each specified λ value, the logit-AQRE is

characterized by 1,023 equations. As in Figure 1, this system is solved recursively starting

12Analyses of 3 agent and 4 agent models are in Appendix A. The LLE of these models also predict that
the middle-moving agent is (weakly) expected to earn the highest payoff, which suggests that the theoretical
results are not dependent on five agents or an odd number of agents.
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with the 768 equations representing A5. The Gambit program is used to calculate the

logit-AQRE corresponding to different λ values (McKelvey et al. 2013). The unique mixed

strategy LLE is found by computing these 1,023 equations when λ is set to be sufficiently

large.

In order to solve for the LLE, the parameters (Π, π) are normalized to (1, 0). This

parameterization aligns with the experiment described in section 4. It is possible that

the LLE prediction would be different with different payoffs (Tumennasan 2013; Zhang

& Hofbauer 2016) or with the inclusion of (strictly dominated) strategies (Zhang 2016).

However, there exists an arbitrarily large number of parameterizations that precisely align

with the theoretical analysis carried out for the (1, 0) normalization. Generally speaking,

any parameterization that has the same “strategic” component as the (1, 0) parameterization

will have the exact same LLE (for more on this approach, refer to Jessie & Kendall 2015

and Jessie & Saari 2016). For example, adding a scalar value, x, to the payoff for Ai at all

possible outcomes will yield the same LLE prediction.

Figure 2 shows the relationship between λ and A1’s logit-AQRE. When λ = 0, the logit-

AQRE for A1 is prob(c(A1) = P2) = prob(c(A1) = P3) = prob(c(A1) = P4) = prob(c(A1) =

P5) = 0.25. As λ increases, these probabilities converge to A1’s LLE mixed strategy of

prob(c(A1) = P2) = prob(c(A1) = P5) = 0.5 and prob(c(A1) = P3) = prob(c(A1) = P4) = 0.

Figure 2: The logit-AQRE for A1 by λ.
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Figure 3: The logit-AQRE for A2 by λ.

Figure 3 shows the relationship between λ and A2’s logit-AQRE across A2’s four decision

nodes (corresponding to A1’s four possible choices). A2’s LLE mixed strategy is the strategy

converged upon as λ increases. The LLE predicts that prob(c(A2) = P1) = 1 unless c(A1) =

P5, in which case prob(c(A2) = P1) = prob(c(A2) = P5) = 0.5.

The LLE mixed strategy for A3, A4, and A5 are spread across 16, 64, and 256 decision

nodes, respectively. The output from this algorithm for all decision nodes is available in the

supplemental materials.

In order to provide theoretical predictions in terms of expected actions and payoffs,

attention is restricted to on-path equilibrium behavior. For instance, A2’s LLE behavior at

A2|(c(A1) = P3) and A2|(c(A1) = P4) is ignored because prob(c(A1) = P3) = prob(c(A1) =

P4) = 0. Ignoring behavior off of the equilibrium path allows for a full characterization of

the LLE, shown in Figure 4.
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Agent History LLE choice probabilities
A1 – Choose Pi for i= 2, 5 each with probability 0.5
A2 P2 Choose P1 with probability 1
A2 P5 Choose Pi for i= 1, 5 each with probability 0.5
A3 P2, P1 Choose P4 with probability 1
A3 P5, P1 Choose P4 with probability 1
A3 P5, P5 Choose Pi for i= 4, 5 each with probability 0.5
A4 P2, P1, P4 Choose Pi for i= 1, 2 each with probability 0.5
A4 P5, P1, P4 Choose P1 with probability 1
A4 P5, P5, P4 Choose P5 with probability 1
A5 P2, P1, P4, P1 Choose Pi for i=1, 2, 3, 4 each with probability 0.25
A5 P2, P1, P4, P2 Choose Pi for i=1, 2, 3, 4 each with probability 0.25
A5 P5, P1, P4, P1 Choose Pi for i=1, 2, 3, 4 each with probability 0.25

Figure 4: The on-path LLE choice probabilities.

The 14 equilibrium outcomes predicted by the LLE mixed-strategy is a drastic refinement

from the hundreds of equilibria outcomes predicted by the SPNE. Surprisingly, P3 is the only

proposal that is never selected as the group outcome. No further analysis is needed to obtain

this paper’s main theoretical prediction of a middle-mover advantage.

Result 1. In an openly sequential competition with five agents, A3 is the only agent to earn
the maximal payoff in all LLE outcomes.
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When agents make choices according to their LLE mixed-strategy, it is possible to assign

a probability of realizing any of the 14 outcomes in Figure 4. For example, the far left

outcome in the extensive form representation in Figure 4 is realized when c(A1) = P2 ,

c(A2) = P1, c(A3) = P4, c(A4) = P1, and c(A5) = P1. These events are realized with

respective probabilities of .5, 1, 1, .5, and .25 which means that the probability of realizing

this outcome is 0.5× 1× 01× 0.5× 0.25 = 0.05 = 1
16

. With a 1
16

chance, A1 earns π and the

other four agents earn Π. Using this approach for all 14 possible outcomes, it is possible to

calculate the expected payoff for each agent.13

Result 2. In an openly sequential competition with five agents, the LLE predicts the
following expected payoff for each agent:

