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Window operation behaviour
and indoor air quality during
lockdown: A monitoring-based
simulation-assisted study
in London
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Abstract

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for

indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates

8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the

patterns of window operation by occupants changed, and (c) more effective ventilation patterns could

enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of

monitored data on indoor and outdoor environment along with occupant use of windows has been used

to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour.

Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has cal-

ibrated a thermal performance model of one of the flats to investigate the implications of alternative

ventilation strategies. The results suggest that despite the extended occupancy during lockdown,

occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by

up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat

recovery proves to be very effective to maintain acceptable IAQ.

Practical application: This study provides evidence on the deterioration of indoor air quality resulting

from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strat-

egies to maintain acceptable indoor air quality at home despite the extended occupancy hours.
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Introduction

The Covid-19 lockdowns across the globe mean
that people spend much more time in their
homes, where concentrations of several pollu-
tants, including human associated particulate
matter (PM), volatile organic compounds
(VOCs), carbon monoxide (CO), and carbon
dioxide (CO2) can be several times higher than
outdoor air, depending upon outdoor levels,
building envelope air tightness and indoor sour-
ces, indicating a significant potential for detri-
mental health impacts.1–3

There are two factors that make CO2 concen-
trations relevant to ventilation and IAQ stand-
ards: their relation to indoor levels of
bioeffluents and associated odours (an impor-
tant factor in perceived air quality and occupant
satisfaction), and their relation to ventilation
rates per person. Specifically, concentrations of
CO2 in occupied indoor spaces are often higher
than concentrations found outdoors because
people produce and exhale CO2. Declining air
change rates per person increase the magnitude
of this indoor–outdoor difference in CO2 con-
centration allowing for peak indoor CO2 con-
centrations above outdoor levels to be used as
rough, albeit imperfect indicators for outdoor-
air ventilation rate per occupant.4

Direct health effects of CO2 on humans have
been reported at concentrations much higher
than those found in normal indoor settings.
For example, Lipsett et al.5 suggest that CO2

concentrations higher than 20,000 ppm cause
changes in breathing. According to epidemio-
logic and intervention studies, higher levels of
CO2 within the range found in normal indoor
settings (i.e. up to 5000 ppm), are associated
with perceptions of poor air quality, increased
prevalence of acute health symptoms (e.g. head-
ache, poorer work performance, and increased
absenteeism (e.g.).6–8 It is debated whether these
associations exist because the higher indoor CO2

concentrations are correlated with higher levels

of other indoor-generated pollutants which are

the causative agents of the adverse effects.9,10

Yet, as suggested by Chatzidiakou et al.,11

CO2 concentration can be used as a useful

proxy for occupant-related contaminants.
Moreover, other studies have underlined the

direct negative impacts of CO2 on occupants, in

the range of concentrations typically found in

buildings. For example, Kajtar et al.12 reported

that controlled human exposures to CO2

between 2000 ppm and 5000 ppm, with ventila-

tion rates unchanged, were positively associated

with perception of wellbeing and performance

on some reading tasks. More recently, a study

by Xu et al.13 found that sleep quality was neg-

atively affected by increasing concentrations of

CO2 up to 3000 ppm. Moreover, Mishra et al.14

showed that with lower CO2 levels, the number

of awakenings throughout the night tended to

decrease. Another study found that seven of

nine aspects of work performance were signifi-

cantly and negatively impacted by a CO2 level of

2500 ppm.15 It should be noted, however, that

two small studies (one with 10 healthy college-

aged volunteers and another with 25 similarly

aged participants) presented findings that did

not demonstrate an increase in physical symp-

toms or in a decline in office related tasks from

levels of CO2 (without bioeffluents) of up to

5000 ppm.16,17

In another strand of research, to address the

challenges of modelling energy demand and

IAQ with building performance simulation

tools, understanding and modelling of occu-

pants’ operation of windows has gained

momentum in the last two decades.14,18,19

Specifically, a number of studies have intro-

duced probabilistic models of window opera-

tion, which could explain the occupants’

