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Abstract

Motivated by the work of Colin de Verdière and Saint-Raymond on spectral the-
ory for zeroth-order pseudodifferential operators on tori, we consider viscosity
limits in which zeroth-order operators, P , are replaced by P C i��, � > 0. By
adapting the Helffer–Sjöstrand theory of scattering resonances, we show that, in
a complex neighbourhood of the continuous spectrum, eigenvalues of P C i��

have limits as the viscosity � goes to 0. In the simplified setting of tori, this justi-
fies claims made in the physics literature. © 2021 The Authors. Communications
on Pure and Applied Mathematics published by Wiley Periodicals LLC.

1 Introduction
Spectral properties of zeroth-order pseudodifferential operators arise naturally in

the problems of fluid mechanics—for an early example, see Ralston [28]. Recently
Colin de Verdière and Saint-Raymond [3,4] investigated such operators under natu-
ral dynamical conditions motivated by the study of (linearized) internal waves—see
the review article of Dauxois et al. [6] and the introduction to [4] for a physics per-
spective and references. Dyatlov–Zworski [12] provided proofs of the results of [4]
based on the analogy to scattering theory—see Melrose–Zworski [26], Hassell–
Melrose–Vasy [17], and [11]. This analogy was developed further by Wang [38],
who defined and described a scattering matrix in this setting. Tao [36] constructed
an example of an embedded eigenvalue.

Motivated by the physics literature—see, for instance, Rieutord and Valdettaro
[29]—we consider here operators with a viscosity term

P� WD P C i��;

where P is a zeroth-order pseudodifferential operator on the torus (1.1) satisfy-
ing (1.2) and the dynamical assumption (1.3). The operator � is the usual Lapla-
cian on the torus. The assumption (1.3) guarantees continuity of the spectrum
at 0 [4, 12]. We then show that as � ! 0C the eigenvalues of P� in a complex
neighbourhood of 0 tend to a discrete set associated to P alone—see Figure 1.1 for
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FIGURE 1.1. We display the resonances of P as red stars (a full ex-
planation using the deformed operator P� is given in Appendix B). The
paths of the eigenvalues of P C i�� as � ! 0C are shown by the
green curves with the arrows denoting the direction of the path as �

decreases. P is chosen as in (B.4) with Va D
1
2
.�3 � 1/e��

2

and
Vm D .1C .e�1/.��2/2/e�.��2/

2

. For an animated version of this fig-
ure see https://math.berkeley.edu/~zworski/vis_dynam.

mov.

a numerical illustration. This justifies claims seen in related models of the physics
literature.† Our approach is again based on analogy to scattering theory, in this case
to the general approach to scattering resonances due to Helffer–Sjöstrand [18].

To state our results precisely, we start with the class of pseudodifferential oper-
ators:

(1.1) Pu.y/ WD 1

.2�/n

Z
Rn

Z
Rn
eihy�y

0;�ip.y; �/u.y0/dy0 d�

where p 2 Sm.T �Tn/, Tn WD R
n=2�Zn, has an analytic continuation from

T �Tn satisfying

(1.2) jp.´; �/j �M for jIm ´j � a; jIm �j � bhRe �i:
The integral in the definition (1.1) of Pu is considered in the sense of oscillatory
integrals (see, for instance, [40, sec. 5.3]), and we extend both y 7! u.y/ and
y 7! p.y; �/ to periodic functions on Rn.

† For example, a claim from [29]: ‘The aim of this paper is to present what we believe to be the
asymptotic limit of inertial modes in a spherical shell when viscosity tends to zero.’

https://math.berkeley.edu/~zworski/vis_dynam.mov
https://math.berkeley.edu/~zworski/vis_dynam.mov
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The dynamical assumption is formulated using an escape function:

(1.3) 9G 2 S1.T �Tn/; C > 0;HpG.x; �/ > 0

for .x; �/ 2 fp D 0g \ fj�j > C g:
(For the definition of the symbol class S1.T �Tn/, see (3.1) and [11, Section E.1],
and for a discussion of escape functions [11, Section 6.4].) We make our assump-
tion at p D 0 but the value 0 can be replaced by any real number � by changing
the operator to P � �. We could also replace p in (1.3) by the principal symbol
of P . Examples of operators satisfying our assumptions are given in Appendix B
(see also [12] and [36]).

We denote by � D Pn
jD1 @

2
xj

the usual Laplacian on Tn and state a precise
version of our main result:

THEOREM 1.1. Suppose that P is given by (1.1) with p satisfying (1.2) and (1.3).
Then there exist an open neighbourhood of 0 in C, U , and a set

R.P / � fIm! � 0g \ U
such that for every K b U , R.P / \K is discrete, and

(1.4) specL2.P C i��/ �! R.P /; � ! 0C;
uniformly on K.

Numerical illustrations of this theorem are presented in Appendix B.
Another way to state the theorem is to say that R.P / D f!j gNjD1 (where

N D 1 is allowed) and specL2.P C i��/ D f!j .�/g1jD1; then (after suitable
re-ordering)

!j .�/! !j ; � ! 0C;
uniformly on compact sets and with agreement of multiplicities. In fact, the proof
gives a more precise statement implying smoothness of projectors acting on spaces
X of Theorem 1.2—see [9, prop. 5.3]. Since the statement is essentially the same,
we do not reproduce it here.

The Laplacian � can be replaced by any second order (or any order) elliptic
differential operator with analytic coefficients, and the set R.P / is independent
of that choice. The next theorem shows that R.P / is defined intrinsically for
operators satisfying our assumptions:

THEOREM 1.2. Suppose that P satisfies the assumptions of Theorem 1.1, and U
is the open set presented there. Then there exists a Hilbert space X such that for
! 2 U ,

P � ! W X ! X is a Fredholm operator
and R.!/ WD .P �!/�1 W X ! X forms a meromorphic family of operators with
poles of finite rank. The set of these poles in U is the set R.P / in Theorem 1.1
(with inclusion according to multiplicity). Moreover,

R.P / \R D specpp;L2.P / \ U:
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The space X D H� is defined in Section 4 and for some � > 0,

A� � X � A�� ;

where, for s 2 R, the spaces As are given by formal Fourier series with Fourier
coefficients bounded by e�jnjs , n 2 Zn. Hence X contains the space of analytic
functions extending to a sufficiently large complex neighbourhood of Tn and is
contained in the dual of such space—see (4.2) for precise definitions.

We briefly recall similar results in different settings. In Dyatlov–Zworski [9],
they showed that if X is the generator of an Anosov flow on a compact mani-
fold and Q is a self-adjoint second-order elliptic operator, then the eigenvalues of
X C i�Q converge to the Pollicott–Ruelle resonances of the Anosov flow. These
resonances appear in expansions of correlations—see [9] for a discussion and refer-
ences. Drouot [8] proved an analogue of this result for kinetic Brownian motion in
which X is a generator of an Anosov geodesic flow and Q is the ‘spherical Lapla-
cian’ on the fibers. Dang–Rivière [5] showed that for Morse–Smale gradient flows,
the eigenvalues of Lrgf C i��g (which agree with the eigenvalues of the Witten
Laplacian) converge to the Pollicott–Ruelle resonance of the gradient flow. That
generalized a result of Frenkel–Losev–Nekrasov [14], who, motivated by quantum
field theory, considered the case of the height function on the sphere.

The complex absorbing potential method (see [11, Section 4.9] for a descrip-
tion and references) is also related to viscosity limits: to obtain discrete complex
spectrum, a complex potential, say �i�jxj2, is added to a Schrödinger operator. In
cases where scattering resonances can be defined, the spectrum of this new operator
converges to the resonances—see [39, 41].

The essential ingredient in the proof of Theorems 1.1 and 1.2 is the theory
of complex microlocal deformations inspired by works of Sjöstrand [31, 33] and
Helffer–Sjöstrand [18]. The starting object is a Fourier–Bros–Iagolnitzer (FBI)
transform considered with an additional asymptotic parameter h ! 0, which in
this paper will be eventually fixed and sufficiently small. In our case we need an
FBI transform that respects the analytic structure of the underlying compact ana-
lytic manifold. Hence, if M is a compact analytic manifold, we define (using a
measure on M coming from a real analytic metric)

(1.5) T u.x; �; h/ WD h�
3n
2

Z
M

K.x; �; y; h/u.y/dy;

where
.x; �; y/! K.x; �; y; h/

is holomorphic in a fixed complex conic neighbourhood of T �M �M , and uni-
formly in that neighbourhood,

(1.6)
K.x; �; y; h/ D �.x; y/a.x; �; y; h/e

i
h
'.x;�;y;h/ CO.e�hRe �i=Ch/;

'.x; �; x/ D 0; dy'.x; �; y/jyDx D ��;
Im d2y '.x; �; y/jyDx � hRe �iI:
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Denoting by �M a complex neighbourhood of M , � satisfies

� 2 C1.U /; �jV � 1;

V b U � �M � �M are small neighbourhoods of �. �M/,

and a is an analytic symbol of order n=4 in �. (Here �. �M/ denotes the diagonal
f.x; x/ W x 2 �M g.)

Existence of such kernels K can be obtained by choosing a real analytic metric
with exponential map TxM 3 .x; v/ 7! expx.v/, and then putting

'.x; �; y/ D ��.exp�1x .y//C i
2
h�id.x; y/2:

We can then solve the x@-equation with the right-hand side given by x@x;y applied to
the first term on the right-hand side of (1.6).

In this paper, in view of our applications and for the sake of clarity, we consider
an explicit K.x; �; y; h/ available in the case of tori, Tn WD R

n=.2�Z/n:

(1.7) K.x; �; y; h/ D cnh�i
n
4

X
k2Z

e
i
h
.hx�y�2�k;�iC i

2
h�i.x�y�2�k/2/:

Although the analysis works in the more general setting of analytic compact man-
ifolds and FBI transforms satisfying (1.5) and (1.6), we can avoid additional com-
plications such as the study of analytic symbols when the inverse of T is not exact
(see Proposition 2.3) and of operators annihilating T u that do not commute exactly
(see Proposition 5.1) by using (1.7). One motivation for this project was to present
the theory of exponential weights, which are not compactly supported—see Sec-
tion 4. The expository article [15] is intended as an introduction to these methods
in the simpler setting of compactly supported weights; see also Martinez [24] and
Nakamura [27] for a very clear approach to compactly supported weights inRn (or
more generally weights  satisfying @� 2 L1 for j�j > 0).

In an independent development Guedes Bonthonneau–Jézéquel [16] presented
a similar theory in a more general setting of Gevrey regularity and arbitrary real
analytic compact manifolds. Their motivation came from a microlocal study of
dynamical zeta functions and trace formulas for Anosov flows; see [10, 23] and
references given there.

The paper is organized as follows:

� In Section 2 we define an FBI transform T on tori, and construct its exact
left inverse S . The FBI transform takes functions on Tn to functions on
T �Tn.

� The geometry of complex deformation and their relation to exponential
weights is reviewed in Section 3. The complex deformation of our FBI
transform, T�, is then investigated in Section 4 where the space X D H�
is also defined. Here, � is a complex deformation of T �Tn associated to
G in (1.3) using (3.2).
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� Section 5 is motivated by the study of Bergman kernels by Boutet de
Monvel–Sjöstrand [2, 33] and of Toeplitz operators by Boutet de Monvel–
Guillemin [1]: we construct a parametrix for the orthogonal projector onto
the image of X under T�.

� The action of pseudodifferential operators of the form (1.1) on the space
X is described in Section 6. We also present the compactness and trace
class properties needed in our proofs of the Fredholm property and of the
viscosity limit for P and P C i��.

� Finally, Section 6 is devoted to the proofs of Theorems 1.1 and 1.2.
� Appendix A reviews some aspects of the almost analytic machinery of

Melin–Sjöstrand [25]; see also [15, Section 5]. In Appendix B we discuss
the (very) special case of escape functions that are linear in �. In that
case we can use an analogue of the method of complex scaling—see [11,
Section 4.5, Section 4.7] and references given there. This method lends
itself to numerical experimentation, and some results of that are presented
in Appendix B as well.

Comments on notation: We write f� D O�.g/H for kf kH � C�g; that is,
we have a bound with constants depending on �. In particular, f D O.h1/H
means that for any N there exists CN such that kf kH � CNh

N . We denote
h�i WD

p
1C j�j2. The notation nbhdU .� / means an open neighbourhood of � in

the space U .

2 A Semiclassical FBI Transform on Tn
D R

n=2�Zn

We start by defining an FBI transform onTn that respects the real analytic struc-
ture of Tn and is invertible with error exponentially small in h and in frequency.

As stated in Section 1 we achieve this with the following transform:
(2.1)

T u.x; �/ WD h�
3n
4

Z
Tn

X
k2Zn

e
i
h
'.x;y�2�k;�/h�in4 u.y/dy; u 2 C1.Tn/;

'.x; �; y/ WD hx � y; �i C i
2
h�i.x � y/2:

This sum is rapidly convergent since Im' � h�ijx � yj2=2.

Remark 2.1. As already emphasized in Section 1, the crucial feature of T is the
structure of its integral kernel, K.x; �; y/, which is analytic in all variables and is
given by

e
i
h
'.x;�;y/a.x; �; y/�.d.x; y//CO.e�h�i=h/;

'.x; �; y/ D hexp�1y .x/; �i C i
2
h�id.x; y/2;

where a is a classical analytic symbol and � 2 C1
c .R/ is supported in a small

neighbourhood of 0 and is equal to 1 near 0.
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Extending u to Rn as a 2�Zn periodic function, we observe that

T u.x; �/ D h�
3n
4

Z
Rn
e
i
h
'.x�y;�/h�in4 u.y/dy

and, moreover, T u.x; �/ is 2�Zn periodic in x.

LEMMA 2.2. The operator T W C1.Tn/! C1.T �Tn/ extends to an operator

T W L2.Tn/! L2.T �Tn/; kT kL2.Tn/!L2.T �Tn/ � C;
with C independent of h.

PROOF. Suppose that v 2 C1
c .T

�
T
n/. We extend v periodically in x and

consider

T T �v.x; �/ D h�
3n
2 h�in4

Z
R3n

h�in4 e ih�v.y; �/dy d� dw;
where

� WD hx � w; �i C hw � y; �i C i
2
.h�i.x � w/2 C h�i.y � w/2/:

Completing the square and integrating in w, we then obtain

T T �v.x; �/ D h�n
Z
T �Tn

h�in4 h�in4
.h�i C h�i/n2

X
k2Zn

e
i
h
�.x�yC2�k;�;�/v.y; �/dy d�:

where

�.´; �; �/ WD i

2

.� � �/2
h�i C h�i C

i

2

h�ih�i´2
h�i C h�i C

h�i� C h�i�
h�i C h�i � ´:

Schur’s test for boundedness, together with density of C1
c .T

�
T
n/ in L2.T �Tn/,

completes the proof of the lemma. □

Our next goal is to find an inverse for T . To do this, we define

(2.2)
Sv.y/ D h�

3n
4

Z
T �Tn

X
k2Zn

e�
i
h
'�.x�2�k;y;�/

� b.x � y � 2�k; �/v.x; �/dx d�

Then, as before, extending v periodically in x,

Sv.y/ D h�
3n
4

Z
T �Rn

e
i
h
'�.x;y;�/b.x � y; �/v.x; �/dx d�:

We then have

PROPOSITION 2.3. Putting

(2.3) b.w; �/ D 2
n
2 .2�/�

3n
2 h�in4 .1C i

2
hw; �=h�ii/;

in (2.2) gives

(2.4) ST u D u; u 2 L2.Rn/:
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PROOF. Using definition (2.1) and (2.2) we have

(2.5)

ST u D h�
3n
2

Z
Rn�Rn�Rn

e
i
h
.hx�y;�iC i

2
h�i.´�y/2C i

2
h�i.x�´/2/

� h�in4 b.x � ´; �/u.y/dy d´ d�

D h�n
Z
Rn�Rn

e
i
h
hx�y;�i� h�i

4h
.x�y/2a.x; y; �I h/u.y/dy d�:

For our choice of b we have

a.x; y; �I h/ D h�
n
2 e

h�i
4h
.x�y/2

Z
Rn
e�

h�i
2h
�.x�´/2C.´�y/2�

� h�in4 b.x � ´; �/d´

D h�
n
2 e

h�i
4h
.x�y/2

Z
Rn
e�

h�i
2h
�.x�w�y/2Cw2�

� h�in4 b.x � w � y; �/dw

D h�
n
2 h�in4

Z
Rn
e�

h�i
h
v2b

�
1
2
.x � y/ � v; �; h�dv

D .2�/�n.1C i
4
hx � y; �=h�ii/:

(2.6)

The proof is now concluded using (2.7) below. □

For the reader’s convenience we include the derivation of Lebeau’s inversion
formula used in the proof of Proposition 2.3 (see [20, (9.6.7)]):

LEMMA 2.4. For u 2 C1
c .R

n/,

u.x/ D .2�h/�n
Z
R2n

e
i
h
hx�y;�Ciah�i.x�y/i

� .1C iahx � y; �=h�ii/u.y/dy d�; a > 0:

(2.7)

PROOF. For u 2 C1
c .R

n/ the Fourier inversion formula gives

u.x/ D .2�h/�n lim
�!0C

Z
e
i
h
.hx�y;�iCi�h�i/u.y/dy d�;

where the integral converges absolutely for � > 0. We deform the contour of
integration in � to �a.x; y/ given by

� 7! � WD � C aih�i.x � y/; � 2 Rn; 0 < a� 1:

This deformation is justified since on � ,

Imhx � y; �i � ch�i.x � y/2;
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and for a sufficiently small, h�i WD .1C �2/ 12 has an analytic branch with positive
real part. In particular, we have, using that d h�i DP

i h�i�1�i d�i ;

u.x/ D .2�h/�n lim
�!0

Z
�a

Z
Rn
e
i
h
.hx�y;�iCi�h�i/u.y/dy d�1 ^ d�2 ^ � � � ^ d�n D

D .2�h/�n lim
�!0

Z
R2n

e
i
h
.hx�y;�Cia.x�y/iCi�h�i/ det.��/ u.y/dy d�

D .2�h/�n
Z
R2n

e
i
h
hx�y;�Cia.x�y/i.1C iahx � y; �=h�ii/u.y/dy d�:

Since the right-hand side is analytic in fa 2 C W Re a > 0g it follows that the
formula remains valid for all a > 0. □

3 Geometry of Complex Deformations
Following [18,33] we will study the FBI transform (2.1) when T �Tn is replaced

by an I -Lagrangian R-symplectic manifold submanifold of

zT �Tn WD f.´; �/ j ´ 2 Cn=2�Zn; � 2 Cng ' T �.Cn=2�Zn/:

We recall thatAT �Tn is equipped with the complex symplectic form

� WD d� ^ d´ WD
nX

jD1

d�j ^ d j́ D d.� � d´/:

For a real 2n-dimensional submanifold ofAT �Tn, �, we say

� is I -Lagrangian � Im.� j�/ � 0;

and that
� is R-symplectic � Re.� j�/ is nondegenerate.

The specific submanifolds used here are as follows: For a function G.x; �/ 2
C1.T �TnIR/, assume that for some sufficiently small �0 (to be chosen in the
constructions below),

(3.1) sup
j�jCj� j�2

h�i�1Cj� j��@�x@�� G.x; �/�� � �0; ��@�x@�� G.x; �/�� � C�� h�i1�j� j:
(The second condition merely states that G 2 S1.T �Tn/ in the standard notation
of [21].) We then define

(3.2) � WD f.x C iG�.x; �/; � � iGx.x; �// j .x; �/ 2 T �Tng �AT �Tn:
By considering G.x; �/ as a periodic function of x, we can also think of � as a
submanifold of T �Cn.

