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Effects of Crystal Size on Methanol to Hydrocarbon Conversion 
over Single Crystals of ZSM-5 Studied by Synchrotron Infrared 
Microspectroscopy† 

Ivalina B. Minova,a Santhosh K. Matam,b,c Alex Greenaway,b C. Richard A. Catlow,b,c,d Mark D. 
Frogley,e Gianfelice Cinque,e Paul A. Wright*,a Russell F. Howe.f * 

Operando synchrotron infrared microspectroscopy (OIMS) was used to study the conversion of methanol over coffin-shaped 

HZSM-5 crystals of different sizes: large (~ 250 × 80 × 85 μm3), medium (~ 160 × 60 × 60 μm3) and small (~ 55 × 30 × 30 μm3). 

The induction period, for direct alkene formation by deprotonation of surface methoxy groups, was found to decrease with 

decreasing crystal size and with increasing reaction temperature. Experiments with a continuous flow of dimethylether 

showed that evolution of the hydrocarbon pool and indirect alkene formation is also strongly dependent on crystal size. 

These measurements suggest that the hydrocarbon pool formation and indirect alkene generation should be almost 

instantaneous at reaction temperatures used in practical catalysis with crystal sizes typically ~ 1 µm3. 
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1. Introduction 

In-situ infrared spectroscopy is a powerful tool in zeolite 

catalysis, particularly for the observation of adsorbed species 

under reaction conditions.1 Measurements by diffuse 

reflectance (DRIFTS) give spectra summed over multiple crystals 

contained in a loose powdered sample, while transmission 

measurements (TIR) examine a pressed pellet. Neither of these 

macroscopic sampling techniques can resolve spatial 

heterogeneities in the sample, and the time resolution of both 

is restricted by the fact that not all crystals in the sample can 

respond simultaneously to rapid changes in reactant 

concentration. Microspectroscopy, on the other hand, focusses 

the infrared beam onto one individual microcrystal at a time, 

allowing any spatial inhomogeneity between crystals or within 

large crystals to be resolved. Oriented groups in the framework 

or reacting adsorbed species can be determined via linearly 

polarised infrared radiation on zeolite single crystals.2,3 Signal-

to-noise limitations in conventional laboratory infrared 

microscopes using a blackbody (Globar) source have prevented 

the rapid scanning needed for studying reactions of adsorbed 

species in situ. 

Infrared radiation from a synchrotron source is up to 100 

times brighter than that from a laboratory Globar source, an 

improvement of a factor of ~ 20 in the signal-to-noise ratio. The 

first applications of synchrotron infrared microspectroscopy to 

zeolite single crystals were reported by Stavitzky et al.4 This and 

subsequent work has exploited the spatial resolution of the 

technique down to 3-5 µm.5–7 We have recently shown that 

high temporal resolution can also be achieved with synchrotron 

infrared microspectroscopy applied to the reaction of methanol 

in individual crystals of ZSM-5. By coupling the infrared probe 

with simultaneous mass spectral analysis of evolved reaction 

products, we could observe the initial steps in the conversion of 

methanol to hydrocarbons (MTH) within individual crystals on a 

time scale down to 0.25 s.8  

The MTH process has been developed and commercialized 

over ZSM-5 for the production of gasoline due to the concerns 

about the shortage of oil supply during the oil crisis in the late 

1970s,9 and more recently dimethylether-to-hydrocarbons over 

SAPO-34 for production of light olefins with rapid industrial 

applications demonstrated in China.10 The reaction mechanisms 

have been widely studied since.11 There is general agreement 

that, under steady state working conditions, alkenes and 

aromatics are produced from a ‘hydrocarbon pool’ (HCP) within 

the zeolite pores, comprising a mixture of cyclic alkene and 

aromatic hydrocarbons from which reaction products are 

cracked and/or desorbed. It is less well understood how the 

hydrocarbon pool is formed from methanol, and in particular 

how the first carbon-carbon bonds are formed.12,13 We showed 

that the surface methoxy groups (SMS) formed by dissociation 

of methanol at Brønsted acid sites at 473 K or above are the key 
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intermediates in the subsequent catalysis,8 although there is 