E(payoff(A1)) = Π− 14
32
ε = Π− 0.4375ε

E(payoff(A2)) = Π− 7
32
ε = Π− 0.21875ε

E(payoff(A3)) = Π− 0
32
ε = Π

E(payoff(A4)) = Π− 3
32
ε = Π− 0.09375ε

E(payoff(A5)) = Π− 8
32
ε = Π− 0.25ε

The payoffs predicted by Results 1 and 2 serve as theoretical predictions pertaining to

advantageous positions in this type of sequential competition. This experiment described in

the next section will test these hypotheses:

Hypothesis 1. The middle-moving agent (A3) will earn the highest payoff. Therefore, there
exists a middle-mover advantage.

Hypothesis 2. The first- and last-moving agents (A1 and A5) will earn the lowest payoffs.
Therefore, there exists a first- and last-mover disadvantage.

The LLE prediction is derived assuming that agents are error-less payoff-optimizers. In

addition, this paper’s computational equilibrium technique and uncommon prediction (of a

middle-mover advantage) makes it especially unlikely that laboratory subjects will perfectly

mimic the model’s prediction. However, given that learning is commonly observed in multi-

period laboratory experiments, I anticipate that the behavior of subjects who are experienced

with the competition will be more likely to follow the model’s predictions that the behavior

of inexperienced subjects. Thus, the experiment will test a third hypothesis.

Hypothesis 3. The payoffs of subjects in late rounds will more closely resemble the LLE
prediction than will the payoffs of subjects in early rounds.

13See Appendix B for more details on this calculation.
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3.4 Summary of section 3

Before testing these hypotheses, it is beneficial to summarize the intuition from this section.

Why not use the SPNE as the basis for the paper’s hypotheses? The model presented

in section 3.1 has hundreds of pure-strategy SPNE. One approach would state that, in

this context, equilibrium selection is an empirical question. This approach would run the

experiment described in section 4.1 and state that the best-fitting SPNE are the SPNE-

outcomes that are most often observed in the data. This alternative approach would not

change the experimental results shown in section 4.2. However, the explanation of these

results would, by definition, be ad-hoc and would almost certainly rely on unobservable

psychological features such as revenge or retaliation. In contrast, this paper refines the set of

SPNE ex-ante with the use of the LLE. This provides a unique mixed-strategy equilibrium

prediction across 14 possible outcomes which does not rely on unobservable features in the

utility function.

Why use the LLE? The LLE is used because it is theoretically and intuitively well-

suited for this sequential environment. Theoretically, the LLE corresponds to a subset of the

sequential equilibria, which classifies it as a true refinement of the Nash concept (McKelvey

& Palfrey 1998; Turocy 2010). For large enough λ, tracing the “principal branch” of the

logit-AQRE to find the LLE is guaranteed to converge to a unique mixed-strategy prediction

(Turocy 2005, Lemma 2). Also, using extreme-value i.i.d. errors avoids the known empirical

issues associated with the QRE concept (Goeree et al. 2005; Haile et al. 2008). Using the

LLE aligns with a long history of using stochastic best response functions with an arbitrary

level of noise (Blume 2003; Sandholm 2010). Intuitively, this refinement process aligns with

the story of error-prone decision-makers who converge to one SPNE as their errors become

arbitrarily small (section 3.2). An alternative intuition is that agents incur payoff shocks

associated with each action which are not observed by other agents (or by the theorist).

This may capture agents who have an unobserved preferences over which proposal to choose.

For instance, A2 might choose P3 because she doesn’t like the number 3. This intuition

may be particularly appealing to some readers given that the model includes agents that

are indifferent to many different outcomes (so long as their favored proposal is not selected).

However, it is important to note that a benefit of using the LLE is that it produces an

equilibrium prediction of agents who solely act in their selfish interest. Therefore, a huge

advantage of this approach is that the model’s prediction does not rely on any specific other-

regarding or social-preference utility formulations.

An important limitation of using the LLE is the practical difficulty involved with extending

14



this paper’s results to include any finite number of agents (and proposals).14 As was shown

in section 3.3, calculating the logit-AQRE and LLE in this sequential setting is difficult

even with a modest number of agents. In general, for a model with X agents choosing

one of the X − 1 possible proposals (c(Ai) 6= Pi), the agent-normal form represents the

ith agent in the decision sequence with (X − 1)i−1 unique agents. Each unique agent has

a probabilistic choice function similar to Equation (1) which is characterized by X − 2

equations.15 Taken together, this means that the total number of equations for a model with

X agents is
∑X

i=1(X − 2) · (X − 1)i−1. This formula illustrates the exponential relationship

between a model’s number of agents and the required number of equations. For example,

a model with 10 agents would require the logit-AQRE to solve a system of 3,486,784,400

equations.

In spite of the computational difficulty, the LLE is more attractive than other refinement

methods because it retains the equilibrium assumption and it avoids having to make assumptions

about off-path equilibrium play. For example, a different refinement approach could model

agents that, at all information sets, choose their Nash Equilibrium strategy with probability

γ, and with probability (1 − γ) they would mix uniformly over their entire strategy set.

