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Summary 

Dynamical behaviour of n-octane and 2,5-dimethylhexane in H-ZSM-5 zeolite catalysts of differing Si/Al ratios 

(15 and 140) was probed using quasielastic neutron scattering, to understand molecular shape and Brønsted 

acid site density effects on the behaviour of common species in the fluid catalytic cracking (FCC) process, 

where H-ZSM-5 is an additive catalyst. Between 300 – 400 K, n-octane displayed uniaxial rotation around its 

long axis. However, the population of mobile molecules was larger in H-ZSM-5(140), suggesting that the 

lower acid site concentration allows for more molecules to undergo rotation. The rotational diffusion 

constants were higher in H-ZSM-5(140) reflecting this increase in freedom. 2,5-dimethylhexane showed 

qualitative differences in behaviour to n-octane with no full molecule rotation, probably due to steric 

hindrance in the constrictive channels. However, methyl group rotation in the static 2,5-dimethylhexane 

molecules was observed, with lower mobile fractions in H-ZSM-5(15), suggesting that this rotation is less 

hindered when fewer Brønsted sites are present which was further illustrated by the lower activation barrier 

calculated for methyl rotation in H-ZSM-5(140). We highlight the significant immobilising effect of isomeric 

branching in this important industrial catalyst, and show how compositional changes of the zeolite affect a 

range of dynamical behaviours of common FCC species upon adsorption. 
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Introduction 

The behaviour of hydrocarbons in zeolite catalysts is of great interest to a number of applications relevant to 

the circular economy. One such application is the optimisation/adaptation of processes such as fluid catalytic 

cracking (FCC) of crude oil fractions, to accommodate renewable feedstocks. FCC is one of the major 

conversion technologies in the petrochemical industry responsible for much of the worlds gasoline,[1] where   

∼2300 metric tons of FCC catalyst are produced per day based, primarily, on zeolite Y[2] but also ZSM-5, to 

promote small hydrocarbon products such as propene.[3] The modification of this process to accommodate 

renewable feedstocks such as biomass[4,5] and even plastic waste[6] requires an in-depth knowledge of how 

the relevant hydrocarbon species behave in the catalyst micropores. 

Of great interest is the effect of molecular shape and branching on the mobility of hydrocarbons, which is 

fundamental to the shape selectivity characteristics of zeolites,[7,8] the study of which is difficult due to the 

most important  processes taking place under confinement in the porous matrix  of the zeolite. However, a 

significant amount of work, both theoretical and experimental, has been carried out studying the mobility of 

hydrocarbons in the MFI zeolite structure[9–16], the framework of H-ZSM-5, and increases in computational 

power have led to relatively inexpensive computational models  of alkane dosed MFI systems that calculate  

diffusion coefficients close to those observed by experiment.[17–19] 

Techniques based on neutron spectroscopy are particularly powerful for studying not only structural and 

active site characteristics of the catalyst,[20–23] but also the dynamical behaviour of hydrocarbons in 

microporous catalysts,[24] where quasielastic neutron scattering (QENS) may probe dynamics on the 

timescale of rotational and translational diffusion.[25] Previous work has employed QENS to study n-alkanes 

in the MFI structure [26] [27] typically yielding diffusion coefficients in the range of ~10-10 m2s-1 . Branched 

alkanes diffuse over an order of magnitude more slowly[28] and often require higher resolution techniques 

such as neutron spin echo to gain reliable measurements.[19] Recent work has shown some very revealing 

insights into localised behaviours, such as the rotation of 1-octene oligomers in the ZSM-5 straight 

channels[29], and it is clear that such localised motions can bring significant insight into the behaviour of 

important species as a function of molecular size and shape[30], composition (where the presence of 

counterions in the framework can significantly affect molecular mobility[26]) and even catalyst use. [31] 

To this end, we have employed quasielastic neutron scattering to probe the mobility of common FCC C8 

isomers n-octane and 2,5-dimethylhexane in H-ZSM-5, while varying the Si/Al ratio of the catalyst and thus 

the density of strongly adsorbing Brønsted acid sites. We show that the branching of 2,5-dimethylhexane in 
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the 5.5 Å ZSM-5 micropores causes significant qualitative differences in dynamics compared to the straight 

chain analogue, and that the difference in Brønsted acid site concentration affects the quantitative aspects such 

as the proportion of mobile populations, and rates of motion observed for both species. 

