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1 Abstract  
2 Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is 

3 performing tasks with super-human speed and intellect; from the prediction of stock market trends to 

4 driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the 

5 pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains 

6 largely in a ‘one size fits all’ paradigm, in which mass-produced, identical formulations are expected to 

7 meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand 

8 production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents 

9 innumerable options during formulation development that generally require expert navigation. 

10 Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process 

11 parameters can be accurately predicted by machine learning. AI can also be incorporated into a 

12 pharmaceutical 3DP ‘Internet of Things’, moving the personalised production of medicines into an 

13 intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and 

14 blockchain, will also play a vital role. Crucially, these technologies will expedite the use of 

15 pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine 

16 and Industry 4.0. 

17 Keywords: Additive Manufacturing; Digital pharmaceutics and pharmaceutical sciences; Digital 
18 therapeutics and healthcare; Drug product design and development; Computer aided design of printlets; 
19 Computational modeling and finite element analysis; Fabricating gastrointestinal drug delivery systems 
20 and dosage forms; Personalized pharmaceuticals and medical devices; Mass customization and machine 
21 learning; Falsified and counterfeit oral pharmaceutical products. 
22  

23

24
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1 1 Intelligent 3D Printing of Personalised Medicines 
2 The last 25 years have experienced a digital revolution: from the naissance of wireless internet access to 

3 global smart phone uptake, widespread use of cloud storage, and the permeation of social media into 

4 everyday life. At first, it was human intelligence that conceived and utilised these transformative 

5 technologies. Now, we find that technology is being hardwired for intelligence far beyond human 

6 capacity; allowing it to entertain us, highlight lucrative financial investments, and maintain our health, to 

7 name just a few applications [1-5]. The language of data is fast surpassing traditional spoken or written 

8 languages on the stage of global communication and connectivity. As data storage and capacity steadily 

9 mount with each passing year, systems are fed increasing information, allowing them to become 

10 smarter [6]. 

11 Artificial intelligence (AI) encompasses a plethora of technologies driving the current data 

12 revolution [7]. Applications of AI can be narrow, whereby intelligence is directed at single tasks, such as 

13 smartphone personal assistants, the discovery of novel drugs, or diagnosis of disease from medical 

14 images  [8-10]. Alternatively, AI applications can be afforded cognitive ability similar to the human brain, 

15 by which robust AI systems retain memory and apply knowledge across different domains. The latter 

16 form of AI is growing in momentum, exemplified by the development of driverless cars that 

17 autonomously recognise unexpected obstructions, monitor exact lane position, and govern optimal 

18 vehicle functioning simultaneously [11]. An even more recent application of AI is its unification with 

19 networks of interconnected hardware, known as the ‘Internet of Things’ (IoT). In an IoT, devices with 

20 distinct capabilities are wirelessly connected to perform integrated functions. IoT has conceived the 

21 concept of smart houses, in which a network of sensors and control devices fully automate tasks of daily 

22 living: from the management of heating, lighting, and security, to ordering groceries and synchronising a 

23 morning alarm with breakfast [12]. Combined, AI and IoT permit the intelligent automation of limitless 

24 processes.  

25 The Food and Drug Administration (FDA) has placed emphasis on innovation through utilising 

26 digital health technologies and developing novel analytical approaches to advance healthcare [13], 

27 which was answered by diagnostic companies, where recently the FDA has approved AI-based software 

28 for diagnostics [14, 15]. Compared to other fields, the development and supply of pharmaceuticals sits 

29 behind the forefront of modern technology, who employ in silico tools to expedite discoveries. BASF 

30 released Zoomlab™ for predicting the properties of formulations, such as tabletability. The software is 

31 based on the SEDEM system that was developed 15 years ago but is yet to be widely adopted by 
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1 pharmaceutical researchers. It requires users to input 12 properties of the API, which include flowability, 

2 hygroscopicity, particle size and the homogeneity index [16, 17]. F-CAD is another software used in the 

3 industry to guide formulation development. Similar to Zoomlab™, the physical-chemical properties of 

4 the API are required, but in addition, so are the physical-chemical properties of the excipients  [18]. The 

5 drawback with these software is that they can be difficult to readily incorporate into the current 

6 workflow and are exhaustive, costing both time and materials in order to gather the input data. Hence, 

7 these optimisation methodologies have not been widely adopted by pharmaceutical researchers. This 

8 lack of an in silico tool consequently positions the pharmaceutical field behind others in harnessing their 

9 capabilities to expedite discoveries. 

10 Medicine largely remains in a ‘one size fits all’ paradigm, in which patients are administered 

11 mass-produced pharmaceutical products with very little flexibility on dose or formulation. The last 

12 decade has witnessed an awakening to the shortcomings of this inflexible treatment model, with a push 

13 for personalised medicines that meet individual patient needs [19, 20]. 3D printing (3DP) promises a 

14 nexus for personalised medicine [21-27]. The FDA approval of Spritam, and the more investigation new 

15 drug (IND) clearance for Triastek’s T19 – indicated for rheumatoid arthritis [28] – has set the precedence 

16 for 3DP as a viable manufacturing technology, demonstrating that they are viable fabrication 

17 technologies. However, both these examples do not capitalise on 3DP ability to produce personalised 

18 dose. The modern catalogue of 3DP technologies provide the ability to produce medicines with fully 

19 customisable drug contents, morphology, release kinetics, aesthetics, and taste profiles: on-demand at 

20 the point of patient need [29-31]. Notable examples of patient-centred 3DP medicines include tablets 

21 with braille designs for the visually impaired; multi drug-loaded hearing aids with anti-biofilm properties; 

22 microdevices with stimuli-responsive release mechanisms; and abuse-deterrent opioid tablets [32-37]. 

23 The first clinical study demonstrating the benefits of pharmaceutical 3DP over traditional manufacturing 

24 methods published its results in 2019, accelerating the transition of 3DP of medicines to mainstream 

25 clinical practice [38].  

26 As a fully automated and digitalised technology, pharmaceutical 3DP is a natural partner to AI. In 

27 numerous fields, AI and physical devices are being united to create intelligent robots. Indeed, robotics is 

28 one of the most explored applications of AI. In medicine, intelligent robots are being increasingly applied 

29 to perform surgical procedures and aid remote patient assessment; their use spurred on by the COVID-

30 19 pandemic [39, 40]. Within manufacturing technology, robotics and AI are predicted to come to the 

31 frontier of industry – permitting streamlined, autonomous production 24 hours a day with minimal 
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1 human intervention [41]. AI is likely to be a key facilitator in pharmaceutical 3DP’s translation to the 

2 clinic. Machine learning (ML), a powerful subset of AI, can aid the formulation development process 

3 within pharmaceutical 3DP. Because 3DP of medicines offers a large number of possibilities over the 

4 final product, such as the different compositions of the starting materials, design considerations (e.g. 

5 shape and dimensions), and printing parameters (e.g. speed, temperature), the process of designing a 

6 formulation presents an innumerable number of options that ordinarily require expert navigation. Here, 

7 ML can be leveraged to learn from the large volume of pre-existing data to predict new outcomes, 

8 irrespective of the number of variables that need to be analysed. Consequently, the need for expert 

9 formulation scientists is reduced from the clinical setting, and ML can manage the formulation of 3DP 

10 medicines for any given scenario. ML can also guide the printing process by calculating ideal processing 

11 parameters, such as printing temperature, nozzle diameter, laser speed, or light exposure time. In 

12 contrast to Zoomlab™ and F-CAD, ML does not require specific material properties to make the 

13 prediction, and hence does not require the user to expend time and money collecting further data, 

14 although the option is there should the researcher wishes to include the properties. Moreover, 

15 continuous maintenance of printers can be AI-managed, ensuring that supply of medicines is not 

16 interrupted due to machine failures [42, 43]. An advanced goal of pharmaceutical 3DP is to achieve a 

17 fully autonomous and intelligent pipeline of personalised medicines supply in the healthcare setting. 

18 IoT-based technology can realise this vision: a network of robots will be connected to 3D printers to 

19 support formulation compounding, post-processing, quality control (QC), and packaging. As such, human 

20 resources, error, and bias will be almost entirely removed from pharmaceutical 3DP and patients will 

21 gain 24/7 access to quality, personalised medicines. 

22 This review will focus on the next era of pharmaceutical 3DP, in which AI is harnessed to achieve 

23 the streamlined and autonomous production of 3DP medicines. As methods of pharmaceutical 3DP are 

24 manifold, we begin by providing an overview of technologies available, with consideration of challenges 

25 within each. Non-AI industrial techniques for process optimisation will then be discussed, namely design 

26 of experiments; mechanistic models; pharmacokinetic modelling; and finite element analysis. Next, a 

27 background on AI and ML will be covered, followed by how they overcome the pitfalls of traditional 

28 unintelligent techniques, and an in-depth analysis of how they can be leveraged for 3DP of medicines. 

29 Finally, an overview of IoT and an evaluation of the trajectory of the pharmaceutical 3DP field will be 

30 provided.  
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1 2 The Modern Catalogue of Pharmaceutical 3D Printing Technologies 
2 Pharmaceutical 3DP represents a collection of distinct technologies that together allow the printing of 

3 almost any conceivable medicine. To understand where AI can align with pharmaceutical 3DP, it is first 

4 necessary to recognise the heterogeneity and the challenges within the various techniques. Each 3DP 

5 method contains its own unique features, advantages, and limitations, suited to the use of different 

6 excipients and drugs. An overview of contemporary pharmaceutical 3DP techniques is presented in 

7 Table 1.

8 Table 1. An overview of pharmaceutical 3D printing technologies.

3D printing technology Material Mode of 

fusion

Advantages Limitations

Material Extrusion

Fused Deposition 
Modelling (FDM)

Thermoplastic 
polymers

Heat  Ease of use
 Inexpensive
 Different 

materials can 
be printed 
together

 Not suitable for 
heat-labile 
molecules

 Relatively low 
resolution

 Complex 
structures require 
support.