A submanifold given by (3.2) is always I -Lagrangian:

� � d´j� D .� � iGx/ � d.x C iG�/

D � � dx CGx �G�� d� CGx �G�x dx C i.�Gx � dx C � � dG�/
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and
d.�Gx � dx C � � dG�/ D d� ^G�x dx C dx ^Gx� d� D 0:

The smallness of �0 enters for the first time in guaranteeing that� isR-symplectic:

d.� � dx CGx �G�� d� CGx �G�x dx/
D d� ^ dx CGxx dx ^G�� d� CGx� d� ^G�� d�
CGx� d� ^G�x dx CGxx dx ^G�x dx:

The left-hand side is nondegenerate if �0 in (3.1) is small enough.
Since Im � � d´j� is closed, there exists H 2 C1.�IR/ such that

(3.3) dH D � Im � d´j�;
with the normalization H � 0 when G � 0. Using the parametrization (3.2), we
have the following explicit expression for

(3.4) H.x; �/ D G.x; �/ � � �G�.x; �/:
Any I -Lagrangian and R-symplectic manifold is automatically maximally to-

tally real in the sense that

T�� \ iT�� D f0g; � 2 �:
In fact, suppose that X; iX 2 T��; then for all Y 2 T��,

Re �.Y; iX/ D � Im �.Y;X/ D 0

as Im � vanishes on T��. But then the nondegenerary of Re � shows that X D 0.
The real symplectic form on � defines a natural volume form

dm.�/ D .� j�/n=n�:
If .´; �/ D .x C iG� ; � � iGx/, we sometimes write

(3.5) dm�.�/ D d´ d� D d�; � D .´; �/ 2 �; � D Re�:

Let � be a small conic connected neighbourhood of T �Tn in T �Cn=Zn, and
let zG.´; �/ be a symbolic almost analytic extension of G.x; �/ supported in �:��x@´ zCG.´; �/��C hRe �ix@� zCG.´; �/j � hRe �iO.jIm ´j1 C jIm �=hRe �ij1/;

sup
j�jCj� j�2

��@�´@�� zCG.´; �/�� � C�0hRe �i1�j� j;��@�´@�� eGy.´; �/�� � C�� hRe �i1�j� j;
for .´; �/ 2 �—see [25, theorem 1.3] (for a brief review of basic concepts of
almost analytic machinery; see Appendix A.

We use an almost analytic change of variables in � to identify the totally real
submanifold � with T �Rn (on � the differentials of that transformation are com-
plex linear): it is the inverse of the map

(3.6) F W .´; �/ 7! .w; !/ WD .´C i zCG� .´; �/; � � i zCG´.´; �//;
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Using this identification we define

(3.7) C�.w; !/ D F.F�1.w; !//; .w; !/ 2 �; C�j� D I�:

We also denote by �� the almost analytic extension of � j� to � .

NOTATION: The different identifications lead to potentially confusing notational
issues. We will typically use coordinates

� D .�x; ��/ D .x; �/ 7! � D .�x; ��/ D .x C iG�.x; �/; � � iGx.x; �// 2 �
and consider the complexification of � using the identification (3.6). In that case
for � 2 � , x� denotesC�.�/. It is not given by taking .´; �/ 7! .x́; x�/ in the original
coordinates oneT �Tn (for one thing, it would not be the identity on�). Sometimes
it is convenient to use � 2 � as the variable in formulae and integrations. The
choice should be clear from the context.

4 Complex Deformations of the FBI Transform
For � given by (3.2) we define an operator T� by prescribing its Schwartz

kernel:
T�.´; �; y/ WD T ..´; �/; y/j.´;�/2�:

We then define an operator S� by

S�v.y/ WD
Z
�

S.x; �/v.�/d�; � D .´; �/ 2 �; d� D d´ ^ d�j�;

where S.x; ´; �/ is the kernel of the operator S :

(4.1) S.x; ´; �/ WD h�
3n
4

X
k2Zn

e�
i
h
'�.´�2�k;x;�/b.´ � x � 2�k; �/;

with b given in (2.3).
Note that if we parametrize � as in (3.2) with � D .x; �/, we may also write

S�v.y/ WD
Z
T �Tn

S�.x; ´.�/; �.�//v.�/dm�.�/;

where d´ ^ d�j� D dm�.�/. Finally, we sometimes write �x D ´.�/ and
�� D �.�/.

In order to make sense of the composition S�T�, we start by analyzing T� on
a space of analytic functions on Tn. For � � 0 let

(4.2)

A� D
n
u 2 L2.Tn/ W kuk2A�

WD
X
n2Zn

jyu.n/j2e4jnj� <1
o
;

yu.n/ WD 1

.2�/n

Z
Tn

u.x/e�ihx;nidx:
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Let also A�� denote the dual space of A� . Note that A�� is a space of hyperfunc-
tions, but on tori it can be identified with formal Fourier series with coefficients
satisfying X

n2Zn

jyu.n/j2e�4jnj� <1:

(In that case yu.n/ can be defined using the pairing of the hyperfunction u with
the analytic function x 7! e�ihx;ni=.2�/n.) We note that u 2 A� extends to
a (periodic) holomorphic function in jIm ´j < 2� and (by the Fourier inversion
formula and the Cauchy–Schwarz inequality),

(4.3) 8�0 < 2� 9C such that for u 2 A� ; sup
jIm´j<� 0

ju.´/j � CkukA�
:

LEMMA 4.1. Define

�� WD f.´; �/ 2 T �.Cn=2�Zn/ W jIm �j � �hRe �i; jIm ´j � �; jRe �j � 1g:
There exist c0; �0 > 0 such that for .´; �/ 2 �� and 0 < � < �0,

(4.4) jT u.´; �/j � e��c0j� j=hkukA�
; jS tu.´; �/j � e�c0�j� j=hkukA�

:

where S t is defined by

S tu.´; �/ WD
Z
Tn

S.y; ´; �/u.y/dy

where the kernel S is defined in (4.1).

PROOF. Extending u to a periodic function on Rn, we write

T u.´; �/ D h�
3n
4

Z
Rn
e
i
h
.h´�y;�iC i

2
h�i.´�y/2/h�in4 u.y/dy:

Since u is analytic on jImyj � �, we may deform the contour in the y integration
to �.´; �/ given by

w 7! y.w/ D w C ´ � i� Re �
hRe �i ; w 2 Rn:

Then,

T u.´; �/ D h�
3n
4

Z
e
i
h
.h�wCi� Re�

hRe�i ;�iC
i
2
h�i.w�i� Re�

hRe�i /
2/h�in4 u.y.w//dw:

For jIm �j � �hRe �i, jRe �j � 1, with � < �0 and �0 small enough,

Reh�i � 1
2
j�j; jImh�ij � 1

16
j�j; j�j � 1

2
:

Hence for w 2 R and .´; �/ 2 �� the real part of the phase in the integral above is
bounded by

�1
2
�j�j C 1

16
�jwjj�j � 1

4
.jwj2 � �2/j�j C 1

16
�j�j � �c0�j�j � c0jwj2; c0 > 0:

In view of (4.3) the integrand is then bounded by exp.�c0.�j�j C jwj2/=h/kukA�
,

which gives the first bound in (4.4). The proof for S t is identical since the phase
agrees with that of T . □



1810 J. GALKOWSKI AND M. ZWORSKI

A natural Hilbert space on the FBI transform side is defined by the norm

kvk2
L2.�/

D
Z
�

jv.�/j2e�2H.�/=h d�:

The next lemma gives boundedness of S� and T t� on exponentially decaying func-
tions on �:

LEMMA 4.2. There exist �0 > 0 and C0 > 0 big enough such that for 0 < �0 < �0
in (3.1) we have

S� W e�C0�h�i=hL2.�/! A� ; T �� W e�C0�h�i=hL2.�/! A� :

for all 0 < � < �0, where the adjoint T �� is defined using the L2.�; e�2H=h/ inner
product.

PROOF. Let v 2 e�C0h�i=hL2.�/ with C0 > 0 be chosen large enough and
jImyj � a�. Then,

S�v.y/ D h�
3n
4

Z
�

e
i
h
.hy��x ;��iC

i
2
h��i.�x�y/

2/b.y � �x/v.�/d�:

where b is given in (2.3). Therefore, by the Cauchy–Schwarz inequality,

jS�v.y/j2 � Ch�
3n
2 J.y/keC0�h�i=hvk2

L2.�/
;

where

J.y/ WD
Z
�

e�2 Im.hy��x ;��iC i
2
h��i.�x�y/

2/=hC2H.�/=h

� hjy � �xji2e�2C0�hj�� ji=h d�

Writing � D Re� we now estimate

� Imhy � �x; ��i D hG� � Imy; ��i � h�x � Rey;Gxi
� .a� C �0/j�� j C �0h��ij�x � Reyj:

Similarly,

Re.h��i/.�x � y/2 � �.1 � C�0/h��i.j�x � Reyj2 � C�2 � Ca2�2/;
and 2H.�/ � C�0h��i (see (3.4)). Hence for C0 � C , the phase in J.y/ is
bounded by

�C1�h��ihRey � �xi2; C1 > 0:

That proves S�v is analytic and uniformly bounded when jImyj � a�. In partic-
ular, S�v 2 A� . A similar argument applies to T ��: □

Together, Lemmas 4.1 and 4.2 imply that there are �1; �2 > 0 such that S�T�
as well as an operator A�1 ! A�2 and as an operator A��2 ! A��1 .

We can now show that S�T� is the identity on A� and A�� for � > 0 small
enough.
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PROPOSITION 4.3. There is �1 > 0 such that for all 0 < j�j < �1, S�, and T� as
above,

S�T� D Id W A� ! A� :

PROOF. Assume first that � > 0 and let v 2 A� . Then, by Lemma 4.1 for � > 0
small enough, T�v 2 e�c0�j�� jL2.�/ and is given by

T�v.�/ D
Z
Tn

T�.�; y/v.y/dy:

Then, again for � > 0 small enough, Lemma 4.2 shows that S�T�v is well-defined
and given by

(4.5) S�T�v.x/ D
Z
�

Z
Tn

S�.x; �/T�.�; y/v.y/dy d�:

The decay in j�� j allows a contour deformation in � in (4.5) and then an application
of Proposition 2.3. This gives

S�T�v.x/ D
Z
T �Tn

Z
Tn

S.x; �/T .�; y/v.y/dy d� D v.y/; v 2 A� :

To define T�v for v 2 A�� , � > 0, we note that Lemma 4.2 shows that if
w 2 e�C0�h�i=hL2.�/, then T ��w 2 A� . Therefore,

hT�v;wiL2.�/ WD hv; T ��wiL2.Tn/

is well-defined and T� W A�� ! eC0�h�i=hL2.�/.
For u 2 Ac1� , c1 � 1, c1� < �0 (with �0 of Lemma 4.1), we formally have

(4.6) hS�T�v; uiL2.Tn/ WD hT�v; S��uiL2.�/:

Since S��u D S t j�xue2H.�/=h and H.�/ � C�0hRe��i, Lemma 4.1 shows that

S��u 2 eC�0h�i=h�c0c1�j�j=hL2.�/:
and hence for c1 > 0 large enough (and �1 small enough so that c1�1 < �0), the
pairing on the right-hand side of (4.6) is well-defined and

hS�T�v; ui D hv; T ��S��ui:
We can now deform the contour in the � integral, which gives

T ��S
�
�u.x/ D

Z
Tn

Z
�

T�.�; x/S�.y; �/u.y/dy d� D u.y/:

Hence for v 2 A� and u 2 Ac1� , hS�T�v; uiL2.Tn/ D hv; uiL2.Tn/. Since Ac1� ,
c1 � 1, is dense in A� , the claim follows. □

We now define natural spaces on which T�, S� act:
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DEFINITION 4.4. Let �0 be as in Lemma 4.1. We define the Sobolev space of
order t adapted to � as

(4.7) H t
� WD A�0

k�k
Hm
� ; kuk2

H t
�

WD
Z
�

hRe��i2t jT�u.�/j2e�2H.�/=h d�
where we used the notation from (3.5) and (3.3). We then have an isometry

T� W H t
� ! h�i�tL2.�/;

where the notation on the right-hand side is the shorthand for hRe��i�t .
Remarks 4.5.

1. There exists � > 0 such that

A� � Hm
� � A�� :

The left inclusion is immediate from the definition. On the other hand, for
u 2 Hm

� , T�u 2 h�imL2.�/, and in particular, by Lemma 4.2 S�T�u 2
A�� for some � > 0. But S�T�u D u and hence u 2 A�� .

2. Let �� denote the orthogonal projection from L2.�/ ! T�.H
0
�/. The

properties of �� show that T�.H t
�/ D ��.h�i�tL2.�//.

Lemmas 4.1 and 4.2 show that (with h-dependent norms and changing c0 to
c0=2),

T� W A� ! e��c0h�iL2.�/; S� W e��C0h�i=hL2.�/ 7! A� :

This means that

(4.8) T�S� W e��C0h�i=hL2.�/! e��c0h�i=hL2.�/:

PROPOSITION 4.6. The operator T�S� in (4.8) extends to an operator

T�S� D O.1/ W h�imL2.�/! h�imL2.�/:
Moreover, there are k 2 S0.� � �/, �; � 2 �, � 2 C1

c .R/ such that for all
� > 0, there is �1 > 0 such that for G satisfying (3.1) with �0 < �1,

T�S� D K� CON .e
�C�=h/h�iNL2.�/!h�i�NL2.�/;

where the Schwartz kernel of K� is given by

K�.�; �/ D h�ne
i
h
�.�;�/k.�; �/z�.�; �/;

z�.�; �/ WD �.��1d.Re�x;Re�x//

� �.��1 min.hRe��i; hRe��i/�1jRe�� � Re�� j/;
and

� D i

2

.�� � ��/2
h��i C h��i

C i

2

h��ih��i.�x � �x/2
h��i C h��i

C h��i�� C h��i��
h��i C h��i

� .�x � �x/:
(4.9)
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We will prove the proposition in two lemmas which for future use are formulated
in greater generality. We first study the kernel of the composition T�S�.

LEMMA 4.7. Let �G1 and �G2 be given by (3.2) with Gi satisfying (3.1). Then
there are � 2 C1

c .R/ and k 2 S0.�G2 � �G1/ such that for all � > 0, there is
�1 > 0 such that for G1 and G2 satisfying (3.1) with �0 < �1,

T�G2
S�G1

D K CON .e
�C�=h/h�iNL2.�1/!h�i�NL2.�2/

;

where the Schwartz kernel of K is given by

h�ne
i
h
�.�;�/k.�; �/�.��1d.Re�x;Re�x//

� �.��1 min.hRe��i; hRe��i/�1jRe�� � Re�� j/;
.�; �/ 2 �G2 ��G1 , and where � is as in (4.9).

PROOF. The kernel of T�G2
S�G1

(again extending everything to be periodic
on Rn and using integration with respect to d� D .� j�/n=n�) is given by

h�
3n
2

Z
Rn
e
i
h
.'.�;y/�'�.�;y//h��i

n
4 b.�x � y; ��/dy;

where � 2 �G1 , � 2 �G2 , and b is given by (2.3). To analyse it, we first observe
that for �0 small enough

Im
�
'.�; y/ � '�.�; y/�
� 1

4
jh��ij.jRe.�x � y/j2 � jIm.�x � y/j2/

C 1

4
jh��ij.jRe.�x � y/j2 � jIm.�x � y/j2/

C Imh�x � y; ��i C Imhy � �x; ��i
Now, fix � > 0, and assume that jImyj � �. Then for �0 � � in (3.1), we have

Im
�
'.�; y/ � '�.�; y/�
� cjh��ijjRe�x � Reyj2 C cjh��ijjRe�x � Reyj2
� C�2.jh��ij C jh��ij/C Imh�x � y; ��i C Imhy � �x; ��i:

Therefore, deforming the contour in y using

y 7! y C i�.�� � ��/
hRe.�� � ��/i

; y 2 Rn;

we have (on the new contour)

Im
�
'.�; y/ � '�.�; y/�
� cjh��ijjRe�x � Reyj2 C cjh��ijjRe�x � Reyj2 C �

j�� � �� j2
hRe.�� � ��/i

� C�2.jh��ij C jh��ij/C Imh�x; ��i � Imh�x; ��i:
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Using

jIm�xj C jIm�xj C jh��ij�1jIm�� j C jh��ij�1jIm�� j � C�0 � �;

we then obtain
Im
�
'.�; y/ � '�.�; y/� � cjh��ijjRe�x � yj2 C cjh��ijjRe�x � yj2

C c�
j�� � �� j2

hRe.�� � ��/i
� C�2.jh��ij C jh��ij/

In particular, when

jRe�x � Re�xj � � or jRe�� � Re�� j � 2c�min.hRe��i; hRe��i/=C;
the integrand is bounded by

e�.hRe��iChRe��i/.1CjRe�x�Re�x j/=Ch:

Therefore, modulo an ON .e�C=h/h�iNL2.�1/!h�i�NL2.�2/
error, the kernel is

given by

k.�; �/ WD h�
3n
2

Z
Rn
e
i
h
.'.�;y/�'�.�;y//hk1.�; �; y/z�dy;

z� WD �
�
��1d.�x; �x/

�
�.��1 min.hRe��i; hRe��i/�1j�� � �� j/;

where � is a suitable cutoff function and

k1 2 hRe��i
n
4 hRe��i

n
4S0.�G2 ��G1 �Rn/;

and the dependence on the last variable is periodic and holomorphic on jImyj � c:
We claim that k.�; �/ is given by

(4.10) h�ne
i
h
�.�;�/k.�; �/z�;

where k 2 S0.�G2��G2/. To see this, we note that the critical point in y is given
by

yc D
i.�� � ��/C h��i�x C h��i�x

h��i C h��i
:

We then deform the contour to y 7! y C yc . The phase becomes

.�x � �x/
h��i�� C ��h��i
h��i C h��i

C i.h��i C h��i/
2

y2

C i

2

h��ih��i.�x � �x/2
h��i C h��i

C i

2

.�� � ��/2
h��i C h��i

:

and the method of steepest descent gives (4.10). □

The next lemma gives the first part of Proposition 4.6:

LEMMA 4.8. For all m 2 R, there are C; h0 > 0 such that for 0 < h < h0,

kT�S�kh�imL2.�/!h�imL2.�/ � C:
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PROOF. By Lemma 4.7, we need to show uniform boundedness of K with the
kernel given by

K.�; �/ D h�ne
i
h
�.�;�/k.�; �/�.��1d.Re�x;Re�x//

� �
� jRe�� � Re�� j
�min.hRe��i; hRe��i/

�
:

where � is as in (4.9), k 2 S0.
In particular, conjugating by hRe��imeH.�/=h, we need to show that the opera-

tor with the kernel

h�ne
i
h
.�.�;�/�iH.�/CiH.�//zk.�; �/

is bounded on L2.�; dm.�// where

zk.�; �/ WD
� hRe��i
hRe��i

�m
k.�; �/�.��1jRe�x � Re�xj/

� �
� jRe�� � Re�� j
�min.hRe��i; hRe��i/

�
:

To establish this we define

(4.11) �.�; �/ WD �.�; �/ � iH.�/C iH.�/;

where we see that �.�; �/ D 0. Next, we note that

d��j�D� D �� d�x C id�H:(4.12)

Therefore (see (3.3)), Im d��j�D� D 0. Similarly, Im d��j�D� D 0 and hence
Im� vanishes quadratically at � D �.