also evidence for some SMS formation at lower 

temperatures.14,15 Deprotonation of the methoxy groups leads 

to direct alkene formation via “carbene-like” species. The 

alkenes can desorb or oligomerise, and the oligomer can 

subsequently crack or cyclise to form the cyclo-alkenyl and 

aromatic species which constitute the hydrocarbon pool.8 

Our previous studies investigated the MTH reaction over 

HZSM-5 crystals ca. 160 × 60 × 60 mm3 in dimensions, prepared 

via synthesis in an aqueous fluoride solution. To establish the 

relevance of this SR IR microspectroscopic method to the 

investigation of reactions over zeolite crystals closer in size to 

those used commercially (typically <1 µm3 ), a comparison was 

made here between HZSM-5 crystals of a range of sizes, down 

to ca. 30 µm in their ‘middle’ dimension, which approaches the 

limit that can be studied with the available experimental set-up 

(above the optical diffraction limit size of the infrared focal spot, 

and with overall sample thickness that guarantees an 

absorbance spectrum has a sufficient signal-to-noise ratio 

during a time resolved study). This was made possible by the 

development of a synthetic method that allowed the crystal size 

to be varied without significantly changing the framework 

composition (the Si/Al ratio), and thereby enabled the relative 

importance of reaction and diffusion processes to be varied. 

Furthermore, whereas the ability to prepare ZSM-5 crystals with 

dimensions of ca. 100 µm is relatively rare among high silica 

zeolites, <30 µm is a more accessible synthetic target. 

2. Experimental 

2.1 Synthesis of large, medium and small HZSM-5 crystals.  

Twinned crystals of ZSM-5 were prepared with large 

(ca. 250 × 80 × 85 μm3), medium (ca. 160 × 60 × 60 μm3) and 

small crystal size (ca. 55 × 30 × 30 μm3) by a modification of the 

ammonium fluoride route reported by Guth et al.16 and 

Losch et al.17 In a typical procedure, tetrapropylammonium 

bromide (TPA, 0.27 g, 1.0 mmol), NH4F (0.28 g, 7.4 mmol), 

Al(NO3)3.9H2O (0.19 g, 0.7 mmol) were added to deionised 

water (9.00 g, 500 mmol) and fumed silica (0.60 g, 10 mmol) 

was slowly added. The gel composition (100 SiO2 : 

5 Al(NO3)3. 9H2O : 75 NH4F : 5000 H2O : 9.1 TPABr) 

corresponded to Si:Al ~ 20:1. The gel was stirred at room 

temperature for 2 h before being sealed in a Teflon lined 

autoclave (30 mL, Parr) and heated at 463 K for 10 days under 

static conditions, yielding the medium crystal size. 

A smaller crystal size was obtained by increasing the amount 

of Al(NO3)3 in the synthesis gel (Si:Al ~ 12:1), resulting in crystals 

of similar shape but significantly reduced volume, creating 

shorter diffusion pathlengths. Despite variations in the Si:Al 

ratio in the synthesis gels (Table 1), it was found that the 

crystals do not incorporate more than four Al atoms per unit 

cell, and any excess aluminium precipitates out as larger clumps 

of material which can be removed by sieving. Finally, large 

crystals (ca. 35× larger in volume compared to the small) were 

obtained from a synthesis gel with Si:Al ~ 20:1, at prolonged 

synthesis time (28 days at 463 K). The crystals were recovered 

by vacuum filtration, washed with deionised water and dried 

overnight at 373 K. Prior to spectroscopic studies, crystals were 

calcined by heating at 823 K (reached at 2 K min-1) in oxygen for 

64 h. 

Table 1 Synthesis gel molar ratios for large, medium and small crystals 

2.2 Sample characterisation methods. Samples were characterised 

by thermogravimetric analysis, CHN analysis, X-ray powder 

diffraction (Stoe with Cu Kα radiation), scanning electron microscopy 

(JEOL JSM-5600 SME with Oxford INCA Energy 200 electron 

dispersive X-ray analysis) and Ar ion milling was used to cleave the 

crystal and study the elemental composition from the entire cross 

section of the crystal (Hitachi S-5500). Solid-state MAS NMR spectra 

were acquired on a Bruker Advance III 400 MHz spectrometer 

equipped with a 9.4 T widebore superconducting magnet. Prior to 

obtaining quantitative 27Al MAS NMR, the sample was left to hydrate 

overnight in a moist atmosphere. The Brønsted acid sites were 

titrated with ammonia and quantified on a Micrometrics AutoChem 

2920 coupled to a Pfeiffer Vacuum ThermoStarTM quadrupole mass 

spectrometer. N2 adsorption isotherms were measured 

volumetrically (Micrometrics Tristar) after dehydrating the sample 

under vacuum at 473 K overnight. Catalytic tests were performed on 

a Salamander fixed-bed microreactor. The calcined crystals were 

diluted with quartz and tested for the dimethyl-ether-to-

hydrocarbons reaction at weight hourly space velocity (WHSV) of 

3.8 h-1. Gas phase products were separated and analysed by on-line 

gas chromatograph (Agilent GC) equipped with a capillary GC GasPro 

column (0.32 mm × 30 m) using a Flame Ionisation Detector (FID). 