Direct powder extrusion 
(DPE)

Thermoplastic 
polymers

Heat  Ease of use
 Inexpensive
 Different 

materials can 
be printed 
together

 Single-step 
process

 Relatively low 
resolution

 Complex 
structures require 
support

Semi-solid Extrusion 
(SSE)

Gels, pastes  Suitable for 
heat-labile 
drugs, and 
biomaterials

 Conducted at 
room 
temperature

 Relatively low 
resolution

 Requires post-
processing steps

VAT photopolymerization



7

Stereolithography (SLA) Liquid 
photopolymer

Laser 
beam

 High 
resolution

 Relatively fast
 Suitable for 

heat-labile 
drugs

 No FDA approved 
excipient suitable 
for oral delivery 
applications

 Post-processing 
(curing) necessary

 Overhangs require 
support

Digital Light 

Processing (DLP)

Liquid 

photopolymer

Light  High 
resolution

 Smooth 
finishing

 Relatively 
fast

 Suitable for 
heat-labile 
drugs

 No FDA approved 
excipient suitable 
for oral delivery 
applications

 Overhangs require 
support

 Post-processing 
required

Continuous Liquid 

Interface Production 

(CLIP)

Liquid 

photopolymer

Light and 

oxygen

 High 
resolution

 Objects can 
be easily 
removed

 Fast
 Suitable for 

heat-labile 
drugs

 Expensive
 No FDA approaved 

excipient suitable 
for oral delivery 
applications

Material Jetting

Ink Jet Printing (IJP) Liquid solvent Evaporation, 
UV curing, 
reactive 
jetting

 High 
resolution

 Suitable for 
heat-labile 
drugs (only 
for 
piezoelectric 
ink jet 
printers)

 Performance 
dependent on 
formulation 
properties

 Chemical stability 
of drugs in solvent

Powder Bed Fusion

Selective Laser Sintering 
(SLS)

Thermoplastic 
polymer, 
metal & 
ceramic

Laser beam  Does not 
require 
supports

 High 
resolution

 Potential thermal 
degradation of 
drug due to short 
term exposure to 
heat
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 Feed material 
can be 
recycled and 
reused

 Able to 
confer rapid 
disintegration

 Objects can be too 
friable

Binder Jetting

Binder Jetting Polymer 
powder

Liquid 
binder

 Does not 
require 
support

 Suitable for 
heat-labile 
drugs

 Potential drug 
hydrolysis due to 
presence of solvent

 Time consuming

1

2 2.1 Material Extrusion

3 2.1.1 Fused Deposition Modelling (FDM)

4 FDM, a thermal material extrusion technology, is one of the most explored 3DP technologies within 

5 pharmaceutical research [44]. Its popularity is mostly attributed to its low costs, versatility, and its ability 

6 to produce products with high mechanical strength. A diverse range of drug delivery systems have been 

7 fabricated by FDM to meet patient-specific needs [24], including tablets [45, 46] (also referred to as 

8 Printlets™ [47]), capsules [48],  beads and catheters [49], topical masks [50], orodispersible films [51, 

9 52], mouthguards [53], implants, transdermal microneedles [54], vaginal rings [55], scaffolds for tissue 

10 engineering [56], and subcutaneous devices [57, 58]. 

11 FDM 3DP is a two-step process, which can be achieved by coupling hot-melt extrusion (HME) 

12 with FDM 3DP [59]. In HME, raw pharmaceutical materials are fed into a hopper and are subject to heat 

13 and pressure whilst moving through a rotating screw, which produces long strands of filaments of solid 

14 dispersions. With HME, high drug loading of filaments can be achieved, as opposed to the alternative of 

15 impregnating filaments with a drug-containing solution [45, 46]. The balance of brittleness and stiffness 

16 of filaments are assessed, as well as softness, diameter, and uniformity. Subsequently, filament 

17 feedstocks are fed into the FDM printer, where molten material is deposited, layer-by-layer, onto a 

18 platform creating a 3D object. The resolution of the object is dependent upon the thickness of the 

19 extruded filament, typically 100 µm. 
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1 In general, excipients used are thermoplastic polymers, which include polylactic acid (PLA), 

2 polyvinyl alcohol (PVA) and hydroxypropyl methylcellulose (HPMC). By selecting specific polymers or 

3 blends of polymers [60, 61], desired quality attributes can be achieved. Drug release properties can be 

4 modified by tuning the infill percentage [62], polymer matrix composition [59], compartmentation [63], 

5 structural shape [64] and shell thickness. ‘Polypills’ have been fabricated using FDM, allowing the 

6 combination of several drugs in a single capsule with bespoke release patterns [65, 66]. FDM is also 

7 capable of fabricating complex structures like microneedles for parental delivery [67] and implants [57, 

8 68, 69]. 

9 Despite its versatility, a key limitation of FDM 3DP is its incompatibility with heat-labile drugs. 

10 While selected polymers have been deemed suitable for low-temperature printing (i.e. 70 ºC), the 

11 majority of conventional polymers used for FDM printing necessitates high temperatures to be extruded 

12 [70]. Additionally, other 3DP technologies discussed below can achieve products with higher resolutions. 

13 A challenge common to every present-day pharmaceutical 3DP technology is the largely empirical 

14 process of selecting the appropriate process parameters and composition of drug product. The 3DP 

15 scientist must consider the parameter space for formulation, HME, and FDM particulars. Within each 

16 space there are numerous considerations, such as proportion of starting materials, use of excipients 

17 (such as lubricants, binders, plasticisers, disintegrant, antioxidant, and solubiliser), extrusion 

18 temperature, printing temperature, printing speed, horizontal and vertical resolution [44]. A more 

19 comprehensive list of parameters vital to FDM are enumerated in ref. [71].

20 2.1.2 Direct powder extrusion (DPE)

21 Direct powder extrusion is a material extrusion technology akin to FDM, wherein a powder mix 

22 containing the active pharmaceutical ingredient is directly extruded through the nozzle of the printer 

23 [72, 73]. Like in FDM, the powder mix is fused together through the application of heat and pressure as 

24 the particles flow through a rotating screw. However, unlike FDM, DPE obviates the HME step in FDM 3D 

25 printing. In this way, DPE permits the fabrication of pharmaceutical powder mixtures that might have 

26 been unsuitable for FDM printing due to inadequate mechanical characteristics of the HME filaments. 

27 While it shares several drawbacks with FDM 3DP, the one-step fabrication process of DPE confers 

28 simpler and faster manufacturing. Most of the reported DPE papers are single-screw, and hence face the 

29 same challenges as single-screw HME, such as poor mixing [74, 75]; expanding the system to twin-screw 

30 would require consideration on the effect of the travel speed, since more load will be carried.
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1 2.1.3 Semi-solid Extrusion (SSE)

2 SSE is an extrusion-based 3DP technique involving the deposition of viscoelastic ‘ink’ onto a build plate 

3 [76]. Here,  gels or pastes containing the active pharmaceutical ingredient are extruded through a 

4 syringe-based tool-head nozzle and deposited layer-by-layer on a platform to form a 3D object [77]. 

5 Unlike other aforementioned material extrusion-based technologies, SSE can be achieved at room 

6 temperature, making it ideal for heat-labile compounds. It is for this feature that SSE is extensively used 

7 in bioprinting, where living cells are printed to form tissues and complex structures. Examples of SSE 

8 applications in the pharmaceutical sphere include the fabrication of rectal suppositories [78, 79], 

9 paediatric-friendly tablets [80], orodispersible tablets [81], and implants [82].

10 SSE is a technique that would benefit greatly from an optimised and automated means of 

11 formulation development. The quality of the final product is heavily influenced by numerous process 

12 parameters and physicochemical properties of the mixture. These include the rheological properties and 

13 miscibility of the mixture, the flow rate, the processing temperature, and the printing speed [83]. 

14 Furthermore, as the diameter of nozzles used in SSE is often larger than that in FDM, the printing 

15 resolution achieved by SSE 3DP can be relatively lower than FDM 3DP. Post-processing steps, such as 

16 drying or cooling, are also necessary, during which the product might be distorted if the mechanical 

17 properties have not been optimised.  

18 2.2 Vat Photopolymerisation (SLA, DLP, CLIP)

19 Vat polymerisation 3DP cures liquid photopolymerisable resins using light, sequentially building a 

20 desired solid object layer by layer [31, 84]. There are three main types of vat photopolymerisation 3DP: 

21 stereolithography (SLA), digital light processing (DLP), and continuous liquid interface production (CLIP) 

22 [85]. The three methods vary subtly. SLA employs a concentrated beam of ultraviolet (UV) light or a 

23 laser, to selectively sketch and harden layers of liquid photopolymer [86]. DLP projects light images, 

24 composed of square pixels, onto resin from a digital projector screen. CLIP shines UV light through an 

25 oxygen permeable window, which hardens the resin above. A key advantage of CLIP over SLA and DLP is 

26 that the bottom hardened layer of the printed product does not adhere to the printer, due to ‘inert 

27 space’ created by the oxygen permeable membrane. This means that products can be easily removed 

28 from the printer without mechanical force after 3DP. In terms of manufacturing speed, DLP printing 

29 briefly projects each resin layer with whole images, rather than drawing them with a UV beam or laser, 

30 thus is a significantly faster fabrication method than SLA. When first released, CLIP claimed to print 
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1 items 25 to 100 times faster than SLA and DLP, however, this was later proven to be generally 

2 unfounded for 3DP items that are not composed of thin lattice-like structures [85].