 

Experimental Section 

Materials  

The ZSM-5 samples used were commercial zeolite catalysts obtained from Zeolyst International with Si/Al 

ratio = 15 (CBV3024E) and 140 (CBV28014) referred to herein as H-ZSM-5(15) and H-ZSM-5(140) respectively. 

Their bulk crystallinity has been verified by powder X-ray diffraction in recent studies.[32,33] The samples 

arrived in their ammonium form and were calcined to achieve the catalytic proton form. This was carried out 

in air, heating at 1 °C min-1 up to 150 °C and 5 °C min-1 to 500 °C where they were held for 4 hours. The 

samples were then dried at 150 ˚C for 4 hours under flowing helium. After cooling, the alkanes were loaded 

by passing He carrier gas through a Dreschel bottle containing the alkane. The samples were loaded to ~1 

molecule of alkane per unit cell, determined gravimetrically. 

 

Quasielastic neutron scattering experiments 

QENS experiments were carried out using the time-of-flight backscattering neutron spectrometer OSIRIS[34] 

at the ISIS Pulsed Neutron and Muon Source (UK). The cells were placed in a top loading closed cycle 

refrigerator. Each sample was then cooled to a base temperature of 10 K and a resolution measurement was 

taken. The samples were then heated to 300, 360 and 400 K where the QENS spectra were measured. Pyrolytic 

graphite 002 analyser crystals were used giving an energy resolution of 24.5 μeV with energy transfers 

measured in a window of ±0.55 meV; the detector coverage enabled measurements over a Q range of 0.2–1.75 

Å−1. A measurement was taken of the empty ZSM-5 samples and the signal was then subtracted from the 

signal of the sorbate loaded ZSM-5, so that the signal from the sorbate only could be extracted. In this way any 

scattering from the aluminium container, which is very low in comparison with the zeolite is also subtracted. 

No further corrections were necessary. All QENS spectra were fitted using the neutron scattering analysis 

software DAVE[35] and MANTID.[36] 
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Results and Discussion 

n-octane dynamics 

QENS spectra as a function of the momentum transfer vector Q at 300 K are shown in Figures 1a) and 1b) for 

n-octane in H-ZSM-5(15) and (140) respectively. The spectra were fitted to a delta function convoluted with 

the resolution measurement taken at 10 K, a single Lorentzian function (which was enough to describe the 

data satisfactorily) and a flat background function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1a) and b). 

b) 

a) 
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The figures contain the data points, the total fit (black), and the quasielastic component of the spectra (red) 

given by the Lorentzian function. 

The presence of a large elastic component in all the spectra suggests that either a large fraction of immobile 

molecules is present or localised motions such as rotations are taking place, or both. One may characterise the 

possible localised motions using the elastic incoherent structure factor (EISF)[37,38] which is given in equation 

1, and is the proportion of the total scattered intensity which is elastic. 

 

 

 

The experimental EISF for n-octane is shown in figure 2,  along with models for localised octane motion as 

outlined in our previous work.[29] These include the Volino and Dianoux model of diffusion confined to 

sphere, with a radius (rconf) matching that of a ZSM-5 channel, where the EISF is given by equation 2.  

 

 

 

  

 

(2) 

Figure.2. 
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Where j1 is the spherical Bessel function of the first kind. The model of 3-site jump rotation around a circle was 

also employed to represent an octane molecule where only the methyl groups are rotating, given by equation 

3 (and shown by the red arrows in figure 3).  