2.3 Operando Infrared Microspectroscopy (OIMS) experiment. 

HZSM-5 crystals were sprinkled on CaF2 windows and placed on 

the heated sample stage of an environmental Linkam FTIR600 

cell (c.a. 50 mL internal volume) mounted on a (Bruker) 

Hyperion 3000 IR microscope coupled to a Vertex 80V FTIR at 

MIRIAM beamline B22 of Diamond Light Source. The infrared 

experiment requires only single crystals of the catalyst. To 

improve the sensitivity of the MS detection we typically added 

around 1 mg (up to 3 mg) of zeolite to the cell and checked that 

the spectra seen from one crystal were reproducibly seen from 

other crystals in the sample. The infrared experiments were 

collected in transmission from individual crystals at spatial 

resolution down to 10 × 10 micron at the sample using a 36× 

objective/condenser optics, averaging 16 scans at 4 cm-1 

resolution, i.e. typically collecting an IR spectrum every two 

seconds. The output of the gas phase products from the cell was 

analysed by mass spectrometry (Pfeiffer or EcoSys) and 

correlated with the time-resolved IR spectral changes. Gases or 

liquids were introduced into a nitrogen flow (100 mL min-1) 

upstream of the heated cell at temperatures up to 673 K and 

ambient pressure. Multiple methanol pulses (each pulse 8 µL in 

volume) were syringe injected, and dimethylether (5 mL min-1) 

was diluted in the nitrogen stream and introduced in a 

continuous flow. 

Gel comp./ 

Sample ID 
SiO2: Al3+: F-: H2O: TPA+ 

Large 100 5 45 2526 9.1 

Medium 100 5 75 5000 9.1 

Small 100 8.5 75 5000 9.1 
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3. Results 

3.1 Structure, calcination and unit cell composition.  

Upon removal of the structure directing agent used in the 

synthesis (Fig. S1 TGA and Table S1 CHN analysis, ESI†), the 

protonic form of ZSM-5 (here HZSM-5) is obtained with a high 

surface area (~350 m2 g-1) as confirmed by nitrogen adsorption 

(Fig. S2 for XRD and Fig. S3 for N2 adsorption, ESI†). SEM 

micrographs of the three crystals display a highly uniform 

crystal size distribution for each crystal batch (Fig. 1). This is 

important as a separate sample of freshly-calcined HZSM-5 

crystals was used for each IR experiment. 

 

 
Fig. 1 SEM images of (A) large, (B) medium and (C) small HZSM-5 crystals. 

The 27Al and 29Si NMR spectra of the crystals are shown in Fig. 2. 

The 27Al peak at 53-56 ppm confirms Al is tetrahedrally 

coordinated into the lattice in all three sets of crystals.18,19 The 
29Si spectra of all three show the profile expected for crystalline 

HZSM-5 with Si: Al of ~ 25.20 The as-prepared crystals display a 

classic hour-glass outline in optical micrographs (see inset in 

Fig. 2). This is due to intergrowths of two different orientations 

of the a and b axes of the crystal.21 

 
Fig. 2 27Al MAS NMR (A) and 29Si MAS NMR (B) of the (a) large, (b) medium and (c) 
small HZSM-5 crystals. Inset. Optical images of the three crystals as seen under 
polarised light. 

Elemental analysis of the crystals by bulk EDX and cross-

sectional EDX on cleaved crystals gave Si: Al ratios between 25 

and 36 (Table 2). Brønsted acid site concentrations determined 

from ammonia TPD measurements (Table S2, ESI†) gave similar 

Si: Al ratios, and Al line cross-sectional profiles revealed that the 

aluminium is homogeneously distributed across the cleaved 

crystals (Fig. S4, ESI†), consistent with the reported uniformity 

of composition achieved with the use of fluoride in the 

synthesis.17 

Table 2 Characterisation of Si: Al ratio from different techniques 

 

3.2 Microcatalytic test. The performance of the crystals in a 

conventional microcatalytic test was confirmed by carrying out 

DME conversion at 673 K. Table 3 shows conversion and 

product selectivity data after 5 minutes on stream (conversions 

decreased at longer reaction times due to deactivation). Olefins 

are the major products under these conditions, but significant 

amounts of aromatics are also formed. 

