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RECONSTRUCTION OF A SPACE-TIME-DEPENDENT SOURCE IN
SUBDIFFUSION MODELS VIA A PERTURBATION APPROACH\ast 

BANGTI JIN\dagger , YAVAR KIAN\ddagger , AND ZHI ZHOU\S 

Abstract. In this article we study two inverse problems of recovering a space-time-dependent
source component from the lateral boundary observation in a subdiffusion model. The mathemat-
ical model involves a Djrbashian--Caputo fractional derivative of order \alpha \in (0, 1) in time, and a
second-order elliptic operator with time-dependent coefficients. We establish a well-posedness and
a conditional stability result for the inverse problems using a novel perturbation argument and
refined regularity estimates of the associated direct problem. Further, we present a numerical al-
gorithm for efficiently and accurately reconstructing the source component, and we provide several
two-dimensional numerical results showing the feasibility of the recovery.
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1. Introduction. This work is concerned with inverse source problems (ISPs) of
identifying a space-time-dependent component of the source in the subdiffusion model
in a cylindrical domain from the lateral Cauchy data on a part of the boundary. Let
d \geq 2, \Omega = \omega \times ( - \ell , \ell ), \omega \subset \BbbR d - 1 be an open bounded domain with a C2 boundary,
and fix T > 0 as the final time. For any x \in \Omega , we write x = (x\prime , xd), with x

\prime \in \omega and
xd \in ( - \ell , \ell ). For m = 0, 1, we consider the following initial boundary value problem
for the function u:

(1.1)

\left\{               

\partial \alpha t u+\scrA (t)u = F in \Omega \times (0, T ),

u(x, 0) = 0 in \Omega ,

\partial mxd
u(x\prime , \ell , t) = 0 on \omega \times (0, T ),

\partial xd
u(x\prime , - \ell , t) = 0 on \omega \times (0, T ),

u(x, t) = 0 on \partial \omega \times ( - \ell , \ell )\times (0, T ).

In the model (1.1), the order \alpha \in (0, 1) is fixed, and the notation \partial \alpha t u denotes the
so-called Djrbashian--Caputo fractional derivative of order \alpha in time, which, for \alpha \in 
(0, 1), is defined by [26, p. 92]

\partial \alpha t u(t) =
1

\Gamma (1 - \alpha )

\int t

0

(t - s) - \alpha u\prime (s)ds,
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where \Gamma (z) =
\int \infty 
0
sz - 1e - sds for \Re (z) > 0 denotes Euler's Gamma function (the

notation \Re denotes taking the real part of a complex number z). When the order \alpha 
approaches 1 - , the fractional derivative \partial \alpha t u recovers the usual first-order derivative
u\prime (t), and, accordingly, the model coincides with the standard diffusion equation. \scrA (t)
is a time-dependent second-order strongly elliptic operator, defined by

\scrA (t)u(x) =  - 
d\sum 

i,j=1

\partial xi
(aij(x, t)\partial xj

u) + q(t)u, x \in \Omega ,

where a = [aij ]
d
i,j=1 \in C(\Omega \times [0, T ];\BbbR d\times d) is a symmetric matrix-valued function

and satisfies suitable regularity conditions given in Assumption 2.1 below, and q \in 
C1([0, T ];L\infty (\Omega )) is nonnegative.

The model (1.1) has received much attention in recent years, known by the name
``subdiffusion"" or ``time-fractional diffusion,"" due to its extraordinary capability for
describing anomalously slow diffusion processes arising in a wide range of practical
applications in physics, engineering, and biology. At a microscopic level, it can be
derived from continuous-time random walk with a heavy-tailed waiting time distri-
bution (with a divergent mean) in the sense that the probability density function of
the walker appearing at time t > 0 and spatial location x \in \BbbR d satisfies a differential
equation of the form (1.1) (in the whole space \BbbR d). The model (1.1) has been suc-
cessfully employed in describing many practical applications, e.g., diffusion of charge
carriers in amorphous photoconductors, diffusion in fractal domains [35], ion trans-
port in column experiments [11], and subsurface flow [2]. We refer interested readers
to the comprehensive reviews [33, 32] for physical motivations of the mathematical
model and long lists of successful applications.

The ISPs of interest are to determine some information of the source F from
the measurement on a subboundary \omega \times \{ \ell \} \subset \partial \Omega of the domain \Omega . Note that the
boundary measurement is insufficient to uniquely determine a general source F (see,
e.g., [23, section 1.3.1]), and additional assumptions have to be imposed on the source
F in order to restore unique recovery. Often it is formulated as recovering either a
spatial or a temporal component of the source F (x, t). In this work, the source F is
assumed to be of the form

(1.2) F (x, t) = f(x\prime , t)R(x, t).

Equation (1.2) can be interpreted as the condition that an unknown source f(x\prime , t)
depends only on the depth variable x\prime and t in the case of d = 2, which corresponds
to a layer structure, and on the planar location (x1, x2) and t but not on the depth
in the case of d = 3, which can be a good approximation if the domain \Omega is very
thin in the direction of x3. Note that it arises also naturally in linearizing the inverse
potential problem, where the potential coefficient q depends on only x\prime and t [14].
We investigate the following two inverse problems: (i) ISPn is to recover f(x\prime , t) from
the boundary observation u| \omega \times \{ \ell \} \times (0,T ) for m = 1 in (1.1), and (ii) ISPd is to recover
f(x\prime , t) from the flux measurement \partial xd

u| \omega \times \{ \ell \} \times (0,T ) for m = 0 in (1.1) (i.e., ``n""
and ``d"" refer to the Neumann and Dirichlet boundary condition, respectively, on the
subboundary \omega \times \{ \ell \} \times (0, T ) in the direct problem (1.1)).

This work is devoted to the theoretical analysis and numerical reconstruction
of ISPn and ISPd. In Theorem 3.4, we prove a well-posedness result for ISPn in
L2(0, T ;L2(\omega )). This is achieved by combining the technique developed in [24], im-
proved regularity estimates, and a novel perturbation argument from [19]. Further, in
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Theorem 4.3, we establish a conditional stability result under an additional regularity
condition on f(x\prime , t) for ISPd. To the best of our knowledge, this is the first work
rigorously analyzing ISPs of recovering a space-time-dependent source component in
a subdiffusion model with time-dependent coefficients. The main technical challenges
in the study include the nonlocality of the time-fractional derivative \partial \alpha t u and the
time-dependence of the operator \scrA (t). The nonlocality essentially limits the solution
regularity pickup (see, e.g., [38] and [17, Chapter 6]), and thus sharp regularity esti-
mates for incompatible problem data are needed, which is especially delicate due to
limited smoothness of the domain \Omega . This is achieved in Proposition 4.1 by using
a refined regularity pickup from [9, Lemma 2.4], exploiting the cylindrical structure
of the domain \Omega . The time dependence of the elliptic operator \scrA (t) precludes the
application of the standard separation of variable technique that has been predomi-
nant in existing studies. This challenge is overcome by a perturbation argument and
maximal Lp regularity for time-fractional problems, which plays an important role in
the analysis of ISPd. In section 5, we derive the adjoint problem for computing the
gradient of a quadratic misfit functional and analyze the regularity of the adjoint vari-
able. Further, we describe the conjugate gradient algorithm for recovering f(x\prime , t) and
provide extensive numerical experiments to illustrate the feasibility of the recovery.
The well-posedness and conditional stability results and the reconstruction algorithm
represent the main contributions of this work.

Last we situate this work in the existing literature. ISPs of recovering partial
information of the source F in a subdiffusion model from the lateral or terminal data
represent an important class of applied inverse problems and have been extensively
studied in the past decade. Most of the works devoted to this problem have been
stated for sources F (x, t) = p(t)q(x) and can be divided into three groups: (i) inverse
t-source problem of recovering p(t) [38, 41, 8, 29], (ii) inverse x-source problem of
recovering q(x) [39, 43, 16, 36], and (iii) simultaneous inversion of spatial and temporal
components [23, 37, 29, 27]. Within group (i), for example, using the decay property
of the Mittag--Leffler function E\alpha ,\beta (z), a two-sided stability result of recovering p(t)
was shown in [38] if the observation u(x0, t) satisfies x0 \in supp(q). Within group
(ii), the unique recovery of the spatial component q(x) by interior observation was
proved in [16] using Duhamel's principle and unique continuation principle, which
also gave an iterative reconstruction algorithm. All these works in groups (i) and
(ii) are concerned with recovering only either p(t) or q(x). The works in group (iii)
are close to the current work. The work [23] showed the simultaneous recovery of p
and q under suitable assumptions. For a two-dimensional heat equation, Rundell and
Zhang [37] proved the unique recovery of both p and q in a semidiscrete setting (i.e.,
the temporal component p(t) is piecewise constant) from sparse observation on the
boundary \partial \Omega \times (0, T ). Li and Zhang [29] extended the analysis to the time-fractional
model in two dimensions and established the uniqueness of recovering the unknown
spatial component q(x), the time mesh, and the fractional order \alpha simultaneously from
sparse data on the boundary \partial \Omega \times (0, T ). We refer interested readers to the reviews
[22, 31] for further pointers to theoretical and numerical results. See also the work
of [27] for the unique recovery of a general source F from the full knowledge of the
solution of problem (1.1), with \scrA independent of t, on \Omega \times (T1, T ), with T1 \in (0, T ).
Kian and Yamamoto [24] proved the first uniqueness and stability results for the
ISPs of recovering f(x\prime , t) of the subdiffusion model in a cylindrical domain. (See
also Isakov [14] for relevant results for the standard parabolic problem in the half
space.) The analysis in [24] relies on some representation of solutions by means of
E\alpha ,\beta (z) which are unavailable for elliptic operators with time-dependent coefficients.
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This work extends the results in [24] to the case of the time-dependent diffusion
coefficients, and further, by exploiting the maximal Lp regularity, we substantially
relax the regularity requirement on f(x\prime , t) for conditional stability.

Inverse problems for subdiffusion with time-dependent coefficients have been
scarcely studied so far, due to a lack of mathematical tools, when compared with
the time-independent counterpart. The only work we are aware of on an ISP with a
time-dependent elliptic operator is [40], which showed the unique recovery of a spa-
tial component from terminal measurement using an energy argument, which seems
nontrivial to extend to the case f(x\prime , t). See also the works [44] for recovering a time-
dependent factor in the diffusion coefficient a(t), where the special structure does
allow applying the established separation of variables technique. Thus, the theoret-
ical analysis for ISPs in the case of time-dependent coefficients remains challenging.
This work presents one promising approach to overcoming this challenge (i.e., pertur-
bation argument), and in particular it allows establishing the stable recovery.

The rest of the paper is organized as follows. In section 2, we state the assump-
tions and preliminary estimates. Then in sections 3 and 4 we prove the well-posedness
of ISPn and conditional stability of ISPd, respectively. In section 5, we describe a nu-
merical algorithm for recovering f(x\prime , t) for both ISPs and provide several numerical
experiments to showcase the feasibility of the recovery. Throughout, the notation c
denotes a generic constant which may change at each occurrence, but it is always in-
dependent of the unknown source f(x\prime , t) or the associated solution u. For a bivariate
function g(x, t) or g(x\prime , t), we often abbreviate it to g(t) as a vector-valued function
by suppressing the dependence on the spatial variable.