In the case of no deformation (that is, for � D T �Tn)

Im� � ch��ij�x � �xj2 C ch��i�1j�� � �� j2; �; � 2 T �Tn:
Since � is a small conic perturbation of T �Tn, this remains true on �. Hence,

jK.�; �/j � Ch�ne.chRe��ijRe�x�Re�x j2CchRe��i�1jRe���Re�� j2/=h

� hRe��i
n
4 hRe��i

n
4 z�;

z� D �.��1d.Re�x;Re�x//�.��1 min.hRe��i; hRe��i/�1
� jRe�� � Re�� j/:

The Schur’s test for boundedness on L2 then shows that K is uniformly bounded
on L2.�/. □

The following lemma shows that compact changes of the Lagrangian � change
the norm on L2.�/ but not the elements in the space.

LEMMA 4.9. Let G1 and G2 satisfy (3.1). Then, for all M;N > 0,

1lj�j�M T�G2
S�G1

D Oh.1/ W h�iNL2.�G1/! h�i�NL2.�G2/:
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PROOF. By Lemma 4.7 we only need to show that the operator 1lj�j�M K is
bounded. However, the structure of the Schwartz kernel described in that lemma
shows that the kernel of 1lj�j�M K is smooth and compactly supported. Except for
a loss in the constant due to different weights, the boundedness follows. □

5 Asymptotic Description of the Projector
The main part of this section consists of a construction of a parametrix for the

orthogonal projector onto the (closure of the) image of T�. It is inspired by [33,
Section 1], which in turn followed ideas of [1,2,18,25]. A detailed presentation in
a simpler case of compactly supported weights can be found in [15, sec. 6], and it
can be used as a guide to the more notationally involved case at hand. We then use
the argument from [1, 33] to relate the parametrix to the exact projector.

5.1 The structure of the parametrix
We seek an operator of the following form:

(5.1)
B�u.�/ D h�n

Z
T �Tn

ei .�;�/=h�2H.�/=ha.�; �; h/u.�/dm�.�/;

dm�.�/ WD .� j�/n=n� D d�; � D Re�; � 2 �;
where  and a satisfy (for all k; k0; `; `0 2 Nn)

(5.2)
supp ; supp a � f.�; �/ W d.�x; �x/ � �; j�� � �� j � h��i�g;

@k�x@
`
��
@k

0

�x
@`

0

��
 .�; �/ D O.h��i1�j`j�j`

0j/;  .�; �/ D � .�; �/;
and

(5.3)
a.�; �; h/ �

1X
jD0

.h��i�1h/jaj .�; �/; a.�; �/ D a.�; �/;

@k�x@
`
��
@k

0

�x
@`

0

��
aj .�; �/ D O.h��i�j`j�j`

0j/:

The basic properties we need are self-adjointness and idempotence:

(5.4) B� D B
�;H
� ; B� � B2�;

where A � B means that A � B D O.hN /h�iNL2.�/!h�i�NL2.�/ for all N .
The deeper requirement comes from relating the image of B� to that of T�:

PROPOSITION 5.1. Suppose that Zj , differential operators with holomorphic co-
efficients in � , are defined by

Zj WD h�i�1.hD
j́
� �j /C 1

2
h�i�3�j .hD´ � �/2 � ihD�j � n

4
hh�i�2�j :

If

(5.5) Z�j D Zj j�
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in the sense of restriction of holomorphic operators to totally real submanifolds,
then for u 2 A� ,

(5.6) Z�j T�u.�/ D 0; j D 1; : : : ; n:

PROOF. Putting

Wj D h�i�n
4Zj h�i

n
4 D h�i�1.hD

j́
� �j /

C 1
2
h�i�3�j .hD´ � �/2 � ihD�j � n

2
hh�i�2�j ;

we check that
Wj .e

i
h
.h´�yC2�k;�iC i

2
h�i.´�yC2�k/2// D 0

for all y 2 Tn and k 2 Zn. The definition of T� then immediately gives (5.6). □

We note that Zj ’s commute and hence we also have�
Z�j ; Z

�
k

� D 0:

We write

´�j WD h�i�1.´�j � �j /C 1
2
h�i�3.´� � �/2�j � i��j j�;

�
´�j ; ´

�
k

	 D 0;

for the principal symbol ofZ�j (in a sense that will be explained after the rescaling
below). The vanishing of the Poisson bracket reflects the fact that ´�j vanish on the
involutive manifold f.�; d�'.�; y/ W � 2 � ; y 2 Tng—see Lemma 5.4 below.

Since B� is supposed to be a parametrix for a self-adjoint projection onto the
image T�, Proposition 5.1 shows that we should have

(5.7) Z�j B� � 0; B�
�
Z�j

��;H � 0;

where the definition of � is given in (5.10) below.
To explore the second condition in terms of the kernel of B�, we denote by A�

the formal adjoint of an operator A on L2.�; dm�/ (no weight). We also define a
transpose of A byZ

�

Au.�/v.�/dm�.�/ D
Z
�

u.�/Atv.�/dm�.�/:

We note the general fact .A�/t D J � A � J , Ju WD xu. Then, with K�.�; �/ WD
h�nei .�;�/=ha.�; �; h/;

.AB�/
�;Hu.�/ D

Z
�

K�.�; �/A
�.e�2H.�/=hu.�//.�/dm�.�/

D
Z
�

.A�/t .K�.�; �//.�/e�2H.�/=hu.�/dm�.�/

D
Z
�

.J � A � J /.K�.�; �//.�/e�2H.�/=hu.�/dm�.�/:

Using (5.7) and the above calculation with A D Z�j gives

(5.8) eZ�j .K�.�; �// � 0; eZ�j WD J �Z�j � J: Ju WD xu;
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The principal symbols are given by

(5.9) é�j .�; ��/ D x́�j .�;���/; x́�j WD ´�j .
x�; x��/;

and by almost analytic continuation are defined in � .

Remarks 5.2.

1. Here we recall that the complex conjugation of � and �� is defined as
in (3.7).

2. Lemma 5.4 will discuss some properties of ´�j and x́�j after a linear rescal-
ing. Here we point out that ´�j is a restriction to � of a holomorphic func-

tion in � but x́�j .�; ��/ D ��j .�; �
�/, .�; ��/ 2 T ��, is not.

5.2 A general construction
Here we establish the following:

PROPOSITION 5.3. LetZ�j and eZ�j be given by (5.5) and (5.8), respectively. Sup-
pose that b D b.�; h/ satisfies (5.3) (with no dependence on �).

Then there exist  .�; �/ and a.�; �; h/ satisfying (5.2) and (5.3) and such that

(5.10)

 .�; �/ D �2iH.�/; aj .�; �/ D bj .�/;

e�
i
h
 .�;�/Z�j .�; hD�; h/

�
e
i
h
 .�;�/a.�; �; h/

� D O1

e�
i
h
 .�;�/eZ�j .�; hD� ; h/�e ih .�;�/a.�; �; h/� D O1;

;

where

O1 WD O
�
d.�x; �x/

1 C .h��i�1j�� � �� j/1 C .h��i�1h/1
�
:

The phase  .�; �/ and amplitudes aj .�; �/ are uniquely determined by bj .�/
up to O1 and

(5.11) �H.�/ � Im .�; �/ �H.�/ � �.d.�x; �x/2 C h��i�1j�� � �� j2/=C
for some C > 0.

We will see that a and  are essentially determined by their values on the diag-
onal in ���. Therefore, the construction of  and a can be done locally, and we
now work near �0 D .x0; �0/ 2 �, where we identify � with T �Tn as in (3.6).

For �; � in a conic neighborhood of �0, we rescale Zj using the following
change of variables:

(5.12)
z�x WD �x � �0x; z�� WD



�0�
��1�

�� � �0�
�
;

z�x WD �x � �0x; z��1 WD


�0�
��1�

�� � �0�
�
:
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In these new coordinates, the operators Z�j become

(5.13)

Z�j D ��j .z�; zhDz�/C zh�1j .z�; zhDz�/C zh2�2j .z�/; ��j D j́ j�;

j́ .´; �; ´
�; ��/ WD �.�/.´�j � �j��j /

C 1
2
�.�/3.´� � ���/2.�j C �j / � i��j ;

zh WD h

h�0
�
i ; �.�/ WD

h�0
�
i

hh�0
�
i.� C �/i ; � WD

�0
�

h�0
�
i ;

where we still have f��j ; ��k g D 0. The operators eZ�j are defined using (5.8).
We now define the rescaled phase and amplitudes:

(5.14)

z .z�; z�/ WD h�0� i�1 .�; �/; zH.z�/ WD h�0� i�1H.�/;
zG.z�/ D h�0� i�1G.�/;

zaj .z�; z�/ WD h�0� ijaj .�; �/; zbj .z�/ WD h�0� ij bj .�/;
so that

a.�; �/ �
1X
jD0

zhj zaj .z�; z�/; b.�/ �
1X
jD0

zhj zbj .z�/:

Hence (5.10) becomes

(5.15)

z .z�; z�/ D �2i zH.�/; zaj .z�; z�/ D zbj .z�/;
e
� i
zh
z .z�; z�/

Z�j
�
e
i
zh
z .�; z�/za.�; z�; zh/�.z�/ D O

�jz� � z�j/1 C zh1�;
e
� i
zh
z .z�; z�/eZ�j �e izh .z�;�/za.z�; �; zh/�. z�/ D O

�jz� � z�j/1 C zh1�;
where now z and zaj are smooth functions in a neighbourhood of 0 2 R2n �R2n.

(5.16) To simplify notation we now drop the z in zh, z , zH , zG , and za.

This will apply until the end of the construction of the phase and the amplitude.

Eikonal equations
Here we work in the coordinates (5.12) and use the convention (5.16). Hence

we assume that � is a neighbourhood of 0 in T �Rn.
Let ��j and z��j be the principal symbols of Z�j and zZ�j , respectively—see

(5.13). The eikonal equations we want to solve are

(5.17)
��j .�; d� .�; �// D O.j� � �j1/;
z��j .�; d� .�; �// D O.j� � �j1/;

for �; � 2 �. We also put

x��j .�; ��/ WD z��j .�;���/I
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see (5.8) and (5.9). We note that for .�; ��/ 2 T ��, x��j .�; ��/ D ��j .�; �
�/. The

next lemma records the Poisson bracket properties of ��j on �.

LEMMA 5.4. Let f�; �g denote the Poisson bracket on T �Rn defined using the
(real) symplectic form �� WD .�T �Cn/j� and coordinates (3.6). Let

� WD f��j .�/ D 0 W � 2 T �R2n; jx� � � � � j < �.�/�1g; � D .x; �; x�; ��/;

where � is defined in (5.13).
Then, for ��j defined above we have f��j ; ��k g D 0, and for kGkC2 � 1,

(5.18)
�
1
2i
f��j ; x��k g.�; ��/

�
1�j;k�n

� cI; c > 0;

for .�; ��/ 2 � \ nbhdT �R2n.0/.

The positivity condition in Lemma 5.4 will be used in two places. First, it is used to
guarantee that the Lagrangian used to construct the phase solving (5.17) is strictly
positive (see (A.16)). Next, when G is only smooth, this condition will be cru-
cial when proving (5.31) (see also [15, (6.29)]) and hence that the Lagrangian we
construct is almost analytic. The proof of the lemma will also show that there are
solutions to ��j .�/ D 0 with jx� � � � � j � �.�/ (�.�/ � 1 for � in a neigh-
borhood of 0). However, (5.18) may not be satisfied at these points and hence the
Lagrangian will not be appropriately positive.

PROOF. It is enough to check (5.18) for G D 0. In that case � is contained in
f.�; d�'.�; y/ W � 2 R2n; y 2 Cng where '.�; y/ is the rescaled phase of our FBI
transform (this follows from the fact that ��j are principal symbols of operators
annihilating T ). Hence

(5.19)

� WD f.x; �; 'x; '�/ W y 2 Cn; j� C � � 'xj < 1; x; � 2 Rng
\ T �R2n

D f.x; �; � C �; 0/g;
' D '.x; �; y/ WD hx � y; � C �i C i

2
�.�/�1.x � y/2;

where � was defined in (5.13). To check this, observe that if x� D 'x.x; �; y/,
�� D '�.x; �; y/, then y D x � i�.� C � � x�/ and

�� D i�.� C � � x�/C 1
2
i@��.� C � � x�/2:

As x� and �� are real, we obtain that either x� D � C � as claimed or

�j� C � � x�j D 2�2j@��j�1 D 2��1j� C � j�1 D 2
hh�0

�
i.� C �/i

h�0
�
ij� C � j � 2:

which contradicts the condition in (5.19). Hence � D x� � � and y D x. Here we
have used the definition of �, (5.13)
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Since f��j ; ��k g D 0 we see that

1
2i
f��j ;x��k g D fIm ��j ;Re ��k g

D �@�j
�
�.�/.x�k � �k��k/C1

2
�.�/3.x� � ���/2.�k C �k/

�
D �.�/�jk;

when evaluated at x� D � C � . Hence, for G D 0, the matrix in (5.18) is given by
�.�/I and �.�/ � 1 for � bounded. Hence for G small the matrix stays positive
definite. □

>From the geometric point of view, the framework for construction of the phase
is the same as in [15, Section 2.2] (see also [15, Section 6.1] for a presentation in a
simpler case). It is convenient to remove the weight by putting

 H .�; �/ WD iH.�/C  .�; �/C iH.�/:

We also define,

�Hj .�; �
�/ WD ��j .�; �

� � idH.�//;
x�Hj .�; ��/ WD x��j .�; �� C idH.�// D �Hj .x�; x��/:

(5.20)

(Here again the x� and x�� are defined after an identification of � with T �Rn.)
Lemma 5.4 remains valid for �Hj .

The eikonal equations (5.17) become

(5.21)
�Hj .�; d� H .�; �// D O.j� � �j1/;
x�Hj .�;�d� H .�; �// D O.j� � �j1/;

for �; � 2 �. Since we demand that  .�; �/ D �2iH.�/, it follows that  H
vanishes on the diagonal, and by differentiation,

(5.22) 0 D d�. H .�; �// D d� H .�; �/j�D� C d� H .�; �/j�D�; � 2 �:
To construct  H we will construct CH , a Lagrangian relation for which  H will
be the generating function:

CH D f.�; d� H .�; �/; �;�d� H .�; �// W
.�; �/ 2 nbhdC4n.Diag.� ��//g:(5.23)

We first assume that G, and hence H , are real analytic and have holomorphic
extensions.

Writing � D .x; �; x�; ��/, the eikonal equations require that we should have
(up to equivalence of almost analytic manifolds and exactly on T ��)

(5.24)
CH � S � xS; S WD f� W �Hj .�/ D 0; � 2 nbhdC4n.R4n/; jx� � � � � j < 1g;
xS WD fx� W � 2 Sg D f� W x�Hj .�/ D 0; � 2 nbhdC4n.R4n/; jx� � � � � j < 1g:

The condition (5.22) means that

(5.25) CH \ ��1.�C2n�C2n/ D �..S \ xS/ � .S \ xS//;
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where �.A � A/ WD f.a; a/ W a 2 Ag and

� W C2n �C2n �C2n �C2n ! C
2n �C2n

is the natural projection; i.e., �.�; ��; �; ��/ D .�; �/. In fact, (5.22) shows
that this must be true for CH \ ��1.�R2n�R2n/, and then it follows by analytic
continuation (or an equivalence of almost analytic manifolds once we move to the
C1 category). We have the following additional property, which comes from the
choice of the weight H :

LEMMA 5.5. Let S and xS be defined in (5.24). Then for H satisfying (3.3), we
have

(5.26) .S \ xS/R D SR D f.�;Re.´d�j�/ W � 2 nbhdR2n.0/g:
PROOF. As in the proof of Lemma 5.4, it is useful to go to the origins of the

symbols �Hj (5.20): Z�j ’s, with symbols ��j annihilate the phase in T� and that
shows that, after switching to �Hj ,

S� WD S \ T ���C D f.�; d�'.�; y/C idH.�// W y 2 Cng;
'.�; y/ WD h´ � y; � C �i C i

2
��1.�/.´ � y/2;

´ D �x C iG�.�x; ��/; � D �� � iGx.�x; ��/:
where �.�/ and � were defined in (5.13).

In the case G D 0 (and hence H D 0), S� and xS� WD xS \ T ���C intersect
transversally in one point. This remains true for a small perturbation induced by G
with kGkC2 � 1 (this corresponds to symbolic norms before rescaling). Hence
we are looking for a solution to

(5.27) d�'.�; y/C idH.�/ D d�'.�; y0/ � idH.�/:
Now, at y D y0 D �x we have d�'.�; y/ D � d´j�, and in view of the definition
of dH in (3.3), (5.27) holds. It follows that for � 2 �, that is , for � real,

S� \ xS� D f.�;Re.´d�j�/g D S� \ T ��; � ' nbhdT �Rn.0/:

But this proves (5.26). □

Since

CH �
n\

jD1

.��L�
H /�1.0/ \ .��Rx�Hj /�1.0/; �L.�; �

0/ WD �; �R.�; �
0/ WD �0;

it follows that the complex vector fields H��
L
�H
j

and H
��
R
x�H
j

are tangent to CH .

By checking the case of T �� D T �Rn (no deformation and hence H � 0) we
have (see [15, Section 2.2]) that S \ xS is a symplectic submanifold (with respect
to the complex symplectic form) of complex dimension 2n. The independence of
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H�H
k

, Hx�H
j

, j; k D 1; : : : ; n (again easily seen in the unperturbed case), shows
that

(5.28) BCn.0; �/ � BCn.0; �/ � .S \ xS/ 3 .t; s; �/
7! .expht;H�H i.�/; exphs;Hx�H

i.�// 2 C8n;
is a biholomorphic map to an embedded (complex) 4n-dimensional submanifold.
This implies that

(5.29) CH D �
.expht;H�H i.�/; exphs;Hx�H

i.�// W � 2 S \ xS; t; s 2 BCn.0; �/
	
;

where ht;H�H i WD
Pn
kD1 tkH�H

k
, � D �; x�. Checking again in the unperturbed

case, we have that for � 2 S \ xS
(5.30) �� W T�CH ! T�.�/C

4n is onto.