However, these agents are not incorporating into their strategy the fact that other agents

are also mixing according to γ. In this way, the “noisy Nash Model” deviates from the

LLE because it does not impose equilibrium play (McKelvey & Palfrey 1998). A different

refinement approach could “prune” the tree using backwards induction based on assumptions

made (by the theorist) about off-path equilibrium play. There are many possible assumptions

available and any such assumption would require an extensive explanation about its legitimacy.

The LLE requires no additional assumptions. The LLE is essentially a tracing procedure

that ends at the limiting case of the logit-AQRE. This tracing procedure does not require

any assumptions about off-path equilibrium play as all actions are played with a positive

probability. In the limit, as λ approaches infinity, the probability that many of these actions

are played becomes arbitrarily small. In this way, the “pruning” is done within the model

itself.

What did we learn? Section 3 presents the first theoretical model of a sequential competition

where the middle-moving agents have an advantage. This novel prediction is particularly

surprising because the set-up and assumptions are entirely standard. A middle-mover

advantage is predicted from a model with complete information, symmetric payoffs, equilibrium

play, and completely selfish agents. The only factor that differentiates agents’ choices and

14Indeed, demonstrating a middle-mover advantage in sequential competitions with a general number of
agents would be a valuable extension.

15There are only X − 2 equations because 1− (p1 + p2 + ...+ pX−2) = pX−1.
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payoffs is their location in the decision sequence. While agents in different positions have

different equilibrium strategies, the strategies of all players can be classified as a balancing

across what I refer to as the “upstream” and “downstream” incentives.

Any agent has an incentive to choose proposals favored by agents who are near the end

of the decision sequence. Doing so encourages other agents to choose the same proposal with

the goal of coordinating on a proposal favored by a late-moving agent before that agent has

a chance to choose (thus making their choice trivial). Hence, agents have an incentive to

choose proposals that are downstream of the decision sequence.16 In addition, any agent has

an incentive to choose proposals favored by agents who are near the beginning of the decision

sequence. Doing so encourages other agents to choose the same proposal with the goal of

coordinating on a proposal favored by an early-moving agent that has already publicly made

their choice. Hence, agents have an incentive to choose proposals that are upstream of the

decision sequence.

These incentives can also be interpreted as endowing agents with different levels of impact

and information. For example, early-moving agents benefit from their position because they

make their choice before a target proposal has been selected or before a majority is reached.

However, these agents have to make their choice without information about what other agents

have chosen. In this way, early-moving agents are rich in impact, but poor in information.

Conversely, late-moving agents benefit from their position because they make their choice

after observing the choices of many agents. However, it is more likely that their turn comes

after their proposal has been targeted or settled upon by a majority. In this way, late-moving

agents are rich in information, but poor in impact. With this intuition, middle-moving agents

have a balance of information and impact.17 In fact, one interpretation of section 3 is that it

formalizes a natural conclusion about the best position in this sequential competition. The

best position is one that allows an agent to observe some information but which also ensures

that the agent’s choice has an impact on the outcome.

16The downstream incentive somewhat resembles the mechanism behind herding and information cascade
models. However, the driving force behind the downstream incentive and these earlier phenomena are
fundamentally different. In herding models, the incentive-to-herd is driven by an agent’s continual process
of updating of their imperfect belief based on revealed choices. However, this paper’s downstream incentive
stems from a model that assumes perfect information. Rather than a belief-updating process, this paper’s
downstream incentive is a strategic avenue leveraged by agents in order to increase their expected payoff.

17Previous research on sequential competitions could be viewed as relying on one of these incentives in
order to drive either a first- or last-mover advantage (see Appendix C for examples). The intuition behind
this paper’s combating incentives is highly related to work explaining the disadvantage of voting early in an
endogenously determined vote (Dekel & Piccione 2014). The novelty of this current paper is to illustrate that
the co-existence of these combating incentives will benefit the agents moving in the middle of the decision
sequence.
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4 Experiment

4.1 Design

A laboratory experiment is used to test the prediction of a middle-mover advantage (Fischbacher

2007; Appendix D contains screen shots). In order to provide a clear environment, subjects

are labeled as “voters” deciding the allocation of “prizes”. In alignment with the theoretical

parameters, the subjects’ task is to take part in an open and sequential vote to determine

which of the four voters will receive a prize (of $1) for that round. In each round, within

each group, the voter with the most number of votes will not receive a dollar while the

other four voters are awarded a dollar. If there is a two (or five) voter tie, the computer

program randomly selects one of the two (or five) voters to earn $0. Each session consists

of an instructions phase, a test of comprehension, 20 decision rounds, and a questionnaire.

Subjects were paid for all rounds which yielded an average earnings of $16. In addition to

this, all subjects received a $7 show-up payment. Each session was completed within 90

minutes.

Subjects make choices on computer terminals which are separated by physical dividers.