Table 3 Microreactor selectivity and conversion data  from dimethylether (DME) 

conversion over the three different crystal sizes of HZSM-5 at 5 min time-on-stream, 

673 K, WHSV = 3.8 h-1 

 

IR spectra of individual dehydrated HZSM-5 crystals. IR spectra 

were recorded for the large HZSM-5 (ca. 250 × 80 × 85 μm3), 

medium (ca.160 × 60 × 60 μm3) and small crystal sizes (ca.55 × 

30 × 30 μm3) after dehydration at 623 K in flowing nitrogen. 

Fig. 3 compares spectra of the three dehydrated crystals. Each 

crystal shows two hydroxyl bands in the high wavenumber 

region, the sharp band at 3600 cm-1 is due to the Brønsted acid 

site (BAS) and the small band at 3735 cm-1 is due to terminal 

silanol functional groups located at the interfaces between the 

crystal intergrowths or other defects. Closely similar spectra 

were measured from different crystals within each batch, and 

from different regions of individual crystals. In particular, we 

could not distinguish any differences in the relative populations 

of silanol and BAS hydroxyl groups between the different areas 

of the intergrown crystals. (Fig. S4 for FTIR spectra of different 

crystals, ESI†). The lower wavenumber bands at 1995, 1870 and 

1630 cm-1 are due to overtones and combination bands of 

Si-O-Al stretching and bending modes of the zeolite framework. 

The intensities of these bands are determined by the thickness 

of the zeolite crystals; the spectra in Fig. 3 have been normalised 

against the intensity of the 1870 cm-1 band, and a rubber-band 

base-line correction applied. Typically, spectra of the 

dehydrated zeolites are subtracted from those measured during 

reaction, and the difference spectra presented. 

 

 

a × b × c 

(µm3) 

250 × 80 × 85 
Large 

160 × 60 × 60 

Medium 

55 × 30 × 30 
Small 

EDS 34 31 30 

CS-EDS 36 24 24 

NH3-TPD 24 21 21 

Microreactor selectivity Large Medium Small 

  (%)  

ethene 23.1 24.5 32.2 
propene 42.9 46.0 42.9 

C4a 20.3 19.5 18.0 
C5a 5.6 4.9 4.7 
C6+ 6.3 5.1 2.15 

C2/C3
b 0.5 0.5 0.8 

DME Conversion 99% 95% 100% 
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Fig. 3 SR-IR spectra of dehydrated individual HZSM-5 crystals (A) large, (B) medium 
and (C) small. Spectra are scaled based on the framework band at 1870 cm-1 for 
comparison of the intensity of the Brønsted acid site (scaling factors: circa x3, x2 
and 1 for the large, medium and small crystal sizes, respectively). 

3.3 Methanol pulses. Fig. 4 provides an overview of the species 

that are detected by infrared microspectroscopy in the early 

stages of the MTH reaction over HZSM-5, namely adsorbed 

methanol, at 523 K and hydrogen bonded DME at 573 K over a 

large crystal, and methoxy groups and alkene oligomers at 

573 K over a medium crystal. (A full sequence of spectra at 2 

second intervals following injection of a methanol pulse at 

523 K on a medium crystal is given in Fig S6, ESI†). When 

methanol is first injected into the zeolite it is hydrogen bonded 

to the BAS. At 523 K, the hydrogen bonded methanol is quickly 

converted to hydrogen bonded dimethylether, which slowly 

desorbs from the zeolite, recovering part of the original BAS 

hydroxyls intensity and leaving a weak residual spectrum of 

surface methoxy groups (SMS). After a further delay, the BAS 

hydroxyl band intensity dramatically increases, and the SMS 

spectrum is converted to that of alkene oligomer, identical to 

that formed when propene is injected into the zeolite at the 

same temperature (523 K).8  

 
Fig. 4 Difference FTIR spectra of a medium size HZSM-5 crystal, showing the 
sequence observed following introduction of methanol at 523 K. The marked 
bands at each stage of the reaction are identified with (A) hydrogen bonded 
methanol at 523 K, (B) hydrogen bonded dimethylether at 573 K, (C) surface 
methoxy groups at 573 K and (D) alkene oligomers at 573 K. 