3 Together with material jetting 3DP, vat polymerisation printing has the advantage of producing 

4 items with the best surface resolutions of all additive manufacturing technologies. This is because the 

5 UV, visible, and laser light sources can be shone at resolutions as low as 5 µm, allowing the production 

6 of highly intricate structures [87]. Moreover, the light curing methods of vat polymerisation are 

7 especially suited to the production of medicines, as avoidance of excess heat in the printing process 

8 evades the thermal degradation of susceptible drugs. Fast photopolymerisation also makes SLA, DLP, 

9 and CLIP some of the quickest 3DP methods, an important feature for printing medicines in a clinical 

10 setting, where demand may be urgent [33]. The unique properties of vat polymerisation have been 

11 successfully exploited for several pharmaceutical applications. Polypills containing several drugs in 

12 distinct layers, with tuneable release profiles, have been printed using SLA [33, 88]. Such methods are 

13 well suited to reducing tablet burden for patients with polypharmacy. Elsewhere, SLA has been 

14 employed to fabricate drug-loaded tablets with modified release characteristics, and drug-loaded 

15 hydrogels [89, 90]. DLP is similarly capable of printing modified release tablets and has also been used to 

16 fabricate antibacterial dental devices [91-93]. Interesting applications of CLIP in pharmaceutics include 

17 anti-cancer drug loaded devices, and microneedles for the delivery of biotherapeutics over skin [94, 95]. 

18 As with all manufacturing processes, vat polymerisation has several disadvantages and 

19 challenges. A prominent issue is the biocompatibility of the uncured resin, which if not addressed has 

20 been reported to be toxic. Photopolymerisation reactions, initiated by free radicals, also have the 

21 propensity to react with drugs, potentially altering the drug release profile [88]. Depending on the 

22 materials used, reactive monomers in resin may be toxic or irritant, necessitating post-processing of 

23 printed products. Post-processing involves exposing a finished 3DP object to UV or visible light, to 

24 ensure all liquid resin monomers are polymerised and hardened. Without this step, harmful monomers 

25 may remain on or within the item, and the risk of post-printing conformational warping is increased 

26 [96]. Attention should also be paid to the compatibility of API with the photopolymer, as a recent study 

27 revealed the occurrence of a Michael addition reaction between amlodipine and PEGDA [88]. Vat 

28 polymerisation might also be unsuitable for heat labile drugs, as the temperature of the system might 

29 inadvertently increase as a result of the exothermic photopolymerisation reaction [31].  Lastly, any 

30 unsupported overhanging parts of structures must be supported by removable scaffolding in the vat 

31 polymerisation process, increasing production time and steps [85].
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1 2.3 Material Jetting

2 2.3.1 Inkjet Printing

3 Inkjet printing (IJP) is a material jetting-based 3DP techniques involving the deposition of viscoelastic 

4 ‘ink’ onto a build plate. Here, droplets of solvent are generated either through vaporisation of ink within 

5 the printer nozzle, or through the use of a piezoelectric material that vibrates and ejects droplets upon 

6 the application of a voltage [97]. Droplets are commonly deposited onto an edible substrate, but studies 

7 have also explored the fabrication of complete tablets obviating the need for a substrate [98]. Deposited 

8 droplets are subsequently solidified through various means, including solvent evaporation, UV curing, or 

9 reactive jetting. Apart from flexible dosing, IJP enables the fabrication of high-resolution patterns 

10 through the precise control of droplet extrusion rate and positioning. Various studies have exploited this 

11 unique feature to fabricate 2D QR encoded dosage forms, either through the deposition of drug-loaded 

12 ink into the pattern of the QR code [99], or by printing QR codes and data matrices onto the surface of 

13 FDM-produced tablets [100]. These studies support ongoing efforts to combat counterfeit medicines, 

14 ensuring safe transport of medicines through the supply chain and safeguarding patient safety [101]. 

15 With the aid of UV curing, 3D structures can be obtained using IJP [102-104].

16 Formulation development is a key challenge within IJP. Satisfactory printing performance is 

17 highly dependent on the combined physical properties of the formulation, such as surface tension, 

18 viscosity, and density [105]. Suboptimal physical properties can cause issues such as splashing of the 

19 droplet upon impact with the substrate and nozzle blockage. While the carrier fluid forms the bulk 

20 component and largely drives the formulation’s physical properties, drugs and excipients will 

21 nevertheless influence viscosity, surface tension, and therefore printability. Beyond physical 

22 considerations, the stability of drugs and excipients is critical in such solvent-based systems. While 

23 thermal degradation can be avoided by using a piezoelectric inkjet printer, chemical stability is primarily 

24 determined by the choice of carrier fluid and drug. The most commonly reported carrier fluid in 

25 pharmaceutical inkjet printing is water; alternative solvents must be developed for drugs prone to 

26 hydrolysis. Clearly, novel means of formulation development will greatly alleviate time and labour 

27 investment within inkjet printing and other 3DP technologies.

28 2.3.2 Powder Bed Fusion (SLS, DMLS, EBM, SLM)

29 In powder bed fusion, heat is used to bind powder particles that are deposited in a build area or bed to 

30 build up the 3D object. These include Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), 

31 Electron Bean Melting (EBM) and Selective Laser Melting (SLM) [30, 106]. To date, only SLS has been 
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1 explored for the manufacture of pharmaceuticals. Here, a laser traces a pattern and fuses powder 

2 particles on the surface of the build plate. The process is repeated each time a fresh layer of powder is 

3 deposited by a roller until the entire 3D object is printed. SLS offers unique advantages for printing orally 

4 administered medicines, such as intricate and complex geometries [32, 107], and orally disintegrating 

5 structures [108, 109]. A recent review has provided a comprehensive overview on the principles and 

6 applications of SLS [110]. 

7 Though heat is applied only momentarily during powder bed fusion, thermal degradation of the 

8 active pharmaceutical ingredient (API) can be a limitation with some types of SLS printers, especially 

9 when printing heat-labile compounds [110]. Additionally, SLS and other powder bed fusion technologies 

10 produce powder waste, causing its cost-effectiveness to suffer. Finally, while the porosity of SLS-printed 

11 tablets can confer rapid oral disintegration properties, it can also lead to unacceptable friability. 

12 Consequently, there is a need to optimise manufacturing parameters, such as temperature and powder 

13 composition, for the production of tablets with satisfactory mechanical properties, disintegration 

14 properties, and thermal stability.

15 2.3.3 Binder Jetting

16 Similar to powder bed fusion technologies, binder jetting involves the layer-by-layer build-up of a 3D 

17 object through the binding of powder particles [111]. However, unlike powder bed fusion technologies, 

18 thermal energy is not used to fuse the particles together. Instead, a liquid binder is selectively extruded 

19 and deposited across the powder bed. Notably, the licensed 3DP medicine Spritam® is fabricated using 

20 binder jetting. Though heat is not applied during printing, drug stability remains a concern as the 

21 application of the liquid binder may result in hydrolysis. In addition, binder jetting tends to be time-

22 consuming as the printed object must be left for up to 48 hours to allow solvent evaporation. In addition 

23 to general 3DP features, binder jetting also requires consideration of factors concerning the liquid 

24 binder, including its viscosity and stability.

25 2.3.4 Electrohydrodyamic Printing

26 Electrohydrodynamic Printing (EHDP) is another material jetting technology that is distinct from other 

27 3DP technologies in that an external electric field is used to jet the material [112]. It is this feature that 

28 has allowed EHDP to garner attention, which provides EHDP with the ability to achieve smaller printing 

29 resolutions and faster printing times compared to similar 3DP setups where an electric field is not 

30 incorporated [113-115]. EHDP has been applied in pharmaceutics to primarily fabricate films [116-120]. 
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1 However, EHDP has been reported to produce unstable jets, which can result in large batch-to-batch 

2 variation, as well as limited thus far to vertically small products [121, 122]. 

3  

4 3 Alternative Optimisation Techniques to Machine Learning in 3D 

5 Printing 
6 Due to the complexity of pharmaceutical 3DP, a trial-and-error approach to the development of new 

7 medicines often wastes time, money, materials, and importantly may not result in an optimal product. 

8 There are many choices to be made when developing a novel 3DP medicine, ranging from the macro: 

9 such as printing technology and formulation components; to the micro: including printer settings and 

10 fine morphological features. Whilst the experience of experts is often sought for research projects, this 

11 is less feasible in clinical settings where printing demand far outstrips the availability of experienced 3DP 

12 practitioners. Moreover, the knowledge-led approach is not standardised or structured. For this reason, 

13 predictive tools are useful in identifying optimal process parameters as they apply existing scientific 

14 knowledge to the production of new medicines. Several optimisation techniques are already established 

15 in industry, with varying scopes of utility. These techniques can be used to ascertain pharmaceutical 3DP 

16 ‘rules’ that may be applied to print medicines without the presence of an expert, to achieve desired 

17 medicine characteristics. Optimisation techniques are key tools in multiple sectors owing to their ability 

18 to minimise both cost and resource wastage, whilst accelerating innovation. The pharmaceutical 

19 industry has come to rely on traditional methods of process optimisation for various formulation 

20 development tasks [86, 87].  Recent work has demonstrated how such tools can accelerate project 

21 timelines from years to months [85]. In some cases, techniques can predict how medicines will behave 

22 in vivo, thus reducing requirements for animal experiments. To fully recognise where AI can provide 

23 benefit to pharmaceutical 3DP, it is important to recognise the modalities of existing tools and their 

24 limitations. The applications of four non-AI optimisation techniques within pharmaceutical 3DP will 

25 henceforth be discussed. 