Subjects are not permitted to communicate at any time during the experiment. Each subject

is labeled within their group by their position in the vote. For instance, the fourth voter in

each group is labeled “Voter 4”. Before each round, subjects are told that every subject is

randomly assigned to a new group and a new voting position. After each round, subjects are

perfectly informed of each voter’s choice and the subsequent outcome. The decision round

ends when all five subjects have made a choice or when one voter has received three votes

against them.

Four sessions were conducted using a total of 100 undergraduate students at a large

public university. These 100 subjects made 400 collective decisions (group outcomes). The

following results use data that are aggregated across all four sessions. The aggregated data

consist of 370 group decisions where one agent receives more votes than any other agent

and 30 group decisions with two-agent ties that are broken by a random number generator.

Five-agent ties are never observed.

4.2 Main results

Figure 5(a) compares the LLE distribution of expected payoffs (black bars) with the observed

average payoffs from each position (grey bars) for all 20 rounds (400 outcome data set).

Figure 5(b) compares the LLE with the same data divided into early rounds (first ten rounds;

dark grey bars) and late rounds (last ten rounds; light grey bars). In both figures, the theory
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and data show that subjects in the middle of the voting order earn higher average payoffs.

This is further explored in what remains of this subsection.

Figure 5: The black bar is the LLE prediction. In 5(a), the grey bar is the average payoff for each position
in all 20 rounds (400 data points). In 5(b), the darker grey bar and the lighter grey bar represent the average
payoff for each position in the first 10 rounds (200 data points) and the last 10 rounds (200 data points),
respectively. 95% confidence intervals are displayed. Both graphs represent 370 outcomes where one unique
agent is selected by the group and 30 two-agent ties.

An OLS regression controlling for subject-level fixed effects regresses a subject’s earnings

in a round on dummy variables identifying the subject’s position in the voting sequence in

that round. Table 1 analyzes data divided into choices made in all 20 rounds, in the first

10 rounds, and in the last 10 rounds. Within each range of rounds, the five regressions vary

which dummy is omitted, which allows for a relative comparison controlling for subject-level

fixed effects. Also, note that the constant in each regression is the average earnings for each

round for the position dummy variable that is omitted.
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Using the data from all 20 rounds, Table 1 shows that A1’s average payoff of 0.723 is

higher than A5’s average payoff of 0.626 by a significance level less than 0.001. Because of

this, the two positions can be ranked as A1 � A5. In addition, Table 1 states that A3’s

average payoff of 0.937 is higher than A2’s average payoff of 0.919 in all 20 rounds, but that

this difference is not significant. Therefore, the two positions are ranked as A3 ∼ A2. The

average earnings at each position can be ranked in this manner for rounds 1-20, rounds 1-10,

and rounds 11-20.

Rounds 1-20 A3 ∼ A2 � A4 � A1 � A5

Rounds 1-10 A2 ∼ A3 � A1 ∼ A4 � A5

Rounds 11-20 A3 ∼ A2 � A4 � A5 ∼ A1

Table 2: Ranking the average payoffs earned by each position. These rankings are based on statistically
significant differences between the average earnings of each position shown in the regression results in Table
1.

Table 2 supports this paper’s experimental result of a middle-mover advantage. The

earnings of the first-, fourth-, and last-moving subjects are always significantly less than the

earnings of the middle-moving agent. These results are highly significant when analyzing all

20 rounds or only the early or late rounds. The middle-mover earns slightly more than the

subject in the second position when analyzing all 20 rounds or the late rounds. However,

the difference in earnings between A3 and A2 are never significant.

Result 3. (Hyp. 1) A2 and A3 earn the most in early, late, and all rounds.

Table 2 illustrates a last-mover disadvantage when compared to the other four positions,

which is particularly prevalent in the early rounds. Table 2 also illustrates a first-mover

disadvantage that is most prevalent in late rounds.

Result 4. (Hyp. 2) The last-mover (A5) earns the least in early rounds. The first- and
last-movers (A1 and A5) earn the least in late rounds.

Figure 5(b) shows that each position’s late-round average payoff is closer to the LLE

prediction than the same position’s early-round average payoff. Table 3 shows that these

differences are highly significant for the first- and last-mover and marginally significant for

the middle-mover.

Result 5. (Hyp. 3) The LLE payoffs are better reflected in data from the late rounds,
compared to the early rounds.
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A1 A2 A3 A4 A5

Rounds 0.82 0.93 0.92 0.77 0.56
1-10 (.03) (.02) (.02) (.03) (.03)

Rounds 0.63 0.91 0.96 0.82 0.69
11-20 (.03) (.02) (.01) (.03) (.03)
p-value <0.001 0.416 0.072 0.215 0.007

Table 3: Average earnings by early and late rounds. Standard errors in parentheses. p-values from Wilcoxon
sign-ranked test using paired data. These tests compare the heights of the darker grey and lighter grey bars
in Figure 5(b).

4.3 Additional results

Table 4 shows the choices of A1, A2, and A3 in all 20 rounds as well as the same data divided

into early and late rounds.