interactions with windows based on statistically

significant indoor and outdoor environmental

parameters.20,21
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Arguably, the above-mentioned studies have
become especially relevant as the extraordinary
circumstances associated with the Covid-19 out-
break has resulted in unprecedented patterns of
household occupancy. If people continue to
spend more time at home following the 2020
global pandemic, it will be more critical to
ensure that IAQ in houses meets the recom-
mended standards without excessive energy
use. To this end, the present study benefits
from one-year’s worth of monitored data to
reveal the impact of the lockdown on IAQ and
patterns of opening and closing windows by
occupants. Moreover, the study deploys cali-
brated building performance simulation to
investigate the potential of different ventilation
strategies. For the purpose of the present paper,
the monitoring-based study explores the concen-
trations of CO2, PM10 and PM2.5 and the
simulation-based tests focus on CO2 concentra-
tion as a proxy for IAQ.

Method

Monitored data

During the first enforced lockdown in London

in spring 2020, the authors took advantage of

remote access to a set of monitoring devices in

eight occupied flats in East London, which were

part of an investigation since before the out-

break (see Table 1). The flats were located

within three buildings at two sites in a dense

urban area near major, highly trafficked, road-

ways. Mean annual PM2.5 levels in these loca-

tions is greater than 20–22 mg/m3 and mean

nitrogen dioxide levels can exceed 50 mg/m3

according to publicly available monitoring at

the sites by Imperial College London. The

study used a dataset collected from July 2019 to

June 2020 including solar irradiance, wind speed

and wind direction, indoor and outdoor air tem-

perature, relative humidity, concentrations of

Table 1. The monitoring equipment and specifications.

Parameter Sensor Range Resolution Accuracy

Temperature Thermistor –30.0�C to 65.0�C 0.1�C �0.2�C at 20�C
�0.4�C for –5�C to

40�C
Relative humidity Capacative 0.0%–100.0% 0.10% �2% (0% to 90% RH)

�4% (0% to 100% RH)

CO2 Non-dispersive infra-red

(Eþ E Electronik)

0–5000 ppm 1ppm <�50ppm, þ3%

Particulate Matter

PM1, PM2.5, PM10

Optical Particle Counter

(Alphasense OPC-N2)

0.35 to 40mm
0.00 to 500.00mg/m3

0.01mg/m3 Agreement with refer-

ence instruments:

RMSE 2–6mg/m3

and R2 values of

between 0.75–1.0.

Occupancy PIR (HOBO UX90) 82� detection

angle, 0–10m

detection range

– Associated with posi-

tioning and set-up

Window Opening Magnetic Reed Switch –

state data logger (Eltek

GS34 or Lascar USB-5)

0–1 (open/closed) – Associated with posi-

tioning and set-up
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CO2, PM10 and PM2.5 along with occupancy

state in bedrooms and living rooms (as detected

by PIR sensors) and operation of windows (as

captured by contact sensors) at 5-min intervals.
The data analysis examined the impact of the

lockdown at two scales. The first fortnight of

lockdown was compared with the fortnight

prior, to quantify the immediate impact of the

lockdown. Then, to get a broader understanding

of the overall effect, a 3-month period mid-

lockdown has been compared with a 3-month

period in the previous year with similar weather

conditions.

Window operation analysis and modelling

Prior to modelling the occupant interactions

with windows, three metrics are used to capture

the key characteristics of window operation by

occupants in pre-lockdown and lockdown

periods:

• Overall fraction of open state [�]
• Median open state duration [h]
• Opening rate in occupied intervals [h�1]

Addressing the state of windows, the first

metric gives an overall picture of window

openings and the second metric captures the
typical duration of window opening instances.

The third metric, however, encapsulates the

opening actions and normalises them based on

the duration of time when the room is
occupied.22

To develop models of occupant behaviour,

the authors examined a range of measured

indoor and outdoor parameters in terms of
their potential to explain the monitored

window operation (Table 2). Thereby, to mini-

mise multicollinearity, a pairwise correlation

check was conducted as an initial variable
selection process. Subsequently, using the non-

correlated independent variables, logistic regres-

sion models of window opening and closing

actions for all monitored windows were devel-
oped. This process involved estimating the

regression coefficient (b1) and intercept (b0) in
equation (1), where P is the probability of open-

ing or closing windows and x refers to different
independent variables. P-value was used to

judge the statistical significance of each variable

at 0.05 significance level.