We now explain how to use almost analytic extensions off � in the C1 case.
We first identify � with T �Rn using (3.6) and extending G almost analytically to
C
4n. The symplectic form is now the almost analytic extension of the symplectic

form d� ^ d´j�. Hence we define (see Appendix A for the definitions)

CH D ��
exp3ht;H�H i.�/; exp3hs;Hx�H

i.�/� W � 2 S \ xS; t; s 2 BCn.0; �/
	
:

We claim that

(5.31) jIm exp3ht;H�H i.�/j � jt j=C; jIm exp3hs;Hx�H
i.�/j � jsj=C; � 2 S \ xS:

In fact, in view of Lemma 5.4 at � 2 T ��\S and for kGkC2 small, we can assume
f��j ; x��k g.�/=2i is positive definite. The changes of variable leading to �Hj is a
symplectomorphism and hence we have the same property for �Hj . By changing
�Hj by a linear transformation, we can then assume that f�Hj ; x�Hk g.�/=2i D �kj .
Hence we can make a linear symplectic change of variables at any point of T ��
giving new variables .x; y; �; �/, x; y; �; � 2 Rn, centered at 0 2 R4n, such that

�Hj D c.�j C iyj /CO.jxj2 C jyj2 C j�j2 C j�j2/; c > 0:

This continues to hold for the almost analytic continuations of �Hj . That means
that near 0,

(5.32) S \ xS D f.´; 0; �; 0/C F.´; �// W .´; �/ 2 nbhdC2n.0/g; F D O.j´j2 C j�j2/;

We also note that for .´; �/ 2 R
2n (which corresponds to the intersection with

T ��), S \ xS is real. This means that in (5.32),

ImF.´; �/ D O..jIm ´j C jIm �j/.j´j C j�j//:
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Hence,

jIm exp3ht;H�H i..´; 0; �; 0/C F.´; �//j
D j.Im ´; c Im t; Im �; c Re t /j CO..jIm ´j C jIm �j C jt j/.j´j C j�j/C jt j2/
� jt j=C if j´j; j�j � 1,

with the corresponding estimate for x�H . Lemma A.2 and (5.31) now show the
almost analyticity of CH , and Lemma A.3 shows that CH is Lagrangian in the
almost analytic sense: �

��L!T �C2n � ��R!T �C2n

�jCH � 0:

(See the appendix for the review of the almost analytic machinery and notation.)
Lemma 5.5 shows that �..S \ xSR � .S \ xS/R/ D .CH /R is a submanifold,
Lemma 5.4 shows that CH is therefore a strictly positive almost analytic Lagrangian
submanifold, and hence, using (5.30), Lemma A.5 now gives  H D  H .�; �/

such that

d
x�; x�
 H .�; �/ D O.jIm�j1 C jIm�j1 C jIm H .�; �/j1/;

and (5.23) holds in the sense of equivalence of almost analytic manifolds (that is,
with � of (A.2) replacing the equality). In addition, in view of (5.26) and (5.31),

d� H .�; �/j�D� D Re.� � d´j�/;
d� H .�; �/j�D� D �Re.� � d´j�/; � 2 nbhdR2n.0/;(5.33)

and d�. H .�; �// � 0. Hence we can choose  H .�; �/ D 0. We also see that

d� Im H .�; �/j�D� D 0; d� Im H .�; �/j�D� D 0; � 2 nbhdR2n.0/;

which means that Im H .�; �/ D O.j� � �j2/, �; � 2 nbhdR2n.0/, and the com-
parison with the case of G D 0 shows that

(5.34) Im H .�; �/ � j� � �j2:
Finally, we return to (5.21) (recall that �Hj are the almost analytic extensions of

�Hj from T �� and that f�Hj ; �Hk g � 0):

5hs;H��
L
�H i��L�Hj D

nX
kD1

�
Hsk�Hk

�Hj CHsk�Hk
�Hj
�

D O.jImZj1/; Z D .�; �; ��; ��/;

with similar estimates for ��R
x�j ’s. Hence using the definition (A.2). This implies

that
��L�

H
j ; �

�
R
x�Hj � 0 on CH .

In view of the discussion above (CH equivalent to the right-hand side of (5.23)) we
obtain

�Hj .�; d� H .�; �// D O.jIm�j1 C jIm�j1 C jIm d� H j1 C jIm d� H j1/;
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with the same estimate for x�Hj .�;�d� H .�; �//. This and (5.34) give (5.17).
This completes the construction of the phase needed in Proposition 5.3. The

construction of CH satisfying (5.26), (5.25), and (5.24) is equivalent, in the almost
analytic sense, to the construction of  H satisfying (5.34) and (5.22) that gives
uniqueness of  H .

We have achieved more, as the definition of CH shows that, in the analytic case
(5.29), CH � CH D CH (see [15, lemma 2] for a simple linear algebra case). In
general, we have CH � CH � CH , which for real values of � and � means that

c:v:
 . H .�; 
/C  H .
; �// D  H .�; �/CO.j� � �j1/:
We now return to our original  in (5.1),  .�; �/ D �iH.�/ C  H .�; �/ �

iH.�/. Our construction shows that

(5.35) (5.17) holds,  .�; �/ D �2iH.�/;  .�; �/ D � .�; �/; �; � 2 �:
The value of d� on the diagonal � � d´j� is determined by (3.3) and (5.33). In
addition,  is uniquely determined, up to O.j� � �j1/, by (5.35).

Returning to the original problem of solving (5.17) we now record our findings:

PROPOSITION 5.6. With the convention of (5.16), suppose that H is given by
(3.3) and ��j , z��j are defined in (5.13). Then there exists  2 C1.� � �/,
� D nbhdR2n.0/, such that (5.17) holds and  .�; �/ D �2iH.�/. The function
 is uniquely determined modulo O.j� � �j1/. Moreover, we have

(5.36)

c:v:
 . .�; 
/C 2iH.
/C  .
; �// D  .�; �/CO.j� � �j1/;
�H.�/ � Im .�; �/ �H.�/ � �j� � �j2=C; C > 0;

.d� /.�; �/ D � � d´j�:
Transport equations

Keeping the convention (5.16), we now solve the transport equations arising
from (5.15). We start with a formal discussion (valid when all the objects are
analytic). We first note that in view of (5.17) and (5.36) for any b.�; �/ analytic in
a neighbourhood of 0 (in the notation of (5.13) and (5.16)),

(5.37)
Z�j .�; hD�/

�
e
i
h
 .�;�/b.�; �/

� D he
i
h
 .�;�/..Vj C cj /b.�; �/CO.h//;

zZ�j .�; hD� /
�
e
i
h
 .�;�/b.�; �/

� D he
i
h
 .�;�/.. zVj C zcj /b.�; �/CO.h//:

Here

Vj WD hVj .�; �/; @�i; Vj .�; �/` WD @��
`
��j .�; d� .�; �//;

cj .�; �/ WD 1
2

2nX
`D1

@�`Vj .�; �/C �1j .�; d� .�; �//

� i
2nX

k;`D1

@2�k�` .�; �/@
2
��
k
��
`

��j .�; d� .�; �//;
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with similar expressions coming from the applications zZ�j .�; hD� /: Vj , cj , re-

placed by zVj , zcj , and with the roles of � and � switched.
A key observation here is that the holomorphic vector fieldsH��

j
.�/ andHx��

j
.�/

are tangent to

C D f.�; d� .�; �/; �; d� .�; �// W �; � 2 nbhdC2n.0/g;
and that they commute. In the parametrization of C by .�; �/, they are given by
Vj and � zVj , respectively. Hence,

(5.38) �Vj ; Vk� D 0; �Vj ; zVk� D 0; � zVk; zVk� D 0:

Hence, we seek a of the form

a.�; �/ �
1X
kD0

hkak.�; �/;

where, we want to solve

(5.39) Vjak.�; �/C cj .�; �/ak.�; �/ D F
j

k�1
.a0; : : : ; ak�1/.�; �/; F

j
�1 � 0;

with the corresponding expression involving zVj .
Solving (5.39) means that

(5.40)

Z�j .�; hD�/

 
e
i
h
 .�;�/

K�1X
kD0

hkak.�; �/

!
D hKC1e

i
h
 .�;�/F

j
K�1.�; �/;

zZ�j .�; hD� /
 
e
i
h
 .�;�/

K�1X
kD0

hkak.�; �/

!
D hKC1e

i
h
 .�;�/ zF jK�1.�; �/:

Since�
Z�j .�; hD�/; Z

�
k .�; hD�/

� D 0;
� zZ�j .�; hD� /; zZ�k .�; hD� /� D 0;�

Z�j .�; hD�/;
zZ�k .�; hD� /

� D 0;

we have from (5.38) and (5.37),

(5.41) Vj c` D V`cj ; V`zcj D zVj c`; zV`zcj D zVj zc`:
Similarly, (5.40) gives

(5.42)
.Vj C cj /F

`
K�1 D .V` C c`/F

j
K�1; .

zVj C zcj / zF `K�1 D . zV` C zc`/ zF jK�1;
.Vj C cj / zF `K�1 D . zV` C zc`/F jK�1:

Equations (5.41) and (5.42) provide compatibility conditions for solving (5.39):

.Vj C cj /ak D F
j

k�1
; . zV` C zc`/ak D F `k�1; ak.�; �/ D bk.�/;
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where the bk’s are prescribed. In fact, since the V`’s and zVj ’s are independent
when � D � (as complex vectorfields),

C
2n �Cn �Cn 3 .�; t; s/ 7! .�; �/

D �
exphV; ti.�/; exph zV ; si.�/� 2 C2n �C2n;

hV; ti WD
nX

jD1

tjVj ; h zV ; si WD
nX
`D1

sj zV`;

is a local biholomorphic map onto of nbhdC4n.diag.� � �// (almost analytic in
the general case). In view of this and of (5.38) and (5.41), the following integrating
factor, g D g.�; �/, is well-defined (in the analytic case) on nbhdC4n.diag.� �
�//:

g.ehV;ti.�/; eh
zV ;si.�// WD �

nX
jD1

Z 1

0

.tj cj C sj zcj /j.�;�/D.e�hV;ti.�/;e�h zV ;si.�//
d�;

and satisfies

Vjg.�; �/ D cj .�; �/; zVjg.�; �/ D zcj .�; �/; j D 1; : : : ; n:

We then define ak.�; �/ inductively as follows: at .�; �/ D .ehV;ti.�/; eh
zV ;si.�//,

ak.�; �/ D eg.�;�/bk.�/

C eg.�;�/
Z 1

0

e�g.
;

0/
�
tjF

j

k�1
.
; 
 0/

C sj zF jk�1.
; 
 0/
�j
.
;
 0/D.e�hV;ti.�/;e�h zV ;si.�//

d�:

The compatibility relations (5.42) then show that (5.39) holds.
We now modify this discussion to the C1 case using almost analytic extensions

as in Section A.3 and that provides solutions of (5.39) for .�; �/ 2 � �� valid to
infinite order at diag.� ��/ with any initial data on the diagonal.

Hence we have solved (5.15) locally near .�; �/ D .0; 0/. We now return to the
original coordinates and note the uniqueness of the local construction gives us  
and a in (5.10) satisfying (5.2) and (5.3). This completes the proof of Proposition
5.3.

5.3 Projection property
It remains to choose aj� so that B2� � B�. From (5.36) we already know that

the phase in (5.1) has the correct composition property and hence we need to find
the amplitude a.�; �/. From Proposition 5.3 it is enough to determine a on the
diagonal. For that we consider the kernel of B2� on the diagonal:

(5.43) KB2
�
.�; �/ D h�2n

Z
�

e
i
h
. .�;�/C2iH.�/C .�;�//a.�; �; h/a.�; �; h/dm�.�/:
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We note that the support property of a in (5.2) implies that the integration takes
place over a bounded set j�� j � C h��i. Application of complex stationary phase
to (5.43) yields

(5.44) KB2
�
D h�ne

i
h
 .�;�/c.�; �/; c.�; �/ �

X
j

hjL2ja.�; 
; h/a.
; �; h/j
D�;

where L2j are differential operators of order 2j in 
 and

L0j� D f .�/; jf .�/j > 0; � WD �.� ��/:

Since  .�; �/ D � .�; �/, f .�/ 2 R. (Strictly speaking, we should again pro-
ceed with the rescaling (5.12) and we are tacitly using the convention (5.16) here.)

Writing a �P
j h

jaj ; we have

c.�; �/ �
X
j

hj cj .�; �/; cj .�; �/ D
X

kC`CmDj

L2ka`.�; 
/am.
; �/j
D�:

We note that if a.�; �/ D a.�; �/, then B� is self-adjoint and hence so is B2�.
That means in particular that c.�; �/ is real. Hence if a`.�; �/ D a`.�; �/ for
` �M , then c`j� 2 R for ` �M . Since

bM .�; �/ D 2f .�/a0.�; �/aM .�; �/C
X

kC`CmDM
`;m<M

L2ka`.�; 
/am.
; �/j
D�;

it follows that

(5.45) a`.�; �/ D a`.�; �/; ` < M H)
X

kC`CmDM
`;m<M

L2ka`.�; 
/am.
; �/j
D� 2 R:

We iteratively solve the following sequence of equations,

(5.46)
X

kC`CmDj

L2ka`.�; 
/am.
; �/j
D� D aj .�; �/;

with aj j� real. Proposition 5.3 then gives us the desired a.�; �/.
First, let

a0.�; �/ D 1

f .�/
2 C1.T �RnIR/

so that f .�/a0.�; �/2 D a0.�; �/ (i.e., (5.46) is solved for j D 0). The proof
of Proposition 5.3 (see Section 5.2) shows that we can then find a0.�; �/ so that
(5.40) holds with K D 0 and a0j� D 1=f .�/.
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Assume now that (5.46) is solved for j � M � 1. Then, (5.46) with j D M

reads

aM .�; �/ D
X

kC`CmDM

L2ka`.�; 
/am.
; �/j
D�

D 2aM .�; �/C
X

kC`CmDM
`;m<M

L2ka`.�; 
/am.
; �/j
D�:

Putting
aM .�; �/ D �

X
kC`CmDM
`;m<M

L2ka`.�; 
/am.
; �/j
D�;

we solve (5.46) for j D M . From (5.45) we see that aM .�; �/ is real. The
argument in Section 5.2 provides the construction of aM from a`, ` < M and akj�.
Taking an almost analytic continuation with aM .�; �/ D aM .�; �/ then completes
the construction of aM , and hence by induction and the Borel summation lemma
we have, in the notation of Proposition 5.3,

(5.47) c D aCO1:

This gives the following:

PROPOSITION 5.7. There exists a unique choice of bj .�/ in Proposition 5.3 for
which the operator B� defined by (5.1) satisfies

(5.48) B� D B
�;H
� ; B� D B2� CO.hN /h�iNL2.�/!h�i�NL2.�/;

for all N .

PROOF. In view of (5.47) we need to check that for r D O1 (in the notation of
Proposition 5.3), for all N ,

R D O.hN /h�iNL2.�/!h�i�NL2.�/;

Ru.�/ WD h�n
Z
�

r.�; �; h/e
i
h
 .�;�/u.�/dm�.�/:

But this is an immediate consequence of (5.11) and Schur’s criterion for bounded-
ness on L2. □

5.4 Construction of the projector
We now show that the exact orthogonal projector �� W L2.�/ ! H.�/ satis-

fies

(5.49) �� D B� CO.h1/h�iNL2.�/!h�i�NL2.�/

for all N . For that we follow the proof of [33, prop. 1.1, formula (1.46)], which is
related to an earlier construction in [1, step 3, proof of corollary A.4.6].

We start with the exact projector P�:

P�.L
2
�.�// D H.�/; P 2� D P�; P� D O.1/L2.�/!L2.�/;
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given by
P� D T�S�:

For a real-valued f 2 S.�/,

f .�/ �
1X
kD0

fk.�/.h=h��i/k; f0.�/ > 1=C;

we define the following self-adjoint operator:

Af WD P�fP
�;H
� ;

Af u.�/ DW h�n
Z
�

e
i
h
 1.�;�/af .�; �; h/u.�/e

�2H.�/=h dm�.�/;

where  1 and af were obtained by using the method of complex stationary phase
(again it is justified using the rescaling (5.12)).

We claim that  1 D  C O1 (in the notation of Proposition 5.3). Indeed,
since A�;H

f
D Af and P� D T�S�, the arguments leading to (5.17) apply and

 1 satisfies the same eikonal equations. Similarly, af .�; �; h/ satisfies transport
equations implied by (5.10). Arguing as in the proof of Lemma 4.8, we find the
value of  1j� to be

 1.�; �/C 2iH.�/ D c:v:�
�
�.�; �/ ��.�; �/� D 0:

We then invoke the uniqueness statement in Proposition 5.3.
If we can choose f so that af j� D aj� CO..h=h��i/1/, with a in (5.1), then

the same uniqueness statement shows that af D aCO1. Hence

(5.50) af j� D aj� CO..h=h��i/1/ H)
Af D B� CO.h1/h�iNL2.�/!h�i�NL2.�/;

determined by its value on the diagonal. We find that, using � given in (4.9) and
satisfying (4.12),

 1.�; �/C 2iH.�/ D c:v:�
�
�.�; �/ ��.�; �/C 2iH.�/ � 2iH.�/� D 0:

But this means that (5.35) holds for  1 and hence

 1.�; �/ D  .�; �/CO.j� � �j1/:
We next choose f so that Af D B� CO.h1/h�iNL2.�/!h�i�NL2.�/:

Writing af .�; �/ �
P1
kD0.h=h��i/jaf;j .�; �/, we proceed as in Section 5.2:

with different L2k’s, g WD L0j� ¤ 0,

af;j .�; �/ D
X

kC`Dj

L2kf`.�/ D g.�/fj .�/C
X

kC`Dj
`<j

L2kf`.�/:

(In our special case, the amplitude in P is constant, which is not the case in
generalizations—but the argument works easily just the same.) Using this, solving
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af;j .�/ D aj .�/ for f is immediate. As in the construction of the amplitude of
B� in Section 5.2, we see that f is real valued and that f0 is bounded from below.

We can now follow [33] and complete the proof of (5.49). We record this state-
ment as

PROPOSITION 5.8. Suppose that �� is an orthogonal projector from L2.�/ to
H.�/ and that B� is given by Proposition 5.7. Then

(5.51) �� D B� CO.h1/h�iNL2.�/!h�i�NL2.�/

for all N .

PROOF. To start we observe that for u 2 H.�/, kukL2.�/ > 0,

hAf u; uiL2.�/ D hP�fP �
�u; uiL2.�/ D hfP �

�u; P
�
�uiL2.�/

� min
�2T �Rn

f .�/kP �
�uk2L2.�/ �

jhP �
�u; uij2

Ckuk2
L2.�/

D kuk2
L2.�/

=C:

Hence

(5.52)
kukL2.�/=C � kAf ukL2.�/ � CkukL2.�/; u 2 H.�/;

Af u D 0; u 2 H.�/?; A�f D Af ;

and

(5.53) �� D
1

2�

Z



.� � Af /�1 d�;

where 
 is a positively oriented boundary of an open set in C containing �1=C; C �
and excluding 0. From (5.50) and Proposition 5.7, we know that

(5.54) Af D A2f CO.h1/h�iNL2.�/!h�i�NL2.�/;

and we want to use this property to show that �� is close to Af . For that we note
that if A D A2, then, at first for j�j � 1,

.� � A/�1 D
1X
jD0

��j�1Aj D ��1 C ��1
1X
jD0

��jA D ��1 C A��1.� � 1/�1:

Hence it is natural to take the right-hand side as the approximate inverse in the case
when A2 � A is small:

.� � Af /.��1 C Af �
�1.� � 1/�1/ D I � .A2f � Af /��2.� � 1/�1:

In view of (5.54) and for h small enough, the right-hand side is invertible for � 2 

with the inverse equal to I C R, R D O.h1/h�iNL2.�/!h�i�NL2.�/. Hence for
� 2 
 ,

.� � Af /�1 D ��1 C ��1.� � 1/�1Af CO.h1/h�iNL2.�/!h�i�NL2.�/:

Inserting this identity into (5.53) and using Cauchy’s formula gives

�� D Af CO.h1/h�iNL2.�/!h�i�NL2.�/;
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which combined with (5.50) implies (5.51). □

6 Deformation of Pseudodifferential Operators
In this section we analyse pseudodifferential operators with analytic symbols

acting on spacesHm
� defined in Section 4. That means describing the action on the

FBI side of operators P :

(6.1) T�Pu D .T�PS�/.T�u/ D .��T�PS���/.T�u/:

The class of pseudodifferential operators we consider is given by

(6.2) Pu.y/ WD 1

.2�h/n

Z
Rn

Z
Rn
e
i
h
hy�y0;�ip.y; �/u.y0/dy0 d�

where p 2 Sm.T �Tn/ has an analytic continuation from T �Tn satisfying

(6.3) jp.´; �/j �M h�im for jIm ´j � a; jIm �j � bhRe �i:
The integral in the definition (6.2) of Pu is considered in the sense of oscillatory
integrals (see, for instance, [40, sec. 5.3]), and we extend both y 7! u.y/ and
y 7! p.y; �/ to periodic functions on Rn.