2. Preliminaries: Assumptions and basic estimates. Now we collect sev-
eral preliminary results. For m = 0, 1, we define two realizations A(t) and \~A(t) in
L2(\Omega ) of the elliptic operator \scrA (t), with their domains given, respectively, by

D(A(t)) =\{ v \in H1
0 (\Omega ) : \scrA (t)v \in L2(\Omega )\} ,

D( \~A(t)) =\{ v \in H1(\Omega ) : v| \partial \omega \times ( - \ell ,\ell ) = 0,\scrA (t)v \in L2(\Omega ), \partial mxd
v| xd=\ell =0, \partial xd

v| xd= - \ell =0\} ,

and let A\ast = A(t\ast ) and \~A\ast = \~A(t\ast ) for any t\ast \in [0, T ]. Note that we abuse the
notation \~A(t) for bothm = 0 andm = 1, which will be clear from the context. For any
s \geq 0, As

\ast and \~As
\ast denote the fractional power of A\ast and \~A\ast via spectral decomposition,

and the associated graph norms by \| \cdot \| D(As
\ast )

and \| \cdot \| D( \~As
\ast )
, respectively. Let E\ast (t)

and \~E\ast (t) be the solution operators corresponding to the source F , associated with
the elliptic operators A\ast and \~A\ast , respectively, defined by [21, section 3.1]

E\ast (t) :=
1

2\pi i

\int 
\Gamma \theta ,\delta 

ezt(z\alpha +A\ast )
 - 1 dz and \~E\ast (t) :=

1

2\pi i

\int 
\Gamma \theta ,\delta 

ezt(z\alpha + \~A\ast )
 - 1 dz,

(2.1)

with the contour \Gamma \theta ,\delta \subset \BbbC (oriented with an increasing imaginary part) given by

\Gamma \theta ,\delta = \{ z \in \BbbC : | z| = \delta , | arg z| \leq \theta \} \cup \{ z \in \BbbC : z = \rho e\pm i\theta , \rho \geq \delta \} .

Throughout, we fix \theta \in (\pi 2 , \pi ) so that z\alpha \in \Sigma \alpha \theta for z \in \Sigma \theta := \{ z \in \BbbC \setminus \{ 0\} : | arg(z)| \leq 
\theta \} . Further, we employ the operator \~S\ast (t) (corresponding to the initial data) defined
by

\~S\ast (t) :=
1

2\pi i

\int 
\Gamma \theta ,\delta 

eztz\alpha  - 1(z\alpha + \~A\ast )
 - 1 dz.
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Then it is known that [21, equation (3.8)]

(2.2)
d

dt
\~S\ast (t) =  - \~A\ast \~E\ast (t).

The next lemma summarizes the smoothing properties of E\ast (t), \~E\ast (t), and \~S\ast (t).
The notation \| \cdot \| denotes the operator norm on L2(\Omega ).

Lemma 2.1 (see [21, Lemma 1]). For any \beta \in [0, 1], there hold for any t \in (0, T ]

t1+\alpha (\beta  - 1)\| A\beta 
\ast E\ast (t)\| \leq c and t1+\alpha (\beta  - 1)\| \~A\beta 

\ast 
\~E\ast (t)\| +t1+\alpha \| \~A2

\ast 
\~E\ast (t)\| +t\beta \alpha \| \~A\beta 

\ast 
\~S\ast (t)\| \leq c.

Throughout, we make the following assumption on the diffusion coefficient matrix
a. The regularity a \in C1([0, T ];C1(\Omega ;\BbbR d\times d))\cap C([0, T ];C3(\Omega ;\BbbR d\times d)) is sufficient for
Lemma 2.3. (ii) is a structural condition to enable unique recovery. The notation \cdot 
and | \cdot | denote the standard Euclidean inner product and norm, respectively, on \BbbR d.

Assumption 2.1. The coefficient q \in C1([0, T ];L\infty (\Omega ))\cap L\infty (0, T ;W 2,\infty (\Omega )), and
the symmetric diffusion coefficient matrix a \in C1([0, T ];C1(\Omega ;\BbbR d\times d)) \cap C([0, T ];
C3(\Omega ;\BbbR d\times d)) satisfies the following conditions:

(i) There exists \lambda \in (0, 1) such that for any (x, t) \in \Omega \times [0, T ],

\lambda | \xi | 2 \leq a(x, t)\xi \cdot \xi \leq \lambda  - 1| \xi | 2 \forall \xi \in \BbbR d.

(ii) ajd(x
\prime ,\pm \ell , t) = 0, x\prime \in \omega , and j = 1, . . . , d  - 1, and \partial xd

aij(t) = 0 for i, j =
1, . . . , d - 1.

Note that the cylindrical domain \Omega = \omega \times ( - \ell , \ell ) is only Lipschitz continuous.
Thus, some extra assumptions on the domain and the coefficient matrix a are needed
in order to guarantee high-order Sobolev regularity of the elliptic operator \scrA (t) with
suitable boundary conditions. In the analysis, we need the following elliptic regularity
pickup: (i) and (ii) are sufficient for the analysis in sections 3 and 4, respectively. (i)
holds under the assumption that the domain \omega is convex and

(2.3) aid = 0, \partial xj
add = 0, \partial xd

aij = 0, i, j \in \{ 1, . . . , d - 1\} .

Indeed, if \omega is convex, then \Omega is convex and the desired assertion follows from [10,
Theorems 3.2.1.2 and 3.2.1.3]. This can be verified using a separation of variables
argument [9, Lemma 2.4]. Besides the condition (2.3), if the domain \omega is of class C4,

the separation of variable argument similar to [9, Lemma 2.4] implies Assumption \widetilde H
in Definition 2.2(ii).

Definition 2.2.
(i) A tuple (\Omega ,\scrA (t)) is said to satisfy Assumption Hmn, m,n = 0, 1, if for any

t \in [0, T ] and any f \in L2(\Omega ), the boundary value problem\left\{         
\scrA (t)v = f in \Omega ,

v = 0 on \partial \omega \times ( - \ell , \ell ),
\partial mxd

v(x\prime , \ell ) = 0 on \omega ,

\partial nxd
v(x\prime , - \ell ) = 0 on \omega 

admits a unique solution v \in H2(\Omega ) such that

\| v\| H2(\Omega ) \leq c(\scrA ,m, n,\Omega )\| f\| L2(\Omega ).
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(ii) A tuple (\Omega ,\scrA (t)) is said to satisfy Assumption \widetilde H if for all v \in Hmax(1,s)(\Omega )
satisfying \scrA (t)v \in Hs(\Omega ), s \in [0, 2], there hold v \in H2+s(\Omega ) and

\| v\| H2+s(\Omega ) \leq c(\scrA , s,\Omega )(\| \scrA v\| Hs(\Omega ) + \| v\| Hs(\Omega )).

The following perturbation estimates are useful.

Lemma 2.3. Under Assumptions 2.1(i) and H00 / H01 / H11, for any t, s \in [0, T ]
and \beta \in [0, 1], there hold

\| A\beta 
\ast (I  - A(t) - 1A(s))v\| L2(\Omega ) \leq c| t - s| \| A\beta 

\ast v\| L2(\Omega ) \forall v \in D(A\beta 
\ast ),(2.4)

\| \~A\beta 
\ast (I  - \~A(t) - 1 \~A(s))v\| L2(\Omega ) \leq c| t - s| \| \~A\beta 

\ast v\| L2(\Omega ) \forall v \in D( \~A\beta 
\ast ).(2.5)

Proof. For the operator A(t), the case \beta = 0 is contained in [19, Corollary 3.1].
To show the estimate for \beta = 1, fix t, s \in [0, T ], v \in D(A\ast ). From Assumption H00,
we deduce D(A\ast ) = H1

0 (\Omega ) \cap H2(\Omega ) = D(A(t)) = D(A(s)), i.e., v \in D(A(t)) and
v \in D(A(s)). Moreover, applying again Assumption H00, we get

\| A\ast (I  - A(t) - 1A(s))v\| L2(\Omega ) \leq c\| (I  - A(t) - 1A(s))v\| H2(\Omega )

\leq c\| A(t)(I  - A(t) - 1A(s))v\| L2(\Omega ) = c\| A(t)v  - A(s)v\| L2(\Omega ),

with c > 0 a constant independent of t and s. Combining this estimate with [19,
equation (2.6)] and Assumption H00, we obtain (2.4) for \beta = 1 and q \equiv 0. We can
extend this result to q \not \equiv 0, since for q \in C1([0, T ];L2(\Omega )), the mean value theorem
implies

\| q(t)v  - q(s)v\| L2(\Omega ) \leq \| \partial tq\| L\infty (0,T ;L\infty (\Omega ))| t - s| \| v\| L2(\Omega ) \leq c| t - s| \| A\beta 
\ast v\| L2(\Omega ).

The case \beta \in (0, 1) follows by interpolation. The proof of estimate (2.5) is identical
under Assumption H01 / H11.

Below we need Bochner--Sobolev spaces W s,p(0, T ;X) for a UMD space X (see
[13] for the definition of UMD spaces, which include Sobolev spaces W s,p(\Omega ) with
1 < p < \infty ). For any s \geq 0 and 1 \leq p < \infty , we denote by W s,p(0, T ;X) the
space of functions v : (0, T ) \rightarrow X, with the norm defined by complex interpolation.
Equivalently, the space is equipped with the quotient norm

\| v\| W s,p(0,T ;X) := inf\widetilde v \| \widetilde v\| W s,p(\BbbR ;X) := inf\widetilde v \| \scrF  - 1[(1 + | \xi | 2) s
2\scrF [\widetilde v](\xi )]\| Lp(\BbbR ;X),

where the infimum is taken over all possible \widetilde v that extend v from (0, T ) to \BbbR , and
\scrF denotes the Fourier transform (with \scrF  - 1 being its inverse). The following norm
equivalence result will be used extensively.

Lemma 2.4. Let \alpha \in (0, 1) and p \in [1,\infty ) with \alpha p > 1. If v(0) = 0 and \partial \alpha t v \in 
Lp(0, T ;X), then v \in W\alpha ,p(0, T ;X) and

\| v\| W\alpha ,p(0,T ;X) \leq c\| \partial \alpha t v\| Lp(0,T ;X).

Meanwhile, if v(0) = 0, v \in W\alpha ,p(0, T ;X), then \partial \alpha t v \in Lp(0, T ;X) and

\| \partial \alpha t v\| Lp(0,T ;X) \leq c\| v\| W\alpha ,p(0,T ;X).
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Proof. Let g = \partial \alpha t v \in Lp(0, T ;X). Then v(t) = 1
\Gamma (\alpha )

\int t

0
(t  - s)\alpha  - 1g(s) ds. This

and Young's convolution inequality imply (cf., e.g., [17, Theorem 2.2])

\| v\| Lp(0,T ;X) \leq c\| g\| Lp(0,T ;X).

Let \~g be the extension of g from Lp(0, T ;X) to Lp(\BbbR ;X) by zero, i.e., \~g(t) = 0 for
t \in ( - \infty , 0) \cup (T,\infty ) and \~g(t) = g(t) for t \in (0, T ). Then let

\widetilde v(t) = 1

\Gamma (\alpha )

\int t

 - \infty 
(t - s)\alpha  - 1\widetilde g(s) ds,

which satisfies \widetilde g(t) = 1

\Gamma (1 - \alpha )

d

dt

\int t

 - \infty 
(t - s) - \alpha \widetilde v(s) ds.