Having described the type of adsorbed species formed in the 

early stages of the MTH reaction over HZSM-5, next, the 

response of three different sizes of crystal to a pulse of 

methanol at 573 K is compared (Fig. 5). The top panels show the 

MS analyses of the effluent gases, the central panels show the 

intensity of the BAS hydroxyl band ~ 3600 cm-1 as a function of 

time (expressed as a percentage of the original intensity in the 

dehydrated crystal) and the bottom panels show IR spectra in 

the CH stretching region at the reaction times indicated. In all 

crystal sizes studied here, oligomeric hydrocarbon species are 

observed immediately after the loss of methoxy groups at the 

end of the induction period. 

Fig. 5 Comparison of (A) large, (B) medium and (C) small crystals during one 8 µL 
methanol pulse injected into a N2 flow of 100 mL min-1 at 573 K. (a) Mass spectral 
traces recorded during these experiments; m/z = 31 measures methanol, m/z = 45 
DME, m/z = 41 propene (with a contribution from DME fragmentation. (b) 
Corresponding time course of the zeolite hydroxyl ν(OH) 3600 cm-1 band intensity 
relative to an activated crystal recorded at 2 s intervals. (c) Evolution of the CH 
stretching bands during the rapid regeneration of the zeolite hydroxyls during the 
experiments in (A, B and C), respectively. 

(A) (B) (C) 
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In the large crystal (Fig. 5 A), the loss of OH intensity 

following injection of methanol is followed by a slow recovery 

as hydrogen bonded DME is desorbed, then after an induction 

period of ~ 240 s there is a remarkably rapid recovery of OH 

intensity. The mass spectral traces during this experiment show 

a clear delay in evolution of DME after the methanol injection, 

but the first appearance of propene occurs at the same point as 

the recovery of OH intensity. The infrared spectrum in the ν(CH) 

region shows the presence of SMS and some residual hydrogen 

bonded DME (orange trace in Fig. 5A(c)). At 242 s all of the SMS 

and DME have gone and the spectrum is that of the oligomer 

formed from alkenes (green trace in Fig. 5A(c) and Fig. 4). 

In the large crystal, the loss of SMS and residual DME occurs 

at the same time as the BAS hydroxyl groups are recovered and 

propene is evolved. This could be taken as evidence of a 

reaction between SMS and residual DME regenerating BAS 

described by eqn. (1): 

 

ZOCH3 + CH3OCH3   → ZOH + CH3CH2OCH3    eqn. 1 

 

However, the corresponding data for medium and small 

crystals do not support this explanation (Fig. 5 B-C). In the 

medium crystals, the spectrum remaining at the point where 

the BAS OH band intensity begins to recover (orange trace in 

Fig. B(c) shows only SMS with little remaining DME adsorbed on 

the crystal is seen by IR), and this is equally clear for the small 

crystals. 

The effect of crystal size on the induction time for propene 

formation, BAS hydroxyl recovery and SMS conversion to 

oligomer is dramatic. We attribute these differences to the 

different length of diffusion pathways in the different sized 

crystals. From these experiments the deprotonation of SMS, 

which initiates propene formation, appears to occur only after 

desorption of most or all of the initially hydrogen bonded DME, 

which occurs more rapidly from the medium and small crystals 

than from the large crystals. 

Previous evidence for direct formation of hydrocarbons 

from SMS in ZSM-5 has come from NMR experiments of 

Wang et al.22, who suggest that carbene or ylide intermediates 

may be involved. We note also that infrared evidence for a 

carbene-like reactivity of SMS in ZSM-5 towards light alkenes 

(e.g. methylation of ethene to form propene) has been 

presented by Yang et al.23  

The direct formation of alkenes through a carbene-like 

intermediate requires mobility of SMS within the zeolite such as 

described by eqn. (2) and (3) below: 

 

2 CH3OZ  →  HOZ  +  CH3CH2OZ  → C2H4   + 2HOZ eqn. 2 

 

HOZ + C2H4 + CH3OZ  → HOZ + C3H6      eqn. 3 

 

The alkenes formed can desorb from the zeolite or 

oligomerise at BAS in the zeolite (giving the observed ν(CH) 

bands identical to those formed on injecting propene or ethene 

into the zeolite).8 We emphasize that this chemistry is occurring 

only during the initial interaction of methanol with a 

dehydrated zeolite crystal.  