6.1 Pseudodifferential operators as Toeplitz operators
We start with a lemma that describes the middle term in (6.1):

LEMMA 6.1. Suppose P is defined by (6.2) with p satisfying (6.3). Then, for G
satisfying (3.1) with �0 > 0 small enough, the Schwartz kernel of T�PS� is given
by

(6.4) KP .�; �/ D c0h
�ne

i
h
�.�;�/aP .�; �/C r.�; �/

where � is as in (4.9),

(6.5) aP �
1X
jD0

hj h��i�jaj ; a0.�; �/ D pj�.�/;

aj 2 S0.� ��/ is supported in a conic neighbourhood of �.� ��/ and

(6.6) jr.�; �/j � e�.hRe��iChRe��iChRe�x�Re�xi/=Ch:

PROOF. We first note that for each � 2 �,

v� .y
0/ D e�

i
h
'�.�;y0/b.�x � y0; ��/

is a Schwartz function and hence the integral

h�
3n
4

1

.2�h/n

Z
R2n

e
i
h
.hy�y0;�i�'�.�;y0//p.y; �/b.�x � y0; ��/dy0 d�

defines a Schwartz function of y. In particular, the kernel of T�PS� is given by

h�
3n
2

.2�h/n

Z
R3n

e
i
h
.'.�;y/Chy�y0;�i�'�.�;y0//p.y; �/b.�x � y0; ��/h��i

n
4 dy0 d� dy:
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To obtain (6.4) we start by deforming the contour in �: � 7! �C i�1h�i y�y
0

hy�y0i
: The

phase � is then given by

� D h�x � y; ��i C
ih��i
2

.�x � y/2 C
ih��i
2

.�x � y0/2

C hy0 � �x; ��i C hy � y0; �i C i�1h�i.y � y
0/2

hy � y0i :

We then deform the contour in y; y0 as follows:

y 7! y C i�1
� � ��
h� � ��i

; y0 7! y0 C i�1
�� � �
h�� � �i

:

The phase � becomes

� D h�x � y; ��i C
ih��i
2

.�x � y/2 C
ih��i
2

.�x � y0/2 C hy0 � �x; ��i

C hy � y0; �i C i�1

�
.�� � �/2
h�� � �i

C .�� � �/2
h�� � �i

C h�i.y � y
0/2

hy � y0i
�

C ih��i
2

�
�2i�1

h�� � �; �x � yi
h�� � �i

� �21
.�� � �/2
h�� � �i2

�
C ih��i

2

�
�2i�1

h� � �� ; �x � y0i
h�� � �i

� �21
.�� � �/2
h�� � �i2

�
CO

�
�21h�i

y � y0
hy � y0i

� j.�� � �/h�� � �i C .� � ��/h�� � �ij
jh�� � �ih�� � �ij

��
CO

�
�31h�i
hy � y0i

� j.�� � �/h�� � �i C .� � ��/h�� � �ij2
jh�� � �ih�� � �ij2

��

:

We first consider the case when hRe��i � 2hRe��i. Then,

jRe�� � �j C jRe�� � �j � c.hRe��i C hRe��i C h�i/:
and in particular,

Im� � c.hRe��i C hRe��i C hRe �i C c.jRe�x � yj C jRe�x � y0j C jy � y0j/;
which produces a term that can be absorbed into r satisfying (6.6).

Similar arguments show that we can assume that hRe��i; hRe �i; and hRe��i
are proportional.

We now suppose that

jRe�� � Re�� j
hRe��i C hRe��i

C jRe�x � Re�xj > �:

Then, the imaginary part of the phase is bounded below by
Im� � c.hRe��i C hRe��//.1C jRe�x � Re�xj/

C c.jRe�x � yj C jy � y0j C jRe�x � yj C j� � Re�� j C j� � Re�� j/:
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In particular, when

jRe�� � Re�� j
hRe��i C hRe��i

C jRe�x � Re�xj > �:

the integral is bounded by Ce�.hRe��iChRe��i/.1CjRe�x�Re�x j/=h. Hence, we can
insert a cutoff

�

�
��1

� jRe�� � Re�� j
hRe��i C hRe��i

C jRe�x � Re�xj
��

into the integral.
With this cutoff inserted, we deform in y; y0 to the critical point

y 7! y C yc.�; �/; y0 7! y0 C yc.�; �/;

where

yc.�; �/ D
�xh��i C �xh��i
h��i C h��i

C i
�� � ��

h��i C h��i
:

This contour deformation is justified since the cutoff function guarantees that

Re
���� �� � ��
h��i C h��i

���� � C�:
The phase is then given by

� D i

2

�
.�� � ��/2 C h��ih��i.�x � �x/2

h��i C h��i
C h��iy2 C h��i.y0/2

�
C
�
�x � �x;

��h��i C ��h��i
h��i C h��i

�
C hy � y0; � � �c.�; �/i

with

�c.�; �/ D
��h��i C ��h��i
h��i C h��i

C i
h��ih��i.�x � �x/

h��i C h��i
:

We would now like to shift the contour to � 7! �C �c . However, p only has an
analytic continuation to jIm �j � bhRe �i, and Im �c is not, in general, bounded.
Therefore, when jRe �j � jRe �cj, we cannot make this deformation. To finish the
proof, we consider two cases.

We first assume that j�c.�; �/j � b=2: Then, the contour deformation � 7!
�C �c is justified, and we may perform complex stationary phase to complete the
proof.

We now consider the more involved case when

j�cj � b

2
� �0 > 0;

where �0 is as in (3.1). In that case we use the deformation

y 7! y C i�1
.� � �c/
h� � �ci

; y0 7! y0 � i�1 .� � �c/h� � �ci
;
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to obtain the phase�
�x � �x;

��h��i C ��h��i
h��i C h��i

�
C i

2

�
.�� � ��/2 C h��ih��i.�x � �x/2

h��i C h��i
C h��iy2 C h��i.y0/2

�
C
�
y � y0; .� � �c/

�
1 � �1

h� � �ci
��
C 2i�1

.� � �c/2
h� � �ci

�
1 � �1

2h� � �ci
�
:

Finally, let � 2 C1
c ..1=2; 2// with � � 1 on .3=4; 3=2/, and shift contours

� 7! �C �c�

� jRe �j
jRe �cj

�
:

Note that this deformation is now justified since jRe �j � cjRe �cj on the deforma-
tion and jIm �cj � c�0hRe �ci: The phase is then given by

i

2

�
.�� � ��/2 C h��ih��i.�x � �x/2

h��i C h��i
C h��iy2 C h��i.y0/2

�
C
�
�x � �x;

��h��i C ��h��i
h��i C h��i

�
C
�
y � y0; .� � .1 � �/�c/

�
1 � �1

h� � .1 � �/�ci
��

C 2i�1
.� � .1 � �/�c/2
h� � .1 � �/�ci

�
1 � �1

2h� � .1 � �/�ci
�
:

and, since on j�cj � b=2� �0,

C�0jRe.� � .1 � �/�c/j � jIm.� � .1 � �/�c/j;
we have that the imaginary part of the phase satisfies

Im� � Im�.�; �/C c.jh��ijjyj2 C jh��ijjy0j2/C c�1j� � .1 � �/�cj
� jy � y0jjIm..1 � �/�c/j

� Im�.�; �/C c.jh��ijjyj2 C jh��ijjy0j2/C c�1j� � .1 � �/�cj

� C�1 j.1 � �/�cj
2

jh��i C h��ij
� Im�.�; �/C c.jh��ijjyj2 C jh��ijjy0j2/C c�1j� � .1 � �/�cj
� C�1j.1 � �/2�cj

� Im�.�; �/C c.jh��ijjyj2 C jh��ijjy0j2/C c�1j� � .1 � �/�cj;
where we have used that �� and �� are comparable and taken �0 � �1 small
enough. Thus, we may apply the method of complex stationary phase to obtain the
result. □
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The next result gives the description of the rightmost term in (6.1). For a simpler
case capturing the idea of the proof, see [15, theorem 2].

PROPOSITION 6.2. Suppose P is defined by (6.2) with p satisfying (6.3). Then,
for G satisfying (3.1) with �0 > 0 small enough,

��T�PS��� D ��bP�� CO.h1/h�iNL2.�/!h�i�NL2.�/

where

bP �
1X
jD0

hj bj ; bj 2 Sm�j ; b0 D pj�:

PROOF. Lemma 6.1 shows that we need to prove

(6.7) ��KP�� D ��b�� CO.h1/h�iNL2.�/!h�i�NL2.�/;

whereKP is given by (6.4). Propositions 5.7 and 5.8 show that, modulo negligible
terms, the Schwartz kernel of the left-hand side is given byZ
�

Z
�

e
i
h
. .�;
/C�.
;
 0/C .
 0;�/C2iH.
/C2iH.�//a.�; 
/aP .
; 


0/a.
 0; �/d
 d
 0;

where the support property of a (see (5.2)) shows that integration is over a compact
set. An application of the complex stationary phase theorem produces a phase
(with critical values taken for almost analytic continuation—see [25, Theorem 2.3,
p. 148])

 1.�; �/ D c:v:
;
 0. .�; 
/C�.
; 
 0/C  .
 0; �/C 2iH.
//:

If we show that  1.�; �/ D �2iH.�/, then the uniqueness part of Proposition 5.3
shows that (modulo negligible terms) we can take  1 D  . To see this, we claim
that for � D � the critical point is given by 
 D 
 0 D �, that is,

d
 . .�; 
/C�.
; 
 0/C  .
 0; �/C 2iH.
//j
D
 0D�D0 D 0;

d
 0. .�; 
/C�.
; 
 0/C  .
 0; �/C 2iH.
//j
D
 0D�D0 D 0:
(6.8)

To see this, we first use the formula (4.9) for � to obtain

(6.9) d
�.
; 

0/j
D
 0 D � d´j� D �d
 0�.
; 
 0/j
D
 0 :

This immediately gives the second equation in (6.8).
We then consider

(6.10) d
 . .�; 
/C�.
; 
 0/C  .
 0; �/C 2iH.
//j
 0D� D
d
 . .�; 
/C 2iH.
/C  .
; 
 0/ �  .
; 
 0/C�.
; 
 0//j
 0D�:

The last line in (5.36) and (6.9) give

d
 .� .
; 
 0/C�.
; 
 0/j
D
 0 D 0:

Therefore, to obtain the first equation in (6.8), it is enough to have

d
 . .�; 
/C 2iH.
/C  .
; 
 0//j
D
 0D� D 0;
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which follows from the first line of (5.36) together with  .�; �/ D �2iH.�/.
Since  .�; �/ D �2iH.�/, the critical value is given by  1.�; �/ D  .�; �/. It
follows that

��KP��u.�/ D h�n
Z
�

e
i
h
 .�;�/c.�; �; h/e�2H.�/u.�/d�

CO.h1kukh�iNL2.�//h�i�NL2.�/;
where c satisfies (5.3) (and the support property in (5.2)). Arguing as in (5.7)–(5.8),
we see that the terms in the expansion of c satisfy transport equations of (5.39) and
hence are determined by their values on the diagonal.

Assume that we have obtained bj , j D 0; : : : ; J � 1 (the case of J D 0, that is,
no bj ’s, is also allowed as the first step) so that

(6.11) ��KP�� D ��

 
J�1X
jD0

h��i�jhj bj
!
�� CRJ�;

where

RJ�u.�/ D hJ�nh��i�J
Z
�

e
i
h
 .�;�/aJ .�; �/e�2H.�/=hu.�/d�;

aJ � aJ0 C hh��i�1aJ1 C � � � ;

with aJ
k

satisfying the transport equations of Section 5.2. If we apply the method
of stationary phase to the kernel of the first term on the right-hand side of (6.11),
we obtain, by the inductive hypothesis, a kernel with the expansion

e
i
h
 .�;�/.a0 C � � � C hJ�1h��i�JC1aJ�1 C hJ h��i�J rJ0 C hJC1h��i�J�1rJ1 C � � � /;

where aj ’s are the same as in (6.5). Again, all the terms satisfy transport equations
and hence are uniquely determined from their values on the diagonal. Hence, if we
put

bJ .�/ WD rJ0 .�; �/C aJ0 .�; �/;

we obtain (6.11) with J replaced by J C 1. When J D 0, bJ .�/ D a0.�; �/ D
pj�.�/. □

PROPOSITION 6.3. Suppose p1 2 Sm1 and p2 2 Sm2 . Then, forG satisfying (3.1)
with �0 > 0 small enough,

��p1��p2�� D ��b�� CO.h1/h�iNL2.�/!h�i�NL2.�/

where

b �
1X
jD0

hj bj ; cj 2 Sm1Cm2�j ; b0 D p1p2:
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PROOF. From Propositions 5.7 and 5.8, we have that, modulo negligible terms,
the Schwartz kernel of ��b1��b2�� is given by

h�3n
Z
�

Z
�

e
i
h
. .�;
/C2iH.
/C .
;
 0/C2H.
 0/C .
 0;�/C2iH.�//

� p1.
/a.�; 
/a.
; 
 0/p2.
 0/a.
 0; �/d
d
 0

where the support property of a (see (5.2)) shows that integration is over a compact
set. As in the proof of Proposition 6.2, we apply complex stationary phase to the
integral resulting in the phase

 1.�; �/ D c:v:
;
 0. .�; 
/C  .
; 
 0/C  .
 0; �/C 2iH.
/C 2iH.
 0//:

It follows from (5.36) that, modulo negligible terms, we may take  1.�; �/ D
 .�; �/ and that, when � D �, the critical point given by 
 D 
 0 D � and hence
that

��KP��u.�/ D h�n
Z
�

e
i
h
 .�;�/c.�; �; h/e�2H.�/u.�/d�

CO.h1kukh�iNL2.�//h�i�NL2.�/;
where c satisfies (5.3) (and the support property in (5.2)). Arguing as in (5.7)–
(5.8) we see that the terms in the expansion of c satisfy transport equations of
(5.39) and hence are determined by their values on the diagonal. Arguing as in the
last paragraph of the proof of Proposition 6.2 then completes the proof. □

6.2 Compactness properties of the spacesH t.�/

We next study the compactness and trace class properties for operators on the
spaces Hm.�/.

We start with the following:

LEMMA 6.4. There is h0 > 0 such that for all s 2 R and 0 < h < h0

(6.12) .hD�/

�� D O.1/ W h�is�j
 jL2.�/! h�isL2.�/

and

(6.13) t > s H) H t .�/ ,! H s.�/ is compact.

PROOF. To prove (6.12) we show the equivalent fact that the operator

h�i�s.hD�/
��h�is�j
 j W L2.�/! L2.�/

is uniformly bounded. By Proposition 4.6, the kernel of this operator is given,
modulo acceptable errors, by

h�ne
i
h
�.�;�/

�
..@��/


k.�; �/COhRe��ij
 j�1/
�hRe��is�j
 jhRe��i�s z�;

z� WD �.jRe�x � Re�xj/�.min.hRe��i; hRe��i/�1jRe�� � Re�� j/; � 2 C1
c .R/;
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where � is defined in (4.9). Now, on the support of the integrand, chRe��i �
hRe��i � C hRe��i and therefore, j@��j � C hRe��i: In particular, after conju-
gation by eH=h, the kernel is bounded by

Ch�nec.hRe��ijRe�x�Re�x j2ChRe��i�1jRe���Re�� j2/=h z�;
and hence, by Schur’s test for L2-boundedness, the operator is uniformly bounded
on L2.

We prove a slightly stronger statement, namely that

T�.H
t .�// ,! h�i�sL2.�/

is compact, to see (6.13). For that we observe that for u 2 T�.H t .�//, u D ��u,
and (6.12) shows that for m 2 Z and k 2 N,

�� W h�i�mL2.�/! Hk;m�k.�/; H r;s.�/ WD hhDx;�i�rh�i�sL2.�/:
Hence, by interpolation,

�� W h�i�tL2.�/! H r;t�r.�/; r � 0; t 2 R:
Setting r D .t�s/=2 > 0we obtain continuity of T�.H t .�// ,! H r; sCt

2 .�/. The
lemma then follows from Rellich’s theorem: H r;sCr.�/ ,! h�isL2.�/, r > 0, is
compact. □

The next lemma provides trace class properties needed in the study of determi-
nants:

LEMMA 6.5. For t > 3nC s the inclusion H t .�/ ,! H s.�/ is of trace class.

PROOF. First, note that for all r 2 R, mr.�; ��/ WD h��i
r
2 h��ir is an order

function in the sense of [40, sec. 4.4.1] and for r < �2nZ
T ��

mr.�; �
�/d� d�� <1:

Therefore (see [40, (C.3.6)] or [7, chap. 8]) if h�i�sAh�is 2 �.mr/ for r < �2n,
then A W h�i�sL2.�/! h�i�sL2.�/ is of trace class.

On the other hand, Lemma 6.4 shows that

A WD h��i
�r
2 hhD�i�

r
2 D O.1/ W T .H t .�//! h�i�sL2.�/; r D 2.s � t /

3
:

Also, A 2 �.m�r/ is elliptic and invertible and hence A�1 2 �.mr/. Therefore
A�1 is of trace class if r D 2.s�t/

3
< �2n, that is, when t > 3nC s. We conclude

that

kIdkL1.T .H t .�//;h�i�sL2.�//

� kA�1kL1.h�i�sL2.�/;h�i�sL2.�//kAkT.H t .�//!h�i�sL2.�/ <1;
where L1 denotes the trace class. □
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7 Zeroth-Order Operators and Viscosity Limits
Recall that the constructions in the previous sections depend only on finitely

many S1 norms of G determining

� D �G D f.x C iG� ; � � iGx/ j .x; �/ 2 T �Tng:
(Unless we worked with different G’s, we suppress the dependence on G in �G .)
Therefore, we start by fixing h > 0, �0 > 0 small enough andN0 > 0 large enough
such that if

(7.1) sup
j�jCj� j�N0

h�i1�j� j��@�x@�� G�� � �0;
the constructions of T�, S�, are valid and

B� ��� W h�iNL2.�/! h�i�NL2.�/ for all N 2 N:
7.1 Elliptic regularity in deformed spaces

We begin with the following preliminary elliptic regularity lemma.