Then there holds [26, p. 90]

(i\xi )\alpha \scrF [\widetilde v](\xi ) = \scrF [\widetilde g](\xi ),
and \widetilde v is an extension of v. Consequently, we have

\| \widetilde v\| W\alpha ,p(\BbbR ;X) = \| \scrF  - 1[(1 + | \xi | 2)\alpha 
2 \scrF [\widetilde v](\xi )]\| Lp(\BbbR ;X)

= \| \scrF  - 1[K(\xi )(1 + (i\xi )\alpha )\scrF [\widetilde v](\xi )]\| Lp(\BbbR ;X),

with K(\xi ) = (1 + | \xi | 2)\alpha 
2 (1 + (i\xi )\alpha ) - 1. Note that

lim
| \xi | \rightarrow 0+

| K(\xi )| = 1 and lim
| \xi | \rightarrow \infty 

| K(\xi )| = 1,

so K(\xi ) is uniformly bounded. Similarly,

\xi 
d

d\xi 
K(\xi ) =

\alpha | \xi | 2

1 + | \xi | 2
(1 + | \xi | 2)\alpha 

2 (1 + (i\xi )\alpha ) - 1 + \alpha (1 + | \xi | 2)\alpha 
2 (1 + (i\xi )\alpha ) - 2(i\xi )\alpha 

is also bounded. Therefore, the vector-valued Mikhlin multiplier theorem (see, e.g.
[6] or [45, Proposition 3]) indicates that K(\xi ) is a Fourier multiplier, and hence

\| v\| W\alpha ,p(0,T ;X) \leq \| \widetilde v\| W\alpha ,p(\BbbR ;X) \leq c\| \scrF  - 1[(1 + (i\xi )\alpha )\scrF [\widetilde v](\xi )]\| Lp(\BbbR ;X)

\leq c\| \widetilde v\| Lp(\BbbR ;X) + c\| g\| Lp(\BbbR ;X) \leq c\| g\| Lp(\BbbR ;X) = c\| g\| Lp(0,T ;X) = c\| \partial \alpha t u\| Lp(0,T ;X).

To prove the second assertion, let v \in C\infty ([0, T ];X) with v(0) = 0, and we extend v
from (0, T ) to a function \widetilde v \in W\alpha ,p(\BbbR ;X) satisfying \widetilde v(t) = 0 for all t \leq 0 and

\| \widetilde v\| W\alpha ,p(\BbbR ;X) \leq c\| v\| W\alpha ,p(0,T ;X).(2.6)

Then it is direct that

 - \infty \partial 
\alpha 
t v(t) :=

1

\Gamma (\alpha )

d

dt

\int t

 - \infty 
(t - s) - \alpha \widetilde v(s) ds = \partial \alpha t v(t) \forall t \in (0, T )

and

\| \partial \alpha t v\| Lp(0,T ;X) = \|  - \infty \partial 
\alpha 
t \widetilde v\| Lp(0,T ;X) \leq \|  - \infty \partial 

\alpha 
t \widetilde v\| Lp(\BbbR ;X)

= \| \scrF  - 1(i\xi )\alpha \scrF [\widetilde v](\xi )\| Lp(\BbbR ;X) = \| \scrF  - 1K2(\xi )(1 + | \xi | 2)\alpha 
2 \scrF [\widetilde v](\xi )\| Lp(\BbbR ;X),
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with K2(\xi ) = | \xi | \alpha (1 + | \xi | 2) - \alpha 
2 . Note that both | K2(\xi )| and | \xi d

d\xi K2(\xi )| are uniformly
bounded, and hence it is a Fourier multiplier. Then we have

\| \partial \alpha t v\| Lp(0,T ;X) \leq \| \scrF  - 1(1 + | \xi | 2)\alpha 
2 \scrF [\widetilde v](\xi )\| Lp(\BbbR ;X) \leq c\| \widetilde v\| W\alpha ,p(\BbbR ;X).

This together with (2.6) and the density of C\infty ([0, T ];X) in W\alpha ,p(0, T ;X) leads to
the second assertion.

We need the following Gronwall's inequality (see, e.g., [42], [12, Exercise 3, p. 190],
or [17, Theorem 4.2]).

Lemma 2.5. Let c, r > 0 and y, a \in L1(0, T ) be nonnegative functions satisfying

y(t) \leq a(t) + c

\int t

0

(t - s)r - 1y(s)ds, t \in (0, T ).

Then there exists c = c(r, T ) > 0 such that

y(t) \leq a(t) + c

\int t

0

(t - s)r - 1a(s)ds, t \in (0, T ).

3. Well-posedness for ISPn. This section is devoted to ISPn, i.e., recovering
the source component f(x\prime , t) in problem (1.1) with m = 1 from u| \omega \times \{ \ell \} \times (0,T ). The
direct problem is given by

(3.1)

\left\{         
\partial \alpha t u+\scrA (t)u = F in \Omega \times (0, T ),

u(x, 0) = 0 in \Omega ,

\partial xd
u(x\prime ,\pm \ell , t) = 0 on \omega \times (0, T ),

u(x, t) = 0 on \partial \omega \times ( - \ell , \ell )\times (0, T ).

Subdiffusion with time-dependent coefficients has recently been studied in [28, 19, 21],
where well-posedness and several regularity estimates have been established. Our
description largely follows the approach developed in [19, 21]. Throughout, for the
prefactor R(x, t) in the source F , we make the following assumption.

Assumption 3.1. The function R \in L\infty (\Omega \times (0, T )) satisfies \partial xd
R \in L\infty (\Omega \times (0, T ))

and that there exists cR > 0 such that | R(x\prime , \ell , t)| \geq cR for any (x\prime , t) \in \omega \times (0, T ).

Now we give several regularity estimates for the direct problem (3.1). First we
derive a representation of the solution u. The key step is to reformulate problem (3.1)
into

\partial \alpha t u(t) +
\~A\ast u(t) = F (t) + ( \~A\ast  - \~A(t))u(t) \forall t \in (0, T ].

According to [19, 21], problem (3.1) has a unique solution u which satisfies

u(t) =

\int t

0

\~E\ast (t - s)F (s)ds+

\int t

0

\~E\ast (t - s)( \~A\ast  - \~A(s))u(s)ds.

By setting t to t\ast , we can use Lemma 2.3 to estimate the second integral, which
involves the crucial perturbation term.

The next result collects a priori estimates on the solution u to problem (3.1).

Lemma 3.1. Let Assumption H11 hold. Then the solution u to problem (3.1)
satisfies

\| u(t)\| H1(\Omega ) \leq c

\int t

0

(t - s)
\alpha 
2  - 1\| F (s)\| L2(\Omega )ds \forall t \in (0, T ](3.2)
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and also the following maximal Lp regularity:

\| \partial \alpha t u\| Lp(0,T ;L2(\Omega )) + \| u\| Lp(0,T ;D( \~A\ast ))
\leq c\| F\| Lp(0,T ;L2(\Omega )) \forall 1 < p <\infty .(3.3)

Proof. The estimate (3.2) can be found in [21, Theorem 2] (with k = 0), and (3.3)
in [19, Theorem 2.1].

Further, we denote by uf the solution of problem (3.1) to explicitly indicate its
dependence on f . First we show that the inverse problem is indeed ill-posed on the
space L2(0, T ;L2(\omega )).

Corollary 3.2. Under Assumptions 2.1(i), H11, and 3.1, the map f \mapsto \rightarrow 
uf | L2(0,T ;L2(\omega )) is linear and compact on L2(0, T ;L2(\omega )).

Proof. The linearity is obvious. The compactness is direct from Lemma 3.1. In
fact, by the maximal Lp regularity in Lemmas 3.1 and 2.4 and Assumption 3.1, we
have

\| uf\| W\alpha ,2(0,T ;L2(\Omega )) + \| uf\| L2(0,T ;H2(\Omega )) \leq c\| f\| L2(0,T ;L2(\omega )).

Thus, uf \in W\alpha ,2(0, T ;L2(\Omega )) \cap L2(0, T ;H2(\Omega )). Meanwhile, by interpolation, the
space W\alpha ,2(0, T ;L2(\Omega ))\cap L2(0, T ;H2(\Omega )) embeds compactly into L2(0, T ;H1(\Omega )) [4,
Theorem 5.2], which, by the trace theorem, embeds continuously into L2(0, T ;L2(\omega )).
Thus the map f \mapsto \rightarrow uf | \omega \times \{ \ell \} \times (0,T ) is compact on L2(0, T ;L2(\omega )).

Let w = \partial xd
uf . Then w satisfies

(3.4)

\left\{     
\partial \alpha t w +\scrA (t)w =  - \partial xd

\scrA (t)uf (t) + \partial xd
F (t) in \Omega \times (0, T ),

w(0) = 0 in \Omega ,

w = 0 on \partial \Omega \times (0, T ).

By applying the perturbation argument and using the operator A(t), the solution w
to problem (3.4) can be represented by
(3.5)

w(t) =

\int t

0

E\ast (t - s)
\bigl( 
 - \partial xd

A(s)uf (s)+ \partial xd
F (s)

\bigr) 
ds+

\int t

0

E\ast (t - s)(A\ast  - A(s))w(s)ds.

Noting the definition w = \partial xd
uf and the condition \partial xd

aij(t) = 0 for i, j = 1, . . . , d - 1
from Assumption 2.1(ii), we deduce

 - (\partial xd
\scrA (t))u = \partial xd

(\partial xd
add(t)\partial xd

uf ) +

d - 1\sum 
j=1

\bigl[ 
\partial xj

(\partial xd
ajd(t)\partial xd

uf ) + \partial xd
(\partial xd

ajd(t)\partial xj
uf )

\bigr] 
 - \partial xd

q(t)uf := B1(t)w +B2(t)uf ,

where the (time-dependent) operators B1(t) and B2(t) are given, respectively, by

B1(t)w := \partial xd
add(t)\partial xd

w + 2

d - 1\sum 
j=1

\partial xd
ajd(t)\partial xj

w +

d - 1\sum 
j=1

\partial xj
\partial xd

ajd(t)w,

B2(t)u :=

d\sum 
j=1

(\partial 2xd
ajd(t))\partial xj

u - \partial xd
q(t)u.

Note that Assumption 2.1(ii) allows eliminating the cross terms \partial xi
(\partial xd

aij(t)\partial xj
u),

i, j = 1, . . . , d  - 1, which plays a central role in the analysis below, and without this
the argument does not work.

The next result gives useful bounds on w := \partial xd
uf .

D
ow

nl
oa

de
d 

10
/1

9/
21

 to
 1

44
.8

2.
11

4.
15

7 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4454 BANGTI JIN, YAVAR KIAN, AND ZHI ZHOU

Lemma 3.3. Let Assumptions 2.1, H00, H11, and 3.1 be fulfilled. Then there
exists a unique solution w \in L2(0, T ;H2(\Omega )) with \scrA (t)w(t), \partial \alpha t w \in L2(0, T ;L2(\Omega )) to
problem (3.4), and for any \beta \in [1, 2),

\| w(t)\| H\beta (\Omega ) \leq c

\int t

0

(t - s)(1 - 
\beta 
2 )\alpha  - 1\| f(s)\| L2(\omega )ds, t \in (0, T ),

where the constant c depends only on R, \scrA , \beta , and T .

Proof. By estimate (3.3) with p = 2, we have - \partial xd
\scrA (t)uf , \partial xd

F \in L2(0, T ;L2(\Omega )).
Then Lemma 3.1 shows that problem (3.4) has a unique solution w \in L2(0, T ;H2(\Omega ))
with \scrA (t)w(t), \partial \alpha t w \in L2(0, T ;L2(\Omega )). Next, we prove the H\beta (\Omega ) bound on w(t). We
define the operatorsK1 : L2(0, T ;H1(\Omega )) \rightarrow L2(0, T ;H1(\Omega )) andK2 : L2(0, T ;L2(\omega ))
\rightarrow L2(0, T ;H1(\Omega )), respectively, by

K1v(t) =

\int t

0

E\ast (t - s)B1v(s)ds,

K2f(t) =

\int t

0

E\ast (t - s)B2uf (s)ds+

\int t

0

E\ast (t - s)\partial xd
R(s)f(s)ds.

By Lemma 2.1, we have

\| K1v(t\ast )\| H\beta (\Omega ) \leq c

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| B1v(s)\| L2(\Omega )ds

\leq c

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| v(s)\| H1(\Omega )ds.(3.6)

Similarly, by Lemma 2.1, under Assumption 3.1, we have

\| K2f(t\ast )\| H\beta (\Omega ) \leq c

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| f(s)\| L2(\omega )ds

+ c

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| uf (s)\| H1(\Omega )ds.(3.7)

Meanwhile, under Assumption 3.1 and estimate (3.2), we deduce

\| uf (t)\| H1(\Omega ) \leq c

\int t

0

(t - s)
\alpha 
2  - 1\| f(s)\| L2(\omega )ds.