P ¼ exp b0 þ b1xð Þ
1þ exp b0 þ b1xð Þ (1)

The calibrated building model

The authors modelled one of the monitored flats

(flat 4) in the building simulation tool

EnergyPlus 9.4. This is a 50.8m2 one-bedroom

flat with one-sided ventilation through two east-
facing windows in the bedroom and living room

(see Figure 1). The building envelope is highly

insulated with U-Values of 0.18, 0.92, 0.13 and

0.12 [W/m2.k] for the walls, windows, ceilings
and floors respectively. The building is also

equipped with mechanical ventilation with heat

recovery (MVHR). In the simulation test case

number 7 (see next section), MVHR operates

Table 2. The parameters examined to explain
occupants’ operation of windows.

Parameter Symbol Unit

Indoor air temperature Tin
�C

Outdoor air temperature Tout
Indoor relative humidity RHin %

Outdoor relative humidity RHout

Indoor PM2.5 level PM2.5in mg/m3

Indoor PM10 level PM10in
Outdoor PM2.5 level PM2.5out
Outdoor PM10 level PM10out
Indoor CO2 concentration CO2,in ppm

Indoor total volatile

organic compound

TVOCin
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night and day in the heating season, providing

7L/s.person outdoor air with a sensible heat
recovery effectiveness of 0.75.

For the purpose of current study, the
EnergyPlus building model is mainly indented

to estimate indoor CO2 concentrations under
different ventilation scenarios. The model com-
prises of five thermal zones including bedroom,
living room, store, corridor and bathroom. The
airflow through the windows and across the
zones is simulated using the multi-zone airflow

network model of EnergyPlus. The walls, floor

and ceiling, adjacent to the neighbouring flats,
are assumed to be adiabatic.

Whereas previous efforts have predominantly
relied on energy use data or monitored indoor

temperatures to calibrate building thermal per-
formance models (e.g.),23,24 the present study
uses monitored CO2 concentrations directly to
calibrate a building model tailored for indoor
air quality assessments. More specifically, the
following steps were carried out to prepare an
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Figure 1. The floor plan of the modelled flat.
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initial thermal performance model of the flat for
calibration:

• The calibration period was set to 15 July to
31 October 2019, during which time the
MVHR system was not operating in the flat.

• Thermal properties of the building fabric ele-
ments and internal heat gain sources (other
than occupants) were defined based on the
best information available to the modellers.

• Monitored data on occupancy, window states
and on-site outdoor CO2 concentration from
the calibration period were incorporated into
the EnergyPlus model to reduce the number
of unknown parameters in the underdeter-
mined calibration problem.

• Hourly outdoor environmental data from the
same period (including air temperature, air
relative humidity, global, diffuse and direct
irradiance along with wind speed and direc-
tion) were used to create real-year weather
data for the purpose of model calibration.

To produce a more reliable building model,
the key input parameters governing the air flow
model and CO2 generation were subjected to
calibration. These were opening factors for the
open state of windows and interior doors, air
mass flow through closed openings, and occu-
pants’ activity level and CO2 generation rate. As
given in Table 3, for the initial model, the open-
ing factors and air mass flow through closed
openings were set based on the values in
DesignBuilder software library for medium-
tight openings and cracks. The initial activity

level value was assumed based on the modeller’s
estimation, and the initial occupant carbon
dioxide generation rate was set to EnergyPlus
default value. Subsequently, an iterative process

of minimizing the errors in the predicted CO2

concentrations was conducted. Two error met-
rics, namely Mean Bias Error (MBE) and Root
Mean Square Error (RMSE) captured the
model predictive potential in the calibration

period. The authors also largely benefitted
from visualizations of model predictions in the
process, so that the resulting calibrated model
could better predict the patterns of CO2 decay
and build-up in different rooms.