LEMMA 7.1. Suppose that G 2 S1.T �Tn/ satisfies (7.1) and

(7.2) sup
j�jCj� j�1

��h�i1�j� j@�x@�� G�� � �1
for a fixed �1. Suppose also that E is given by (6.2) with e (replacing p) satisfy-
ing (6.3) and

je.´; �/j � c1j�jm; j�j � C; jIm ´j � �1; jIm �j � �1h�i:
Then E W H s

� ! H s�m
� is a Fredholm operator and there exists

C1 D C1.s; �1; E;N / > 0 such that 1
2
c1kukH s

�
� kEukH s�m

�
C C1kukH�N

�
:

PROOF. The assumptions on e guarantee that

jej�.�/j � c1j�� jm; j�� j � C; � 2 �:
Proposition 6.2 then shows

��T�ES��� D ��zbE�� CR0

with
zbE �

X
j

zbj ; zbj 2 Sm�j ; zb0 D ej�

and
kR0kh�iNL2.�/!h�i�sCmL2.�/ � C 0

2 D C 0
2.s; �1; E;N /:

Next, by Proposition 6.3,

��zbE��zbE�� D ��bE�� CR00

with
bE �

X
j

bj ; bj 2 Sm�j ; b0 D jej�j2;
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and

kR00kh�iNL2.�/!h�i�sCmL2.�/ � C 00
2 D C 00

2 .s; �1; E;N /:

Since jb0j � c21 j�� j2m on j�� j � C , there is b1 2 S�1 such that with b WD
bE C b1,

jbj � 2

3
c21hj�� ji2m

and

.��T�ES���/
�.��T�ES���/ D ��b�� CR;

kRkh�iNL2.�/!h�i�sCmL2.�/ � C2 D C2.s; �1; E;N /:

For u 2 H s.�/ we compute

kEuk2H s�m
�

D h��T�ES���T�u;��T�ES���T�uih�i�sCmL2
D h��.b CR/T�u; T�uih�i�sCmL2
� hbT�u; T�uih�i�sCmL2 � C2kuk2H�N

�

� 1
4
c21kuk2H s

�
� C 21 kuk2H�N

�

with C1 D C1.s; �1; E;N /: Therefore,

(7.3) 1
2
c1kukH s

�
� kEukH s�m

�
C C1kukH�N

�
:

We now note that for all s,

(7.4)

hE�u; viH s
�
D hu;EviH s

�
D hT�u;��T�ES���T�vih�i�sL2.�/

D hT�u; .b CR/T�vih�i�sL2.�/
D h.xb CR�/T�u; T�vih�i�sL2.�/:

Using (7.4), we obtain

kE�uk2H s�m
�

D hE�u;E�uiH s�m
�

D h.xb CR�/T�u; T�uih�i�sCmL2

� 1

4
c21kuk2H s

�
� C 21 kuk2H�N

�

:

Therefore

(7.5) 1
2
c1kukH s

�
� kE�ukH s�m

�
C C1kukH�N

�
:

Combining (7.3) and (7.5) with s replaced by m � s and applying Lemma 6.4,
we have for N > m � s that H s�m

� ! H�N
� is compact. Thus, we have proved

that E W H s
� ! H s�m

� is a Fredholm operator. □
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7.2 Zeroth-order operators on deformed spaces
We now work in the setting of Theorem 1.2. LetP 2 �0 satisfy the assumptions

there, G0 2 S1.T �Tn/, and C > 0 such that

(7.6) HpG0 > 0; fj�j > C g \ fp D 0g:
Define the R-symplectic I -Lagrangian submanifold �� �AT �Tn by

�� D f.x C i�@�G0; � � i�@xG0/ j .x; �/ 2 T �Tng:
We work with the spaces Hm

��
as defined in (4.7). Observe that for j� j small

enough, �G0 satisfies (7.1). To avoid cumbersome notation, we will suppress the
dependence of �� on � .

For u 2 Hm
� we have T�Pu D ��T�PS�T�u: By Proposition 6.2

(7.7) ��T�PS��� D ��bP�� CR1; ��T��S��� D ��a��� CR2;

where Ri W h�iNL2.�/! h�i�NL2.�/,
bP � pj� 2 S�1; a� C .�/2j� 2 S�1:

Now,
pj� D p.x; �/ � i�HpG0 CO.�2/S0 :

In particular, by (7.6), there are c; C > 0 such that for � > 0 small enough,

Impj� � .�c C C h�i�1/�; on
��Repj�

�� � c:
In particular, there exists b1 2 S�1 such that for e0 WD bP C b1, there are
c0; C0 > 0 satisfying

(7.8) je0j > c0� > 0; Im e0 � �c0� on jRe e0j < c0; jIm e0j � C0.� C h�i�1/:
By (7.7), we also have

(7.9) ��T�PS��� D ��e0�� CR0

with R0 W h�iNL2.�/! h�i�NL2.�/ uniformly over 0 � � � �0.
To analyse the contribution of the Laplacian we note that

Re.�/2j� � .1 � C�2/j�j2; jIm.�/2j�j � C� j�j2:
Therefore, for � > 0 small enough, we can find a1 2 S�1 such that

(7.10) Re.a� C a1/ � 1

2
h�i2; jIm.a� C a1/j � C� j�j2 C C j�j;

and we have

(7.11) ��T�.P C i��/S��� D ��e���CR� ; e� WD e0� i�.a�Ca1/;
where, by (7.7) and (7.9), R� W h�iNL2.�/ ! h�i�NL2.�/ uniformly in 0 �
� � 1, 0 � � � �0.

The next lemma gives us crucial properties of e� :
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LEMMA 7.2. There exist c1; �0; �0 > 0 such that for all 0 � � � �0 and for all
0 < � � �0

(7.12)
je� j > c1�.1C �j�j2/ > 0;

Im e� � �c1�.1C �j�j2/ on jRe e� j < c1.1C �j�j2/:
PROOF. We consider two cases. First, suppose j�j � M��1=2. Then, by (7.10)

and (7.8), there are c2; C2 > 0 such that

Im e� � �c2.M 2 C �j�j2/C C2.� CM�1�1=2/:

Therefore, setting
M D max

�
1; 2

p
C2=c2

�
;

(7.12) holds on j�j �M��1=2 (uniformly in 0 � � � 1 and 0 � � � 1).
We next consider the case j�j �M��1=2. If c0 � 2jRe e� j, then

c0

2
� jRe e� j � jRe e0j � C�M 2 � C�1=2M:

Choosing �0 and �0 small enough, we obtain jRe e0j � c0 and hence

Im e� � Im e0 � �c0�;
which completes the proof of (7.12). □

7.3 Fredholm properties and meromorphy of the resolvent
We add a localized absorbing potential to P C i�� to obtain invertibility. That

is, for q 2 C1
c .�I �0;1// we define

(7.13) Pq;� WD P C i�� � iQ; Q WD S���q��T�:

This family includes the operator P D P0;0 and the viscous operator P C i�� D
P0;� . We note that

(7.14)
��T�QS��� D ��T�S���q��T�S���

D ��P���q��P��� D ��q��;

where we recall that P� D T�S� satisfies �� D P���. We record the follow-
ing lemma for use later.

LEMMA 7.3. The adjoint of P W H s.�/! H s.�/ satisfies

hP �u; viH s.�/ D h.�� xe0�� CR�0/T u; T vih�i�sL2.�/;
and the adjoint of Pq;� W H sC2.�/! H s.�/, � > 0, satisfies

hP �
q;�u; viH s.�/ D h.�� .xe� � iq/�� CR�� /T u; T vih�i�sL2.�/:

PROOF. The lemma follows from (7.4). □

We start by proving that P � ! is Fredholm on H s
�. In particular, the next

lemma proves the first part of Theorem 1.2 with X D H s
�.
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LEMMA 7.4. There is !0 > 0 such that for Im! > �!0� and jRe!j < !0,

P � ! W H s
� ! H s

�

is a Fredholm operator. For Im! � 1, P � ! is invertible with inverse R.!/
satisfying

kR.!/kH s
�
!H s

�
� C

Im!
; Im! � C; jRe!j < !0:

In particular, R.!/ W H s
� ! H s

� is a meromorphic family of operators for ! 2
.�!0; !0/C i.�!0�;1/:

PROOF. First, observe that by (7.11) with � D 0 and using Proposition 6.3

��h�i2s.��T�.P � !/S���/�h�i�2s.��T�.P � !/S���/
D ��je0 � !j2�� C zR0

where
zR0 W h�isL2.�/! h�isC1L2.�/:

By (7.12), there is c1 > 0 such that Im e0 � �c1� on jRe e0j � c1. Therefore, on
jRe e0j � c1,

je0 � !j2 � .c1� C Im!/2 � c21�
2

4
Cmax.Im!; 0/2;

where we have taken !0 D c1
2

and Im! � �!0� . Then, using jRe!j � !0, on
jRe e0j � c1, there is C > 0 such that

je0 � !j2 �
c21
4
Cmin.jIm!j2 � C; 0/ � c1.1C jIm!j2/:

In particular, for u 2 H s
�,

k.P � !/uk2H s
�

D jh.P � !/u; .P � !/uiH s
�
j

D jh��T�.P � !/S���T�u;��T�.P � !/S���T�uih�i�sL2 j
� jhje0 � !j2T�u; T�uih�i�sL2 j � jh zR0T�u; T�uih�i�sL2 j
� c1.1C jIm!j2/kuk2H s

�
� Ckuk2

H
s�1=2
�

:

In particular, iterating this argument, we have for any N that there is CN > 0

such that

(7.15) kuk2H s
�
� C.1C jIm!j2/�1�k.P � !/uk2H s

�
C CN kuk2H�N

�

�
:

By almost exactly the same argument, using Lemma 7.3, we obtain

(7.16) kuk2H s
�
� C.1C jIm!j2/�1�k.P � � x!/uk2H s

�
C CN kuk2H�N

�

�
:

Next, by Lemma 6.4, for N > �s, the embedding H s
� ! H�N

� is compact.
Therefore, P � ! W H s

� ! H s
� is Fredholm.
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Finally, taking Im! � 1, we may absorb the H�N
� error into the left-hand

sides of (7.15) and (7.16) to obtain that P � ! W H s
� ! H s

� is invertible with
the desired estimate. The meromorphic Fredholm theorem (see, e.g., [11, theorem
C.9]) then shows that R.!/ is a meromorphic family of operators on .�!0; !0/C
i.�!0�;1/: □

We next study the meromorphy of the inverse of Pq;� � !, where Pq;� is given
in (7.13).

LEMMA 7.5. There exists �0 > 0 such that the following holds: For all s 2 R,
K 2 N, ! 2 C, q 2 C1

c .T
�
T
n/, and � > 0 there are C0 D Cs;�;K and

C1 D Cs;�;K;N such that for all G satisfying (7.1),

.Pq;� � !/K W H s
� ! H s�2K

�

is a Fredholm operator and

(7.17) kukH s
�
� C0k.Pq;� � !/KukH s�2K

�
C C1kukH�N

�
:

Moreover, Pq;� � ! W H s
� ! H s�2

� is invertible for Im! � 1 with inverse
Rq;�.!/ satisfying

kRq;�.!/kH s
�
!H sC2

�

� C��1; Im! � C.1C �/:

In particular, for all � > 0, Rq;�.!/ W H s
� ! H sC2

� is a meromorphic family of
operators for ! 2 C.

PROOF. We first note that

j�.�/.´; �/j D j�2j � jRe �j2 � jIm �j2

and hence�K satisfies the hypotheses of Lemma 7.1 for any �1 < 1. In particular,
by that lemma .i��/K W H s

� ! H s�2K
� is a Fredholm operator and satisfies

(7.18) kukH s
�
� CK1 ��Kk.i��/KukH s�2K

�
C ��KCs;N;KkukH�N

�

for any G satisfying (7.1).
Next, observe that .Pq;��!/K�.i��/K W H s

� ! H s�2KC2
� andH s�2KC2

� !
H s�2K
� is compact by Lemma 6.4. Therefore, .Pq;� � !/K W H s

� ! H s�2K
� is a

Fredholm operator.
Finally, using (7.18),

kukH s
�
� C�;Kk.i��/KukH s�2K

�
C Cs;�;N;KkukH�N

�

� C�;Kk.Pq;� � !/KukH s�2K
�

C Cs;�;KkukH s�2
�

C Cs;�;N;KkukH�N
�
:

Estimating kukH s�2
�

by k.Pq;� � !/KkH s�2K�2
�

and iterating we obtain (7.17).
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For invertibility, let Im! � 1 and consider

(7.19)

k.Pq;� � !/ukH s�2
�

kukH s�2
�

� � Imh.Pq;� � !/u; uiH s�2
�

� � Imh��.i�a � iq � !/��T�u; T�uih�i�sC2L2.�/ � CN kuk2H�N
�

where a D a� C a1 is as in (7.10). In particular, for Im! > 0,

Im i�a � iq � ! � �c�j�j2 C C�j�j � Im!;

and for Im! � CN C 1C C�,

Im i�a � iq � ! � �CN � 1 � c�j�j2:
Using this in (7.19), we obtain

k.Pq;� � !/ukH s�2
�

� C�kukH s
�
:

This same argument implies that

k.P �
q;� � x!/ukH s�2

�
� C�kukH s

�
:

and hence Pq;� � ! is invertible with inverse as claimed. The meromorphic Fred-
holm theorem (see, e.g., [11, theorem C.9]) then shows that Rq;�.!/ is a mero-
morphic family of operators for ! 2 C. □

7.4 A parametrix for the resolvent of P0;� �!

We next find q so that the compact perturbation Pq;� of P0;� is invertible. This
inverse will be used to approximate the inverse of P0;� .

LEMMA 7.6. There are !0; �0; �0 > 0 so that for all � > 0 and � 2 .0; �0/,
there is q D q.�; �/ 2 C1

c .�I �0;1// such that for all � 2 .0; �0� and ! 2
.�!0; !0/C i.�!0�;1/, the operators

Pq;� � ! W H sC2
� ! H s

� and Pq;0 � ! W H s
� ! H s

�

are invertible with inverse Rq;�.!/ WD .Pq;� � !/�1 satisfying

kRq;�.!/kH s
�
!H s��

�
� 1:

PROOF. We assume without loss of generality that � < 1
2

, and observe that
by (7.11) and (7.14)

��T�Pq;�S��� D ��.e� � iq/�� CR� :

and thus, by Proposition 6.3,

��h�i2s.��T�.Pq;� � !/S���/�h�i�2s��T�.Pq;� � !/S���
D ��je� � iq � !j2�� C zR�

where for all s 2 R,

k zR�vkH s
�
� C0.kvkH s�1

�
C �kvk

H
sC1
�

C �2kvk
H

sC3
�

/; 0 � � � 1:
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Therefore,

k.Pq;� � !/uk2H s
�

� jhh�i�je� � iq � !j2h�i�h�i��T�u; h�i��T�uih�i�sL2 j
� jh zR�h�i�h�i��T�u; h�i�h�i��T�uih�i�sL2 j

� jhh�i�je� � iq � !j2h�i�h�i��T�u; h�i��T�uih�i�sL2 j
� C0

�kh�i��T�uk2
h�i

s� 1
2
C�
L2.�/

C �kh�i��T�uk2
h�i

sC 1
2
C�
L2.�/

C �2kh�i��T�uk2
h�i

sC 3
2
C�
L2.�/

�
(7.20)

Let �0; �0; and c1 be as in Lemma 7.2 and fix � D �� 2 C1
c .�I �0; 1�/ with

� � 1 on h�i2� < 8max.C0; 1/
c21 min.1; �2/

:

Then, let q DM�� for M to be chosen later and !0 � c1=2. On supp.1 � ��/,
h�i2�je� � iq � !j2
� h�i2�.jRe e� � Re!j2 C jIm e� � q � Im!j2/
� h�i2�.min..c1.1C �j�j2/ � jRe!j/2; jc1�.1C �j�j2/C Im!j2/
� 1
4
h�i2�c21 min.1; �2/.1C �j�j2/2

� .1C C0/.1C �j�j2/2:
On �� � 1, we have

h�i2�je� � iq � !j2 � h�i2�.M 2 � 4.!0� C je� j/2/ � 1
4
.M 2 � C/

for some C > 0 independent of �; !0; � 2 �0; 1�. Thus, for !0 WD min.c1=2; 1/
and

M 2 WD C C 4.1C C0/

�
1C 8max.C0; 1/

c21 min.1; �2/

�2
;

we have

inf
�
h�i2�je� � iq � !j2 � .1C C0/.1C �j�j2/2; 0 � � � 1:

In particular, using this in (7.20) yields

(7.21) kukH s��
�

� k.Pq;� � !/ukH s
�
:

As in the proofs of Lemma 7.4, an identical argument using k.P �
q;� � x!/uk2

H s
�

implies

(7.22) kukH s��
�

� k.P �
q;� � x!/ukH s

�
:

Since P0;� � Pq;� W H sC2
� ! HN

� for any N , Pq;� � ! is a Fredholm operator.
In particular, (7.21) and (7.22) imply that Rq;�.!/ exists and satisfies the requisite
bounds. □
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7.5 Convergence of the poles of R0;�.!/

We now finish the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. First, note that by Lemma 7.6 for ! 2 .�!0; !0/C
i.�!0�;1/ and � 2 �0; �0�, the inverse Rq;� W H s

� ! H s
� exists and satisfies

.IdC iRq;�.!/Q/ D Rq;�.!/.P0;� � !/:
Moreover, by Lemmas 7.4 and 7.5, there is C� > 0 such that for ! 2 .�!0; !0/C
i.C� ;1/, R0;�.!/ W H s

� ! H s
� exists. Therefore, for ! in this region, the inverse

.IdC iRq;�.!/Q/
�1 D R0;�.!/.Pq;� � !/ W H s

� ! H s
�

exists.
Now, for any N > 0, Q W H s

� ! H sCNC�
� and Rq;�.!/ W H sCNC�

� !
H sCN
� , with uniform bounds in � � 0. Therefore, Lemma 6.5 implies that for

any s
Rq;�.!/Q W H s

� ! H s
�

is trace class with uniformly bounded trace class norm. In particular, for ! 2
.�!0; !0/C i.�!0�;1/ the operator

IdC iRq;�.!/Q W H s
� ! H s

�

is Fredholm with index 0. Thus, by the meromorphic version of Fredholm analyt-
icity (see, for instance, [11, theorem C.10])

.IdC iRq;�.!/Q/�1 W H s
� ! H s

�

is a meromorphic family of operators satisfying

(7.23) R0;�.!/ D .IdC iRq;�.!/Q/�1Rq;�.!/:

For q chosen in Lemma 7.6, Rq;�.!/ is analytic in .�!0; !0/ C i.�!0�;1/.
Hence, the eigenvalues of P0;� on H 0

� agree, with multiplicity, with the zeroes of

f�.!/ WD detH0
�
.IdC iRq;�.!/Q/:

LEMMA 7.7. We have
f�.!/ �!

�!0
f0.!/

uniformly on compact subsets of ! 2 .�!0; !0/C i.�!0�;1/.
PROOF. First, note that

��1�.Rq;�.!/ �Rq;0.!//Q� D �iRq;�.!/�Rq;0.!/Q:

Since Q W H s
� ! H sCN

� for any N , and, by Lemma 7.6, Rq;� W H s
� ! H s��

�

with uniform bounds in �, Rq;�.!/�Rq;0.!/Q W H s
� ! H sCN

� is uniformly
bounded in � for any N . In particular, Lemma 6.5 implies

��1k.Rq;�.!/ �Rq;0.!//QkL1.H s
�
!H s

�
/ � C:
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By [11, prop. B.29]��detH s
�
.I C A/ � detH s

�
.I C B/

��
� kA � BkL1.H s

�
!H s

�
/e
1CkAkL1.Hs

�
!Hs

�
/
CkBkL1.Hs

�
!Hs

�
/ :

Therefore, since Rq;�Q W H s
� ! HN

� is uniformly bounded in � for any N , the
lemma is proved. □

Finally, we show that the eigenvalues of P0;� on H s
� agree with those on L2.