Consequently, \int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| uf (s)\| H1(\Omega )ds

\leq c

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1

\int s

0

(s - \xi )
\alpha 
2  - 1\| f(\xi )\| L2(\omega )d\xi ds

= c

\int t\ast 

0

\| f(\xi )\| L2(\omega )

\int t\ast 

\xi 

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1(s - \xi )

\alpha 
2  - 1dsd\xi 

\leq cT
\alpha 
2

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| f(s)\| L2(\omega )ds.
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This and estimate (3.7) imply

(3.8) \| K2f(t\ast )\| H\beta (\Omega ) \leq cT

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| f(s)\| L2(\omega )ds.

Next, by Lemmas 2.1 and 2.3, (2.4), and Assumption H00, we have\bigm\| \bigm\| \bigm\| \int t\ast 

0

E\ast (t\ast  - s)(A\ast  - A(s))w(s)ds
\bigm\| \bigm\| \bigm\| 
H\beta (\Omega )

\leq c

\int t\ast 

0

\| A\ast E\ast (t\ast  - s)\| \| A
\beta 
2
\ast (I  - A - 1

\ast A(s))w(s)\| L2(\Omega )ds

\leq c

\int t\ast 

0

(t\ast  - s) - 1(t\ast  - s)\| w(s)\| H\beta (\Omega )ds = c

\int t\ast 

0

\| w(s)\| H\beta (\Omega )ds.

This estimate, (3.6), (3.8), and the solution representation (3.5) lead to

\| w(t\ast )\| H\beta (\Omega ) \leq c

\int t\ast 

0

\| w(s)\| H\beta (\Omega )ds+ c

\int t\ast 

0

(t\ast  - s)(1 - 
\beta 
2 )\alpha  - 1\| f(s)\| L2(\omega )ds.

This and Gronwall's inequality in Lemma 2.5 imply the desired H\beta (\Omega ) bound. This
completes the proof.

Now we can state a well-posedness result for ISPn. Note that below we use the
notation L2(0, T ;L2(\omega )) and L2(\omega \times (0, T )) interchangeably since they are isomorphic
by the Fubini--Tonelli theorem.

Theorem 3.4. Let Assumptions 2.1, H00, H11, and 3.1 be fulfilled. Then for
any f \in L2(\omega \times (0, T )), the solution u of problem (3.1) satisfies u \in H3( - \ell , \ell ;L2(\omega \times 
(0, T ))), \partial \alpha t u, \scrA (t)u \in H1( - \ell , \ell ;L2(\omega \times (0, T ))). Thus, the map

(3.9) h : (x\prime , t) \mapsto \rightarrow 
[\partial \alpha t u+ (\scrA (t) + add(t)\partial 

2
xd
)u](x\prime , \ell , t)

R(x\prime , \ell , t)
\in L2(\omega \times (0, T ))

is well-defined, and, further, there exists a bounded linear operator \scrH : L2(0, T ;L2(\omega ))
\rightarrow L2(0, T ;L2(\omega )) such that f solves

(3.10) h = f +\scrH f,

which is well-posed on L2(\omega \times (0, T )). Finally, for every pair (h, f) \in L2(\omega \times (0, T ))\times 
L2(\omega \times (0, T )) satisfying (3.10), the solution u of problem (3.1) satisfies (3.9).

Proof. By Lemmas 3.1 and 3.3, problem (1.1) has a solution uf \in L2(0, T ;H1(\Omega )),
with \scrA (t)uf , \partial 

\alpha 
t uf \in L2(0, T ;L2(\Omega )) and w = \partial xd

uf \in L2(0, T ;H2(\Omega )), \partial \alpha t \partial xd
uf ,

\scrA (t)\partial xd
uf \in L2(0, T ;L2(\Omega )). Hence,

xd \mapsto \rightarrow uf (\cdot , xd, \cdot ) \in H3( - \ell , \ell ;L2(\omega \times (0, T ))) \cap H1( - \ell , \ell ;L2(0, T ;H2(\omega ))),

xd \mapsto \rightarrow \partial \alpha t uf (\cdot , xd, \cdot ) \in H1( - \ell , \ell ;L2(\omega \times (0, T ))).

By the trace theorem, we can restrict \partial xd
w = \partial 2xd

uf , \partial 
\alpha 
t uf , and \scrA (t)uf to the

boundary xd = \ell . Thus the governing equation in problem (3.1) implies that for
(x\prime , t) \in \omega \times (0, T ),

add(t)\partial xd
w(x\prime , \ell , t) = add(t)\partial 

2
xd
uf (x

\prime , \ell , t)

= [\partial \alpha t uf + (\scrA (t) + add(t)\partial 
2
xd
)uf ](x

\prime , \ell , t) - R(x\prime , \ell , t)f(x\prime , t)

= R(x\prime , \ell , t)[h(x\prime , t) - f(x\prime , t)],

(3.11)
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with the function h(x\prime , t) given by (3.9). Let the operator \scrH : L2(\omega \times (0, T )) \rightarrow 
L2(\omega \times (0, T )) be defined by

[\scrH \phi ](x\prime , t) =
add(t)\partial 

2
xd
u\phi (x

\prime , \ell , t)

R(x\prime , \ell , t)
,

where u\phi (x
\prime , xd, t) denotes the solution to problem (3.1) with F = \phi R. Then it follows

from (3.11) that f is the solution to

h = f +\scrH f.

Moreover, by Lemma 3.3, trace inequality, and the defining identity w = \partial xd
uf , we

deduce that for any \beta \in ( 34 , 1)

\| f(t)\| L2(\omega ) \leq \| h(t)\| L2(\omega ) + \| \scrH f\| L2(\omega ) \leq \| h(t)\| L2(\omega ) + c\| \partial 2xd
uf (\cdot , \ell , t)\| L2(\omega )

\leq \| h(t)\| L2(\omega ) + c\| w(t)\| H2\beta (\Omega ) \leq \| h(t)\| L2(\omega ) + c

\int t

0

(t - s)(1 - \beta )\alpha  - 1\| f(s)\| L2(\omega ) ds.

This and the standard Gronwall inequality in Lemma 2.5 yield

\| f(t)\| L2(\omega ) \leq \| h(t)\| L2(\omega ) + c

\int t

0

(t - s)(1 - \beta )\alpha  - 1\| h(s)\| L2(\omega )ds,

which together with Young's inequality directly implies

\| f\| L2(0,T ;L2(\omega )) \leq c\| h\| L2(0,T ;L2(\omega )).

This shows the well-posedness of (3.10) and the recovery of f from the data h. Last, fix
(h1, f) \in L2(0, T ;L2(\omega ))\times L2(0, T ;L2(\omega )) satisfying (3.10) with h = h1 and consider
u \in L2(0, T ;H1(\Omega )) solving problem (1.1) with F = hR. The preceding argument
shows that one can define h \in L2(0, T ;L2(\omega )) given by (3.9) and f solves (3.10). This
implies h1 = f +\scrH f = h. Therefore, we have h = h1, and this completes the proof
of the theorem.

Remark 3.5. Theorem 3.4 actually gives a reconstruction algorithm for recovering
f for ISPn if the given data g\dagger (x\prime , t) = uf\dagger (x\prime , \ell , t) is sufficiently accurate so that the
derivatives \partial \alpha t g

\dagger and \scrA (t)g\dagger in (3.9) can be evaluated accurately. For noisy data g\delta ,
one can proceed in two steps: first suitably mollify the data g\delta so that the mollified
data is smooth, and then apply the fixed point iteration.

4. Conditional stability for ISPd. In this section, we establish a conditional
stability result for ISPd, i.e., recovering f(x\prime , t) in problem (1.1) with m = 0 from the
lateral flux observation \partial xd

u| \omega \times \{ \ell \} \times (0,T ). The direct problem is given by

(4.1)

\left\{               

\partial \alpha t u+\scrA (t)u = fR in \Omega \times (0, T ),

u = 0 on \partial \omega \times ( - \ell , \ell )\times (0, T ),

u(\cdot , \ell , \cdot ) = 0 on \omega \times (0, T ),

\partial xd
u(\cdot , - \ell , \cdot ) = 0 on \omega \times (0, T ),

u(0) = 0 in \omega \times ( - \ell , \ell ).

Note that the estimates in Lemma 3.1 remain valid for problem (4.1). The next
result gives an improved regularity result under extra regularity and compatibility
assumptions on the source F . This result plays a central role in the stability analysis.
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Proposition 4.1. Let Assumptions 2.1(i), H01, and \widetilde H be fulfilled, let \gamma \in ( 12 , 1),

and let F \in W 1, 1
1+\alpha (1 - 2\gamma ) (0, T ;L2(\Omega ))\cap L

1
\alpha (1 - \gamma ) (0, T ;H2\gamma (\Omega )) and F (0) = 0. Then for

any \beta \in ( 12 , \gamma ), problem (4.1) has a unique weak solution u \in L
1

\alpha (1 - \gamma ) (0, T ;H2+2\beta (\Omega ))

\cap W\alpha , 1
\alpha (1 - \gamma ) (0, T ;H2\beta (\Omega )) with

\| u\| 
L

1
\alpha (1 - \gamma ) (0,T ;H2+2\beta (\Omega ))

+ \| u\| 
W

\alpha , 1
\alpha (1 - \gamma ) (0,T ;H2\beta (\Omega ))

\leq c
\Bigl( 
\| F\| 

W
1, 1

1+\alpha (1 - 2\gamma ) (0,T ;L2(\Omega ))
+ \| F\| 

L
1

\alpha (1 - \gamma ) (0,T ;H2\gamma (\Omega ))

\Bigr) 
.

Proof. By Sobolev embedding, F \in L\infty (0, T ;L2(\Omega )), and the existence and unique-
ness of a weak solution u \in Lq(0, T ;D( \~A\ast )) for all q \in (1,\infty ) follows directly from
Lemma 3.1 with

(4.2) \| u\| Lq(0,T ;D( \~A\ast ))
\leq c\| f\| 

W
1, 1

1+\alpha (1 - 2\gamma ) (0,T ;L2(\omega ))
.

It suffices to show the claimed regularity. Using the operator \~A(t) and the perturba-
tion argument, since u(0) = 0, the solution u can be represented by

(4.3) u(t) =

\int t

0

\~E\ast (s)F (t - s)ds+

\int t

0

\~E\ast (s)( \~A\ast  - \~A(t - s))u(t - s)ds.

Then applying \~A\ast to both sides of the identity and using the governing equation give

\partial \alpha t u(t) =  - \~A\ast u(t) + F (t) + ( \~A\ast  - \~A(t))u(t)

=  - 
\int t

0

\~A\ast \~E\ast (s)F (t - s)ds - 
\int t

0

\~A\ast \~E\ast (s)( \~A\ast  - \~A(t - s))u(t - s)ds+ F (t)

+ ( \~A\ast  - \~A(t))u(t).