26 3.1 Design of Experiment
27 Design of experiments (DoE) is a non-learning mathematical technique extensively used in 

28 pharmaceutics. DoE is a systematic model for process optimisation that studies how input parameters 

29 (e.g. drug loading) relate to each other and the desired output (e.g. tablet strength) [123]. For example, 

30 variables that could impact tablet breaking force include binder content and excipient porosity and 
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1 friability [124]. DoE allows mapping of the extent that variables affect the experimental outcome, alone 

2 and in combination. DoE projects generally follow a similar structure. Firstly, the research objective is 

3 defined, such as ‘optimise the strength of 3DP tablets’. Next, researchers must consider what process 

4 variables are likely to have a considerable impact on the outcome [125]. This step requires specialist 

5 process knowledge, careful consideration of all possibilities, and elimination of bias. Once all significant 

6 process variables have been agreed upon, researchers must select which to investigate in their DoE 

7 model. If researchers choose to investigate many variables, then greater time, money, and consumables 

8 will be required to build an accurate and robust model. Following variable selection, levels of variables 

9 to investigate need to be chosen. Two-level DoE models are very common, though more levels can be 

10 investigated if researchers are comfortable in building larger, more complicated models. In a two-level 

11 design with numerical variables, a ‘low’ and ‘high’ point are selected for each (Figure 1). This selection 

12 will define the range over which the model can be used. For example, if printing temperatures of 50 °C 

13 and 100 °C are chosen as the two levels, then researchers would not be able to use the resulting DoE 

14 model to predict printing outcomes outside 50 – 100 °C [123]. Once experiment variables and their 

15 levels are decided upon, then model design can be determined. DoE model design can be a complex 

16 task, and other sources go into substantial depth on this process [126]. These decisions will be 

17 influenced by available resources, statistical power, and operational considerations. If a full-factorial 

18 design is chosen, then all possible experimental permutations are performed. Fractional factorial designs 

19 sample a subset of the full-factorial, which can be used to reduce the number of experiments required, 

20 albeit at the expense of reduced statistical power. In this way, the experimental space is covered 

21 without having to perform all possible iterations. DoE designs are followed by performing experiments 

22 that sequentially alter variables’ levels, testing how individual variables affect the outcome, and often 

23 whether there are compounding effects between variables. Once data collection is complete, then 

24 statistical methods such as ANOVA are used to analyse how variable levels relate to the outcome. 

25 Researchers can then use the model to predict what variable settings will result in an optimal outcome. 

26 To date, DoE in 3DP of pharmaceuticals has been applied to evaluate structure–function relationships of 

27 various parameters for FDM, SLS and SSE [127-131]. 
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2 Figure 1 Two-level full-factorial DoE design considering three numerical independent variables 
3 implicated in 3D printing.

4

5 3.2 Finite Element Analysis and Computational Fluid Dynamics
6 Similar to DoE, finite element analysis (FEA) and computational fluid dynamics (CFD) are another 

7 standard optimisation techniques used in both academia and industry, applied in fields such as 

8 aerospace, electronics and biomechanics. In fact, the FDA is actively investing in CFD for medical devices 

9 and biological fluids [132]. The wide adoption of both techniques can be attributed to the high degree of 

10 accuracy that can be achieved, which in some instances has been found to be more accurate than 

11 results obtained from experimental measurements [133, 134]. An additional appeal is that simulations 

12 can be performed that are experimentally challenging to conduct [135]. Both modelling techniques are 

13 able to simulate a range of forces that products are subjected to, including mechanical stress, heat and 

14 fluid dynamics, which seamlessly allows researchers to optimise their design thereafter. The process 

15 involves loading the design of interest and applying stresses that are anticipated for the design, factoring 

16 in both magnitude and direction. The results of the stresses on the design can be observed by the user, 

17 and hence provides a ‘white-box’ effect. This has been leveraged by pharmaceutical researchers  in 3DP 

18 to visualise the stress distribution in microneedles, thermodynamic behaviours in FDM filaments, air 

19 flow in inhalers, and rupture behaviour of coated capsules [136-139].  
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1 3.3 Mechanistic Modelling
2 Mechanistic models are mathematical models built using physical laws to explain process variables, and 

3 have been applied to 3DP [140]. These types of models require domain expertise, which depending on 

4 the model developed, will require knowledge of thermodynamics, particle physics, and fluid dynamics 

5 [141]. A salient advantage of mechanistic models is that they can be regarded as ‘white-box’ modelling 

6 since the dependent variable is clearly explainable [142]. Mechanistic modelling has been explored for 

7 3DP, with relevant models covering filler impregnation, predicting mechanical properties, 

8 photopolymerisation kinetics, and heat absorption in powder-bed technologies [140, 143-146]. 

9 However, for pharmaceutical 3DP mechanistic modelling has not been thoroughly employed. Unlike 

10 other techniques (DoE and FEA), there are no readily available software to simulate mechanistic models 

11 for 3DP. Two notable studies incorporating mechanistic models within pharmaceutical 3DP have been 

12 conducted by Zidan et al. (2019), whereby rheological characteristics of formulations were modelled. 

13 Rheology is an invaluable tool to understanding processing conditions [147], which in the study 

14 ultimately led to improving the flow rate of pastes during printing [148, 149]. 

15 4 Artificial Intelligence and Fundamentals of Machine Learning 
16 ML is one of the main AI technologies [150]. The goal of AI is to achieve super-human intelligence. 

17 Classic AI, also referred to as symbolic AI, was able to achieve this through a rule-based system, whereby 

18 rules were hard-coded into models through human intervention. Hence, symbolic AI requires 

19 researchers to first learn the rules and then code the relationship into an algorithm. This is a drawback 

20 because time and resources are needed to first identify relationships. Moreover, rules will need to be 

21 revised if new rules are identified, which consequently makes symbolic AI difficult to scale-up. ML AI on 

22 the other hand uses statistical learning techniques that allow a machine to establish its own relationship 

23 between explanatory and response variables. Therefore, ML is able to adapt as the training data 

24 changes (Figure 2). ML algorithms can work at speeds well beyond human intellect, with a much lower 

25 risk of error, therefore it is unsurprising how ML has come to transform so many contemporary 

26 disciplines and processes [8, 151-154]. 

27 The ML process involves a series of stages that combine to form an overall pipeline (Figure 3). 

28 Typically, data must be pre-processed and possibly vectorised prior to any learning taking place. The 

29 pre-processing stage is to ensure the data is cleaned and ML-friendly. In a survey conducted, it was 

30 found that ML practitioners spend most of their time, up to 60-80%, on cleaning data and pre-
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1 processing [155]. For one, datasets are rarely ML compatible, with issues encountered include missing 

2 data, incorrect data, and outliers. Such anomalies can impact the performance of a ML model and in 

3 some cases, lead to invalid predictions. In addition, pre-processing can enrich data, which in turn can 

4 facilitate the ML technique in discerning patterns. Such methodologies include removing noisy variables 

5 or reducing the number of features considered by an algorithm. Although ML can be approached in a 

6 plug-and-play manner, whereby unprocessed data is directly fed to an algorithm, taking the additional 

7 steps to clean and pre-process data can significantly improve prediction performance. An adage used 

8 within physical experimentation also applies to ML: by taking the additional steps to ensure the starting 

9 materials are properly pre-treated, one can improve the consistency of the end product. 

10

11 Figure 2. The difference between rule-based and machine learning AI. The former requires a 
12 user to explicitly code, in this example, the definition of a ball; whereas the latter is given images 
13 of the target and asked to learn from the dataset.

14
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1 Once data is clean, learning can begin. Mode of learning varies depending on the specific ML 

2 technique used and is discussed in more depth in Sections 4.1.1-4.1.5. Generally, algorithms are trained 

3 to recognise patterns in data, which they can then attach rules to, hence ‘learning’ how data features 

4 map to outcomes. Once data has been fed into a ML algorithm, and a model is formed, then predictions 

5 for new data can be made. There are various metrics that are used to evaluate the performance of ML 

6 techniques since there is no one metric that holistically describes predictive performance. Thus, a 

7 frequent practice is to evaluate the performance using several metrics. For classification techniques, 

8 metrics include accuracy, precision, recall, specificity, Cohen’s kappa, and Matthew’s correlation 

9 coefficient. For regression analysis, common metrics include the root mean squared error, mean 

10 absolute error and coefficient of determinations (r2). Metrics can be additionally useful for comparing 

11 the performance of different ML techniques or different pre-processing strategies [156].  

12
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1

2 Figure 3. Overview of a typical ML pipeline. ML can handle text, images and numeric data formats. 
3 Though a ‘plug-and-play’ approach can be taken with ML, pre-processing can help enrich input data and 
4 ultimately improve model performance. 

5

6 4.1 Machine Learning Techniques

7 4.1.1 Supervised learning

8 There are several subclasses of ML, of which supervised learning is one. Supervised learning involves 

9 directing an algorithm to solve a specific question. The algorithm is presented with data that has been 

10 labelled, describing the question of interest. For example, labels could be medicine 3D printability, or 

11 optimum 3DP temperature [156]. The former label in this example illustrates a classification ML task, as 
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1 medicines are classified as being 3D printable, or alternatively, not 3D printable. The latter exemplifies a 

2 regression task, because a specific printing temperature is given from a continuous range (Figure 4). A 

3 supervised ML algorithm takes a subset of the labelled data, known as the training data, and uses it to 

4 learn how dataset features relate to labels; e.g. how the physical properties of a medicine affect its 3D 

5 printability. After learning how data features relate to data labels, the ML algorithm can use a second 

6 subset of the data, known as testing data, which is unseen to the machine, to verify how accurate its 

7 predictions are. Supervised learning has been used to classify gene-disease association, pattern 

8 recognition of pharmaceutical raw ingredients [157, 158].

9

10 Figure 4. Difference between classification and regression ML tasks.

11

12 Frequently used supervised algorithms include multilinear regression, decision trees, random 

13 forest, support vector machine, and artificial neural networks (ANN). Multilinear regression is a series of 

14 linear regression calculations, seeking to fit a regression line through a multi-dimensional space [159]. As 

15 the name suggests, decision trees make their predictions by learning classification rules within data 

16 based on the dataset features (Figure 5). A decision tree consists of nodes and branches, where each 

17 node splits into further nodes until the terminal node. The user can define how each node splits. For 

18 classification tasks, a popular splitting decision is based on probability, where the algorithm learns the 

19 split with the greatest probability of obtaining the correctly labelled class [160].  Multiple decision trees 

20 can be used to establish the best prediction, which are referred to as random forest. Essentially, random 

21 forests are a collection of decision trees that are randomly divided, learning random subsets of 
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1 explanatory variables. The final step is then to pool the results together, and depending on the user-

2 defined method, random forest can then obtain an average or the majority vote [160]. 