Together with Lemma 7.7, this will complete the proof of Theorem 1.1.

LEMMA 7.8. Let � > 0 and G0; G1 satisfy (7.1). Suppose that u 2 H s
�G1

and

(7.24) .P0;� � !/Ku D 0:

Then u 2 Hk
�G0

for any k. In particular, the spectrum of P0;� on L2.Tn/ agrees
with that on H s

�.

PROOF. Let G� D .1 � �.�j�j//G1 C �.�j�j/G0 with � 2 C1
c .R/, � � 1 on

��1=2; 1=2� and supp� � .�1; 1/. Note that G� satisfies (7.1) and lim�!0G� D
G0 pointwise. In particular, G� D G0 on 2j�j < ��1 and G� D G1 on j�j > ��1.

Suppose that u 2 H s
�G1

satisfies (7.24). Then,

kukH s
�G�

D kh�isT�G�
ukL2.�G� /

� 

1j�j���1h�ikT�G�
u


2
L2.�G� /

C 

1j�j>��1h�isT�G1
u


2
L2.�G1

/

� 

1j�j���1h�isT�G�
S�G1

T�G1
u


2
L2.�G� /

C ��1j�j>��1h�isT�G1
u


2
L2.�G1

/

� C�kh�isT�G1
ukL2.�G1

/;

where in the last line we use Lemma 4.9. In particular, u 2 H s.�G� / for each
fixed � > 0.

Since u 2 H s
�G�

, we can apply (7.17) together with (7.24) to obtain

kukHk
�G�

� Ck;N;�kukH�N
�G�

:

where Cs;N;� does not depend on �. Writing this on the FBI transform side, we
have

kh�ikT�G�
ukL2.�G� /

� Ck;N;�kh�i�NT�G�
ukL2.�G� /

� Ck;N;�
�k1j�j�MT�G�

ukL2.�G� /
CM k�N kh�ikT�G�

ukL2.�G� /

�
:
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Now, choosing M � .2Ck;N;�/1=.N�k/ large enough, and moving the last term to
the left-hand side, we obtain

kh�ikT�G�
ukL2.�G� /

� Ck;N;�k1j�j�MT�G�
ukL2.�G� /

D Ck;N;�k1j�j�MT�G0
ukL2.�G0

/

D Ck;N;�k1j�j�MT�G0
S�G1

T�G1
ukL2.�G0

/

� Ck;s;N;�kh�isT�G1
ukL2.�G1

/;

where in the last line we apply Lemma 4.9.
In particular, sending � ! 0C, we have that

lim sup
�!0

kh�ikT�G�
ukL2.�G� /

� CkukH s
�1

:

Finally, by Fatou’s lemma together with the fact that G� ! G0, this implies

kukHk
�G0

D kh�ikT�G0
ukL2.�G0

/ � CkukH s
�1

;

and in particular, u 2 Hk
�G0

as claimed. □

This completes the proof of Theorem 1.1. □

7.6 Poles of the resolvent R0;0.!/ in the upper half-plane
Finally, we study the behavior of R0;0.!/ D R.!/ for Im! � 0 and complete

the proof of Theorem 1.2. (That resolvent was defined in Lemma 7.4.)

LEMMA 7.9. Suppose that

!1 2 fjRe!j < !0; Im! � 0g n specpp;L2.P /:

Then, R.!/ is analytic near !1. Moreover, for s 2 R, Im! > 0, and u 2
L2.Tn/ \ H s

�, R.!/u D RL2.!/u where RL2 denotes the L2 resolvent for
P .

Conversely, if !1 2 .�!0; !0/ \ specpp;L2.P /, then !1 is a pole of R.!/ and

R.!/ D A.!/C �!1
! � !1

;

whereA.!/ W H s
� ! H s

� is analytic near!1 and�!1 is the orthogonal projection
onto the L2 eigenspace of P at !1.

PROOF. For Im! > 0, the spectral theorem shows that the resolvent of P ,

RL2.!/ WD .P � !/�1 W L2.Tn/! L2.Tn/;

exists and is analytic. Also, Lemma 7.4 shows that R.!/ D R0;0.!/ is a mero-
morphic family of operators in .�!0; !0/C i.�c0�;1/.

Lemma B.7 implies that for u 2 A� (defined in (4.2)) and Im! � 1,

RL
2

.!/u 2 A� :
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Since P W H� ! H� and A� � H�, R.!/.P � !/jA�
D IdA�

. Therefore, for
u 2 A� ,

RL2.!/u D �R.!/.P � !/�RL2u D R.!/
�
.P � !/RL2.!/�u D R.!/u:

Since A� are dense in both L2.Tn/ and H s
�,

R.!/u D RL2.!/u; Im! > 0; Re! 2 .�!0; !0/; u 2 L2.Tn/ \H s
�:

This proves the first part of the lemma.
To prove the second part, let !1 2 .�!0; !0/ and �!1 W L2.Tn/ ! L2.Tn/

be the orthogonal projection onto the !1 eigenspace for P . (Note that�!1 may be
the zero operator if !1 is not an embedded eigenvalue for P .) By [12, lemma 3.2],
the !1 eigenfunctions of P are smooth and hence zP D P C �!1 has the same
symbol as P and no embedded eigenvalue at !1. Moreover, we may choose � > 0
so small that !1 is the only embedded eigenvalue for P in j! �!1j < �. Then, for
0 < j! � !1j < �, Im! > 0,

RL2.!/ D . zP � !/�1 C .P � !/�1�!1. zP � !/�1

D . zP � !/�1 C �!1
.!1 � !/.1C !1 � !/

:

Note that by [12, lemma 3.3] for ! 2 .!1 � �; !1 C �/, the limiting absorption
resolvent . zP � ! � i0/�1 W H 1=2C0 ! H�1=2�0 exists.

The meromorphy of R.!/ W H s
� ! H s

� (Lemma 7.4) gives

(7.25) R.!/ D A.!/C
KX
jD1

Bj

.! � !1/j

where A W H s
� ! H s

� is holomorphic near !1. Therefore, for j! � !1j < �,
Im! > 0, and u 2 L2.Tn/ \H s

�,

.! � !1/KA.!/uC
KX
jD1

.! � !1/K�jBju

D .! � !1/K
�
. zP � !/�1 � �!1

1C !1 � !
�
u � .! � !1/K�1�!1u:

(7.26)
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Let u 2 A� � H s
� \ H .1=2/C0. Then, using (7.26) with ! D !1 C ir , we

obtain

BKu D lim
r!0C

�
.ir/KA.!1 C ir/uC

KX
jD1

.ir/K�jBju

�

D lim
r!0C

.ir/K
�
. zP � !1 � ir/�1 � �!1

1 � ir
�
u � .ir/K�1�!1u

D �K1�!1u:

Since A� is dense in both H .1=2/C0 and H s
�, BK D �K1�!1 . In particular, we

may write (7.25) with K D 1 and by the same argument obtain B1 D �!1 . □

Appendix A Review of Some Almost Analytic Constructions
Here we include some facts about almost analytic functions and manifolds. For

an in-depth presentation see [25, secs. 1–3] and [37, chap. X].

A.1 Almost analytic manifolds
Let U be an open subset of Cm and let UR WD U \ Rm. We define an almost

analytic function as follows:

f 2 C aa.U / � @x́f .´/ D OK.jIm ´j1/; ´ 2 K b U:
This definition is nontrivial only for UR ¤ ¿. We write f � 0 in U if f .´/ D
OK.jIm ´j1/, ´ 2 K b U � C

m. We note that (see [37, lemma X.2.2]) for
f 2 C1 that implies @�f � 0 in U .

We also need the notion of an almost analytic manifold. Let � � C
m be a

smooth manifold and �R WD � \ Rm. We say that � is almost analytic if near
any point ´0 2 �R, there exist a neigbourhood U of ´0 in Cm and functions
f1; : : : ; fk 2 C1.Cm/ such that

� \ U D f´ W fj .´/ D 0; 1 � j � kg; @´fj .´0/ are linearly independent,

j@x́fj .´/j D O.jIm ´j1 C �� sup
1�`�k

f`.´/
��1/I

see [25, theorem 1.4].
A special case is given by

(A.1) fj .´/ D j́ � hj .´0/; ´0 WD .´kC1; : : : ; ´n/:

Equivalence of two almost analytic manifolds can be defined as follows (see [25,
def. 1.6, prop. 1.7]): suppose�1\Rm D �2\Rm and that�k is defined by (A.1)
with h D hk , k D 1; 2, respectively. Then

�1 and �2 are equivalent as almost analytic submanifolds (denoted �1 � �2)
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if and only if, on compact subsets,

(A.2)

jh1.´0/ � h2.´0/j D O.jIm h1.´
0/j1/

or, equivalently,

jh1.´0/ � h2.´0/j D O.jIm ´0j1 C jIm h1.´
0/j1/:

We now consider almost analytic vector fields:

V D
mX
jD1

aj .´/@ j́
; aj 2 C aa.Cn/;

which we identify with real vector fields �V such that for u holomorphic �V f D V :�V WD V C xV D 2ReV

D
mX
jD1

Re aj .´/.@ j́
C @x́j /C i Im aj .´/.@ j́

� @x́j /

D
mX
jD1

Re aj .´/@Re j́
C Im aj .´/@Im j́

:

Example A.1. Suppose M � Cm, dimRM D 2k, is almost analytic. Then vector
fields tangent to M are spanned by almost analytic vector fields, Vj D aj .´/ � @´,
@x́aj .´/ D O.jIm ´j1/, ´ 2 M , j D 1; : : : ; k. In fact, using [25, theorem 1.4,
3�] we can write M locally near any ´ 2 M \ Rm as f.´0; h.´0// W ´0 2 Ckg,
h D .hkC1; : : : ; hm/ W Ck ! C

m�k , @x́h D O.jIm ´0j1CjIm h.´0/j1/. We then
put

(A.3) Vj D @
j́
C

mX
`DkC1

@
j́
h`.´

0/@´` :

The real vector fields �Vj then span the vector fields tangent to M .

Following [25, 30] we define the (small complex time) flow of V as follows for
s 2 C, jsj � �:
(A.4) �s.´/ WD exp csV .´/:
The right-hand side is the flow out at time 1 of the real vector field csV , unless the
coefficients in V are holomorphic ��V ;ciV � ¤ 0, which means that exp.s C t /V ¤
exp sV exp tV for s; t 2 C. However, we still have �ciV ; �V � � 0.

LEMMA A.2. Suppose that � 2 Cm is an embedded almost analytic submanifold
of real dimension 2k and V is an almost analytic vector field. Assume that

(A.5) �V , ciV are linearly independent with span transversal to � ,
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and that, in the notation of (A.4),

(A.6) jIm�t .´/j � jt j=CK ; ´ 2 K b �:
Then for any U b Cm, there exists � such that

� WD �
expctV .�/ W � 2 � \ U; jt j < �; t 2 C	

is an almost analytic manifold, �R D �R and dimRe� D 2k C 2.

We will use the following geometric lemma:

LEMMA A.3. Suppose Zj 2 C1.RmIT �Rm/, j D 1; : : : ; J , are smooth vector
fields and, for s 2 RJ ,

hs; Zi WD
JX
jD1

sjZj 2 C1.RmIT �Rm/:

Then for f 2 C1.Rm/

(A.7) f .ehs;Zi.�// D
PX
pD1

1

p�
.hs; Zi/kf .�/COK.jsjPC1/; � 2 K b Rm:

while for Y 2 C1.RmIT �Rm/,

(A.8) e
hs;Zi
� Y.�/ D

PX
pD1

1

p�
adkhs;Zi Y.�/COK.jsjPC1/; � 2 K b Rm:

For a proof, see [22, app. A]. We recall that F�Y.F.�// WD dF.�/Y.�/.

PROOF OF LEMMA A.2. Let � W � ,! C
m be the inclusion map. Then

@ exp.t1bV C t2ciV / � �.�/ W T.0;�/.R2t � �/! T�C
m

is given by .T;X/ 7! T1bV C T2ciV C ��X; which, thanks to our assumptions, is
surjective onto a .2k C 2/ (real)-dimensional subspace of T �Cm. Hence, by the
implicit function theorem, � is a .2k C 2/ dimensional embedded submanifold of
C
m.
To fix ideas we start with the simplest case of � D f0g � C

n. In that case
f� D f�t .0/ W t 2 C; jt j < �g, and from our assumption

jIm�t .0/j � jt1�V C t2ciV j � jt j:
The tangent space is given by

T�t .0/� D f@t�t .0/T C @xt�t .0/ xT W T 2 Cg � C2:
If we show that

(A.9) @xt�t .0/ D O.jt j1/;
then d.T�t .0/�; iT�t .0/�/ D O.t1/ and almost analyticity of � follows from
[25, theorem 1.4, 1�]. The estimate (A.9) will follow from showing that for any
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holomorphic function f , @�1t1 @
�2
t2
@xtf .�t .0//jtD0 D 0. But this follows from (A.7)

and the fact that ��V ;ciV � � 0 at 0. Indeed,

(A.10)

@
�1
t1
@
�2
t2
@xtf .�t .0//jtD0

D @
�1
t1
@
�2
t2
@xt

 
1X
kD0

1

k�

�
t1�V C t2ciV �kf .0/!jtD0

D @
�1
t1
@
�2
t2

 
1X
kD0

1

k�

�
t1�V C t2ciV �k.�V C iciV /f .0/!jtD0

D �V �1ciV �2.�V C iciV /f .0/ D �V �1ciV �2.V � V /f .0/ D 0:

The fact that �V and ciV commute to infinite order at 0was crucial in this calculation.
Holomorphy of f was used to have bW f D Wf .

We now move to the general case. For ´ 2 � , T�t .´/� is spanned by

(A.11) @t�t .´/T C @xt�t .´/ xT ; T 2 C; d�t .´/X; X 2 T´�:
We can repeat the calculation (A.10) with 0 replaced by ´ to see that, using the
assumption (A.6) and the fact that Im�t .´/ D Im ´CO.t/,
(A.12) @xt�.´/ D O.jt j1 C jIm ´j1/ D O.jIm�t .´/j1/:
To consider d�t .´/X D .�t /�Y.�t .´//, we choose a vector field tangent to � ,
Y , Yc.´/ D X . We choose

(A.13) Yc D �Wc ; Wc D
kX

jD1

cjVj ; c 2 Ck;

a constant coefficient linear combination of vector fields (A.3). Then d�t .´/X D
.�t /�Yc.�t .´//, and we want to show that

(A.14) c 7! .�t /�Yc.�t .´// is complex linear modulo errors O.jIm�t .´/j1/.
In view of (A.11), which shows that d.T�t .´/�; iT�t .´/�/ D O.jIm�t .´/j1/
and from [25, theorem 1.4, 1�], we conclude that � is almost analytic.

To establish (A.14) we use (A.8) with hs; Xi D s1�V C s2ciV , s1 D Re t , s2 D
Im t . Since ��V ;ciV � � 0 and �V � ciV =i at Imw D 0, we see that

(A.15) .�t /�Yc.w/ D
1X
pD0

tp

p�
adp
�V
Wc.w/CO.jt jKC1 C jImwj1/:

Because of the form of Wc (see (A.3) and (A.13))

adp
�V
Wc.w/ D2adpV Wc.w/CO.jImw0j1 C jIm h.w0/j1/

and
c 7! adpV Wc.w/ is complex linear:
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Since w D �t .´/, ´ 2 � ,

jImw0j C jIm h.w0/j D O.jIm ´0j C jIm h.´0/j C jt j/
D O.jIm ´j C jt j/ D O.jImwj C jt j/ D O.jImwj/;

since jImwj D jIm�t .´/j � jt j=C . Combining these estimates with (A.15) gives
(A.14). □

A.2 Almost analytic generating functions
We now recall how to obtain generating functions for almost analytic strictly

positive Lagrangian manifolds. We recall that an almost analytic submanifold of
T �Cn, �, is Lagrangian if

.!C/j� � 0; !C WD
nX

jD1

d�j ^ d j́ :

In addition, we say that� is strictly positive ([25, def. 3.3]) if�R is a submanifold
of T �Rm and for all � 2 �R,

(A.16)
1

i
�.V; xV /.�/ > 0 for all V 2 T�� n .T��R/C:

LEMMA A.4. Suppose that � is a strictly positive almost analytic Lagrangian
submanifold of nbhdT �Cm.0/ given by

f.´; �.´// j ´ 2 nbhdCm.0/g:
Then there is C > 0 such that for x 2 nbhdRm.0/,

(A.17)
1

C
d.x; �.�R// � jIm �.x/j � Cd.x; �.�R//:

PROOF. Since �R is a submanifold of T �Rm, we may choose real coordinates
on Rm such that (near 0)

�R D f.x0; 0; �.x0; 0// j .x0; x00/ 2 Rk �Rm�kg:
Then, with � D .x0; 0; �.x0; 0//, .T��R/C D f.�´0 ; 0; @x0�.x0; 0/�´0/ j �´0 2 Ckg,
and it follows that for all �x00 2 Rm�k ,

.0; �x00 ; @x00�.x
0; 0/�x00/ 2 T�� n .T��R/C:

Strict positivity of � then implies that

1

i
�
�
.0; �x00 ; @x00�.x

0; 0/�x00/; .0; �x00 ; @x00�.x0; 0/�x00/
� D 2hIm @x00��x00 ; �x00i > 0:

Since in our coordinates,
1

C
jx00j � d.x; �.�R// � C jx00j;

(A.17) follows. □
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With this lemma in place we can find generating functions in the almost analytic
setting:

LEMMA A.5. Suppose that � is a strictly positive almost analytic Lagrangian
submanifold of nbhdT �Cm.0/ and that �� W T.0;0/�! T0C

m is onto. Then there
exists � 2 C1.nbhdCm.0// satisfying

(A.18) @x́� D O.jIm ´j1 C jIm�.´/j1/
such that, as almost analytic manifolds,

(A.19) � � f.´;�´.´// W j´j < �g; �´.0/ D 0:

PROOF. Since � is an almost analytic Lagrangian, we have � j� � 0 (vanishes
to infinite order at �R) while the projection property shows that, near ´ D 0,
� D f.´; �.´// W ´ 2 Cmg, �.0/ D 0. Hence d.�.´/d´/ � 0 and (see [25, theorem
1.4, 3�])

@x́�.´/ D O.jIm ´j1 C jIm �.´/j1/:
We note that for ´ D x 2 Rn, Lemma A.4 together with the strict positivity at
�R D f.0; 0/g shows that

(A.20) jx00j=C � jIm �.x/j � C jx00j; x 2 Rn; jxj < �:
where �.�R/ is given by fjx00j D 0g. We now see that

0 � � j� D
nX

jD1

@´�j .´/ ^ d j́ CO.jIm ´j1 C jIm �.´/j1/C1.CnI^2nCn/;

and in view of (A.20)

@´k�j .x/ � @ j́
�k.x/ D O.jx00j1/; x 2 Rn; jxj < �:

For x 2 R
n, define � by a simple version of the Poincaré lemma: �.x/ DR 1

0 �.tx/ � x dt . Then

(A.21)

@xj�.x/ D
Z 1

0

 
nX
kD1

t´k@xj �k.tx/C �j .tx/

!
dt

D
Z 1

0

 
nX
kD1

t´k@xk�j .tx/C �j .tx/

!
dt CO.jx00j1/

D
Z 1

0

@t .t�j .tx//dt CO.jx00j1/ D �j .x/CO.jIm �.x/j1/I

in the last argument we used (A.20) again. We now define �.´/ as an almost
analytic extension of �. From [25, prop. 1.7(ii)] we obtain (A.19). □
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A.3 Integration of almost analytic vector fields
Here we show how to solve transport equations arising in Section 5.2. For clarity

we present a simpler case (see also [15, sec. 5.2.2]). Thus we assume that V is an
almost analytic vector field on Cn (w D .w1; w

0/ 2 Cn, w1 2 C, w0 2 Cn�1)
satisfying

jIm exp.ctV /.0; w0/j � jt j=C; w0 2 BCn�1.0; �/;

t 2 C; jt j < �; dw1.V / ¤ 0:

Then .t; w0/ 7! exp.ctV .0; w0// DW ´.t; w0/ is a diffeomorphism for � small
enough. We solve

(A.22) Va � b; a.0; w0/ D a0.w
0/;

by putting

a.´/ WD a1.´/C a2.´/; a1.´/ D a0.w
0.´//;

a2.´.t; w
0// WD

Z 1

0

tb.´.ts; w0//ds:

We calculate the action of V on a1 using almost analyticity of b, the properties of
´.t; w0/ and (A.7):

.Va2/.´.t; w
0//

�
Z 1

0

1X
kD0

sk

k�
VctV ktb.´.0; w0//ds CO.jt j1/

�
Z 1

0

1X
kD0

sk

k�
ctV kC1b.´.0; w0//ds CO.jt j1/CO.jIm ´.0;w0/j1/

�
1X
kD0

1

.k C 1/�
ctV kC1b.´.0; w0//CO.jt j1/CO.jIm ´.0;w0/j1/

D b.´.t; w0//CO.jt j1 C jIm ´.0;w0/j1/

D b.´.t; w0//CO.jIm ´j1/:

Similarly, Va1 � 0 and we obtain (A.22).