Now by fixing t at t\ast in the identity, applying the identity (2.2) and the integration
by parts formula to the first integral, and noting the condition F (\cdot , 0) = 0 and the
fact \~S\ast (0) = I [17, Lemma 6.3], we obtain

\partial \alpha t u(t\ast ) =  - 
\int t\ast 

0

\~A\ast \~E\ast (s)F (t\ast  - s)ds - 
\int t\ast 

0

\~A\ast \~E\ast (s)( \~A\ast  - \~A(t\ast  - s))u(t\ast  - s)ds+F (t\ast )

=  - 
\int t\ast 

0

\~S\ast (s)F
\prime (t\ast  - s)ds - 

\int t\ast 

0

\~A\ast \~E\ast (s)( \~A\ast  - \~A(t\ast  - s))u(t\ast  - s)ds.(4.4)

Then it follows from Lemmas 2.1 and 2.3 that

\| \~A\beta 
\ast \partial 

\alpha 
t u(t\ast )\| L2(\Omega ) \leq 

\int t\ast 

0

\| \~A\beta 
\ast 
\~S\ast (t\ast  - s)\| \| F \prime (s)\| L2(\Omega )ds

+

\int t\ast 

0

\| \~A1+\beta 
\ast E\ast (t\ast  - s)\| \| \~A\ast (I  - \~A - 1

\ast 
\~A(s))u(s)\| L2(\Omega )ds

\leq c

\int t\ast 

0

(t\ast  - s) - \beta \alpha \| F \prime (s)\| L2(\Omega )ds+ c

\int t\ast 

0

(t\ast  - s) - \beta \alpha  - 1(t\ast  - s)\| \~A\ast u(s)\| L2(\Omega )ds

\leq c

\int t\ast 

0

(t\ast  - s) - \beta \alpha \| F \prime (s)\| L2(\Omega )ds+ c

\int t\ast 

0

(t\ast  - s) - \beta \alpha \| \~A\ast u(s)\| L2(\Omega )ds.
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4458 BANGTI JIN, YAVAR KIAN, AND ZHI ZHOU

Note that t - \beta \alpha \in Lp(0, T ) for any p \in (1, 1
\gamma \alpha ] \subset (1, 1

\beta \alpha ) by the choice \beta < \gamma . Now

choosing r = 1
\alpha (1 - \gamma ) , p =

1
\gamma \alpha , and q =

1
1+(1 - 2\gamma )\alpha in the Young's convolution inequality

(4.5) \| f \ast g\| Lr(0,T ) \leq \| f\| Lp(0,T )\| g\| Lq(0,T ) \forall p, q, r \geq 1 with r - 1 + 1 = p - 1 + q - 1,

we deduce

\| \~A\beta 
\ast \partial 

\alpha 
t u(t\ast )\| 

L
1

\alpha (1 - \gamma ) (0,T ;L2(\Omega ))
\leq c

\bigl( 
\| F \prime (s)\| Lq(0,T ;L2(\Omega )) + \| \~A\ast u(s)\| Lq(0,T ;L2(\Omega ))

\bigr) 
.

Further, it follows from the representation (4.3) and Lemmas 2.1 and 2.3 that

\| \~A\beta 
\ast u(t\ast )\| L2(\Omega ) \leq 

\int t\ast 

0

\| \~A\beta 
\ast 
\~E\ast (s)\| \| F (t\ast  - s)\| L2(\Omega )ds

+

\int t\ast 

0

\| \~A\ast \~E\ast (s)\| \| \~A\beta 
\ast (I  - \~A - 1

\ast 
\~A(t\ast  - s))u(t\ast  - s)\| L2(\Omega )ds

\leq c

\int t\ast 

0

s(1 - \beta )\alpha  - 1\| F (t\ast  - s)\| L2(\Omega )ds+ c

\int t\ast 

0

s - 1s\| u(t\ast  - s)\| L2(\Omega )ds

\leq c\| F\| L\infty (0,T ;L2(\Omega ))t
(1 - \beta )\alpha 
\ast + c

\int t\ast 

0

\| \~A\beta 
\ast u(s)\| L2(\Omega )ds.

This and Gronwall's inequality directly imply limt\rightarrow 0+ \| \~A\beta 
\ast u(t)\| L2(\Omega ) = 0. Hence,

from Lemma 2.4 and Assumption H01, we deduce u \in W\alpha , 1
\alpha (1 - \gamma ) (0, T ;D( \~A\beta 

\ast )) \subset 
W\alpha , 1

\alpha (1 - \gamma ) (0, T ;H2\beta (\Omega )). Thus, we conclude that for any fixed t \in (0, T ], the solution
u satisfies \left\{         

\scrA (t)u(t) = F (t) - \partial \alpha t u(t) in \Omega ,

u(x\prime , \ell , t) = 0 on \omega ,

\partial xd
u(x\prime , - \ell , t) = 0 on \omega ,

u(x, t) = 0 on \partial \omega \times ( - \ell , \ell ).

Note that for any t\in (0, T ], there holds\scrA (\cdot )u(\cdot )=F (\cdot ) - \partial \alpha t u(\cdot )\in L
1

\alpha (1 - \gamma ) (0, T ;H2\beta (\Omega )).

Then by Assumption \widetilde H, we obtain u \in L
1

\alpha (1 - \gamma ) (0, T ;H2(1+\beta )(\Omega )). This completes the
proof.

The conditional stability analysis employs the regularity estimates in Proposition
4.1. Let u be the solution to problem (4.1), and let v = \partial xd

u. Then v satisfies

(4.6)

\left\{               

\partial \alpha t v +\scrA (t)v = H + f\partial xd
R in \Omega \times (0, T ],

v = 0 on \partial \omega \times ( - \ell , \ell )\times (0, T ),

v(\cdot , \ell , \cdot ) = \partial xd
u(\cdot , \ell , \cdot ) on \omega \times (0, T ],

v(\cdot , - \ell , \cdot ) = 0 on \omega \times (0, T ),

v(0) = 0 in \omega \times ( - \ell , \ell ),

with the function H given by

H(x\prime , xd, t) =  - \partial xd
\scrA (t)u =

d\sum 
i,j=1

\partial xi(\partial xd
aij(t)\partial xju) - \partial xd

q(t)u.

Unlike problem (3.4) in section 3, problem (4.6) involves a nonzero Dirichlet
boundary condition, and thus requires a different analysis. We employ an extension
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approach to derive the requisite bound on v. For r \geq 1, the notation X\alpha ,r denotes

the space W\alpha ,r(0, T ;L2(\omega )) \cap Lr(0, T ;H
3
2 (\omega )) with the norm

\| v\| X\alpha ,r
= \| v\| W\alpha ,r(0,T ;L2(\omega )) + \| v\| 

Lr(0,T ;H
3
2 (\omega ))

.

Assumption 4.1. \omega \in C4, f \in W 1, 1
1+(1 - 2\gamma )\alpha (0, T ;L2(\omega )) \cap L

1
\alpha (1 - \gamma ) (0, T ;H2\gamma (\omega )),

for some \gamma \in ( 34 , 1), with f(0) = 0, \partial tR \in L\infty (\Omega \times (0, T )) and R \in C([0, T ];W 2,\infty (\Omega )).

Lemma 4.2. Let Assumptions 2.1, 3.1, H00, H01, and 4.1 be fulfilled, and let u
be the solution of problem (4.1). Then for any \beta \in ( 34 , \gamma ), the solution v to problem
(4.6) satisfies

\| \partial xd
v(\cdot , \ell , t)\| L2(\omega ) \leq c\| \partial xd

u(\cdot , \ell , \cdot )\| X
\alpha , 1

\alpha (1 - \gamma )

+ c

\int t

0

(t - s)\alpha (1 - \beta ) - 1\| f(\cdot , s)\| L2(\omega )ds

for any t \in (0, T ), where the constant c depends on R, \Omega , T , \alpha , \beta , \gamma , and \scrA .

Proof. Let r = 1
\alpha (1 - \gamma ) . Since f \in W 1, 1

1+\alpha (1 - 2\gamma ) (0, T ;L2(\omega )) and \partial tR \in L\infty (\Omega \times 
(0, T )), we deduce F = fR \in W 1, 1

1+\alpha (1 - 2\gamma ) (0, T ;L2(\Omega )). The assumptions f \in 
Lr(0, T ;H2\gamma (\omega )) and R \in C([0, T ];W 2,\infty (\Omega )) imply F = L

1
\alpha (1 - \gamma ) (0, T ;H2\gamma (\Omega )). Fur-

ther, f(\cdot , 0) = 0 in \omega indicates F (\cdot , 0) = 0 in \Omega . Thus, F = fR satisfies the conditions

in Proposition 4.1, and since \omega \in C4, Assumption \widetilde H holds. By Proposition 4.1,
u \in W\alpha ,r(0, T ;H2\beta (\Omega )) \cap Lr(0, T ;H2(1+\beta )(\Omega )) for any \beta \in ( 34 , \gamma ), and by the trace
theorem, there hold

(4.7) (x\prime , t) \mapsto \rightarrow \partial xd
u(x\prime , \ell , t) \in W\alpha ,r([0, T ];H2\beta  - 3

2 (\omega )) \cap Lr([0, T ];H
1
2+2\beta (\omega ))

and \partial xd
u(\cdot , - \ell , 0) = 0. Next we split the solution v to problem (4.6) into v = v1 + v2,

with the functions v1 and v2, respectively, solving\left\{               

\partial \alpha t v1 +\scrA (t)v1 = 0 in \Omega \times (0, T ),

v1 = 0 on \partial \omega \times ( - \ell , \ell )\times (0, T ),

v1(\cdot , \ell , \cdot ) = \partial xd
u(\cdot , \ell , \cdot ) on \in \omega \times (0, T ),

v1(\cdot , - \ell , t) = 0 on \omega \times (0, T ),

v1(0) = 0 in \Omega ,

and \left\{     
\partial \alpha t v2 +\scrA (t)v2 = H + f\partial xd

R in \Omega \times (0, T ),

v2 = 0 on \partial \Omega \times (0, T ),

v2(0) = 0 in \Omega .

Next we bound v1 and v2. To bound v1, we first extend \partial xd
u(\cdot , \ell , \cdot ) from \omega \times (0, T )

to \Omega \times (0, T ). Indeed, by the regularity estimate (4.7) and using the classical lifting
theorem for Sobolev spaces [30, Chapter 1, Theorem 9.4] and Assumption H00, we
deduce that there exists a function G \in Lr(0, T ;H2(\Omega )) satisfying

(4.8)  - \Delta xG(x, t) = 0, (x, t) \in Q,

G(x\prime , xd, t) =

\left\{     
\partial xd

u(x\prime , \ell , t), xd = \ell , (x\prime , t) \in \omega \times (0, T ),

0, xd =  - \ell , (x\prime , t) \in \omega \times (0, T ),

0, t = 0, (x\prime , xd) \in \omega \times ( - \ell , \ell ).
(4.9)
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4460 BANGTI JIN, YAVAR KIAN, AND ZHI ZHOU

Clearly, G satisfies the following estimate:

\| G\| Lr(0,T ;H2(\Omega )) \leq c\| \partial xd
u(\cdot , \ell , \cdot )\| 

Lr(0,T ;H
3
2 (\omega ))

.

Moreover, by interpreting G as the solution to (4.8)--(4.9) in the transposition sense
(see, e.g., [30, Chapter 2, Theorem 6.3] or [5]), G \in W\alpha ,r(0, T ;L2(\Omega )) satisfies

\| G\| W\alpha ,r(0,T ;L2(\Omega )) \leq c\| \partial xd
u(\cdot , \ell , \cdot )\| W\alpha ,r(0,T ;L2(\omega )).