3

4

5 Figure 5. A schematic depicting an example of a simple decision tree. In this example, a 
6 decision tree is learning the rules for determining printability based on drug loading and print 
7 speed.

8

9 Support vector machines create a decision boundary seeking to separate the different classes. 

10 The decision boundary consists of a linear hyperplane and support vectors, where the latter determines 

11 the margin of the decision boundary [161] (Figure 6 (A)). Hence, the input data needs to possess a 

12 linear relationship. For non-linear datasets, the kernel trick can be employed for SVM, whereby the data 

13 is projected onto a high-dimensional feature space, and subsequently a linear hyperplane is fitted 

14 (Figure 6 (B)). With the kernel trick, SVM is an attractive ML technique for both linear and non-linear 

15 datasets. Artificial neural networks are another commonly used algorithm, first modelled in 1943. 

16 Inspired by biological neurons, an ANN consists of interconnected nodes, which are connected by edges. 

17 Each node performs a calculation, factoring in the weighted values received from preceding nodes, 

18 where if a given threshold is reached, then the node is activated, and the signal is propagated to the 

19 next layer (Figure 7) [162]. 
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1

2 Figure 6. Schematic illustrating the classification principle behind SVM. This algorithm learns 
3 through creating hyperplanes in order to separate different classes. If the input data is non-linear, 
4 then the ‘kernel trick’ is used to find linearly separable hyperplanes between different classes.

5

6 Figure 7. Schematic of ANN. Inspired by biological neurons, the algorithm consists of nodes 
7 (coloured circles) and edges (arrows) that communicate together provided the threshold for the 
8 activation function has been reached. ANN is inspired by the workings of a biological neurone. 

9
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1 4.1.2 Unsupervised learning

2 Unsupervised learning involves the identification of patterns in data, without access to labels. For this 

3 reason, no predefined questions are asked of the algorithm; the algorithm identifies differences in data 

4 without being told what differences to look for [163, 164]. For example, an unsupervised algorithm 

5 could be supplied with the pharmaceutical properties of thousands of 3D printed tablets, and of its own 

6 accord find if there is a relationship between tablet porosity and disintegration speed. Unsupervised 

7 learning provides researchers with a powerful tool to analyse data without human bias [165]. By 

8 choosing to not ask specific questions, algorithms may find patterns in data that researchers had not 

9 previously considered. A common unsupervised ML technique is clustering, in which a model learns 

10 differences between data points, and clusters them into groups for visualisation of a data trends [166]. 

11 Key clustering algorithms include hierarchical clustering, k-means, and divisive analysis [167]. 

12 Unsupervised learning has been used to classify P-glycoprotein inhibitors [168]. The difference between 

13 supervised and unsupervised learning is portrayed in Figure 8.

14

15 Figure 8. Illustration depicting the difference between supervised and unsupervised learning. 
16 Supervised learning requires the input data to be annotated by the user, and can perform both 
17 regression and classification tasks. Unsupervised learning does not require the data to be 
18 annotated, and thereby saving time. Instead, unsupervised learning requires the algorithm to 
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1 inherently identify difference between groups. Unsupervised learning is generally used for 
2 clustering, association mining and dimension reduction.

3 4.1.3 Semi-supervised learning

4 Semi-supervised learning, as its name suggests, sits at the intersection between supervised and 

5 unsupervised methods [169]. Semi-supervised projects begin with a dataset that is partially labelled. In 

6 the modern world of big data, partially labelled datasets are a common occurrence [170]. Unsupervised 

7 learning techniques are used to label unlabelled data by drawing inferences from data with labels [171]. 

8 Subsequently, supervised techniques are then used to identify relationships between data features and 

9 their labels. Semi-supervised learning is a useful approach for increasing the quantity of useable data in 

10 a set. Increasing the amount of data is often sought after to increase the external validity of a ML model. 

11 As with all experiments, increased sampling typically leads to more reliable and transferable results. 

12 Labelling of data by humans can require significant time, money, and is prone to mistakes. In 

13 juxtaposition, the same task carried out by unsupervised ML methods is often fast, efficient, and 

14 fastidious.  

15 4.1.4 Reinforcement learning

16 Reinforcement learning is a goal-directed technique applied to unlabelled data [172]. Reinforcement 

17 algorithms are set a goal and then the ML model works towards accomplishing this in an iterative, self-

18 teaching manner. For example, a reinforcement algorithm has mastered the boardgame Go through 

19 self-teaching alone, achieving super-human performance [173]. During reinforcement learning actions 

20 are applied, and their success is judged based on how close they bring the algorithm to its end goal. For 

21 example, a 3D printer with in-built reinforcement learning would tweak printing parameters and 

22 quantify what effect they have on tablet hardness. If a chosen parameter results in an outcome that 

23 deviates from the end goal, the algorithm experiences ‘punishment’, and learns not to carry out such an 

24 operation again. Conversely, if a parameter moves the system closer to the goal, then the algorithm will 

25 experience ‘reward’, and will learn that this is a positive action. With time reinforcement algorithms 

26 learn how to avoid punishment and maximise reward, eventually leading them to achieve their goal 

27 [174]. 

28 4.1.5 Deep Learning

29 Deep learning is a subset of ML that is garnering increasing attention in recent years [175]. Deep 

30 learning is an extension of artificial neural networks, whereby networks extend more deeply and thus 

31 interact at higher complexities [176]. ANN typically have three layers: an input, a hidden layer, and an 
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1 output layer. In deep learning, the number of hidden layers can extend into the 100s [177]. This has 

2 resulted in deep learning being able to outperform other ML algorithms for large datasets, and to easily 

3 model complex interactions between features [176, 178]. Additionally, the neural architecture can be 

4 made such that deep learning can be used for either supervised, unsupervised or reinforcement 

5 learning, and thus expands deep learning’s application.  

6 5 Applications of ML in Pharmaceutical 3D Printing
7 Both 3DP and ML are enabling features of the fourth industrial revolution, Industry 4.0, whereby 

8 traditional manufacturing methods are advanced and automated [179]. Despite both technologies 

9 existing for decades, it was only recently that the two began to merge (Figure 9). ML has the potential 

10 to drastically change how research in 3DP is approached in both research and clinical settings. Recently, 

11 Gongora et al. found that ML can reduce the number of FDM experiments by 60-fold [180], whilst 

12 Ruberu et al. reported that process optimisation through ML can considerably reduce the number of 

13 bioprinting experiments to below 50, out of a possible 6,000 to 10,000 [181]. Evidently, these will 

14 expedite research discoveries and facilitate personalised, on-demand printing of medicines. ML has 

15 been applied to different stages of the 3DP pipeline, which here are categorised as pre-printing, in-situ 

16 or real-time printing, and post-printing. 
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1

2 Figure 9. Side-by-side timeline depicting key landmarks in ML and 3DP research until 2020. Although both 
3 technologies align with Industry 4.0, they have been mostly researched independently to one another. In 
4 2020 articles combining ML and 3DP of pharmaceuticals begin to be published. (NN: neural network).

5

6 5.1 Machine Learning in the Pre-Printing Stage

7 Pharmaceutical formulation is a complex task ordinarily requiring expert experience. Even seemingly 

8 insignificant changes to formulation design can significantly affect the final medicine characteristics and 

9 in vivo behaviour. For example, tablet geometry can considerably affect drug dissolution rate, and the 

10 choice of excipients can affect bioavailability [182, 183]. In pharmaceutical 3DP, formulations are often 

11 personalised and thus different from one batch to the next. Thus, specialists in the field must rely on 

12 their knowledge to adapt formulations to suit the pharmaceutical needs of the individual [50]. There are 

13 many factors to consider during personalised formulation design, some include: patient’s swallowing 

14 capacity, flavour preferences, required drug dose, required drug release kinetics, presence of disease, 

15 sex, age, motor skills, and coadministered medications [184-199]. ML has the capacity to consider all 

16 these factors and predict optimal formulation design features based on an individual’s requirements 

17 [154, 200-202]. Within the pharmaceutical formulation field, ML has been used to predict medicines’ 

18 stability, drug loading capacity, drug release kinetics, and clinical patient response, to name a few 

19 applications [203-208]. These are all directly applicable to formulation of 3DP medicines.
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1 In the pharmaceutical world, ML has mostly been used to predict and optimise drug release 

2 [209-220]. Medicines’ drug dissolution profiles are a fundamental characterisation technique in 

3 pharmaceutics [221]. Traditional evaluation of drug dissolution is time-consuming, expending large 

4 quantities of consumables, such as buffers, and requiring apparatuses with high capital costs, such as 

5 UV-Vis spectrophotometers and dissolution baths. Therefore, ML prediction of medicines’ dissolution 

6 behaviour could allow researchers to experimentally screen only the formulations predicted to have the 

7 best results (i.e. formulations of interest); hence allowing scientists to redirect time and resources to 

8 other aspects of the formulation process. Several studies have used ML to predict dissolution profiles of 

9 3DP medicines (Figure 10). ANN has been used to predict the dissolution behaviour of DLP-fabricated 

10 Printlets™ [222]. Two ANN were compared, where one model only used the material composition as an 

11 input, and the second ANN model used both the material composition and the DLP exposure time. It 

12 was revealed that the ANN architecture using solely the material composition obtained an R2 of 0.981 

13 when compared to the experimental data, whereas the ANN architecture factoring exposure time 

14 yielded an R2 of 0.996, thus inferring the exposure time to be a pertinent input. Another study compared 

15 the performance of four different ML techniques to predict the dissolution profiles of FDM products, 

16 using rheological properties as inputs [210]. The study revealed that a non-linear technique, decision 

17 trees, outperformed other linear techniques in predicting drug release profiles. A third study 

18 investigating ML for prediction of drug release using the material composition as input found ANN to 

19 achieve near perfect predictions, as depicted in Figure 10 (Ciii), thus highlighting the utility of ML in 

20 such applications [223]. These studies have shown that ML models can learn how drug release works, in 

21 that drug concentration, at succeeding time points, will be equal to or greater than preceding time 

22 points.  
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1 Figure 10. Machine learning applied to predict 3DP medicines’ drug release profiles. (A) The inputs for (i) 
2 SLA formulated printlet were processed using (ii) ANN to (iii) predict the dissolution profile [222]. (B) 
3 Several MLTs were compared, where it was determined decision tree produced the most accurate 
4 predicted dissolution profile [210]. (C) ANN were also used on (i) bioprinted scaffold to determine (ii) the 
5 correlation between inputs and outputs, to (iii) ultimately determine the release profile [223]. 