Appendix B Physical Deformations and Numerical Results
The purpose of this appendix is to illustrate our results by numerical examples.

We have not yet implemented the general theory numerically. However, in some
circumstances, it is enough to consider physical deformations of Tn rather than the
more complicated phase space deformations. In particular, this is possible when
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there exists G.x; �/ linear in � satisfying HpG > 0 on fp D 0g \ fj�j � C g. This
type of deformation is analogous to the method of complex scaling (rediscovered
as the method of perfectly matched layers in numerical analysis)—see [11, secs.
4.5, 4.7] for an introduction and references.

B.1 Deformations of analytic pseudodifferential operators
For u 2 D 0.Tn/ we extend u to be 2�Zn periodic on Rn. We consider

(B.1)

.Pu/.x/ D lim
�!0C

lim
�!0C

1

.2�/n

Z
eihx�y;�i��j�j

2��jx�yj2p
�
x; �

�
u.y/dy d�;

jp.´; �/j � C hRe �im; jIm ´j � a; jIm �j � bhRe �i;
p.x; �/ D p.x C 2�k; �/; k 2 Zn:

and G.x; �/ 2 S1.T �Tn/ such that

G.x; �/ D hG0.x/; �i; G0 2 C1.TnIRn/:
Remark B.1. Observe that (B.1) agrees with the definition of the standard left quan-
tization of the symbol p as in (6.2).

We consider the complex deformed operator, P� , defined by the property that
when u is analytic in a sufficiently large neighbourhood of Tn (or simply for u
being a trigonometric polynomial),

P�
�
uj��

� D .Pu/j�� ; �� WD fx C i�G0.x/ j x 2 Tng:
We start by deriving a formula for the kernel of P� :

LEMMA B.2. Suppose u 2 C!.Tn/ extends analytically to jIm ´j < a. Then, for
jIm ´j < a, the limit

v.´/ D lim
�!0C

lim
�!0C

1

.2�/n

Z
eih´�y;�i��j�j

2��.´�y/2p.´; �/u.y/dy d�

exists, and moreover, v.´/ is the analytic continuation of Pu.

PROOF. For each fixed �; �, the resulting function of ´ is manifestly analytic in
a neighbourhood of Tn (or Rn if we think of periodic functions). Therefore, in
order to see that v itself is analytic, we need only show that the limit exists and the
convergence is uniform on compact subsets of jIm ´j < a. For this, we deform the
contour in y to

�.´/ W y 7! y C i Im ´;

so that we have

v.´/ D lim
�!0C

lim
�!0C

1

.2�/n

ZZ
�.´/

eih´�y;�i��j�j
2��j´�yj2p.´; �/u.y/dy d�

D lim
�!0C

lim
�!0C

1

.2�/n

Z
eihRe´�y;�i��j�j2��jRe´�yj2p.´; �/u.y C i Im ´/dy d�:
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This contour deformation is justified for each fixed � since the integrand is super
exponentially decaying in y. Now, integrating by parts in � using

L� D
1C hRe ´ � y � 2i�;D�i
1C jRe ´ � yj2 C 4�j�j2 ;

we have for any N > 0

v.´/ D lim
�!0C

lim
�!0C

1

.2�/n

Z
eihRe´�y;�i��j�j2��jRe´�yj2

� .Lt�/N
�
p.´; �/

�
u.y C i Im ´/dy d�:

In particular, since j@�
�
pj � C�hRe �im�j�j; the integrand is bounded by

CN hRe ´ � yi�N h�ime��j�j2

uniformly in � > 0 and compact subsets of jIm ´j < a. Hence, forN large enough,
the limit in � exists and is uniform in compact subsets of jIm ´j < a. It is given by

v.´/ D lim
�!0C

1

.2�/n

Z
eihRe´�y;�i��j�j2.Lt�/

N
�
p.´; �/

�
u.y C i Im ´/dy d�:

Defining B WD .1C h�;Dyi/=.1C j�j2/ we have, for any N > 0,

v.´/ D lim
�!0C

1

.2�/n

Z
�

eihRe´�y;�i��j�j2.B t /N

� �.Lt�/N �p.´; �/�u.y C i Im ´/
�
dy d�:

Since j@�yu.yCi Im ´/j � C� and j@�x@�� p.x; �/j � C�� hRe �im�j� j, the integrand
is bounded by

CN hRe ´ � yi�N h�im�N ;
uniformly in � > 0 and compact subsets of jIm ´j < a. In particular, the limit in �
exists, is uniform in compact subsets of jIm ´j < a, and is given by

v.´/ D 1

.2�/n

Z
�

eihRe´�y;�i.B t /N
�
.Lt0/

N
�
p.´; �/

�
u.y C i Im ´/

�
dy d�:

Thus, we see that v is analytic on jIm ´j < a and agrees with Pu on Im ´ D 0.
In particular, by uniqueness of analytic continuation, v.´/ D .Pu/.´/. □

We now move to the representation for the Schwartz kernel of P� .

LEMMA B.3. The kernel of P� acting on 2�Zn periodic functions on Rn is given
by

(B.2) K� .x; y/ D
1

.2�/n

Z
eihx�y;�ip

�

� .x/; .e� .x; y/

�1/t�
�det.@y
� .y//

det e� .x; y/
d�;

where the integral is interpreted as an oscillatory integral,


� WD x C i�G0.x/;
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and e� .x; y/ satisfies

e� .x; y/.x � y/ D 
� .x/ � 
� .y/:
In particular, P� 2 �m and its principal symbol is given by

�.P� / D p.
� .x/; .@
� .x/
�1/t�/:

Remark B.4. Note that the symbol in (B.2) is not 2�Zn periodic in x. However,
it is of the form a.x; x � y; �/ where a is 2�Zn periodic in the first variable.
Therefore, it still maps periodic functions to periodic functions.

PROOF. By Lemma B.2, for u analytic on jIm ´j < a and � small enough

.P�uj�� /.
� .x//

D lim
�!0C

lim
�!0C

1

.2�/n

Z
eih
� .x/�y;�i��j�j

2��.
� .x/�y/
2

p.
� .x/; �/u.y/dy d�:

Now, since for each fixed � > 0, the integrand is super exponential decaying in y,
we may deform the contour in y to �� , to obtain

(B.3)

.P�uj�� /.
� .x//

D lim
�!0C

lim
�!0C

1

.2�/n

Z
eih
� .x/�
� .y/;�i��j�j

2��.
� .x/�
� .y//
2

� p.
� .x/; �/ det.@y
� .y//u.
� .y//dy d�:

Next, using that for each fixed � > 0, the integrand is super exponentially de-
caying in � and that, with e� .x; y/.x � y/ D 
� .x/ � 
� .y/, we have e� D
IdCO.�hx�yi�1/, we can deform the contour in � to �1 D � 7! .e� .x; y/

t /�1�,
to obtain
.P�uj�� /.
� .x//

D lim
�!0C

lim
�!0C

1

.2�/n

Z
eihx�y;�i��..e

t
�
/�1�/2��.
� .x/�
� .y//

2

� p�
� .x/; .e� .x; y/�1/t��det.@y
� .y//
det e� .x; y/

u.
� .y//dy d�:

Now, integrating by parts as in the proof of Lemma B.2 results in the formula (B.2).
To prove the final claim, let � 2 C1

c .�1; 1/ with � � 1 near 0. Then, for any
� > 0, we have by (B.2) that with

P 0
� D

1

.2�/n

Z
eihx�y;�ip

�

� .x/; .e� .x; y/

�1/t�
�det.@y
� .y//

det e� .x; y/
�.��1jx � yj/d�;

the error P� � P 0
�

is smoothing and maps periodic functions to periodic functions.
In particular, P� is a pseudodifferential operator on Tn with symbol

�.P� / D p.
� .x/; .@
� .x/
�1/t�/;

proving the last claim in the lemma. □
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B.2 The resolvent of the deformed operator
We now consider the setting of Theorem 1.1. Namely, we assume that P is

a self-adjoint zeroth-order pseudodifferential operator and study the properties of
P� .

PROPOSITION B.5. Suppose that P 2 �0 is self-adjoint and satisfies (B.1) and
that G D hG0; �i 2 S1 has HpG > 0 on fp D 0g \ fj�j > C g. Then there are
!0; �0 > 0 such that for 0 < � < �0, ! 2 .�!0; !0/ C i.�!0�;1/, and all
s 2 R,

R� .!/ WD .P� � !/�1 W H s.Tn/! H s.Tn/

is meromorphic with finite rank poles.

PROOF. First, note that there is !1 > 0 such that

HpG > c > 0 on fjpj < !0g \ fj�j > C g:
We compute

�.P� /.x; �/

D p.x; �/C i�h@xp.x; �/; G0.x/i
C h@�p.x; �//; .@
� .x/�1/t � Id/�i CO.�2/

D p.x; �/C i�.h@xp.x; �/; G0.x/i � h@�p.x; �/; .@xG0/t .x/�i CO.�2/

D p.x; �/ � i�HpG.x; �/CO.�2/:

Therefore, for � > 0 small enough, and !0 D min.c; !1/, P� � ! is elliptic when
Im! � �!0� , jRe!j < !0:

In particular, P��! W H s ! H s is Fredholm for ! 2 ��!0; !0�Ci.�!0�;1/.
Moreover, since P� W H s ! H s is bounded, if Im! � 1, P� � ! is invertible
by Neumann series and hence P� �! has index 0. By the meromorphic Fredholm
theorem [11, theorem C.9], its inverse R� .!/ D .P� � !/�1 W H s ! H s is
a meromorphic family of operators with finite rank poles for ! 2 .�!0; !0/ C
i.�!0�;1/. □

PROPOSITION B.6. Let P and G be as in Proposition B.5. There are �0; !0 > 0

such that for 0 < � < �0, the poles of R� .!/ for ! 2 .�!0; !0/C i.�!0�;1/
agree with multiplicity with those of RH�.!/ where RH�.!/ is the resolvent of
P on H s

� from Lemma 7.4.

We will need the following lemma.

LEMMA B.7. Suppose that P is as in (B.1) and RL2.!/ is the resolvent of P on
L2. Then, there are C > 0 and � > 0 such that for Im! � C ,

RL2.!/ W A� ! A� :
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PROOF. We start by showing that P W A� ! A� is bounded. For this, note that
for j 2 Zn,

bPu.j / D
X
k2Zn

yu.k/ yp.j � k; k/

where yp.j; �/ denotes the Fourier series for p.x; �/ in the x-variable. Note that
by (B.1), there is C > 0 such that

j yp.k; �/j � C h�ime�ajkj:
Therefore, for � < a

2
,

kPuk2A�
D
X
j

����X
k

yu.k/ yp.j � k; k/
����2e4jj j�

�
X
j

�X
k

jyu.k/j2e4jkj�
��X

k

j yp.j � k; k/j2e4.jj j�jkj/�
�

D kuk2A�

�X
k;j

e�2ajj�kje4.jj j�jkj/�
�
� Ckuk2A�

�X
j

e.4��16
a�

4�C2a
/jj j

�
� Ckuk2A�

:

Since Im! > kP kA�!A�
, RL2.!/ D �P1

kD0 !
�k�1P k , the proof is complete.

□

PROOF OF PROPOSITION B.6. Let !0 be the minimum of !0 from Proposi-
tion B.5 and Lemma 7.4, and suppose that ! 2 .!0; !0/ C i.�!0�;1/ with
Im! � 1. Then, R� .!/ W H s.�� /! H s.�� / and RL2.!/ W A� ! A� .

Let u 2 A� . Then we have RL2.!/u 2 A� and

.P� � !/
�
�RL2.!/u�j��

� D ..P � !/RL2.!/u/j�� D uj�� :
In particular, �RL2.!/u�j�� D R� .!/.uj�� /.

For u; v 2 A� , and Im! � 1,

hR� .!/uj�� ; vj�� iL2.�� / D

�
RL2.!/ujTn

�
��
; vj��

�
L2.�� /

:

By Lemma 7.9, when Im! > 0 and u 2 A� , we have RH�.!/u D RL2.!/u.
Then, deforming the contour of integration in the inner product to Tn,

hR� .!/uj�� ; vj�� iL2.�� /
D 
�

RL2.!/ujTn

���
��
; vj��

�
L2.�� /

D hRL2.!/u; viL2.Tn/

D hRH�.!/u; viL2.Tn/ D hRH�.!/u; viA��.Tn/;A�.Tn/:

Since A� � H 0
� � A�� , both sides of this equality continue meromorphically

from Im! � 1 to ! 2 .�!0; !0/ C i.�!0�;1/, and the equality continues
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FIGURE B.1. We display the eigenvalues of P� acting on einx2L2
x1

for
three different values of � and �20 � n � 20. P is chosen as in (B.4)
with Va D 0 and Vm D ..1 � �2/C e�2/e��

2

. These choices guarantee
the existence of an embedded eigenvalue at 0 [36, example 1]. Note
that once the eigenvalues emerge from the continuous spectrum, they are
independent of the choice of � .

to hold for ! in this set. Finally, since A� is dense in H s
� and A� j�� is dense

in L2.�� /, this equality implies that the poles of R� and RH� coincide with an
agreement of multiplicities. □

B.3 Numerical examples and discretization
In our numerical study, we consider operators of the form

(B.4)
P D hDi�1Dx2 C sin.x1/.Id � Vm.Dx1//

C .Id � Vm.Dx1// sin.x1/C Va.Dx1/;

with V�.�1/, � D a;m, satisfying

(B.5) jV�.�1/j � Ce�cjRe �1j2 ; jIm �1j < bhRe �1i; � D a;m:

Then, P satisfies the assumptions of Proposition B.5 with G0 D .�2 cos.x1/; 0/:
Since the deformation G does not involve x2, we may decompose

L2.T2/ D
1M

nD�1

einx2L2.x1/

and use that Dx2 jeinx2L2x1 D n Id:
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FIGURE B.2. We display the eigenvalues of P� on einx2L2
x1

with � D

0:8 as well as those for P C i�� for five values of � approaching 0 and
�20 � n � 20. P is chosen as in (B.4) with Vm D ..1��2/Ce�2/e��

2

and Va D 0. These choices guarantee the existence of an embedded
eigenvalue at 0 [36, example 1].

In order to discretize the operator P� jeinx2L2x1 , we replace Tx1 by 2�
N
.Z=NZ/

and denote by X1; Y1 2 �2�N .Z=NZ/�N vectors with the j th entry X1.j / D 2�j
N

.
We will represent the Fourier dual to 2�

N
.Z=NZ/ as �N

2
C Z=NZ and index

vectors on the Fourier side withK 2 f�N
2
;�N

2
C1; : : : ; N

2
�1g:We then compute

a matrix that approximates the action of P� on the Fourier series side.
Letting 
� .x/ WD x C i�G0.x/ and FN the matrix for the discrete Fourier

transform,

.FN /K;j WD �e
�2�ijK=N

p
N

; � N

2
� K � N

2
� 1; 0 � j � N � 1;

we obtain for a vector u 2 CN ,

FN
u


 0
�

D MFNu; M WD FN Diag
�

1


 0
�
.X1/

�
F�
N ;

so that
�FN .Dx1/�u� � �MKFNu�

where
K D Diag.K/:

At this point we discretize .hDi�1=2/� using the functional calculus of [35, sec. 4].
In particular, writing

hDi� D .1C n2/IdC .MK/2;
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we have
FN �.hDi�

1
2 /�u� � .

p
hDi�/�1FNu

where the square root is taken in the sense of matrices and all eigenvalues are taken
with nonnegative real part.

Remark B.8. Note that the functional calculus definition of .hDi�1=2/� agrees with
the definition (B.3) with p D .1C n2C �2/� 1

2 . To see this, observe that at � D 0,
the two operators agree and hence their analytic extensions to �� agree.

The operators �Va=m.D/�� are computed by using (B.3) to write

.Va=m.D//�u.x/ D
X
k

1

2�

Z
ei.
� .x/�
� .y//kVa=m.k/u.y/dy:

This sum converges since Va=m satisfies (B.5). We then evaluate x and y on
2�
N
.Z=NZ/ in the above kernel to obtain the matrix approximation on the Fourier

transform side. More precisely, putting

. yV �� /ij WD
X
k

1

2�

Z
ei.
� .X1.i//�
� .Y1.j ///kV�.k/; � D a;m;

we have
FNV�.D/�u � V��FNu; V�� D FNbV ��F�

N :

Note that this approximation is valid since we take jV.�/j � Ce�C j�j and therefore
the sum in k converges rapidly. Finally, writing

S � D FN Diag.sin.
� .X1///F�
N ;

Our total operator is then approximated by

P� jeinx2L2x1 � F�
NP�NFN ;

P�N WD n.
p
hDi�/�1 C S � .Id � V�m/C .Id � V�m/S

„ C V�a:

Since FN is unitary, we compute the eigenvalues of P�N to approximate the eigen-
values of P� jeinx2L2x1 .

When approximating P C i��, these computations are much simpler and we
use the standard Fourier series approximations

P C i�� � F�
NP�NFN ; P�N WD nhDi�1=2 C S.Id � Vm/C .Id � Vm/SC Va � i�K2;

where

hDi�1=2 WD Diag.hKi�1=2/; V� WD Diag.V�.K//;

S D FN Diag.sin.X1//F�
N :

The results of several numerical experiments are displayed in Figures 1.1, B.1,
and B.2.
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