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Abstract 

Intrinsically disordered proteins defying the traditional protein structure-function paradigm represent a           
challenge to study experimentally. As a large part of our knowledge rests on computational predictions, it                
is crucial for their accuracy to be high. The Critical Assessment of protein Intrinsic Disorder prediction                
(CAID) experiment was established as a community-based blind test to determine the state of the art in                 
predicting intrinsically disordered regions in proteins and the subset of disordered residues involved in              
binding other molecules. A total of 43 methods, 32 for disorder and 11 for binding regions, were                 
evaluated on a dataset of 646 novel manually curated proteins from DisProt. The best methods use                
deep learning techniques and significantly outperform widely used earlier physicochemical methods           
across different types of targets. Disordered binding regions remain hard to predict correctly. Depending              
on the definition used, the top disorder predictor has an F​Max of 0.483 (​DisProt​) or 0.792 (​DisProt-PDB​).                 
As the top binding predictor only attains an F​Max of 0.231, this suggests significant potential for                
improvement. Intriguingly, computing times among the top performing methods vary by up to four orders               
of magnitude. 

Introduction 

Intrinsically disordered proteins and regions (IDPs/IDRs) that do not adopt a fixed three dimensional fold               
under physiological conditions are now well-established in structural biology​4​. Over the last two decades,              
there has been increasing evidence for the involvement of IDPs and IDRs in a variety of essential                 
biological processes​5,6 and molecular functions which complement those of globular domains​1,2​. As they             
are involved in many diseases, such as Alzheimer’s​7​, Parkinson’s​8 and cancer​9​, they also represent              
promising novel targets for drug discovery​10,11​. Despite their importance, IDPs/IDRs are historically            
understudied due to the difficulties in measuring their dynamic behavior directly and because some of               
them are disordered only under particular environmental conditions, such as pH, PTMs, localization, and              
binding, i.e. their structural disorder is context dependent​3​. Experimental methods to detect intrinsic             
structural disorder (ID) include X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR),           
small-angle X-ray scattering (SAXS), circular dichroism (CD) and Förster resonance energy transfer            
(FRET)​12–15​. Each technique provides a unique point of view on the phenomenon of ID and different                
types of experimental evidence give researchers insights over the functioning mechanisms of IDPs, such              
as flexibility, folding-upon-binding, conformational heterogeneity.  
An accumulation of experimental evidence has corroborated the early notion that ID can be inferred from                
sequence features, first suggested by R J Williams​16​. Since then, dozens of ID prediction methods based                
on different principles and computing techniques have been published ​17​, such as ​VSL2B​18​, DisEMBL ​19​,             
DISOPRED​20​, IUPred ​21​, Espritz​22 and many others. ​Coordinates of intrinsically disordered regions (IDRs)            
and annotations related to their function both predicted and derived from experimental evidence are              
stored in a variety of dedicated databases, each focusing on particular aspects of the ID spectrum,                
namely DisProt​23​, MobiDB​24​, IDEAL ​25​, DIBS​26 and MFIB​27​. Since over the last few years, IDR coordinate               
annotations are also provided in some of the most important core data resources like InterPro ​28​,               
UniProt​29​ and PDBe ​30​.  

1 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.08.11.245852doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?zaQoZ9
https://www.zotero.org/google-docs/?vn4nUv
https://www.zotero.org/google-docs/?C1pnOi
https://www.zotero.org/google-docs/?v1ZF20
https://www.zotero.org/google-docs/?2un2LK
https://www.zotero.org/google-docs/?UoS69T
https://www.zotero.org/google-docs/?4Os1UA
https://www.zotero.org/google-docs/?xrdn3W
https://www.zotero.org/google-docs/?xrJUGy
https://www.zotero.org/google-docs/?P8EQiC
https://www.zotero.org/google-docs/?Y48eXw
https://www.zotero.org/google-docs/?cP5GLP
https://www.zotero.org/google-docs/?3u4gvr
https://www.zotero.org/google-docs/?aEqdPk
https://www.zotero.org/google-docs/?pIT97C
https://www.zotero.org/google-docs/?m17Wvv
https://www.zotero.org/google-docs/?b3LCn8
https://www.zotero.org/google-docs/?kefXDP
https://www.zotero.org/google-docs/?NKyilx
https://www.zotero.org/google-docs/?ercnBT
https://www.zotero.org/google-docs/?7G48V5
https://www.zotero.org/google-docs/?u9ofnP
https://www.zotero.org/google-docs/?pZ9KTc
https://www.zotero.org/google-docs/?vwLgBO
https://doi.org/10.1101/2020.08.11.245852
http://creativecommons.org/licenses/by-nc-nd/4.0/


The large variety of ID predictors available makes it difficult to compare them, confounding biologists               
wanting to make an informed choice to find the best performers. Similarly, binding predictions are widely                
used but an assessment of these predictors has never been performed and is highly needed in the field.                  
Since many IDPs are interaction hubs​6​, this makes their binding regions particularly challenging to              
predict and a good benchmark. In this report, we describe the first edition of CAID, a bi-annual                 
experiment inspired by the Critical Assessment of protein Structure Prediction (CASP) for the             
benchmarking of ID and binding predictors on a community curated dataset of 646 novel proteins               
obtained from DisProt​23​. CAID is the first experiment of its kind and is bound to set a new quality                   
standard in the field. 
 