A1 A2 A3

P2 P3 P4 P5 P1 P3 P4 P5 P1 P2 P4 P5

Rounds .08 .13 .31 .49 .27 .09 .25 .39 .30 .13 .21 .36
1-20 (33) (50) (122) (195) (108) (36) (99) (157) (120) (52) (85) (143)

Rounds .07 .14 .30 .50 .17 .13 .27 .44 .22 .15 .23 .41
1-10 (13) (27) (60) (100) (33) (25) (54) (88) (44) (29) (45) (82)

Rounds .10 .12 .31 .48 .38 .06 .23 .35 .38 .12 .20 .31
11-20 (20) (23) (62) (95) (75) (11) (45) (69) (76) (23) (40) (61)

Table 4: Proportion of choices by A1, A2, and A3 (number of observations in parentheses).

As shown in Table 4, subjects in the first-moving position rarely choose P2. This is in

contrast with the LLE prediction which predicts an equilibrium where first-moving subject

chooses P2 half of the time. Furthermore, the choices made from the first-moving position

do not change over the course of the experiment.

Result 6. Contrary to the LLE prediction, first-moving subjects are least likely to choose
P2.

Unlike the first-moving agent, A2 and A3 change their behavior over the course of the

experiment. As shown in Table 4, subjects in these positions increase the frequency that

they chose the upstream target (P1) in late rounds. While A2 and A3 decrease the frequency

that they choose any of the other three proposals, the largest decrease is in their likelihood

to choose the downstream target (P5).

Table 5 shows the proportion of choices by A1, A2 and A3 conditional on the previous

choices made in that round. This table shows A2’s two most-chosen proposals conditional

on the 4 possible choices from A1 and it shows A3’s two most-chosen proposals conditional

on realizing each of these 8 choice histories.
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(a) Rounds 1-20

P2 P3 P4 P5

A1 .08 .13 .31 .49
(33) (50) (122) (195)

P1 P5 P1 P3 P1 P4 P1 P5

A2 .79 .09 .38 .58 .17 .75 .22 .75
(26) (3) (19) (29) (21) (92) (42) (146)

P1 P2 P2 P5 P1 P5 P1 P2 P1 P4 P1 P4 P1 P5 P1 P5

A3 .54 .42 .67 .33 .95 .05 .69 .31 .57 .24 .12 .77 .62 .26 .11 .79
(14) (11) (2) (1) (18) (1) (20) (9) (12) (5) (11) (71) (26) (11) (16) (116)

(b) Rounds 1-10

P2 P3 P4 P5

A1 .07 .14 .30 .50
(13) (27) (60) (100)

P1 P3 P1 P3 P1 P4 P1 P5

A2 .62 .23 .22 .74 .08 .85 .14 .83
(8) (3) (6) (20) (5) (51) (14) (83)

P1 P2 P1 P2 P1 P5 P1 P2 P1 P5 P2 P4 P1 P5 P1 P5

A3 .38 .63 .33 .67 .83 .17 .65 .35 .40 .40 .12 .78 .43 .43 .11 .82
(3) (5) (1) (2) (5) (1) (13) (7) (2) (2) (6) (40) (6) (6) (9) (68)

(c) Rounds 11-20

P2 P3 P4 P5

A1 .10 .12 .31 .48
(20) (23) (62) (95)

P1 P5 P1 P3 P1 P4 P1 P5

A2 .90 .10 .57 .39 .26 .66 .29 .66
(18) (2) (13) (9) (16) (41) (28) (63)

P1 P2 P2 P5 P1 P1 P2 P1 P4 P1 P4 P1 P5 P2 P5

A3 .61 .33 .50 .50 1.00 – .22 .78 .63 .25 .15 .76 .71 .18 .13 .76
(11) (6) (1) (1) (13) (2) (7) (10) (4) (6) (31) (20) (5) (8) (48)

Table 5: Proportion of choices by A1, A2, and A3 conditioning on previous choices (number of observations
in parentheses).

For A2, P1 is one of the two most-chosen proposals conditional on any choice by A1.

Compared to early rounds, the probability that A2 chooses P1 is higher in later rounds,

regardless of A1’s choice. A similar pattern is observed for A3 (with one exception). A2 and

A3’s evolved behavior in late rounds explains the large differences in payoffs between the

22



early and late rounds for the first- and last-movers shown in Figure 5(b).

Result 7. A2 and A3 are more likely to choose P1 in late rounds than in early rounds.

Figure 6 shows the average payoffs for each position conditional on the choice made by

A1. This figure illustrates two insights. First, although A1 earns more in the early rounds,

the relationship between A1’s proposal-choice and A1’s average earnings are the same in early

and late rounds. More specifically, A1’s average payoff is higher when choosing downstream

targets (either P4 or P5) rather than choosing upstream targets (either P2 or P3). This is in

contrast with the LLE prediction which predicts an equilibrium where first-moving subjects

would earn the same by following either incentive (choosing either P2 or P5). A Wilcoxon

sign-ranked test on all 20 rounds states that A1 earns significantly less by choosing P2 instead

of P5 (p-values < 0.001).

Result 8. A1’s average earnings are higher when choosing P5 compared to choosing P2.

Figure 6: Each graph shows the average payoffs that each position earns conditional on A1’s choice. 95%
confidence intervals are displayed. Rounds 1-20 use 400 data points. Rounds 1-10 and Rounds 11-20 use 200
data points each.