 

 

 

Where j0 is the 0th order Bessel function and r in this case is 1.04 Å representing the radius of the circle for the 

protons of a methyl group, shown by the red arrows in figure 3. The model of uniaxial rotation[30] was 

employed in our recent work to describe the rotation of oligomerised 1-octene around its long axis (shown by 

the black arrows in figure 3). The radius of rotation of each octane proton around this long axis (derived in 

reference 29) is calculated as 1.40 Å (though we note there may be slight deviations with this depending on the 

behaviour of the terminal methyl groups). This model cannot be used for powder samples typical for porous 

material studies, because no expression is available for the average angle θ between the axis of rotation and 

the direction of Q. However, one may consider a jump rotation over N sites around a circle similar to the 3-site 

model discussed earlier. With a sufficiently large N (> 6) the scattering function does not change as N 

increases, so the approximation of jump rotation over N sites may then be used as an approximate model for 

the EISF of continuous rotation, as given in eq. 4  

 

 

 

 

 

  

 
(3) 

  

 

(4) 

Figure 3. 
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The model of only methyl rotation falls above the experimental points at all temperatures as shown in figure 2 

for the 300 K data (particularly as in this model 2/3 of the protons must be considered static, lifting the model 

EISF as detailed later), the diffusion confined to a ZSM-5 pore diameter model falls below the experimental 

points at all but 1 Q value, however, the uniaxial rotation model has a similar shape to the experimental data. 

We now consider the model EISFs, but with a mobile fraction fitted to take into consideration molecules which 

are unable to move on the timescale of the instrument, either due to interactions with the catalyst active sites 

or steric hindrance in the constrictive H-ZSM-5 channels, which is calculated as: 

 

 

where px is the fraction of mobile molecules. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  

 

The optimal fits are shown in figure 4. The best fitting model is that of uniaxial rotation (with 17% of the 

protons treated as immobile) suggesting that the same mode of motion previously reported for oligomeric 1-

octene is present for n-octane, despite the increased degrees of freedom allowed for the single octane 

molecule. The error in this fitting is calculated by finding the best fit to the highest and lower points on the 

error bars, giving an error of ±2.8%. This model of motion fits to the higher temperatures in H-ZSM-5(15) as 

shown in in figure 4 (a) with lower immobile populations (12 and 7 % for 360 and 400 K respectively), and also 

for all the experimental EISFs in H-ZSM-5(140) with immobile fractions of 11, 6 and 2% at 300, 360 and 400 K 

  
 

(6) 
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respectively (the error in these values are shown in table 1). We note that the immobile populations are 

consistently lower in the H-ZSM-5 catalyst with fewer Brønsted sites, suggesting the far lower prevalence of 

this interaction allows for more molecules to undergo full-molecule uniaxial rotation in the channels.  

However, we note that the errors bars for each fit to the EISF plots may signify that this difference in immobile 

populations may be smaller and such differences should be treated with caution. 

 

 

Figures 5 a) and b) 

H-ZSM-5 (15) 

H-ZSM-5 (140) 

a) 

b

) 
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The magnitude of the quasielastic broadening in the measured neutron spectra is related to the rates of 

rotation.  With rotational motions such as these, the quasielastic broadening will be independent of Q, as 

shown in figures 6 (a) and (b), where the half-width at half-maxima (HWHM, Γ) of the Lorentzian components 

fit to the QENS spectra as a function of Q, are plotted for all temperatures of n-octane in H-ZSM-5(15) and H-

ZSM-5(140), respectively. The broadenings show no Q-dependence, supporting the characterisation of 

rotational motions, and increase with temperature suggesting an increase in rotational rate as would be 

expected. We note the widths are larger in ZSM-5(140) suggesting that in this sample not only are more 

molecules free to rotate, but those that are free also rotate faster in the sample with fewer acid sites.   

A model which approximates uniaxial rotation to a jump model of 6 sites around a circle (similarly to how we 

have modelled the EISF) which was used and detailed by Jobic et al.[30] to describe ethane, propane and other 

alkanes up to hexane[39]  relates the Lorentzian HWHM to the jump rotation as 

 

 

 Where  is the mean time between successive rotational jumps (m is the order of the quasielastic structure 

factor) and the HWHM value at low Q may be used to calculate the rotational diffusion constant Dr as  as 

detailed in reference 30. 