Comparison of the reactivity of methanol injected into a 

large and small crystal at 573 K is made in Fig. 6. In both crystals, 

a clear induction period for propene formation is seen only in 

the first methanol pulse. More propene is produced in the 

second, third and fourth pulses, while the DME yield reduces, 

see MS plots in (a). The higher propene and ethene yields seen 

in second and subsequent pulses in Fig. 6(a) suggest that alkene 

formation through this indirect process is more productive than 

that occurring during the initial deprotonation of SMS. There is 

also some indication of ethene formation from the second pulse 

onwards (the high baseline at m/z = 27 is due to overlap with 

the m/z = 28 peak of the nitrogen carrier gas). Methyl aromatic 

products are also seen to be rising with successive methanol 

pulses (the m/z = 91 peak is due to the tropylium cation, which 

is an abundant ion rearrangement product in the mass spectra 

of methyl aromatic compounds). 

The behaviour of the BAS OH band at 3600 cm-1 is also 

different in the second and subsequent methanol pulses from 

that seen in the first pulse, plots in Fig. 6(b). The recovery of BAS 

after each methanol pulse gradually diminishes and the number 

of residual BAS remaining in the zeolite declines, especially in 

the large crystal.  

Two new bands appear and grow in the 1650-1450 cm-1 

region, during the four successive methanol pulses at 573 K, 

plots in Fig. 6(c). The time dependence of the 1510 cm-1 and 

1620 cm-1
 bands is clearly different. In both crystal sizes, the 

1510 cm-1 band appears first, and decays less rapidly than the 

1620 cm-1 band. However, in the smaller crystal, the growth of 

the 1510 cm-1 band occurs notably faster in the first pulse. 

Nonetheless, the build-up of these species correlates with the 

declining concentration of BAS remaining after each methanol 

pulse, supporting the assignment that they are associated with 

the hydrocarbon pool (HCP) accumulating in the zeolite. 

The band at 1510 cm-1 (with a shoulder at 1460 cm-1 and 

accompanying ν(CH) bands at 3120 cm-1 and 2910 cm-1 was 

assigned to the 1,3-dimethylcyclopentenyl cations (Scheme 1).8 

 

 

 
Scheme 1. Structure of 1,3-dimethylcyclopentenyl cations (DMCP).  

DMCP has been identified by NMR as the first cyclic component 

of the hydrocarbon pool to be formed in HZSM-5 during the 

MTH reaction,24 and the vibrational frequencies observed by IR 

microcrystal spectroscopy are close to those of the gas phase 

cations reported elsewhere.25 Once DMCP forms in HZSM-5 

during the MTH reaction, it may undergo methylation and 

skeletal rearrangement to form toluene or other methylated 

aromatic products. DMCP may also crack to form alkenes.24 The 

1620 cm-1 band was assigned to a C=C stretching mode of 

adsorbed methyl aromatic species.8  

At the low temperatures investigated so far (<623 K), 

hydrogen bonded species were seen during the leading edge of 

the methanol pulse.  
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Fig 6 Comparison of a (A) large and (B) small crystal during 4 and 3 successive 8 µL methanol pulses at 573 K, respectively. (a) Gas phase products detected by online-
MS during injection of methanol. (b) Time dependence of the infrared OH stretching band at 3600 cm-1 recorded at 2 s. (c) Extracted intensity of the bands at 1510 cm-1 
(orange) and 1620 cm-1 (purple) recorded at 2 s intervals during the experiments in (A) and (B), respectively.

Considering the formation of aromatics is promoted at higher 

temperatures, it was desirable to compare the different crystals 

at higher reaction temperatures, where no hydrogen bonding is 

seen and the differences between the production of aromatics 

becomes more apparent. It was found that at higher reaction 

temperatures (623 K) and in smaller crystals the 1620 cm-1 band 

is more intense, and the relative yields of aromatic products at 

m/z = 91 detected in the MS are higher (Fig. 7). The induction 

period for recovery of BAS, loss of SMS and evolution of 

propene during the first methanol pulse at this temperature is 

less than 10 s. The relative yields of alkene products remain 

similar between the medium and small crystals, as are the 

1510 cm-1 band intensities. However, the 1620 cm-1 band has 

two orders of magnitude (integrated area) higher relative 

intensities compared to the large and medium crystals, and an 

enhanced yield of methylaromatic products is detected in the 

MS for the small crystal. At this temperature both the 1510 and 

1620 cm-1 bands are diminished equally rapidly, and the loss of 

these bands appears to correlate with recovery of the BAS 

during the second and third pulses. 