6

7 ML has also been used to predict the printability of formulations: a key consideration of 3DP formulation 

8 design [156]. In the first study using big pharmaceutical 3DP data with ML, researchers built a dataset 

9 comprised of 614 drug-loaded formulations for FDM filaments produced by HME, incorporating 145 

10 distinct excipients. Each formulation was labelled according to the filament mechanical characteristics 

11 (e.g. good, brittle, flexible), printability (i.e. printable or not), and both extrusion and printing 

12 temperatures. With this labelled dataset it was possible to employ supervised learning to predict 

13 filaments’ printability (Figure 11). The study investigated several methods of supervised learning. The 

14 model was able to predict the qualitative filament mechanical properties, such as whether the filament 

15 was flexible, brittle or good.  Solely using the weighted fraction of the materials in a formulation as 

16 inputs, a printability accuracy of 76% was obtained. 

17 As mentioned in Section 4, pre-processing of data prior to ML can help improve the 

18 performance of a model. With this in mind, the authors of [156] created an additional four feature sets 

19 using their pharmaceutical domain expertise. One of the limitations of using material names as an input 

20 is it means predictions cannot be made for materials not existing within the training dataset. Hence, the 

21 rationale for engineering new feature sets was to improve the generalisability of the model. A feature 

22 set called Physical Properties was engineered. This feature sought to use weighted physical properties of 

23 a formulation as inputs; the glass transition temperature (Tg), melting temperature, and molecular 

24 weight. Hence, if a material did not exist in the dataset, or if the material was used as a primary polymer 

25 rather than a plasticiser (e,g, PEG), then this was not a problem for the ML model as it could consider 

26 the weighted properties of the formulation. Although the model accuracy when using Physical 

27 Properties decreased to 70%, it afforded the ability to apply ML models to formulations with new 

28 materials without having to re-train the model using new materials. As a transparency check to ensure 

29 the ML models were learning the correct information, random forest was used to rank the importance 

30 of materials in formulations on response variables. It was subsequently discovered that the 

31 concentration of the primary polymer was the main determinant for predicting printability, followed by 
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1 plasticiser concentration, which are formulations variables that experienced 3DP practitioners would 

2 agree influence the printability of a formulation.

3

4 Figure 11. (A) Machine learning performances for determining the printability of FDM formulations 

5 using five different feature sets. (B) Random Forest predictions for the (i) extrusion and (ii) printing 

6 temperature [156].

7 Further to supervised learning, unsupervised learning has also been applied to support the pre-

8 printing stage. As mentioned, unsupervised learning does not require labelling of data with explanatory 
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1 variables. An advantage is that models are not influenced by subjective or erroneous human labelling, 

2 allowing algorithms to naturally establish patterns in the dataset. An unsupervised ML technique that 

3 has been widely used is principal component analysis (PCA). PCA learns a transformation that maps 

4 high-dimensional data to low-dimensional representations, capturing the variation in the data [224, 

5 225]. As well as being used as a ML technique is its own right, PCA’s powerful dimensionality reduction 

6 can also be applied to the pre-processing stage of ML to reduce dataset noise. PCA has been used to 

7 predict the feedability of filaments for FDM pharmaceutical printing ( Figure 12 (A)) [226]. By 

8 measuring mechanical properties of filaments, and generating a force-distance profile, PCA was found to 

9 cluster similar filaments together, which were termed as ‘feedable’, ‘tunable’ or ‘non-feedable’. Here 

10 PCA shows that complex mechanical plots can be made more interpretable with ML, allowing the 

11 discernment of patterns. As illustrated in Figure 12(A), it is visually easier to interpret PCA results than 

12 raw data. Alternatively, PCA can be paired with another unsupervised technique, k-means, to further 

13 streamline ML [227]. K-means seeks to cluster neighbouring points, which in the example in Figure 

14 12(A) would have been able to distinguish between feedable and non-feedable filaments. With this 

15 combination the raw data could have been directly fed to a k-means algorithm, outputting a filament’s 

16 feedability without needing to visually inspect the PCA plot (Figure 12 (A iii)). 

17 Clearly, ML has many applications in the pre-printing stage of medicines manufacture. 

18 Researchers can harness computer intelligence to streamline formulation development, producing 3D 

19 printable formulations that will result in products personalised to individual patients. Whereas manual 

20 compounding and testing of many iterations of formulations could take weeks to find a suitable product, 

21 AI can dramatically reduce this timeline. Ultimately, this will mean that development of personalised 

22 3DP medicines will be accelerated; granting patients access to bespoke pharmaceuticals with shorter 

23 lead times. This will be particularly useful in time-sensitive clinical situations.
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1 Figure 12. Models developed using PCA, an unsupervised learner, to predict the printability of 
2 formulations. (A) (i) An in-house tester was made to replicate the feeding behaviour of filaments 
3 during FDM. (ii) A force-distance plot was generated from the tester, which was (iii) subsequently 
4 analysed by PCA to determine the ‘feedability’ of filaments [226]. (B) (i) Summary of the 
5 interaction between material properties and processing parameters. (ii) A biplot generated using 
6 PCA depicting the relationship between processing parameters and print properties [228]. 

7

8 5.2 Automated 3D Printing of Medicines

9 A key goal of pharmaceutical 3DP is to leverage AI to create a seamless, autonomous 3DP process. 

10 Currently, researchers are required to input printing process parameters before each batch of medicines 

11 is produced. Setting fixed parameters is not an option in the production of personalised 

12 pharmaceuticals, as printer settings can directly affect the performance of an end product. For example, 

13 printing temperature will need to be controlled when printing heat-labile drugs. Moreover, light 

14 exposure time in DLP printing can affect the mechanical properties of a product, consequently affecting 

15 drug release profile [229]. ML algorithms have the capability to transform 3DP into an autonomous 

16 process, facilitating the printing of medicines without the need for on-hand expert advice.  

17 Both supervised and unsupervised methods of ML have begun to be used to predict optimal 

18 printing conditions for medicines. One study demonstrated how PCA can determine how FDM printing 

19 parameters such as printing speed and temperature will affect the final product quality [228]. The 

20 analysis allowed rapid interpretation of the relationship between multiple variables. For example, using 

21 a PCA biplot, it was observed that printing speed was negatively correlated with product road width and 

22 product mass. Figure 12 (Bii) illustrates that samples printed with the same printing speed clustered 

23 together. Besides these categorical features, another key dependent variable are the processing 

24 temperatures. Historically, recommended starting HME temperature for formulations is guided by a rule 

25 of thumb, which recommends starting with anywhere between 15-60 °C above the Tg of the formulation. 

26 Recently, supervised ML techniques were used to predict optimal HME and FDM printing temperatures, 

27 where accuracies of ± 8.9 and ± 8.9 °C, respectively, were achieved (Figure 11 (B)) [156]. The benefit 

28 with this approach over the rule of thumb is it obviates the need to perform time-consuming differential 

29 scanning calorimetry measurements to determine the Tg.  In addition, the recommended starting 

30 temperature output by ML is narrower than the rule of thumb [230]. Hence, ML offers a rapid and 

31 cheaper alternative to recommending the HME extrusion temperature. To date, there are no rule of 

32 thumbs or standardised predictive algorithms for the FDM temperature, and thus the study was the first 
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1 to establish the ideal printing temperature. The ML techniques were combined to produce a web-based 

2 software, which allows users to take advantage of predicting both the extrusion and printing 

3 temperature, as well as filament aspect and printability (http://www.m3diseen.com/predictions/).

4 Another application of AI during pharmaceutical 3DP is the automatic in situ detection of 

5 manufacturing defects. Intelligent recognition of deviations from optimal printing would allow 

6 researchers to leave pharmaceutical 3DP to work autonomously, thus facilitating 24/7 supply of 

7 personalised medicines in healthcare settings. One approach to achieving in situ printing correction is to 

8 pair ML with computer vision, another subset of AI. Computer vision, also referred to as machine vision, 

9 seeks to achieve super-human interpretation of images or videos [231]. A recent example of merging ML 

10 with computer vision was developed for detecting anomalies during laser powder bed additive 

11 manufacturing [232]. The printer was fitted with a camera to take images and monitor the printing 

12 process. The algorithm was then trained to detect multiple anomalies through algorithm adaptation, a 

13 feature superior to traditional computer vision algorithms that are used to detect one event per image. 

14 The algorithm was trained on a dataset containing pixels that were classed as either anomaly-free, or 

15 one of the six potential anomalies frequented during the printing process (Figure 13). Positively, the 

16 algorithm was found to achieve 100% accuracy in detecting absence of anomalies and 89% accuracy for 

17 detecting an anomaly. 