Figure 2 illustrates a 2-day section of the esti-
mated CO2 concentrations in the living room

obtained from the initial and calibrated building
models compared with the monitored concen-
trations. Table 3 lists the calibration variables
and their values in the initial and calibrated
models and Table 4 gives the obtained error

metrics for the estimated CO2 concentrations
by the initial and calibrated models in the bed-
room and the living room.

Building simulation test cases

Using the calibrated thermal performance
model, the authors examined a number of occu-
pancy and ventilation scenarios to get a better
picture of the impact of lockdown on IAQ and
the mitigating potential of different ventilation

strategies. To this end, two occupancy patterns
were considered, namely a common home occu-
pancy schedule before the outbreak (referred to

Table 3. Model inputs subjected to calibration.

Input parameters Initial model Calibrated model

Bedroom closed window air mass flow coefficient [kg/s.m] 0.0001 0.0005

Living room closed window air mass flow coefficient [kg/s.m] 0.0001 0.02

Bedroom window width factor for open state [�] 0.05 1

Living room window width factor for open state [�] 0.05 0.6

Corridor door width factor for open state [�] 0.025 1

Living room occupant activity level [W/person] 99 115

Occupant carbon dioxide generation rate [m3/s-W] 3.82E–08 6.00E–08
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as normal occupancy, in this case involving 2
occupants in the flat from 18:00 to 8:00 (þ1)
on weekdays and from 13:00 to 10:00 (þ1) on
weekends), and a constant full occupancy
(referred to as lockdown occupancy). In terms
of ventilation, a worst case scenario of no
window operation, two effective patterns of nat-
ural ventilation in free-running and heating sea-
sons, and use of MVHR system were studied.

Thus, the simulation-based study involved the
following simulation test cases:

1. Non-heating season, normal occupancy, no
window operation or mechanical ventilation

2. Non-heating season, lockdown occupancy,
no window operation or mechanical
ventilation

3. Non-heating season, lockdown occupancy,
bedroom window open for 1 hour in the
morning, living room window open in
waking hours

4. Heating season, normal occupancy, no
window operation or mechanical ventilation

5. Heating season, lockdown occupancy, no
window operation or mechanical ventilation

6. Heating season, lockdown occupancy, 1 to 2
windows open for 15min every 4 waking
hours
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Figure 2. A two-day section of predicted living room CO2 concentrations by the initial and calibrated building
energy models in comparison with the measured values.

Table 4. Errors from the initial and calibrated models.

Error metrics

Initial

model

Calibrated

model

Bedroom MBE [ppm] –245 60

Living room MBE [ppm] –86 –42

Bedroom RMSE [ppm] 511 318

Living room RMSE [ppm] 270 189
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7. Heating season, lockdown occupancy,

MVHR providing 7L/s.person outdoor air.

Building performance metrics

To capture the occupants’ exposure to relatively

high levels of CO2 concentration, the following

building performance metrics were obtained for

each simulation test:

• Peak CO2 concentration in each room [ppm]
• Sleeping time CO2 above 2500 [%]: This is the

percentage of sleeping hours in the bedroom

with CO2 concentrations above 2500 ppm.
• Active time CO2 above 2500 [%]: This is the

percentage of occupied hours in the living

room with CO2 concentrations above

2500 ppm.

The threshold of 2500 ppm is set based on the

aforementioned study by Satish et al.15 on the

impact of low to moderate CO2 concentrations

on human decision-making performance. While,

for bedrooms, Mishra et al.,14 as an example,

suggest a CO2 threshold close to 1150 ppm

(beyond which sleep of healthy young adults

may start getting compromised), for the purpose

of the current study we utilized a single

threshold for both rooms. Furthermore, to
study the implications of different ventilation
strategies for building energy use, the building
heating energy load in kWh/m2 was estimated
for each heating season test case. A heating set-
point of 22�C has been used when calculating
the heating energy load.