Figure 6 a) and b) 

The calculated rotational diffusion coefficients (and mobile fractions) are shown in table 1, ranging from 7.4-

8.5 x 1010 s-1 in H-ZSM-5(15) and 8.1-9.1 x 10-10 s-1 in H-ZSM-5(140), which along with the lower activation 

energy for rotation, illustrates the increased  rotational freedom in ZSM-5(140).  The Dr values are significantly 

higher (by about 30%) than those obtained for oligomerised 1-octene in H-ZSM-5 with a Si/Al=30.[29] This is 

not particularly surprising as the oligomerised chains (~C90) are far less mobile than the C8 monomer 

  

 
(6) 

a) b) 
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analogues in this study, further illustrated by the increase in the mobile population of octane molecules from 

29% for oligomerised 1-octene to 88% for n-octane ~330 K. The size of the increase in Dr at each temperature 

between H-ZSM-5(15) and (140) should be treated with caution when the experimental errors are considered. 

We note that the Dr values are a factor of ~5 lower than those calculated for the uniaxial rotation of propane in 

Na-ZSM-5, even though the loadings are double in terms of carbon atoms per unit cell and the Na+ ion is 

present, illustrating the hindering effect of chain length on rotational motion.  

 

 

 

2,5-dimethylhexane dynamics 

We now discuss the dynamics of 2,5-dimethylhexane in the H-ZSM-5 catalysts. QENS spectra as a function of 

Q for 2,5-dimethylhexane in H-ZSM-5(15) and (140) are shown in figures 7 a) and b) respectively. As with n-

octane, the spectra were fit to the resolution function, a single Lorentzian function and a flat background 

function (apart from the lowest 2 Q groups in H-ZSM-5(15) where only a flat background was necessary, since 

there was no appreciable Lorentzian component). Upon visual comparison of figures 1 and 6, it is clear that 

the elastic components are more intense at high Q and the quasielastic components are lower in intensity than 

for n-octane in both samples. In addition, no quasielastic broadening is observed for the lowest 2 groups in H-

ZSM-5(15) suggesting that no motions are observed at this Q range within the time window of the instrument 

(1-100 ps), so clearly the movement is very restricted. 
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Figure 7 a) and b) 
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b) 
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The experimental EISF for 2,5-dimethylhexane in H-ZSM-5(15) at 300 K is shown in figure 8 along with 

relevant theoretical models, with a mobile fraction considered as for n-octane. Along with the models of 

methyl rotation and diffusion confined to a volume of the ZSM-5 channels we have included a model of 

uniaxial rotation which takes into account the average radius of all protons from a long axis which passes 

through the centre of mass of the molecule – such that average radius of rotation (1.75 Å in a 2,5-

dimethylhexane molecule geometry optimised using the OPLS[40] forcefield) which is feasible in a ZSM-5 

channel or intersection, as depicted in figure 9. 

Figure 8. 

 

 

Figure 9. 
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Perhaps unsurprisingly, given the lack of any translational mobility observed for branched alkanes in 

previous QENS studies in ZSM-5[28] – the model of confined translation diffusion is not able to fit the data, 

falling below the experimental points at low Q and above at high Q. The uniaxial rotation model is able to fit 

the datapoints within error at high Q, but falls below the points at low Q. The 3-site jump rotation model 

provides the best fit to the data. We note that the highest mobile fraction allowed for this model is 2/3, as this 

Figures 10 a) and b). 

a) 

b

) 

H-ZSM-5 (15) 

H-ZSM-5 (140) 
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would encompass all the methyl protons in the molecule rotating, the mobile fraction at this temperature is 

0.49, suggesting that in this sample, and at this temperature, movement is so restricted that not even all the 

methyl protons are able to rotate in the channels. The model EISF fits the data points for all temperatures in 

both samples are shown in figures 10 a) and b).  

In H-ZSM-5(15) we note that the mobile fraction of methyl protons increases from 0.49 to 0.61 between 300-400 

K, whereas in H-ZSM-5(140) the mobile fraction ranges from 0.61 to 0.66. Despite the whole molecule being 

immobile in terms of both translation and full molecule rotation, we are observing that the lower 

concentration of Brønsted sites in ZSM-5 allows for more of the methyl groups in the system to rotate, 

illustrating that interactions with the acid sites can even have a hindering effect even on intramolecular 

motions. However, we must note that the error bars on the EISF data points are large enough to overlap 

between temperatures difference by 30 K– so conclusions in terms of mobile fractions must be drawn with 

caution, though the change in measured EISF is consistent with temperature, and between samples.  