18 Aside from photographic images, videos can also be processed by ML techniques, made possible 

19 by advancements in deep learning, namely handling of copious and complex information. Pairing deep 

20 learning with live video monitoring was demonstrated to autonomously correct FDM printing for both 

21 over- and under-extrusion [233]. Prior to achieving autonomy, a training procedure was performed off-

22 line to train the model, which was used to classify ‘over-extrusion’, ‘under-extrusion’, or ‘good-quality’ 

23 printing. The model was then applied real-time, whereupon detecting irregular extrusion, the FDM 

24 printer was able to adjust the printing speed, flow rate or nozzle height. Deep learning was discovered 

25 to achieve an accuracy of above 98% in predicting the quality of the part, and predictions were made at 

26 times considerably faster than human reactions permit. 

http://www.m3diseen.com/predictions/
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1

2 Figure 13. For detecting anomalies during laser powder bed additive manufacturing, an algorithm was 

3 trained on pixels containing one of six anomalies presented in figures (a-f) [232].

4  

5 Building advanced modalities into application of in situ monitoring results in cutting-edge 3DP 

6 applications. One case was demonstrated by Zhu et al. (2020), where ML was leveraged to print directly 

7 on live organs [234]. A schematic of the process is illustrated in Figure 14. The challenge of 3DP on live 

8 organs is that the surface is non-planar and dynamic, which is in contrast to 3DP on build-plates that 

9 have a flat surface and the movement thereof is encoded and known via the .gcode (i.e. the command 

10 code for the printer). The study recognised these issues for printing on porcine lungs, and exploited ML 

11 to predict tissue surface deformation occurring during the lung breathing. The potential primary 

12 advantages of ML-guided in situ 3DP, like robotic surgery, include higher precision, better safety profiles, 

13 and a reduction in invasiveness [235]. In the context of pharmaceutics, in situ printing can be exploited 

14 to fabricate intricate drug-eluting devices or sensors for therapeutic drug monitoring inside the body 

15 [236, 237]. 
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1

2 Figure 14. Schematic depicting the steps of printing hydrogels on lungs. The process begins by (A) 

3 scanning the lung surface, combined with (B) live tracking of the lung breathing. This allows the printer 

4 to predict the changes in lung deformation and (C) print accordingly. (D) Depicts the final print, which 

5 was an electrical impedance tomography sensor [234].

6

7 5.3 Machine Learning in the Post-Printing Stage

8 Building machine intelligence into the post-printing phase of pharmaceutical 3DP would facilitate the 

9 timely release of medicines to patients. ML has been used after printing as a quality control (QC) 

10 measure for 3DP drug products, which irrespective of the fabrication technique, is an important issue 

11 [238, 239]. ML can be leveraged to support process analytical technology (PAT), a mechanism designed 

12 to control the quality production of pharmaceuticals. PAT has been widely implemented by the 

13 pharmaceutical industry, motivated by regulatory guidelines such as the FDA Pharmaceutical Quality for 

14 the 21st Century Initiative [240]. Such guidelines were proposed to achieve maximum efficiency, 

15 flexibility, and agile pharmaceutical manufacturing that reliably produces high-quality medicines without 

16 extensive regulatory oversight [241]. In pharmaceutical 3DP, intelligent PAT systems could be employed 

17 as a QC measure to enable real-time approval of 3DP medicines, facilitating pharmaceutical 3DP’s 

18 transition to widespread clinical use. For such applications, non-destructive analysers are required, due 

19 to their ability to preserve the integrity of the final product, as well as requiring minimal sample 

20 preparation. Widely used non-destructive tools are vibrational spectroscopy technologies, such as 

21 Raman or near-infrared (NIR) spectroscopy. Vibrational spectroscopy spectra can be processed using 
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1 multivariate analysis to build a predictive model relating the spectra with different parameters e.g. the 

2 concentration of drugs [242]. In other words, vibrational spectroscopy and multivariate analysis can be 

3 combined to quantify the drug concentration in formulations.

4 A popular ML technique used for multivariate analysis is partial least square (PLS) , a supervised 

5 learning technique [243]. Similar to PCA, PLS is a dimension reduction method that first identifies the 

6 latent variables from the explanatory data, then fits a linear model using least squares. In contrast to 

7 PCA, PLS determines these new features in a supervised manner, as well as computing the covariance 

8 between variables [243]. The use of NIR with PLS was recently exploited for dose verification of two 

9 separate drugs in a single SLS-printed product (Figure 15 (A)) [244]. The authors noted that the QC 

10 measure was able to provide rapid dose prediction in 10 seconds per tablet. In a separate study by the 

11 same research group, a portable NIR device was used to predict drug concentration in tablets across a 

12 range of 4 to 40 w/w% (Figure 15 (B)) [245]. The model developed, again using PLS, was able to achieve 

13 high accuracies for tablets of different geometries and formulation type. Drug concentration detected 

14 by the portable NIR was compared to that obtained by high performance liquid chromatography, where 

15 a paired t-test showed there was no significant difference between the two methods. PLS has also been 

16 used to predicted the crystallinity of lopinavir in SLS-printed products, providing valuable insight into the 

17 potential solubility of a drug [246]. 

18 Hyperspectral imaging, also referred to as chemical imaging, is another vibrational 

19 spectroscopy-based technique with applications in pharmaceutical 3DP QC [247]. The advantage of this 

20 technique is that it combines both spectral and spatial information, whereby materials invisible to the 

21 naked eye are made evident. Images mapping product drug concentration or distribution are produced 

22 by generating a spectrum for each pixel from a basic original image. This results in a 3D array for each 

23 sample, where the x- and y-coordinates represent the spatial coordinates, and the z-coordinate reflects 

24 wavenumbers [248]. Thus, hyperspectral images are multivariate in nature, and can be overwhelming to 

25 interpret in their raw form. Fortunately, ML can be used to analyse this type of data, including cutting 

26 edge deep learning [249, 250]. 

27  Hyperspectral imaging has been used to reveal the distribution of drugs in polymeric matrices, 

28 also elucidating the state of the drug (e.g. molecularly dispersed) [251]. PCA can be utilised to eliminate 

29 noise in the data and identify patterns of spectral data, facilitating rapid interpretation of hyperspectral 

30 images [252]. As an example, PCA has been used to colour-code the concentration of drug on images of 

31 tablets, with the colour shade signifying PCA score: reflecting drug concentration [253]. To date, 
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1 hyperspectral imaging paired with PCA has been used to visualise the concentration of theophylline in 

2 IJP-printed products [254] (Figure 15 (C)), clindamycin palmitate hydrochloride in SLS tablets [255], and 

3 indomethacin in FDM printed products [251]. Such research demonstrates the use of ML in providing 

4 pharmaceutical insight at a microstructural level, aiding understanding of the performance of a printed 

5 product. The benefits of this approach will be further realised as more complex formulations are subject 

6 to ML QC, such as multi-drug polyprints.
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1 Figure 15. Applications of ML post-print. (A) PLS, a supervised learner, was combined with NIR 

2 spectroscopy for non-destructive verification of a Printlet™ with two drugs [244]. (B) Example 

3 of PLS-NIR spectroscopy used for dose verification in Printlets™ with varying geometries [245]. 

4 (C) NIR-chemical imaging combined with PCA, an unsupervised learner, used for qualitatively 

5 visualising the distribution of drug and excipient [254]. 

6

7 6 Machine Learning vs. Non-ML Techniques 
8 Numerous industrial sectors have come to rely on traditional optimisation techniques (such as DoE, 

9 mechanistic modelling, pharmacokinetics (PK) modelling, and FEA), so are ML techniques really 

10 favourable for adoption in pharmaceutical 3DP? In short, ML is the future of process optimisation, and 

11 will likely combine with elements of traditional tools or supersede them entirely [206, 256, 257]. 

12 Whereas traditional techniques are often limited by their scope of use (e.g., PK modelling focuses on in 

13 vivo drug behaviour), ML can cover the breadth of existing non-AI tools combined. For example, one 

14 goal of ML is to develop end-to-end application, where the end product can be predicted from the start; 

15 in the context of 3DP pharmaceuticals, the goal would be to predict PK behaviour, for example, using 

16 the composition of the formulation. This is because ML algorithms do not need to be pre-coded with 

17 ‘rules’ on a system, instead they are coded to learn rules autonomously. As such, ML techniques can be 

18 trained to learn patterns within any dataset and thus solve problems across all subjects. This is useful for 

19 pharmaceutical 3DP, as the field inherently contains numerous disciplines: chemistry, mechanical 

20 engineering, pharmacokinetics, and pharmaceutics, to name a few. ML can be applied to consider how 

21 all of these factors interplay in the pharmaceutical 3DP pipeline. 

22 Whilst DoE can also be applied to a breadth of fields, its low data capacity limits its utility in 

23 pharmaceutical 3DP. ML algorithms can seamlessly handle datasets with thousands of entries; this 

24 would entirely overwhelm DoE and would demand an infeasible number of manual experiments. Due to 

25 the large number of options within the pharmaceutical 3DP process, DoE models would be too narrow 

26 to model complex processes with many interacting factors. Another drawback of DoE compared to ML is 

27 that it often requires operators to perform experiments that they know will be unsuccessful, yet DoE 

28 demands the unsuccessful results to build its model. For example, researchers may know in advance 

29 that combinations of variables in a factorial design will not result in an optimal process outcome, 

30 however they must waste time and resources performing the permutation anyway to satisfy the model’s 
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1 statistical methods. In comparison, ML does not set rigid boundaries on how input data should be 

2 organised within a parameter search space. This is clearly an advantage where researchers have large 

3 volumes of data that was not collected with DoE in mind; with ML, it can still be used and interpreted 

4 [154]. On the other hand, without specialist human input some ML models (such as reinforcement 

5 techniques) may suggest parameters that are not feasible in a specific setting (e.g., very slow printing 

6 speeds in an emergency medical unit). Thus, it is prudent that specialists still check ML decisions, 

7 especially when outputs will directly affect patient care.