At low temperatures (< 523 K) methanol is converted slowly 

to DME, which involves the formation of SMS, but the 

deprotonation of the SMS occurs only after hydrogen bonded 

DME is desorbed. At higher temperatures hydrogen bonded 

DME is quickly desorbed, the formation of alkenes and oligomer 

follows, and in subsequent pulses of methanol the cyclic HCP 

species are seen. 

The important conclusion regarding the significance of 

crystal size is that the induction time for deprotonation of SMS, 

regeneration of BAS and formation of alkenes decreases as the 

crystal size is reduced. We attribute this to the faster desorption 

of hydrogen bonded DME out of the smaller crystals i.e. the 

presence of excess DME in the crystals appears to block the SMS 

deprotonation chemistry. 

 

 

(A) (B) 
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Fig. 7 Comparison of (A) large (B) medium and (C) small crystal of HZSM-5 crystal during the injection of 3 successive 8 µLpulses of methanol at 623 K. (a) On-line MS 
analysis of gas phase products. (b) BAS band intensities relative to the dehydrated zeolite. (c) Absolute band intensities of the 1510 and 1620 cm -1 bands recorded at 2 
s intervals during the experiments in (A, B and C), respectively. 

This direct formation of alkenes can be clearly seen in all 

three crystal sizes at lower temperatures but at 623 K, the 

typical temperature for MTH catalysis, the recovery of BAS due 

to deprotonation of SMS can be seen only in the initial methanol 

pulse in large crystals. The formation of alkenes (and aromatics) 

at this temperature is associated with the presence of the HCP 

species i.e. is indirect. 

3.4 Continuous Flow of DME. To understand better the 

chemistry of the HCP species responsible for the 1510 and 

1620 cm-1 bands and the effects of crystal size on the formation 

and reaction of these species under steady-state conditions, we 

turned to a continuous flow of DME (rather than methanol 

pulses). DME is readily converted to hydrocarbons over ZSM-5 

catalysts.26 Analysis of the ν(CH) region of spectra measured in 

the presence of DME is more difficult because of the 

overlapping bands of both gas phase DME and hydrogen 

bonded DME, and we will present a detailed investigation of 

these spectra elsewhere. It is useful however to examine the 

1650-1450 cm-1 region together with the MS analyses in the 

context of the present discussion of crystal size effects on HCP 

formation (Figures 8-10). 
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Fig 8 Continuous flow of dimethylether over a large crystal of HZSM-5 at (A) 523 K; (B) 573 K; (C) 623 K and (D) 673 K. (a) IR spectra recorded at 2 s intervals. (b) Online-
MS analysis of gas phase products during the experiments in (A-D), respectively.

 

 

Fig. 9. Comparison of (A) large, (B) medium and (C) small HZSM-5 crystal during a continuous flow of dimethylether at 623 K for 8 min. (a) IR spectra recorded at 2 s 
intervals. (b) On-line MS analysis of gas phase products during the experiments in (A, B and C), respectively

At 523 K the 1510 and 1480 cm-1 bands of DMCP appear 

after a short delay and continue to grow in intensity over the 

duration of the experiment (Fig. 8-A). The MS analysis shows 

little evidence of alkene formation at this temperature; the 

observed m/z = 41 signal results from fragmentation of DME in 

the mass spectrometer. At this temperature, any alkenes 

formed are evidently oligomerised in the zeolite and slowly 

react to form DMCP. Also evident at 523 K is the very slow 

growth of a 1620 cm-1 band, indicating that there is some 

further reaction to form aromatics at this temperature, 

although none escape from the zeolite. At 573 K, the 1510 and 

1460 cm-1 bands of DMCP rise quickly, plateau and remain 

constant thereafter (Fig. 8-B). Weak, but evident is the 

1620 cm-1 band of methyl aromatics which broadens and shifts 

to lower frequency at 1607 cm-1 after about 400 s of flowing 

DME over the large HZSM-5 crystal, suggesting further 

b b b b 
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evolution of the adsorbed methyl aromatics. The MS traces at 

573 K show enhanced levels of propene and ethene, but still 

very little evolved methyl aromatics. 