As with n-octane we may derive information on the rates of rotation from the widths of the Lorentzian 

component of the QENS spectra. These are plotted in figure 11. 

Figure 11. 

 

For a model of jump rotation over 3 equally spaced sites around a circle (assuming the probability of each site 

occupation is equal) the Lorentzian component of the scattering function is given by: 

 

 

 

 

Where the HWHM  is given by  , and  is the average time between consecutive jumps. One may 

calculate the activation energy (the potential barrier hindering rotation) using the Arrhenius law. The 

  

 

(6) 



15 

 

 

 

 

Phil. Trans. R. Soc. A. 

 

 

 

residence times and activation energies are shown in table 2, with residence times ranging from 16.5-19 ps in 

H-ZSM-5(15) to 15.5-17.5 ps in H-ZSM-5(140). The activation energy to methyl jumps is lower by  0.5 kJ mol-1  

in H-ZSM-5(140), suggesting that acidic sites are less significant in the hindering of dimethylhexane methyl 

rotation than they are in the uniaxial rotation of n-octane, and the relatively long residence times are a product 

of steric hindrance from the constrictive ZSM-5 channels.  

 

On the local motions of hydrocarbons in H-ZSM-5 over the QENS timescale 

The introduction of H-ZSM-5 as an additive catalyst to increase the yield of propylene[41] [42] (<5% product 

yield in typical FCC cracking catalysts[1]) is based on its much narrower pore system than the conventional 

catalysts based on zeolite Y (~ 5.5 Å  intersecting channels in ZSM-5 compared to roughly spherical 13 Å 

supercages, linked by 7.5 Å windows in zeolite Y). These narrower channels do not allow for bimolecular 

cracking mechanisms which involve bulkier transition states, and hydrogen transfer reactions. It is this steric 

constriction and the resulting imposed dynamical restrictions which were the focus of this study, particularly 

as we expect significant contrast between straight chain and branched isomers, in terms of mobility over the 

10-11 -10-9 s timescale probed by QENS instruments. Within this timescale are a range of molecular motions 

including translational diffusion through the framework structure,[43,44] local/confined diffusion,[45] full-

molecule rotations[46] and intramolecular rotations.  Translational diffusion of n-octane was probed in ZSM-5 

by Jobic et al.[28], obtaining diffusion coefficients in the region of 10-10-10-11 m2s-1 using the high resolution 

backscattering spectrometer IN16 at ILL Grenoble, where the µeV resolution (observing motions in the time 

window of 0.2-10 ns) allows for the slow diffusive processes in this system to be probed. However, they were 

not able to determine the diffusivity of a branched alkane (in this case isobutane) as it was too slow even for 

the higher resolution backscattering spectrometers. Later studies have shown that in the MFI zeolite topology 

upon which the ZSM-5 is based, the neutron spin-echo technique (which is able to probe motion over the 

timescale of ~100 ns [25]) can measure diffusivities of such branched species of 1 x 10-11 m2s-1 at 444 K [19]– 

however it should be noted that this is in the fully siliceous MFI system (silicalite-1) without acidic 

sites/counterions for the sorbate to bind to, which slows diffusion significantly.  

It is clear that if one aims to directly compare the motion of straight chain and branched isomers (particularly 

larger C8 species) using one instrument, we are limited to more local motions such as rotations, and locally 

confined translational motions which take place over the faster (ps) timescales where even an order of 

magnitude difference may be observed in the ~1-100 ps window observed by a backscattering spectrometer 
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with an energy resolution on the order of ~10 µeV. Examples of such rotational studies include the uniaxial 

rotation of ethane and propane in Na-ZSM-5, where ethane gave Dr values of 1-2 x 1011 s-1 (propane was 

similar at 300 K) which is roughly a factor of 2 higher that the uniaxial Dr calculated for octane in this study. 