8 ML can be combined with DoE, FEA, and mechanistic models to form hybrid models, which are 

9 yet to be thoroughly explored in 3DP [257-260]. For example, the optimisation cycle in FEA can become 

10 both costly and time-intensive, and ML has been used to address this issue [261, 262]. A further 

11 drawback to FEA is that specialised knowledge is required. Take for example FEA applied to tableting, 

12 where domain expertise in particle physics is needed to understand the deformation particles are 

13 subjected to [263]. Whereas ML does not require in-depth knowledge, provided a sufficient amount of 

14 data is available. Moreover, ML provides the opportunity for continuous processes, which has the 

15 potential to achieve intelligent 3DP automation [264, 265]. Nevertheless, there is an opportunity for 

16 existing DoE, FEA and mechanistic modellers to exploit ML to further enrich their research. 

17 Just as 3DP can be integrated with other technologies (e.g., medical imaging) so can ML, 

18 resulting in a closed-loop system suitable for IoT. Here, in situ sensors will indeed play a crucial part in 

19 maintaining autonomy, in addition to computer vision techniques. An enabling aspect of ML is the ability 

20 to process different data formats, such as images, videos, and other data formats, which the non-AI 

21 techniques discussed herein are unable to do. Regarding the implementation of ML, open-source 

22 programming languages like Python, R, and Java can be used to construct ML models. Table 2 provides 

23 a summary of the unique benefits and drawbacks for all the discussed techniques. 

24

25 Table 2. Summary of the advantages and drawbacks of each optimisation technique. All techniques do 
26 provide benefits, however comparing the advantages with respect to one another helps to highlight ML’s 
27 strengths.

 Technique Benefits Limitations

DoE  In common use by 

pharmaceutical industry 

 Commercial software is expensive

 Restricted to small datasets
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 Not subject specific  Restricted data formats

 Additional experiments needed

FEA  Physical phenomenon 

extrapolates well to new designs

 Computationally demanding

 Additional experiments needed 

 Restricted data formats

Mechanistic 

Modelling

 ‘White box’ effect

 No commercial software 

required 

 PK modelling is widely used in 

the pharmaceutical industry 

 PK modelling can reduce the 

number of animal experiments 

 Expertise in physical phenomenon 

needed

 Complex experiments needed 

 Restricted data formats

ML  Can process both linear and 

non-linear relationships

 Can process high-dimensional 

datasets

 Processes various data formats

 No commercial software 

required

 Instantaneous predictions

 Continuous learning

 Facilitates in situ predictions

 Models can be developed for 

end-to-end applications 

 Compatible with ‘Internet of 

Things’

 ‘Black box’ effect 

 Requires deep mathematical 

knowledge to model and interpret 

results

 Pre-processing data can be time-

consuming with unstructured data

 Processing videos can be 

computationally demanding 

 Still subject to bias if input data is 

not managed correctly

1

2 One salient drawback of ML that should be considered is the ‘black box’ effect. As ML models 

3 deal with more and more complex datasets, their decision processes typically follow suite. Complex 

4 decision processes within algorithms can become difficult for humans to interpret and importantly, 

5 sense check. Transparency in ML techniques’ methods are paramount in clinical settings, where 
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1 clinicians and patients need to trust algorithm outputs [266]. This therefore applies to pharmaceutical 

2 3DP, where ML algorithms could be autonomously controlling the personalised production of medicines 

3 [267]. A number of steps can be taken to avoid the ‘black box’ effect [268]. Firstly, developers should 

4 verify the quality of the data being fed to ML algorithms.  The axiom ‘garbage in equals garbage out’ still 

5 rings true in the age of AI. The quality of an algorithm’s output is defined substantially by the quality of 

6 the data fed to it. ML does not yet offer a bypass for meticulous data collection. When implementing ML 

7 in pharmaceutical 3DP, it should be assured that data is accurate and fully descriptive of a wide variety 

8 of 3DP techniques and patient populations. There has recently been a drive to ensure that AI data is fully 

9 inclusive across genders, ethnicities, socioeconomic statuses, and cultures; without recognition of 

10 diversity AI is not suitable for mainstream use [269, 270]. ML algorithms can be adapted to be more 

11 transparent. For example, models can output relationships they have found between data features and 

12 produce graphics that outline decision processes [271, 272]. Ultimately, transparency is key if AI is to be 

13 successful combined with 3DP in healthcare settings. Policy makers must be sure that technology is 

14 enhancing patient care, rather than mystifying it. AI systems within 3DP must also ensure data security, 

15 especially when dealing with sensitive patient data. Such data will require secure Cloud storage and 

16 protection from hacking. Decisions made by algorithms will require stringent record keeping for audit 

17 and regulatory purposes. Blockchain, a digital tamper-proof ledger, will be ideally suited to this purpose, 

18 allowing end-to-end traceability of AI activity throughout the pharmaceutical 3DP pipeline [273]. 

19 7 Internet of Things for Pharmaceutical 3D Printing  
20 IoT technology will be transformative for many processes within medicine and manufacturing, offering 

21 significant utility in the 3DP of medicines [274]. At present, the pharmaceutical 3DP pipeline contains 

22 multiple separate processes that require human interaction: formulation design, formulation 

23 compounding, 3DP, potential post-processing, and finally QC and medicine release. As demonstrated in 

24 this review, ML can facilitate each stage of the pipeline. Additionally, an interconnected network of 

25 devices and robots could remove the need for human hands to carry out tasks and move materials 

26 between development stages. Moreover, an intelligent and interconnected network of devices and 

27 robots could even obviate the need for human brainpower: realising the vision of fully autonomous 

28 production of personalised 3DP medicines. This is the future of Industry 4.0. When IoT and AI are 

29 combined, they result in a cyber-physical system [275]. As pharmaceutical 3DP itself is already a 

30 digitalised process, it is perfectly aligned for incorporation into a cyber-physical system. Though once 

31 the upfront cost of sensors, robots, and other hardware would prohibit complete digitalisation of the 
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1 pharmaceutical 3DP pipeline, these elements are consistently becoming cheaper and more accessible 

2 [237]. Essentially, ML would provide actionable insight from data, to which 3DP will execute. Whilst 

3 building a pharmaceutical 3DP cyber-physical system may still present relatively large upfront costs, the 

4 resultant obviation of human labour will dramatically reduce expenditure in the medium to long term. 

5 Moreover, machines and AI algorithms can work 24/7 at full capacity without increasing error or the 

6 need for rest; hence facilitating high throughput production of patient-centred medicines at all hours of 

7 the day, every day of the year.  Figure 16 is an illustration depicting stages of the 3DP workflow that can 

8 be interconnected with IoT and AI.

9  

10 Figure 16. Stages of pharmaceutical 3DP that can be interconnected with IoT and AI, facilitating 

11 a fully autonomous pipeline. 

12 8 Pharmaceutical 3D Printing’s Intelligent Trajectory 
13 It is only a matter of time until AI plays an integral role in the development and manufacture of 

14 medicines. Compared to other industries, such as the entertainment and financial sectors, the 

15 pharmaceutical industry sits well behind the adoption of AI curve. At this time, it would be wise for the 

16 pharmaceutical industry to combine its current cutting-edge techniques with AI-guided 3DP, because 

17 3DP is already digital and aligned with personalised medicine. This move would drive the pharmaceutical 

18 industry forward to fully harness modern technological capabilities. Adopting AI-guided 3DP now will 

19 accelerate the translation of 3DP medicines into healthcare settings, upgrading patient care to a 

20 personalised model sooner. The majority of ML studies in 3DP medicines has been applied to oral-
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1 formulations, and further research needs to explore the feasibility of ML in fabricating other delivery 

2 devices [276].  A concerted effort is being made to address the current challenges of combining AI with 

3 pharmaceutical 3DP; such as lack of AI skillset, algorithm decision-making transparency, and production 

4 of ML techniques that provide high performances even with small datasets [8, 277]. These issues are 

5 universally felt across both academia and industry, irrespective of the research field, thus driving a 

6 collective impetus. There are also challenges specific to pharmaceutical 3DP that can be resolved. For 

7 instance, consideration should be given to producing a unified database relevant to pharmaceutical 3DP 

8 that will facilitate data mining. As progress continues, it will become increasingly tiresome to data-mine 

9 directly from individual published articles or produce data in house. A structured database will readily 

10 allow the extraction of ML-friendly relevant data for use by all, which could be achieved through a 

11 strategic and unified approach to data collection. These efforts will ultimately aid policymakers in 

12 assessing AI’s contribution to pharmaceutical 3DP, expediting clinical translation.  

13 9 Conclusion
14 In this review we have highlighted how AI can be combined with pharmaceutical 3DP pipeline. It is 

15 paramount that medicine moves away from its longstanding ‘one size fits all’ paradigm of 

16 pharmaceutical provision and embraces administration of personalised medicines. Pharmaceutical 3DP 

17 can provide the supply of personalised medicines in the clinic, but currently requires the presence and 

18 expertise of experienced 3DP practitioners. Multiple methods of traditional process optimisation 

19 techniques, such as FEA, mechanistic modelling, and DoE, exist; however none are equipped to fully 

20 optimise the multiple stages of pharmaceutical 3DP. In comparison, ML can provide intelligent 

21 optimisation of each stage of 3DP medicines’ production. This will eventually remove the need for 

22 constant expert input into 3DP medicine development, thus removing barriers to clinical adoption of the 

23 technology. Moreover, each stage of the pharmaceutical 3DP pipeline can be built into an intelligent IoT, 

24 in which smart hardware can handle every stage of development: from formulation design to final 

25 product release. Such an outcome would remove the need for human labour in the pharmaceutical 3DP 

26 entirely: granting patients 24/7 supply of bespoke, personalised medicines. 
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