At 623 K, the steady state concentration of DMCP in the 

zeolite is considerably less than at lower temperatures 

(Fig. 8-C). There is an increased contribution to the spectrum 

from the 1620 cm-1 band, and in the MS traces the initial yields 

of propene and ethene decline as the evolution of 

methylaromatics increases. The generation of methylaromatic 

species (m/z = 91) is more prominent at 673 K, but the IR spectra 

are more complex. Within 200 s, multiple bands are observed 

at 1607, 1566, 1510, 1490, 1460 cm-1, suggesting formation of a 

more varied HCP at this temperature (Fig. 8-D). 

 A striking difference in the DMCP concentration between 

large and small crystals was observed during the isothermal 

continuous flow of DME at 623 K (Fig. 9). The density and 

strength of acid sites has not changed, and the product 

distributions at longer reaction times are quite similar, although 

the steady state evolution of methylaromatics is achieved more 

quickly in the smaller crystals. The decomposition of DMCP 

species to generate methylaromatics evidently occurs more 

quickly in the smallest crystals. 

     Similar effects were seen at 673 K (Fig. 10). In both large and 

small crystals a complex set of bands is seen in the 1650-

1450 cm-1 region but there is a larger contribution from bands 

in the 1550-1650 cm-1 region in the small crystals, consistent 

with the more rapid evolution of methylaromatic products in 

the MS traces. At this temperature the crystals contain many of 

the HCP species detected by NMR and UV-VIS spectroscopy.12,13  

 

Fig 10 Comparison of (A) large and (B) small HZSM-5 crystal during continuous 
flow of dimethylether at 673 K over 13 min. (a) IR spectra recorded at 2 s intervals. 
(b) On-line MS analysis of gas phase products during the experiments in (A) and 
(B), respectively. 

 

The continuous flow DME experiments show that the DMCP 

species which we identify as the first cyclic component of the 

HCP is formed in high concentrations in the zeolite already at 

523 K, but with little formation of gas phase products at this 

temperature. 

The infrared signature of adsorbed methyl aromatics 

(1620 cm-1) begins to appear after the DMCP (1510 cm-1). At 

higher temperatures cracking of the DMCP to form alkene 

products is accompanied by the further reaction to generate 

methyl aromatics, and both of these processes depend on 

crystal size. In particular, the conversion of DMCP species to 

methyl aromatics is favoured in smaller crystals, probably 

because of faster diffusion of DME reactant into the pores. 

4. Conclusions 

Operando infrared microspectroscopy (OIMS) performed with 

synchrotron radiation is a powerful tool to study the formation 

mechanism of the initial hydrocarbon pool species within 

individual crystals of ZSM-5. In this study we have confirmed the 

reaction sequence proposed elsewhere,8 in which the direct 

formation of alkenes in the very initial stages of methanol 

conversion is due to deprotonation of SMS. Once alkenes are 

formed, these alkenes oligomerize at BAS; the oligomer can 

either crack or can cyclize to form DMCP as the first cyclic 

component of the hydrocarbon pool which can also release 

alkenes or react further to form the methylaromatic 

components of the hydrocarbon pool. We show that the OIMS 

enabled us to follow reactions on crystals down to 30 microns 

in size, with a time resolution of 2 s routinely, and down to 

0.25 s.8 

The important conclusion regarding the significance of 

crystal size is that the induction time for deprotonation of SMS, 

regeneration of BAS and formation of alkenes decreases as the 

crystal size is reduced. We attribute this to the faster desorption 

of hydrogen bonded DME out of the smaller crystals i.e. the 

presence of excess DME in the crystals appears to block the SMS 

deprotonation chemistry. 

These studies have shown that it will be difficult to detect 

direct formation of alkenes in much smaller micron sized 

crystals, since the HCP species are seen to form very quickly in 

smaller crystals, and the cracking of these is responsible for the 

observed steady-state alkene yields from both methanol and 

dimethylether. Based on this, we suggest that the induction 

periods for alkene formation seen in many conventional 

catalytic studies cannot be due to intra-crystalline chemistry but 

must be attributed to diffusion of reactants into the catalyst bed 

or of products out of the catalyst bed.  

Finally we note the potential of the method to be applied to 

other zeolite catalysts and catalytic reactions, given crystal sizes 

of at least 20 microns for satisfactory signal-to-noise ratios, and 

the possibility of extending the measurements to time 

dependent spectra from several adjacent crystals using 

automatic mapping functionality common to the IR microscope 

acquisition software. The signal to noise advantage gained from 

synchrotron radiation will also allow diffusion measurements 

on zeolite crystals previously performed with laboratory 

infrared microscopes27,28 to be extended to much shorter time 

scales. 
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