One might consider that the difference in rates of motion between ethane/propane and octane in this similar 

system would be far greater. However, it is important to consider that Na-ZSM-5 (in which ethane and 

propane were studied) possesses a far larger and more strongly adsorbing counterion than the Brønsted acid 

sites involved in this study, which would likely hinder rotational motion. A mobile/immobile fraction of 

molecules is not reported either, and if all the molecules are able to rotate then this system is displaying a far 

greater degree of rotational freedom than our octane in H-ZSM-5 system as expected. Studies of more bulky 

molecules in H-ZSM-5 include xylene, [47] where the uniaxial methyl rotation of only one of the two xylene 

methyl groups was observed, while the other methyl group was said to be interacting strongly with the 

channel walls, no Dr values were reported for comparison with our dimethylhexane values. However, it is 

worth noting that the authors gained a lot of insight from the comparison with structural studies and 

simulations to show how both the orientation and location of m- and p- xylene isomers lead to this methyl 

rotation blocking. Cyclohexane rotation in H-ZSM-5 has also been studied[48] and through the fitting of a 3-

site jump rotation model it was concluded that cyclohexane was in the chair conformation, the D3d symmetry 

of which would allow for such rotations, with a residence time of 8.2 ps at room temperature. We note that 

this is roughly twice as fast as that found for our methyl groups in dimehylhexane which given the size of the 

cyclohexane molecule/circle around which the protons are jumping may seem strange. However, we must 

consider that molecules of similar dimensions such as benzene tend to locate at the channel intersections in 

ZSM-5, where isotropic and six-fold rotations may be observed.[49,50] Given the much larger void volume of 

the MFI channel intersections compared to the channels (where we expect our dimethylhexane molecules to 

be sited if the only motions observable are methyl rotations), the extra freedom of rotation in the larger 

cyclohexane molecule may not be an unreasonable observation.  

It is clear from the referenced studies that probing local motions of hydrocarbons in cracking catalysts can 

yield some very insightful observations in terms of molecular behaviour and interactions, necessary for 

catalyst optimisation. In the absence of clear vibrational spectroscopic features at the relevant temperatures to 

illustrate any strong interactions between the catalyst active sites and aliphatic hydrocarbons, such rotational 

dynamical data may prove a key descriptor for strong interactions with the walls of the catalyst micropores. 

The value of such local motions in the field of microporous catalysis (certainly in terms of their input into 

typical kinetic models, where a more standard translational diffusion coefficient is common place) appears yet  
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to be fully realised, and  future QENS/NSE experiments will focus on building a complete picture of 

dynamical behaviour across scales in addition to these observations. 

 

 

Conclusion 

The dynamical behaviour of n-octane and 2,5-dimethylhexane was probed in two H-ZSM-5 samples with 

Si/Al = 15 and 140 using quasielastic neutron scattering, to study the effect of molecular shape and Brønsted 

acid site density on the dynamics of common FCC species in acidic zeolite catalysts, where H-ZSM-5 is 

additive catalyst. Translational diffusion was not observed on the 2-100 ps timescale of the QENS instrument. 

However for n-octane, the EISF fit to the model uniaxial rotation along its the long axis with rotational 

diffusion constants in the range of 7.5-8.5 x 1010 s-1 (with a mobile population of 84-93%) in ZSM-5(15), and 8.1-

9.1 x 1010 s-1 (with a mobile population of 89-98%) in ZSM-5(140). The higher rotational constants and larger 

mobile populations in H-ZSM-5(140) compared to H-ZSM-5(15) suggest that the much lower concentration of 

Brønsted acid sites in H-ZSM-5(140) allows for freer rotation of n-octane in the ZSM-5 channels. 2,5-

dimethylhexane is probably too bulky to rotate fully in the ZSM-5 channels, as the only dynamics which could 

be observed were the rotations of its methyl groups. The residence times between jumps ranged between 19-

16.5 ps (with a mobile population of 49-61%) in H-ZSM-5(15) and 15.5-17.5 ps (with a mobile population of 49-

61%) in H-ZSM-5(140). The long residence times reflect the steric hindrance exerted by the ZSM-5 channels, 

while the (slight) decrease in residence times measured in H-ZSM-5(140) compared to H-ZSM-5(15) may 

reflect  less hindrance to methyl rotations with fewer Brønsted acid sites present. The study highlights both 

the effect of molecular shape and branching on the qualitative difference in behaviour of the isomers in H-

ZSM-5, while  also showing the effect the difference in Si/Al ratio (and thus acid site density) on the 

qualitative rates of motion, and the number of immobile molecules/moieties inside this zeolite catalyst.  
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Table 1. Rotational diffusion coefficients (Drot) and mobile fractions of n-octane in H-ZSM-5(15) and (140).  