Results and discussion

Monitored air quality and window operation

The monitored data – not surprisingly –
revealed a substantial increase of occupancy
levels in the studied flats especially on weekdays,
as shown in Figure 3. Nonetheless, rather unex-
pectedly, occupants have relied less on natural
ventilation (Figure 4). Table 5 suggests that
during the lockdown period occupants have
opened the windows for far shorter periods of
time (a mean value of 2.9 versus 4.9 h) resulting
in a lower overall fraction of open window state
(21.7% versus 32.3%). While this can be partly
explained by the slightly higher outdoor temper-
atures in the selected pre-lockdown period, the
data from the fortnights around the lockdown
(with very similar weather conditions) confirms
the decreased level of night-time natural
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Figure 3. Mean living room occupancy state on weekdays and weekends of two 3-month periods prior to and
during lockdown.
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ventilation by occupants. The outcome of this
higher occupancy and lower natural ventilation
can be clearly seen in Figure 5, which shows that
the living room median CO2 concentration has

increased up to 300 ppm at specific hours.
Figure 6 also reveals that, despite the lower out-
door PM10 concentrations on weekdays during
the lockdown, indoor PM10 concentrations rose
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Figure 4. Mean living room window state on weekdays and weekends of two 3-month periods prior to and during
lockdown.

Table 5. Window operation metrics.

Window

number

Overall fraction of open state [%] Median opening duration [h] Opening action rate [h–1]

Pre-lockdown Lockdown Pre-lockdown Lockdown Pre-lockdown Lockdown

Flat 1 W1 12.9% 6.6% 11.8 8.6 0.007 0.008

Flat 1 W2 39.8% 24.2% 12.0 10.7 0.032 0.035

Flat 2 W1 53.6% 13.5% 0.1 0.1 0.061 0.105

Flat 2 W2 67.6% 39.5% 0.7 0.6 0.109 0.101

Flat 3 W1 21.1% 11.1% 2.3 0.8 0.062 0.082

Flat 3 W2 42.3% 16.0% 2.9 1.3 0.057 0.094

Flat 4 W 42.9% 42.3% 5.7 0.5 0.105 0.178

Flat 5 W1 3.2% 4.0% 0.5 0.3 0.057 0.075

Flat 5 W2 47.3% 11.9% 12.8 2.1 0.029 0.027

Flat 5 W3 54.1% 31.5% 12.3 3.0 0.037 0.043

Flat 6 W 11.3% 14.5% 2.3 1.8 0.042 0.078

Flat 7 W 19.7% 48.4% 3.2 3.2 0.141 0.090

Flat 8 W1 2.6% 1.0% 0.7 6.0 0.002 0.003

Flat 8 W2 34.3% 38.7% 1.7 1.6 0.117 0.179

Mean 32.3% 21.7% 4.9 2.9 0.061 0.078

Standard deviation 20.6% 15.6% 5.0 3.3 0.042 0.054
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on weekdays (as well as on weekends) in this

period.

Window operation driving factors

Before identifying the main driving environmen-

tal factors behind the operation of windows by

occupants, the correlation analysis detected

highly correlated parameters of Tin and Tout,
RHin and RHout, PM2.5,in and PM10,in, and
PM2.5,out and PM10,out. Therefore, to minimise
multicollinearity, the subsequent variable selec-
tion procedure (based on statistical significant
test) was applied to a subset of measured param-
eters including Tin, RHin, CO2,in, PM2.5out,
PM2.5in, and TVOCin.
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Table 6 summarizes the results of the statis-

tical significance test. It gives the fraction of 14

monitored windows in 8 studied flats, where

each independent variable is statistically signifi-

cant to explain the opening and closing actions.

These fractions clearly suggest that indoor tem-

perature is the main driving factor for opening

and closing windows in both pre-lockdown and

lockdown periods. In contrast, the variables rep-

resenting indoor air quality do not explain the

operation of windows in the majority of flats.

Given the rather similar significance fractions in

the pre-lockdown and lockdown periods, one

can argue that the thermal comfort-driven

Table 6. The statistical significance fraction of different environmental parameters to explain window opening and
closing actions across the studied flats.