Figure 6 shows that the earnings of A2, A3, A4, and A5 are always lowest when the

A1 chose their favored proposal. However, the insight from this figure is to show that the

decisive power of A1’s choice is significantly lower in the late rounds. Table 6 shows that each

agent’s average earnings conditional on being chosen by A1 is lower in rounds 1-10 compared
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to rounds 11-20. As shown in Table 5, the cause of this change in payoffs is connected to

change of behavior by A2 and A3. These agents were more likely to mimic the choice of A1

in early rounds when compared to late rounds.

A2 A3 A4 A5

Rounds $0.31 $0.46 $0.22 $0.15
1-10 (13) (27) (60) (100)

Rounds $0.65 $0.72 $0.43 $0.36
11-20 (20) (23) (62) (95)
p-value 0.054 0.071 0.017 <0.001

Table 6: Average earnings by early and late rounds conditional on A1 choosing an agent’s preferred proposal.
Total number of observations in parentheses. p-value from Wilcoxon sign-ranked test using unpaired data.
These tests compare the heights of the same colored bars across Figure 6’s “Rounds 1-10” and “Rounds
11-20”.

Result 9. In late rounds, c(A1) is less decisive in determining payoffs.

4.4 Summary of section 4

Results 3 and 4 provide strong support for a middle-mover advantage along with a first-

and last-mover disadvantage. One possible cause of these advantageous positions is the

existence of the upstream and downstream incentives. Results 5, 7, and 9 suggest a consistent

interpretation of the relationship between responsiveness to these two incentives and experience

with the competition. Inexperienced subjects are more likely to mimic the choice made by

A1 and are more likely to choose downstream proposals (P5) which drives a significant last-

mover disadvantage. However, as subjects gain experience with the competition, they are

increasingly likely to choose upstream proposals (P1) which drives a first- and last-mover

disadvantage. Table 3 shows that this learning effect decreases the earnings of upstream

agents (A1 and A2) in late rounds while it increases the earnings of downstream agents (A4

and A5). In addition, since equilibrium refinement plays a key theoretical role, an added

benefit of the experiment is the support that it provides for using LLE in this context,

particularly with experienced subjects.

While the theory and experiment agree on the advantageous positions, the choices observed

in the experiment do not quantitatively fit the theoretical prediction. This is particularly

true for A1 who rarely chooses the upstream proposals (Result 6) and who earns less by

choosing upstream proposals (Result 8). Clearly these results are related. If, empirically, A1

is earning less by choosing upstream proposals then it follows that A1 will be less likely to

do so. Consider two post-hoc explanations for this behavior that could be tested in future

work. First, subjects may be motivated by preferences other than strict payoff-maximization.
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Subjects in the A1 position might avoid choosing P2 in order to reduce the probability that

A2 chooses P1.18 As Table 5 shows, A1’s belief about A2’s reciprocation is supported by the

experiment data, particularly in the late rounds. When c(A1) = P2, c(A2) = P2 79% of the

time (26 out of 33), and 90% of the time in the last 10 rounds (18 out of 20). By contrast,

when c(A1) ∈ {P3, P4, P5}, c(A2) = P1 22% of the time (82 out of 367), and only 13% of

the time in the first 10 rounds (25 out of 187). Second, subjects may require more rounds

in order to learn the optimal strategy. As the experiment progresses, A2 and A3 adapt their

strategy to focus more on upstream proposals, suggesting an effect of learning. This shift

in behavior negatively affects A1, who experiences the largest decrease in payoffs over the

course of the experiment. It is possible that, with more rounds to learn, A1 might alter their

strategy towards choosing upstream proposals more often.

5 Conclusion

This paper models a sequential competition where agents have symmetric payoff functions

and perfect information. The sequential-move model captures aspects from settings such as

markets, all-pay contests, herding behavior, and voting. The model suffers from multiple

equilibria, which is a common issue in the previous literature. Instead of relying upon other-

regarding preferences, learning, differentiated costs, or imperfect information, this paper

utilizes a well-known equilibrium refinement strategy which endows each agent with an

arbitrarily small amount of noise. This Limiting Logit Equilibrium prediction challenges

the standard prediction of either a first- or a last-mover advantage within a sequential-move

framework. This paper’s model provides a general, albeit somewhat unusual, sequential-move

competition where the opposite result is observed; the first- and last-movers are the most

disadvantaged. Moreover, this paper champions a new position in a sequential competition:

the middle-mover (Result 1). The extent of a middle-mover advantage is theoretically

quantified by calculating each agent’s expected payoff based solely on their position in the

decision sequence (Result 2). This paper finds that middle-movers are at such an advantage

that they are theoretically predicted to earn the maximum possible payoff. This prediction

is the result of agents responding to both an upstream incentive and a downstream incentive.

In an openly sequential competition, agents have an incentive to marginalize agents who have

either already acted (upstream) or who are many moves away from acting (downstream).

The combination of these two incentives also drives an early- and late-mover disadvantage.