Consequently, we have

\| G\| W\alpha ,r(0,T ;L2(\Omega )) + \| G\| Lr(0,T ;H2(\Omega )) \leq \| \partial xd
u(\cdot , \ell , \cdot )\| X\alpha ,r .(4.10)

Then we can decompose v1 into v1 = G+ w1, with the function w1 solving\left\{     
\partial \alpha t w1 +\scrA (t)w1 = F1 in \Omega \times (0, T ),

w1 = 0 on \partial \Omega \times (0, T ),

w1(0) = 0 in \omega \times ( - \ell , \ell ),

with F1 =  - \partial \alpha t G  - \scrA (t)G. Since \partial xd
u(x\prime , \ell , 0) = 0 for x\prime \in \omega , the uniqueness of the

solution of problem (4.8)--(4.9) implies G(\cdot , 0) = 0. Then direct computation with
Lemma 2.4 gives

\| F1\| Lr(0,T ;L2(\Omega )) \leq \| \partial \alpha t G\| Lr(0,T ;L2(\Omega )) + \| \scrA (t)G\| Lr(0,T ;L2(\Omega ))

\leq c(\| G\| W\alpha ,r(0,T ;L2(\Omega )) + \| G\| Lr(0,T ;H2(\Omega ))).(4.11)

Thus using the operator A(t) and the perturbation argument, we have

w1(t\ast ) =

\int t\ast 

0

E\ast (t\ast  - s)F1(s)ds+

\int t\ast 

0

E\ast (t\ast  - s)(A\ast  - A(s))w1(s)ds.

By Lemmas 2.1 and 2.3,

\| A\beta 
\ast w1(t\ast )\| L2(\Omega ) \leq 

\int t\ast 

0

\| A\beta 
\ast E\ast (t\ast  - s)\| \| F1(s)\| L2(\Omega )ds

+

\int t\ast 

0

\| A\ast E\ast (t\ast  - s)\| \| A\beta 
\ast (I  - A - 1

\ast A(s))w1(s)\| L2(\Omega )ds

\leq c

\int t\ast 

0

(t\ast  - s)(1 - \beta )\alpha  - 1\| F1(s)\| L2(\Omega )ds+ c

\int t\ast 

0

(t\ast  - s) - 1(t\ast  - s)\| A\beta 
\ast w1(s)\| L2(\Omega )ds

\leq c\| F1\| Lr(0,T ;L2(\Omega )) + c

\int t\ast 

0

\| A\beta 
\ast w1(s)\| L2(\Omega )ds.

It follows from this estimate and Gronwall's inequality that w1 \in L\infty (0, T ;D(A\beta 
\ast ))

with
\| w1\| L\infty (0,T ;D(A\beta 

\ast ))
\leq cT \| F1\| Lr(0,T ;L2(\Omega )).

Then by the triangle inequality, (4.11), and Assumption H00,

\| v1\| L\infty (0,T ;D(A\beta 
\ast ))

\leq \| w1\| L\infty (0,T ;D(A\beta 
\ast ))

+ \| G\| L\infty (0,T ;D(A\beta 
\ast ))

\leq c
\bigl( 
\| F1\| Lr(0,T ;L2(\Omega )) + \| G\| L\infty (0,T ;H2\beta (\Omega ))

\bigr) 
.
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Meanwhile, the condition \beta \in ( 34 , \gamma ) and [4, Theorem 5.2] imply the following embed-
ding inequality:

\| w\| L\infty (0,T ;H2\beta (\Omega )) \leq c(\| w\| W\alpha ,r(0,T ;L2(\Omega )) + \| w\| Lr(0,T ;H2(\Omega ))).

The last two estimates together give

\| v1\| L\infty (0,T ;D(A\beta 
\ast ))

\leq c
\bigl( 
\| G\| W\alpha ,r(0,T ;L2(\Omega )) + \| G\| Lr(0,T ;H2(\Omega ))

\bigr) 
.

This and estimate (4.10) imply

(4.12) \| v1\| L\infty (0,T ;D(A\beta 
\ast ))

\leq c\| \partial xd
u(\cdot , \ell , \cdot )\| X\alpha ,r .

Moreover, by Assumption H00 and the trace inequality

\| \partial xd
v1(\cdot , \ell , \cdot )\| L\infty (0,T ;L2(\omega )) \leq c\| v1\| L\infty (0,T ;D(A\beta 

\ast ))
,

we get

(4.13) \| \partial xd
v1(\cdot , \ell , \cdot )\| L\infty (0,T ;L2(\omega )) \leq c\| \partial xd

u(\cdot , \ell , \cdot )\| X\alpha ,r
.

Next we bound v2. Note that the solution v2(t) can be represented by

v2(t) =

\int t

0

E\ast (t - s)[H(s) + \partial xd
F (s)]ds+

\int t

0

E\ast (t - s)(A\ast  - A(s))v2(s)ds.

Thus, by Lemmas 2.1 and 2.3 and Assumption 3.1, we get

\| A\beta 
\ast v2(t\ast )\| L2(\Omega ) \leq c

\int t\ast 

0

(t\ast  - s)\alpha (1 - \beta ) - 1
\bigl[ 
\| f(s)\| L2(\omega ) + \| H(s)\| L2(\Omega )

\bigr] 
ds

+ c

\int t\ast 

0

\| A\beta 
\ast v2(s)\| L2(\Omega )ds.(4.14)

In light of Assumption 2.1(ii) and the definition v = \partial xd
u, we have

H(t) =  - \partial xd
\scrA (t)u

= \partial xd
add(t)\partial 

2
xd
u+ 2

d - 1\sum 
j=1

\partial xd
ajd(t)\partial xj

\partial xd
u+

d\sum 
j=1

\partial xj
\partial xd

ajd(t)\partial xd
u

+

d - 1\sum 
j=1

\partial 2xd
ajd(t)\partial xju - \partial xd

q(t)u

= \partial xd
add(t)\partial xd

v + 2

d - 1\sum 
j=1

\partial xd
ajd(t)\partial xj

v +
\Bigl( d\sum 

j=1

\partial xj
\partial xd

ajd(t)
\Bigr) 
v

+

d - 1\sum 
j=1

\partial 2xd
ajd(t)\partial xju - \partial xd

q(t)u,

from which it directly follows that

\| H(t)\| L2(\Omega ) \leq c
\bigl( 
\| v(t)\| H1(\Omega ) + \| u(t)\| H1(\Omega )

\bigr) 
, t \in (0, T ].
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By Lemma 3.1 with \beta = 1
2 (which holds also for problem (4.1)) and Assumption 3.1,

we have

\| u(t)\| H1(\Omega ) \leq c

\int t

0

(t - s)
\alpha 
2  - 1\| f(s)\| L2(\omega )ds.

This and (4.12) lead to

\| H(t)\| L2(\Omega ) \leq c
\int t

0

(t - s)
\alpha 
2  - 1\| f(s)\| L2(\omega )ds+ c(\| \partial xd

u(\cdot , \ell , \cdot )\| X\alpha ,r + \| v2(t)\| H1(\Omega )),

which together with (4.14) yields

\| A\beta 
\ast v2(t\ast )\| L2(\Omega ) \leq c

\int t\ast 

0

(t\ast  - s)(1 - \beta )\alpha  - 1\| f(s)\| L2(\omega )ds+ c\| \partial xd
u(\cdot , \ell , \cdot )\| X\alpha ,r

+ c

\int t\ast 

0

(t\ast  - s)(1 - \beta )\alpha  - 1\| A\beta 
\ast v2(s)\| L2(\Omega )ds.

This estimate and Gronwall's inequality in Lemma 2.5 then imply

\| A\beta 
\ast v2(t)\| L2(\Omega ) \leq c

\int t

0

(t - s)(1 - \beta )\alpha  - 1\| f(\cdot , s)\| L2(\omega )ds+ c\| \partial xd
u(\cdot , \ell , \cdot )\| X\alpha ,r .

It follows from this estimate, Assumption H00, and the trace inequality that

\| \partial xd
v2(\cdot , \ell , t)\| L2(\omega ) \leq c

\int t

0

(t - s)\alpha (1 - \beta ) - 1\| f(s)\| L2(\omega )ds+ c\| \partial xd
u(\cdot , \ell , \cdot )\| X\alpha ,r

.

Finally, combining this bound with estimate (4.13) yields the desired assertion.

Now we can state a conditional stability result for ISPd.

Theorem 4.3. Let Assumptions 2.1, 3.1, H00, H01, and 4.1 be fulfilled, and let
u be the solution of problem (4.1). Then there exists a constant c depending on R, \Omega ,
T , \alpha , \gamma , p, and \scrA such that

\| f\| L\infty (0,T ;L2(\omega ))\leq c
\Bigl( 
\| \partial xd

u(\cdot , \ell , \cdot )\| 
L

1
\alpha (1 - \gamma ) (0,T ;H

3
2 (\omega ))

+\| \partial xd
u(\cdot , \ell , \cdot )\| 

W
\alpha , 1

\alpha (1 - \gamma ) (0,T ;L2(\omega ))

\Bigr) 
.

Proof. First projecting the governing equation in (4.1) onto the lateral boundary
\omega \times \{ \ell \} \times (0, T ) and then using the fact that, for all (x\prime , t) \in \omega \times (0, T ), we have
u(x\prime , \ell , t) = 0, we thus obtain, for any (x\prime , t) \in \omega \times (0, T ),

f(x\prime , t)R(x\prime , \ell , t) =  - 
\Bigl[ 
add(t)\partial 

2
xd
u+ 2

d - 1\sum 
j=1

ajd(t)\partial xj\partial xd
u+

d\sum 
j=1

\partial xjajd(t)\partial xd
u
\Bigr] 
(x\prime , \ell , t).

This, Assumption 3.1, and the definition v = \partial xd
u imply that for all t \in (0, T ), there

holds

\| f(t)\| L2(\omega ) \leq c - 1
R c

\bigl( 
\| \partial xd

v(\cdot , \ell , t)\| L2(\omega ) + \| \partial xd
u(\cdot , \ell , t)\| H1(\omega )

\bigr) 
.

Under the condition \gamma \in ( 34 , 1), the choice r = 1
\alpha (1 - \gamma ) [4, Theorem 5.2] implies

\| \partial xd
u(\cdot , \ell , t)\| L\infty (0,T ;H1(\omega ))\leq c

\Bigl( 
\| \partial xd

u(\cdot , \ell , t)\| W\alpha ,r(0,T ;L2(\omega ))+\| \partial xd
u(\cdot , \ell , t)\| 

Lr(0,T ;H
3
2 (\omega ))

\Bigr) 
.
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The last two estimates and Lemma 4.2 imply

\| f(t)\| L2(\omega ) \leq c\| \partial xd
u(\cdot , \ell , \cdot )\| X\alpha ,r

+ c

\int t

0

(t - s)\alpha (1 - \beta ) - 1\| f(s)\| L2(\omega )ds.

Then Gronwall's inequality in Lemma 2.5 implies the desired assertion, completing
the proof of the theorem.

Remark 4.4. Theorem 4.3 shows the influence of the fractional order \alpha on
the stability: the larger the order \alpha , the stronger the temporal regularity
\| \partial xd

u(\cdot , \ell , \cdot )\| 
W

\alpha , 1
\alpha (1 - \gamma ) (0,T ;L2(\omega ))

on the data u| \omega \times \{ \ell \} \times (0,T ) the stability needs. This

agrees with the smoothing property of the solution operator, and shows also the bene-
ficial influence of anomalous diffusion. Theorem 4.3 improves the corresponding result
in [24, Theorem 1.4] (with \delta > 1

2 ):

\| f\| L\infty (0,T ;L2(\omega )) \leq c(\| \partial xd
u(\cdot , \ell , \cdot )\| 

L\infty (0,T ;H
3
2 (\omega ))

+ \| \partial xd
u(\cdot , \ell , \cdot )\| W 1,\infty (0,T ;H\delta (\omega ))),

This improvement is achieved by the maximal Lp regularity and the suitable interpo-
lation inequality in fractional Sobolev spaces.

Remark 4.5. In the spirit of [24, Corollary 1.5], Theorem 4.3 allows one to prove
the stable recovery of a class of the zeroth-order coefficient q from the flux data
\partial xd

u| \omega \times \{ \ell \} \times (0,T ). This analysis requires the existence of a solution to problem (4.1)
in W 1,\infty (0, T ;W 1,\infty (\Omega )) \cap L\infty (0, T ;W 2,\infty (\Omega )). The latter can be achieved using the
argument of Proposition 4.1, and we leave the details to future investigation.