Independent variable

Significance fraction for window opening Significance fraction for window closing

Pre-lockdown Lockdown Pre-lockdown Lockdown

Tin 78.6% 78.6% 57.1% 71.4%

RHin 21.4% 50.0% 28.6% 7.1%

CO2in 42.9% 42.9% 35.7% 35.7%

PM2.5in 35.7% 35.7% 35.7% 14.3%

PM2.5out 21.4% 21.4% 28.6% 14.3%

TVOCin 21.4% 21.4% 28.6% 14.3%
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Figure 7. Window opening and closing models.
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window operation behaviour of occupants has

not changed during the lockdown.

Window operation models

Given the dominance of indoor temperature to

explain window operation across the monitored

flats, for the purpose of the current study, only

indoor temperature-based univariate models of

window opening and closing actions are pre-

sented in Figure 7. Moreover, the estimated

coefficients of these models are given in

Table 7. These models give the probability of
opening and closing windows at different
indoor temperatures in the studied flats. As
can be seen clearly in Figure 7, the window
opening and closing trend remains the same in
the pre-lockdown and lockdown periods: People
are more likely to open windows at higher
indoor temperatures and close them at lower
indoor temperatures. However, the resulting
models suggest that at any given indoor temper-
ature, it is slightly more likely for occupants to
close the windows during the lockdown.

Table 7. The estimated coefficients for univariate window opening and closing models.

Window Coef.

Opening model Closing model

Pre-lockdown lockdown Pre-lockdown lockdown

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Flat 1 W1 b0 –28.54 9.49E–26 –20.46 2.20E–07 0.39 9.19E–01 –3.14 4.07E–01