Data from a laboratory experiment support the prediction of a middle-mover advantage as

well as a first- and last-mover disadvantage (Results 3 and 4, respectively). Additionally, the

18Theoretically, A1 should anticipate this choice by A2, as prob(c(A2) = P1|c(A1) = P2) = 1.
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experiment illustrates a relationship between the advantageous positions and experience with

the sequential competition. Inexperienced subjects primarily respond to the downstream

incentive, whereas experienced subjects are more responsive to both upstream and downstream

incentives (Results 5, 7, and 9). This implies that a sequential competition with inexperienced

agents will produce a last-mover disadvantage whereas the same competition with experienced

agents will produce a first- and last-mover disadvantage.

This paper’s main contribution is to demonstrate a sequential decision structure that

defies the conventional prediction of either a first- or last-mover advantage. These results

are especially enlightening when they are applied to a market or voting context. In a market

setting that mimics this paper’s model, firms will be most profitable if they choose to enter

after the first competitors, but before the final competitors (as was empirically found in Lilien

& Yoon 1990). Within a sequential voting context, the model and experiment assume that

agents use their vote strictly as a way to maximize their own payoff. This approach ignores

sincere policy related preferences that agents may have about which proposals deserve to be

approved. The real-world analogue almost certainly contains a mix of these policy related

concerns as well as strategic concerns. However, if agents are strategically motivated in a

similar way as described in this paper, at least to some extent, the results of this paper

predict a competition where the middle-moving voters have a significant advantage over the

first- and last-movers.
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Appendix A: 3 and 4 Agent Models

Figure 7(a) shows the on-path LLE mixed-strategy prediction of the three-agent model

described in Figure 1. The expected payoff for each position is represented in Figure 7(b).

The LLE of the three-agent model is intuitive. A1 will be in a 50-50 coin flip with either A2

or A3, and A1’s task can be viewed as a choice over who “flips the coin”. Even though A2 is

(weakly) expected to earn the most, this analysis suggests that more than three agents are

required in order to capture an upstream and downstream incentive.

Figure 7: (a) On-path LLE choice probabilities for the model with 3 agents. Similar to Figure 4 in the
main text. (b) The black bars are the theoretical expected payoff for each position with the experimental
setting of Π = 1 and π = 0. The black bars in (b) are comparable to Figure 5 in the main text.

In an openly sequential competition with three agents, the LLE predicts the following expected
payoff for each agent:

E(payoff(A1)) = Π− 1
2
ε = Π− 0.5ε

E(payoff(A2)) = Π− 1
4
ε = Π− 0.25ε

E(payoff(A3)) = Π− 1
4
ε = Π− 0.25ε
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Figures 8(a) and 8(b) show the on-path LLE mixed-strategy prediction and the expected

payoff for each position, respectively, in this model with four agents.

Figure 8: (a) On-path LLE choice probabilities for the model with 4 agents. Similar to Figure 4 in the
main text. (b) The black bars are the theoretical expected payoff for each position with the experimental
setting of Π = 1 and π = 0. The black bars in (b) are comparable to Figure 5 in the main text.

In an openly sequential competition with four agents, the LLE predicts the following expected
payoff for each agent:

E(payoff(A1)) = Π− 1
3
ε ≈ Π− 0.333ε

E(payoff(A2)) = Π− 1
6
ε ≈ Π− 0.167ε

E(payoff(A3)) = Π− 1
6
ε ≈ Π− 0.167ε

E(payoff(A4)) = Π− 1
3
ε ≈ Π− 0.333ε

The LLE of the model with four agents reflects the main results of this paper - a middle-

mover advantage with a first- and last-mover disadvantage. This suggests two ways in which

the paper’s main results are robust. First, it is less-likely that a middle-mover advantage
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would diminish with an increase in agents. Second, a middle-mover advantage is shown in

competitions with either an odd or an even numbers of agents. The main difference between

the models is in A1’s LLE choice. In the four-agent model, A1 earns a higher expected

payoff when choosing P4 than by choosing P2: E(payoff(A1|c(P4))) = Π− 1
3
ε > Π− 1

2
ε =

E(payoff(A1|c(P2))). Because of this, A1’s LLE strategy is to always follow the downstream

incentive and choose P4. One interpretation is that the first-moving agent requires more than

three (other) competitors in order to credibly designate an upstream target-proposal other

than P1. As is seen in Figure 4, when the first-moving agent has four competitors, the LLE

predicts that A1 will respond to the upstream incentive by choosing P2.

Appendix B: Expected Payoff Calculations

Model with 5 agents (see Result 2 in main text)
Agent 1:

E(payoff(A1)) = π
16

+ (Π+π)
2·16

+ π
16

+ (Π+π)
2·16

+ (Π+π)
2·16

+ Π
16

+ Π
16

+ Π
16

+ π
16

+ π
16

+ π
16

+ (Π+π)
2·16

+ Π
8

+ Π
8

E(payoff(A1)) = 18Π+14π
32

E(payoff(A1)) = 18Π+14(Π−ε)
32

E(payoff(A1)) = Π− 14
32
ε = Π− 0.4375ε

Agent 2:

E(payoff(A2)) = Π
16

+ (Π+π)
2·16

+ Π
16

+ Π
16

+ (Π+π)
2·16

+ π
16

+ π
16

+ (Π+π)
2·16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
8

+ Π
8

E(payoff(A2)) = 25Π+7π
32

E(payoff(A2)) = 25Π+7(Π−ε)
32

E(payoff(A2)) = Π− 7
32
ε = Π− 0.21875ε

Agent 3:

E(payoff(A3)) = Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
8

+ Π
8

E(payoff(A3)) = Π

Agent 4:

E(payoff(A4)) = Π
16

+ Π
16

+ Π
16

+ (Π+π)
2·16

+ Π
16

+ Π
16

+ Π
16

+ (Π+π)
2·16

+ Π
16

+ Π
16

+ Π
16

+ (Π+π)
2·16

+ Π
8

+ Π
8

E(payoff(A4)) = 29Π+3π
32

E(payoff(A4)) = 29Π+3(Π−ε)
32

E(payoff(A4)) = Π− 3
32
ε = Π− 0.09375ε

Agent 5:

E(payoff(A5)) = Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ Π
16

+ π
8

+ π
8

E(payoff(A5)) = 24Π+8π
32

E(payoff(A5)) = 24Π+8(Π−ε)
32

E(payoff(A5)) = Π− 8
32
ε = Π− 0.25ε
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Model with 4 agents (see Appendix A)

Agent 1:

E(payoff(A1)) = π
27

+ π
27

+ π
27

+ π
18

+ Π
18

+ (Π+π)
2·9 + π

18
+ Π

18
+ Π

18
+ Π

18
+ Π

9
+ (Π+π)

2·9 + Π
9

+ Π
9

E(payoff(A1)) = 36Π+18π
54

E(payoff(A1)) = 36Π+18(Π−ε)
54

E(payoff(A1)) = Π− 18
54
ε ≈ Π− 0.3333ε

Agent 2:

E(payoff(A2)) = Π
27

+ Π
27

+ Π
27

+ Π
18

+ π
18

+ Π
9

+ Π
18

+ Π
18

+ π
18

+ Π
18

+ Π
9

+ Π
9

+ (Π+π)
2·9 + Π

9

E(payoff(A2)) = 45Π+9π
54

E(payoff(A2)) = 45Π+9(Π−ε)
54

E(payoff(A2)) = Π− 9
54
ε ≈ Π− 0.1667ε

Agent 3:

E(payoff(A3)) = Π
27

+ Π
27

+ Π
27

+ Π
18

+ Π
18

+ Π
9

+ Π
18

+ π
18

+ Π
18

+ π
18

+ (Π+π)
2·9 + Π

9
+ Π

9
+ Π

9

E(payoff(A3)) = 45Π+9π
54

E(payoff(A3)) = 45Π+9(Π−ε)
54

E(payoff(A3)) = Π− 9
54
ε ≈ Π− 0.1667ε

Agent 4:

E(payoff(A4)) = Π
27

+ Π
27

+ Π
27

+ Π
18

+ Π
18

+ (Π+π)
2·9 + Π

18
+ Π

18
+ Π

18
+ Π

18
+ (Π+π)

2·9 + (Π+π)
2·9 + (Π+π)

2·9 + π
9

E(payoff(A4)) = 36Π+18π
54

E(payoff(A4)) = 36Π+18(Π−ε)
54

E(payoff(A4)) = Π− 18
54
ε ≈ Π− 0.3333ε

Appendix C: Constructing Examples

Settings with either a first- or last-mover advantage can be generated by applying this paper’s

concept of upstream and downstream incentives. Such an approach could apply this paper’s

model including an additional feature that mutes or eliminates one of the two incentives;

thus leaving only one disadvantaged position. Two examples are provided here.

One possible feature prohibits agents from knowing the decision sequence of agents

choosing after them. As in this paper’s model, agents perfectly observe the choices made

before them and have perfect knowledge about the set of agents who will move after them.

However, in an alternative model, agents have incomplete information about the decision

sequence of the agents moving after them. This natural addition reflects settings with

endogenous entry. The uncertainty about the late-movers’ identity virtually eliminates the

downstream incentive while having no effect on the upstream incentive. Because of this,
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the model will predict outcomes where late-movers prosper at the expense of early-movers

(late-mover advantage).

An alternative feature could impose a small cost on the agent who is first to choose a

proposal while subsequent choices on the same proposal are costless. In this model, the

first-mover is guaranteed to incur this “initial investment” cost. However, the first-mover is

guaranteed to receive the high payoff of Π (minus the investment cost) by choosing a proposal

that is far enough down the decision sequence because early-moving agents are incentivized

to free-ride and choose whichever proposal has already been chosen by the first-mover (which

is now costless). Early-moving agents who were previously indifferent between responding

to the upstream or downstream incentive with costless choices (in the original model), now

strictly prefer following the downstream incentive. In such settings, we should expect that

early-movers earn a higher average payoff than do late-movers (early-mover advantage).
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Appendix D: Experiment Screen Shots

Welcome

Basic Instructions

35



Payoffs

Comprehension Test
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Correct Comprehension Test

Incorrect Comprehension Test
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Reminders

Decision
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Waiting

Results
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