5. Numerical experiments and discussions. In this section, we present sev-
eral numerical experiments to illustrate the feasibility of recovering the space-time-
dependent f from lateral boundary observation.

5.1. Numerical algorithm. First we describe a numerical algorithm for recov-
ering f for ISPn (and the algorithm for ISPd is similar). We employ an iterative
regularization technique, which approximately minimizes

(5.1) J(f) := 1
2\| uf  - g\delta \| 2L2(0,T ;L2(\omega )),

where uf denotes the solution to the direct problem (3.1) with F = fR. By Corollary
3.2, the map uf : L2(0, T ;L2(\omega )) \rightarrow L2(0, T ;L2(\omega )) is linear and compact, and thus
standard regularization theory [7, 15] can be applied to justify the reconstruction
technique. In particular, when equipped with an appropriate stopping criterion, the
approximate minimizer obtained by gradient-type methods, e.g., gradient descent and
conjugate gradient (CG) methods, will converge to the exact source component f\dagger as
the noise level tends to zero, and further it will converge at a certain rate dependent
on the ``regularity"" of f\dagger (in the sense of source condition or conditional stability
estimates), when equipped with a suitable stopping criterion.

To (approximately) minimize the functional J(f), we employ the CG method [3].
When applying the method, the main computational effort is to compute the gradient,
which can be done efficiently using the adjoint technique. Specifically, let v be the
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solution to the following adjoint problem:

(5.2)

\left\{               

t
R\partial \alpha T v +\scrA (t)v = 0, (x\prime , xd, t) \in \Omega \times (0, T ),

tI
1 - \alpha 
T v(x, T ) = 0 in \Omega ,

\partial xd
v(x\prime , \ell , t) = uf  - g\delta on \omega \times (0, T ),

\partial xd
v(x\prime , - \ell , t) = 0 on \omega \times (0, T ),

v(x, t) = 0 on \partial \omega \times ( - \ell , \ell )\times (0, T ),

where the notation tI
1 - \alpha 
T v(t) and t

R\partial \alpha T v denotes the right-sided Riemann--Liouville
fractional integral and derivative of v, defined respectively by [26]

tI
1 - \alpha 
T v(t) =

1

\Gamma (1 - \alpha )

\int T

t

(s - t) - \alpha v(s)ds and

t
R\partial \alpha T v(t) =  - 1

\Gamma (1 - \alpha )

d

dt

\int T

t

(s - t) - \alpha u(s)ds.

Then we have the following representation of the gradient J \prime (f) of J(f).

Proposition 5.1. The gradient J \prime (f) of the functional J(f) is given by

(5.3) J \prime (f) =

\int \ell 

 - \ell 

Rv dxd,

where v is the solution to the adjoint problem (5.2).

Proof. The derivation follows a standard procedure. The directional derivative
J \prime (f)[h] of the functional J with respect to f in the direction h \in L2(0, T ;L2(\omega )) is
given by

J \prime (f)[h] = (uh, uf  - g\delta )L2(0,T ;L2(\omega )),

where uh is the solution to problem (3.1) with h in place of f (or the source F =
hR). Multiplying the equation for uh with a test function \phi (x, t) and then applying
integration by parts yields

(5.4)

\int T

0

\int 
\Omega 

(\phi \partial \alpha t uh + a\nabla uh \cdot \nabla \phi )dxdt =
\int T

0

\int 
\Omega 

Rh\phi dxdt.

Meanwhile, the weak formulation for the adjoint solution v is given by

(5.5)

\int T

0

\int 
\Omega 

(\phi t
R\partial \alpha T v + a\nabla v \cdot \nabla \phi )dxdt =

\int T

0

\int 
\omega 

(uf  - g\delta )\phi dx\prime dt.

Then taking \phi = v in (5.4) and \phi = uh in (5.5), appealing to the identity ([26, p. 76,
Lemma 2.7] or [17, Lemma 2.6])\int T

0

\int 
\Omega 

v\partial \alpha t uhdxdt =

\int T

0

\int 
\Omega 

uht
R\partial \alpha T vdxdt

(in view of the zero initial/terminal conditions) and subtracting the two identities
gives \int T

0

\int 
\Omega 

Rhvdxdt =

\int T

0

\int 
\omega 

(uf  - g\delta )uhdx
\prime dt.

This and the definition of the derivative J \prime (f) show the desired assertion.
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The next result gives the regularity of the adjoint variable v.

Theorem 5.2. Let g\delta \in L2(0, T ;L2(\omega )), and let Assumption H11 be fulfilled.

Then there exists a unique solution v \in L2(0, T ;H
3
2 - \epsilon (\Omega ))\cap W 3\alpha 

4  - \epsilon ,2(0, T ;L2(\Omega )) for
any \epsilon > 0 to the adjoint problem (5.2).

Proof. For any fixed t \in [0, T ], let N(t) be the Neumann map defined by \phi =
N(t)\psi , with \phi solving

(5.6)

\left\{         
\scrA (t)\phi = 0 in \Omega ,

\partial xd
\phi (x\prime , - \ell ) = 0 on \omega ,

\partial xd
\phi (x\prime , \ell ) = \psi on \omega ,

\phi (x) = 0 on \partial \omega \times ( - \ell , \ell ).

It is known that \| N(t)\psi \| 
H

3
2
 - \epsilon (\Omega )

\leq c\| \psi \| L2(\omega ) with a range \scrR (N(t)) = D( \~A
3
4 - 

\epsilon 
2 ),

for any small \epsilon > 0 [1, Proposition 2.12]. Below we first analyze the case of time-
independent coefficients, and then the case of time-dependent coefficients. Let \psi =
uf  - g\delta \in L2(0, T ;L2(\omega )).

Case (i): \scrA (t) \equiv \scrA \ast and N(t) \equiv N\ast . Note that the solution v to problem (5.2)
can be represented by using the operators \~E(t) and N(t) [25, section 2.2]:

(5.7) v(t) =

\int T

t

\~A\ast \~E\ast (s - t)N\ast \psi (s) ds.

Thus, by Lemma 2.1 and Young's inequality, for any \theta \in [0, 34 ) and \epsilon \in (0, 2 - 2\theta  - 1
2 ),

there holds

\| v\| L2(0,T ;D( \~A\theta 
\ast ))

\leq 
\int T

0

\| \~A
\theta + 1

4+
\epsilon 
2

\ast E\ast (t)\| dt
\Bigl( \int T

0

\| \~A
3
4 - 

\epsilon 
2

\ast N\ast \psi (t)\| 2L2(\Omega ) dt
\Bigr) 1

2

\leq c\epsilon \| \psi \| L2(0,T ;L2(\omega )).

It follows from (5.2) that

t
R\partial \alpha T v + \~A\ast (v  - N\ast \psi ) = 0,

which implies t
R\partial \alpha T v \in L2(0, T ;D( \~A\theta  - 1

\ast )). Then by an argument similar to that in the
proof of Lemma 2.4, we deduce v \in W\alpha ,2(0, T ;D( \~A\theta  - 1

\ast )) (see also [20, Theorem 2.1]).

Then by interpolation, we derive v \in W
3\alpha 
4  - \epsilon ,2(0, T ;L2(\Omega )) for any \epsilon > 0 [4, Theorem

5.2]. Further, in view of the identity

tI
1 - \alpha 
T v(t) =

\int T

t

\~A\ast \~S\ast (s - t)N\ast \psi (s) ds

and Young's inequality, we deduce for any \theta \in (1 - 1
2\alpha ,

3
4 )

\| tI1 - \alpha 
T v(t)\| L2(\Omega ) \leq 

\int T

t

\| \~A1 - \theta 
\ast 

\~S\ast (s - t)\| \| \~A\theta 
\ast N\ast \psi (s)\| L2(\Omega ) ds

\leq c

\int T

t

(s - t) - (1 - \theta )\alpha \| \psi (s)\| L2(\omega ) ds \leq c
\Bigl( \int T

t

(s - t) - 2(1 - \theta )\alpha ds
\Bigr) 1

2 \| \psi \| L2(0,T ;L2(\omega ))

\leq c(T  - t)
1
2 - (1 - \theta )\alpha \| \psi \| L2(0,T ;L2(\omega )).

Therefore the terminal condition tI
1 - \alpha 
T v(T ) = 0 holds.
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Case (ii): time-dependent elliptic operator \scrA (t). We rewrite the adjoint problem
(5.2) as

(5.8) t
R\partial \alpha T v(t) +

\~A\ast (v  - N\psi )(t) =
\bigl( 
\~A\ast  - \~A(t)

\bigr) 
(v  - N\psi )(t),

with tI
1 - \alpha 
T v(T ) = 0. Then the solution v(t) can be represented as

(5.9)

v(t) =

\int T

t

\~A\ast \~E\ast (s - t)N(t)\psi (s) ds+

\int T

t

\~A\ast \~E\ast (s - t)
\bigl( 
\~A\ast  - \~A(s)

\bigr) 
(v(s) - N(s)\psi (s)) ds.

By Lemmas 2.1 and 2.3, we deduce that for any \theta \in [0, 34 ) and \epsilon \in (0, 2 - 2\theta  - 1
2 ),

\| v(t\ast )\| D( \~A\theta ) \leq c

\int T

t\ast 

(s - t\ast )
 - (\theta + 1

4+
\epsilon 
2 )\alpha \| \psi (s)\| L2(\omega )ds

+ c

\int T

t\ast 

\| v(s)\| D( \~A\theta )ds+ c

\int T

t\ast 

\| \psi (s)\| L2(\omega )ds.(5.10)

Then squaring both sides of (5.10) and integrating over [t0, T ] leads to

\| v\| 2
L2(t0,T ;D( \~A\theta ))

\leq c\epsilon \| \psi \| 2L2(0,T ;L2(\omega )) + c

\int T

t0

\| v\| 2
L2(t,T ;D( \~A\theta ))

dt.

This together with Gronwall's inequality implies that for any \theta \in [0, 34 )

\| v\| L2(0,T ;D( \~A\theta )) \leq c\| \psi \| L2(0,T ;L2(\omega )).

By (5.8), t
R\partial \alpha T v \in L2(0, T ;D( \~A\theta  - 1

\ast )), and by Lemma 2.4, v \in W\alpha ,2(0, T ;D( \~A\theta  - 1
\ast )).

Then by interpolation, we derive u \in W
3\alpha 
4  - \epsilon ,2(0, T ;L2(\Omega )) for any \epsilon > 0 [4, Theorem

5.2].

Remark 5.3. It follows from Theorem 5.2 that for data g\delta \in L2(0, T ;L2(\omega )),

the gradient J \prime (f) belongs to L2(0, T ;H
3
2 - \epsilon (\omega ))\cap W 3\alpha 

4  - \epsilon ,2(0, T ;L2(\omega )) for any small
\epsilon > 0 if the factor R is smooth, and, further, tI

1 - \alpha 
T J \prime (f)(x\prime , T ) = 0 for x\prime \in \omega and

J \prime (f)(x\prime , t) = 0 for (x\prime , t) \in \partial \omega \times (0, T ). These conditions will impact the convergence
behavior of the CG method, dependent on the regularity of f\dagger .