b1 0.93 1.79E–17 0.62 4.93E–04 –0.24 1.26E–01 –0.08 6.61E–01

Flat 1 W2 b0 –4.94 8.64E–04 –7.01 1.43E–04 –2.08 5.14E–02 –1.94 2.84E–01

b1 –0.02 7.96E–01 0.08 3.98E–01 –0.14 5.65E–03 –0.13 1.27E–01

Flat 2 W1 b0 –15.11 6.06E–17 –15.64 1.91E–26 16.47 4.47E–18 10.29 8.21E–16

b1 0.49 1.28E–09 0.49 8.71E–15 –0.93 2.46E–27 –0.56 1.54E–24

Flat 2 W2 b0 –9.34 6.35E–16 –17.03 2.64E–35 0.34 7.37E–01 6.05 3.88E–05

b1 0.26 2.76E–07 0.58 3.68E–22 –0.21 3.90E–06 –0.44 9.37E–12

Flat 3 W1 b0 –13.53 3.76E–33 –10.89 1.01E–16 5.00 6.47E–04 7.26 2.83E–06

b1 0.38 8.39E–16 0.28 1.46E–06 –0.37 1.18E–09 –0.46 1.74E–11

Flat 3 W2 b0 –9.79 1.79E–16 –12.85 6.17E–24 6.44 2.77E–06 5.95 9.64E–05

b1 0.24 5.30E–06 0.38 1.04E–11 –0.48 4.33E–15 –0.42 6.58E–10

Flat 4 W b0 –7.44 1.25E–16 –10.85 2.47E–28 4.13 1.44E–04 8.67 1.53E–20

b1 0.18 5.06E–06 0.34 5.53E–14 –0.38 1.83E–14 –0.55 1.20E–36

Flat 5 W1 b0 –11.09 7.25E–17 –9.14 5.17E–16 –1.74 1.28E–01 –0.19 8.05E–01

b1 0.24 4.54E–06 0.18 1.72E–04 –0.04 3.68E–01 –0.08 1.68E–02

Flat 5 W2 b0 –12.51 1.29E–09 –10.29 9.54E–08 1.91 1.52E–01 6.10 2.33E–04

b1 0.30 3.13E–04 0.20 2.03E–02 –0.30 2.27E–07 –0.44 2.67E–09

Flat 5 W3 b0 –11.08 8.83E–10 –8.85 5.08E–09 0.32 8.00E–01 –0.94 3.74E–01

b1 0.26 4.90E–04 0.17 1.36E–02 –0.23 1.71E–05 –0.16 7.18E–04

Flat 6 W b0 –8.31 3.55E–07 –12.89 2.93E–32 9.72 1.89E–04 1.26 2.54E–01

b1 0.11 6.67E–02 0.31 1.08E–14 –0.53 1.79E–07 –0.19 1.72E–05

Flat 7 W b0 –9.02 1.98E–68 –5.37 2.39E–46 –1.34 1.90E–02 –3.98 1.80E–13

b1 0.24 4.24E–32 0.07 3.80E–08 –0.11 1.06E–05 –0.03 2.56E–01

Flat 8 W1 b0 –29.33 1.79E–03 –24.33 1.12E–03 16.77 3.47E–01 18.88 4.15E–02

b1 0.85 1.73E–02 0.64 2.26E–02 –0.83 2.41E–01 –0.94 1.61E–02

Flat 8 W2 b0 –11.19 1.72E–39 –8.04 1.94E–28 1.69 1.88E–02 0.43 5.44E–01

b1 0.33 1.32E–18 0.21 1.43E–11 –0.24 1.67E–13 –0.18 1.07E–08
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Simulation-based investigations

Firstly, considering the worst-case scenarios, the
simulation results suggest that the extended
occupancy hours during a lockdown can signif-
icantly increase occupants’ exposure to CO2 (see
Table 8, tests number 1, 2, 4 and 5). For exam-
ple, during a lockdown in the heating season,
occupants could face CO2 concentrations of
above 2500 ppm for almost 90% of the time
that they spend in the living room, compared
to only 33% with a normal occupancy pattern.
As illustrated in Figures 8 and 9, the impact of
lockdown occupancy on CO2 levels can be seen
clearly in both the living room and bedroom,
even though the bedroom occupancy patterns
are assumed to be identical in the normal and
lockdown scenarios.

Secondly, as can be seen in Table 8 and
Figure 10, the selected natural ventilation strat-
egy for a lockdown during a non-heating season
(test number 3) seems to be very effective to
reduce CO2. In the living room, the CO2 con-
centrations never exceed the 2500 ppm thresh-
old. In the bedroom, this happens for less than
2 percent of occupied time, even though the win-
dows in both the bedroom and living room are
assumed to be closed during the sleeping time.

Thirdly, although the natural ventilation pat-
tern suggested for the heating season relies on
much shorter window openings (test number 6),
it manages to noticeably reduce the CO2 levels
(see Table 8 and Figure 11). That is, the living
room CO2 concentrations never reach the
threshold of 2500 ppm and the bedroom CO2

levels exceed this level for only 29% of sleeping
hours. However, unsurprisingly, while this
window operation during the heating season
improves IAQ considerably, there is also an
adverse effect on heating demand for this
highly-insulated flat (a heating load of
6.55 kWh/m2 for months of January and
February compared to that of 0.95 kWh/m2

when windows remained closed in these
months). Needless to say, this challenging
trade-off between IAQ and heating energy
demand, is one of the key arguments for greater T
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use of mechanical ventilation with heat recov-

ery. As can be seen in Table 8 and Figure 12, test

number 7 demonstrates that a MHVR system

(with a sensible heat recovery effectiveness of

0.75 and providing 7L/s.person outdoor air),

can maintain the CO2 concentrations in both

rooms below 1400 ppm. It also reduces the heat-

ing demand by more than 40% compared to the

solution based on natural ventilation in test

number 6.

Conclusion

This paper has shown that with the changing

home occupancy patterns after the Covid-19 out-

break, indoor CO2 concentrations can rise signif-

icantly. At the same time, the results of the study

suggested that the main environmental driving

factor for window operation in both pre-

lockdown and lockdown periods was indoor tem-

perature. Nonetheless, the natural ventilation

strategies tested on a flat with one-sided openings
and the use of MVHR proved to be very effective
to maintain acceptable IAQ at home.
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