 

 

 

 

 

 

 

 

 

 

Table 2. Time between mean jumps (Drot) and mobile fractions and activation energies of methyl jump rotation 

of 2,5-dimethylhexane  in H-ZSM-5(15) and (140).  

 

 

 H-ZSM-5(15) H-ZSM-5(140) 

T K Dr s-1 Mobile fraction Dr s-1 Mobile fraction 

300 7.4 x 1010 

±0.25 x 1010 

0.84 
±0.023 

8.1 x 1010 

±0.27 x 1010 
0.89 
±0.021 

330 7.8 x 1010 

±0.29 x 1010 
0.88 
±0.027 

8.5 x 1010 

±0.28 x 1010 
0.94 
±0.027 

360 8.5 x 1010 

±0.32 x 1010 
0.93 
±0.031 

9.1 x 1010 

±0.30 x 1010 
0.98 
±0.03 

Ea (kJ mol-1) 4 3.3 

 H-ZSM-5(15) H-ZSM-5(140) 

T K  ps Mobile fraction  ps Mobile fraction 

300 19 

±0.57 

0.49 
±0.023 

17.5 

±0.55 
0.61 
±0.021 

330 18 

±0.54 
0.56 
±0.027 

16.5 
±0.51 

0.63 
±0.027 

360 16.5  

±0.55 
0.61 
±0.031 

15.5 

±0.53 
0.66 
±0.03 

Ea (kJ mol-1) 4 3.5 
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Figure captions 

Fig 1. QENS spectra as a function of Q for n-octane at 300 K in a) H-ZSM-5(15) and b) H-ZSM-5(140). (‒‒) is the 

total fit to the data points, (‒‒) is the quasielastic Lorentzian component.  

Fig.2. Experimental EISF plots of n-octane in H-ZSM-5(15) at 300 K against different theoretical EISF models. 

Fig.3. Schematic of an n-octane molecule illustrating the methyl rotational motion (red arrows) and the 

uniaxial rotation of protons around the dashed long axis. 

Fig 4. The experimental EISF of n-octane in H-ZSM-5(15) at 300 K, plotted against the models of localised 

motions after fitting with an immobile fraction. The optimum px value is listed in brackets. 

Fig. 5. Experimental EISF of n-octane in H-ZSM-5(15) (a) and (140) (b) with the fitted uniaxial rotation model 

(optimal mobile fractions (px)shown in the legend in brackets). 

Fig 6. Q-dependence of the HWHM (Γ) of the quasielastic components of QENS spectra of n-octane in each H-

ZSM-5 sample from 300-400 K. 

Fig 7. QENS spectra as a function of Q for 2,5-dimethylhexane at 300 K in zeolite a) H-ZSM-5(15) and b) H-

ZSM-5(140). (‒‒) is the total fit to the data points, (‒‒) is the quasielastic Lorentzian component.  

Fig 8. The experimental EISF of 2,5-dimethylhexane in H-ZSM-5(15) at 300 K, plotted against the models of 

localised motions after fitting with a mobile fraction. The optimum px value is listed in brackets. 

Fig.9. Schematic of an 2,5-dimethylhexane molecule illustrating the methyl rotational motion (red arrows) and 

the full molecule uniaxial rotation of protons around the dark grey long axis. 

Fig. 10. Experimental EISF of 2,5-dimethylhexane in (a) H-ZSM-5(15) and (b) (140) with the fitted 3-site jump 

rotation model for methyl rotation (optimal px shown in the legend in brackets). 

Fig 11. Q-dependence of the HWHM (Γ) of the quasielastic components of QENS spectra of 2,5-

dimethylhexane in each H-ZSM-5 sample from 300-400 K. 
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