Now we can describe the conjugate gradient method [3] for minimizing J . The
complete procedure is listed in Algorithm 5.1. In the algorithm, steps 6--7 compute
the conjugate descent direction, and step 8 computes the optimal step size using the
sensitivity problem. In general, the algorithm converges within tens of iterations;
see the numerical experiments below. At each iteration, the algorithm involves three
forward solves (direct problem, adjoint problem, and sensitivity problem), which rep-
resent the main computational effort. For the stopping criterion at step 11, we employ
the discrepancy principle [34, 7, 15], i.e.,

(5.11) k\ast = argmin\{ k \in \BbbN : \| ufk  - g\delta \| L2(0,T ;L2(\omega )) \leq c\delta \} ,

where c > 1 and \delta = \| g\dagger  - g\delta \| L2(0,T ;L2(\omega )) is the noise level of the data g\delta .
Algorithm 5.1 can also be applied to ISPd by viewing the zero Dirichlet data on

\omega \times \{ \ell \} \times (0, T ) as the measurement, and then the measurement \partial xd
u| \omega \times \{ \ell \} \times (0,T ) as

the Neumann data on \omega \times \{ \ell \} \times (0, T ) for problem (3.1). However, the discrepancy
principle (5.11) cannot be applied directly, due to a lack of the noise level for the
Dirichlet boundary data.
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Algorithm 5.1. Conjugate gradient method for minimizing the functional J in (5.1).

1: Initialize f0, and set k = 0.
2: for k = 0, . . . ,K do
3: Solve for uk from problem (3.1) with F = fkR, and compute the residual

rk = uk| \omega \times \ell \times (0,T )  - g\delta .

4: Solve for vk from problem (5.2) with rk.
5: Compute the gradient J \prime (fk) by (5.3).
6: Compute the conjugate coefficient \gamma k by

\gamma k =

\left\{     
0, k = 0,

\| J \prime (fk)\| 2L2(0,T ;L2(\omega ))

\| J \prime (fk - 1)\| 2L2(0,T ;L2(\omega ))

, k \geq 1.

7: Compute the conjugate direction dk by dk =  - J \prime (fk) + \gamma kdk - 1.
8: Solve for udk from problem (3.1) with F = dkR.
9: Compute the step size sk by

sk =  - 
(udk , rk)L2(0,T ;L2(\omega ))

\| udk\| 2L2(0,T ;L2(\omega ))

.

10: Update the source component fk+1 = fk + skdk.
11: Check the stopping criterion.
12: end for

5.2. Numerical results and discussions. Now we present several examples
to illustrate the feasibility of recovering f . The domain \Omega is taken to be the unit
square \Omega = ( - 1

2 ,
1
2 )

2, with \omega = ( - 1
2 ,

1
2 ), q \equiv 0, and the final time T = 1. The direct

and adjoint problems are all discretized by the standard continuous piecewise linear
Galerkin method in space and backward Euler convolution quadrature in time; see
[19] for the error analysis for relevant direct problems and the review [18] for various
numerical schemes. The domain \Omega is first divided intoM2 small squares each of width
1/M , and then further divided into triangles by connecting the upper right vertex with
the lower left vertex of each small square to obtain a uniform triangulation. For the
inversion step, we takeM = 100 and N = 1000. The same spatial and temporal mesh
is used for approximating f . The factor R(x, t) is fixed at R \equiv 1. The exact data
g\dagger on the lateral boundary \omega \times \{ \ell \} \times (0, T ) is obtained by solving the direct problem
(1.1) with the exact f\dagger on a finer mesh. The noisy boundary data g\delta is generated
from the exact data g\dagger by

g\delta (x\prime , t) = g\dagger (x\prime , t) + \varepsilon \| g\dagger \| L\infty (\omega \times (0,T ))\xi (x
\prime , t) \forall (x\prime , t) \in \omega \times (0, T ),

where \xi (x\prime , t) follows the standard normal distribution, and \varepsilon denotes the relative
noise level. In Algorithm 5.1, the maximum number of CG iterations is fixed at 50,
and the constant c in (5.11) is taken to be c = 1.01. Throughout, we measure the

accuracy of a reconstruction \^f by the L2 error e( \^f) defined by

e( \^f) = \| \^f  - f\dagger \| L2(0,T ;L2(\omega )).

5.2.1. Numerical results for ISPn. First we illustrate the case of time-inde-
pendent coefficients.
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Example 5.1. a(x1, x2) = 1+sin(\pi x1)x2(1 - x2) and f\dagger (x1, t) = (14 - x
2
1)t(T - t)et.

The numerical results for Example 5.1 are presented in Table 1, where the numbers
in parentheses denote the stopping index determined by the discrepancy principle
(5.11). For noisy data g\delta , the method reaches convergence within ten iterations, and
thus it is fairly efficient. It is observed that as the relative noise level \epsilon increases
from zero to 5e-2, the error e( \^f) also increases, whereas the required number of CG
iterations decreases. For a fixed noise level \varepsilon , the reconstruction error e tends to
decrease with the order \alpha , and all the reconstructions are fairly accurate; see Figure 1
for typical reconstructions and the associated pointwise errors e = \^f  - f\dagger (which
slightly abuses the notation e). These results clearly show the feasibility of recovering
f from the lateral boundary data, corroborating the theoretical results in [24].

Table 1
The reconstruction errors e for Example 5.1.

\alpha \setminus \varepsilon 0 1e-3 5e-3 1e-2 5e-2

0.25 8.61e-5 (50) 3.87e-4 (13) 7.36e-4 (10) 1.26e-3 (7) 2.33e-3 (4)
0.50 4.27e-5 (50) 3.91e-4 (10) 6.84e-4 ( 8) 1.29e-3 (6) 2.19e-3 (3)
0.75 8.61e-5 (50) 3.62e-4 (16) 5.93e-4 (11) 8.84e-4 (9) 1.71e-3 (4)

(a) exact (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 1. Reconstructions and the pointwise errors for Example 5.1 with \varepsilon = 1e-2 and \varepsilon = 5e-2.

Now we give two examples with time-dependent coefficients. The notation \chi S

denotes the characteristic function of a set S.

Example 5.2. The diffusion coefficient a is given by a(x1, x2, t) = (1+sin(\pi x1)x2(1 - 
x2))(1 + sin t), and consider two different source components:

(i) f\dagger (x1, t) = sin(x1 +
1
2 )\pi t(T  - t)et.

(ii) f\dagger (x1, t) = sin(x1 +
1
2 )\pi t(T  - t)et\chi [0,0.7](t).

In case (i), f is smooth in time, but it is discontinuous for case (ii). The results
for Example 5.2 are shown in Table 2. The results for case (i) are largely comparable
with that for Example 5.1, and all the observations remain valid; see also Figure 2.
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The behavior of ISPn is largely independent of the fractional order \alpha , due to the good
regularity and compatibility of f\dagger . In sharp contrast, the results for case (ii) exhibit
a different trend: for a fixed noise level \epsilon , the reconstruction error e increases with
the order \alpha , and also it takes more CG iterations to reach the convergence (see also
Figure 3). This is attributed to the discontinuity in time of f\dagger and the regularity
of the adjoint v in problem (5.2): the temporal regularity of the adjoint v increases
steadily with \alpha ; cf. Theorem 5.2, which makes it increasingly harder to approximate
a discontinuous f\dagger . This is clearly visible from the error plots in Figure 4, where the
errors around the discontinuity dominate. This is especially pronounced for \alpha = 0.50
and \alpha = 0.75.

Table 2
The reconstruction errors e for Example 5.2.

Case \alpha \setminus \varepsilon 0 1e-3 5e-3 1e-2 5e-2

0.25 2.89e-5 (50) 2.98e-4 (13) 1.21e-3 (9) 1.97e-3 (8) 6.08e-3 (5)
(i) 0.50 2.93e-5 (50) 3.07e-4 (12) 1.18e-3 (9) 2.09e-3 (8) 6.14e-3 (5)

0.75 3.49e-5 (50) 2.61e-4 (13) 8.50e-4 (9) 1.44e-3 (8) 4.24e-3 (5)

0.25 3.69e-4 (50) 4.51e-4 (13) 1.12e-3 ( 9) 1.84e-3 ( 8) 5.71e-3 (4)
(ii) 0.50 1.66e-3 (50) 1.68e-3 (13) 2.00e-3 (10) 2.61e-3 ( 9) 6.33e-3 (5)

0.75 2.99e-3 (50) 3.38e-3 (25) 4.49e-3 (14) 5.34e-3 (11) 8.49e-3 (6)

(a) exact (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 2. Reconstructions and the pointwise errors for Example 5.2(i) with \varepsilon = 1e-2 and \varepsilon = 5e-2.

5.2.2. Numerical results for ISPd. Now we present two examples for ISPd,
with the setting similar to that of Example 5.2.

Example 5.3. The diffusion coefficient a is given by a(x1, x2, t) = (1+ sin(\pi (x1 +
1
2 ))(

1
4  - x22))(1 + sin t), and consider two different source components:
(i) f\dagger (x1, t) = sin(x1 +

1
2 )\pi t(T  - t)et.

(ii) f\dagger (x1, t) = sin(x1 +
1
2 )\pi t(T  - t)et\chi [0,0.7](t).
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(a) \alpha = 0.25 (b) \alpha = 0.75

Fig. 3. The convergence of the error for Example 5.2(ii), where the red dots indicate the
stopping index determined by the discrepancy principle (5.11). (Color available online.)

(a) exact (b) \alpha = 0.25 (c) \alpha = 0.50 (d) \alpha = 0.75

Fig. 4. Reconstructions and the pointwise errors for Example 5.2(ii) with \varepsilon = 1e-2.

Table 3
The reconstruction errors e for Example 5.3.

Case \alpha \setminus \varepsilon 0 1e-3 5e-3 1e-2 5e-2

0.25 4.51e-3 (50) 4.52e-3 (42) 4.61e-3 (20) 4.84e-3 (18) 6.28e-3 (5)
(i) 0.50 4.50e-3 (50) 4.51e-3 (41) 4.61e-3 (20) 4.86e-3 (18) 6.11e-3 (4)

0.75 4.47e-3 (50) 4.49e-3 (37) 4.56e-3 (18) 4.70e-3 (13) 5.84e-3 (6)

0.25 3.87e-3 (50) 3.88e-3 (36) 3.97e-3 (20) 4.20e-3 (17) 5.47e-3 ( 4)
(ii) 0.50 3.99e-3 (50) 4.00e-3 (40) 4.10e-3 (22) 4.37e-3 (17) 5.95e-3 ( 6)

0.75 4.35e-3 (50) 4.36e-3 (50) 4.60e-3 (33) 4.97e-3 (24) 7.07e-3 (11)

Note that case (ii) does not satisfy the condition of Theorem 4.3. The numerical
results for Example 5.3 are shown in Table 3, where the stopping index is taken
so that the reconstruction error e is smallest (since the discrepancy principle (5.11)
does not apply directly). The observations from Examples 5.1 and 5.2 are still valid,
except the algorithm takes more iterations to reach convergence. This might be due
to the fact that the approximation of the exact flux data (for the direct problem) is
less accurate, which also limits the attainable accuracy of the reconstruction for data
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(a) exact (b) \varepsilon =1e-2 (c) \varepsilon =5e-2

Fig. 5. Reconstructions and the pointwise errors for Example 5.3(i) with \varepsilon = 1e-2 and \varepsilon = 5e-2.

(a) exact (b) \alpha = 0.25 (c) \alpha = 0.50 (d) \alpha = 0.75

Fig. 6. Reconstructions and the pointwise errors for Example 5.3(ii) with \varepsilon = 1e-2.

with low noise level. The results for case (ii) show that for a fixed noise level \epsilon , the
error e increases with \alpha , and also it takes more CG iterations to reach convergence,
due to the mismatch between the temporal regularity of f and the gradient J \prime (f).
This is also clear from the error plots in Figures 5 and 6, where the errors around the
discontinuity become increasingly dominating as \alpha increases.

These numerical results indicate that indeed it is feasible to recover a space-time-
dependent source from the lateral boundary observation in a cylindrical domain for
both time-independent and time-dependent diffusion coefficients, and standard regu-
larization techniques, e.g., the conjugate gradient method (when equipped with the
discrepancy principle (5.11)), can deliver accurate reconstructions for both exact and
noisy data. This provides numerical evidence to the theoretical results in Theorems
3.4 and 4.3.
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