Results 
Given a new protein sequence, the task of an IDR prediction software is to assign a score to each                   
residue describing its tendency of being intrinsically disordered at any stage of the protein life. In CAID,                 
we evaluate both the accuracy of prediction methods and technical aspects related to software              
implementation like their speed, which has a direct impact on carrying out large-scale analyses. 
CAID was organized as follows (​Fig. 1A​). Participants submitted their implemented prediction software             
to the assessors and during the submission phase, the authors provided support to install and test                
execution on MobiDB servers. After the submission deadline, the assessors ran the packages and              
generated predictions for a set of proteins whose disorder annotations were not available at the training                
time.  
Structural properties of proteins can be studied by a number of different experimental techniques, some               
giving direct, some indirect evidence of disorder. Different techniques are biased in different ways, for               
example, IDRs inferred from missing residues in X-ray experiments are generally shorter because longer              
non-crystallizable IDRs are either excised when preparing the construct or are detrimental to the              
crystallization of the protein. On the contrary, circular dichroism can detect the absence of fixed structure                
in the full protein but does not provide any information about IDR coordinates. IDR annotations are more                 
reliable when confirmed by multiple lines of independent and different experimental evidence. 
In this first round of CAID, we selected the DisProt database as the reference for structural disorder                 
because it provides a large number of manually curated disorder annotations at the protein level, with                
the majority of residues annotated with more than one experiment​23​. DisProt annotates disordered             
regions of at least 10 residues in length to evaluate IDRs likely to be associated with a biological function                   
by excluding short loops, i.e. segments connecting secondary structure elements. DisProt also contains             
protein-protein interaction interfaces which fall into disordered regions. These binding regions were used             
as a separate dataset (DisProt-Binding). 
In an ideal situation, all DisProt annotations would be complete, i.e. each protein in DisProt would be                 
annotated with all the disordered (or binding) regions it contains under physiological conditions. If this               
were true, we could simply consider all residues to be structured (i.e. negatives) if they are not                 
annotated as disordered (i.e. positives). Since not all IDRs are in DisProt yet, we created the                
DisProt-PDB dataset, in which negatives are restricted by PDB observed residues (​Fig. 1C​). This              
dataset is more conservative but can be considered more reliable as it excludes “uncertain” residues,               
which have neither structural nor disorder annotation. Compared to DisProt, DisProt-PDB is more similar              
to datasets used to train some of the disorder predictors (e.g. in ​19,20,22​) and for CASP disorder                
challenges​31​. 
The distribution of organisms reflects what is known from other studies​1,2 with the majority of ID targets                 
coming from eukaryotes with a good representation of viruses and bacteria, and much fewer from               
archaea (​Fig. 1F​). At the species level, annotations are strongly biased in favor of model organisms,                
with the majority of cases coming from human, mouse, rat, ​Escherichia coli and a few other common                 
model organisms (see Supplementary Figure 6). Target proteins are not redundant at the sequence              
level and are different from known examples available in the previous DisProt release, with a mean                
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sequence identity of 22.2% against the previous DisProt release and 17.1% within the dataset (see               
Supplementary Figure 3). CAID has two main categories: the prediction of intrinsic structural disorder              
and the predictions of binding sites found in IDRs. 
 
IDR prediction performance  
The quality of IDR prediction can be evaluated in different ways depending on the scope of studying                 
structural disorder. In some cases, it is relevant to know the fraction of disorder; in other cases, it is more                    
important to know the exact position of the IDR in the sequence. Since disorder can be used as a proxy                    
to estimate the complexity of an organism or to complement a sequence search, it is also important for a                   
predictor to be fast enough to be applied at the genome-scale. For CAID, we report a simple metric, the                   
maximum F1-score (​F​max​; i.e. maximum harmonic mean between precision and recall across all             
thresholds), which takes into account predictions across the entire spectrum of sensitivity, from high to               
low​3​.  
The performance of top methods, based on ​F​max and calculated over all targets, are shown in ​Figure 2                  
for the DisProt and DisProt-PDB datasets. The F1-score, which has the advantage of being insensitive               
to dataset imbalance (​Fig. 1D​), provides a ranking almost identical to the one obtained with the                
Matthew’s Correlation Coefficient (MCC). See Supplementary Figures 12, 13, 33, 34 for a full              
comparison and the dependence of F1-score and MCC on the predictor confidence score, along with the                
predictor default confidence threshold (Supplementary Figures 10, 11, 30, 31). All methods were             
compared with various baselines described in the “Online Methods”. In some applications, the objective              
was to predict which protein fragments of the protein are disordered, based on known examples in the                 
PDB. However, this was a different problem than predicting functional IDRs, for instance, aiming to               
evaluate their biophysical properties. The naive baselines help us understand this difference and assess              
how effective the transfer-by-homology of structural information can be for IDR prediction (see             
Discussion). In the ​PDB Observed baseline, mimicking perfect knowledge, all residues not covered by              
any PDB structure are labelled as disordered. Alternatively, in the ​Gene3D ​baseline, residues are              
considered disordered if they do not match any Gene3D prediction for homologous domains. In the               
Shuffled-Dataset baseline, the reference is randomly shuffled at the dataset level, while Random is an               
actual random predictor which does not use any prior knowledge. 
Both the ​F​max (​Fig.s 2B, 2D ​) and Area under the ROC curve (AUC) (​Fig.s 3E, 3G​) measures are                  
substantially different when predictors are tested on the DisProt dataset, which contains “uncertain”             
residues, and when tested on the DisProt-PDB dataset. ​PDB Observed ​baseline, by definition, cannot              
predict negative residues outside PDB regions. Therefore, it mainly generates false positives (56.5%),             
which drop to zero when considering the DisProt-PDB dataset, where the “uncertain” residues are              
completely filtered out. IDRs overlapping with PDB regions, usually corresponding to residues that take              
part in folding-upon-binding events, instead generate false negatives. These are far less common             
(20.4%) and remain the same for the two datasets. The ​Gene3D baseline typically increases PDB               
coverage (negatives) exploiting the transfer-by-homology principle. As a consequence, the probability of            
false positives is lower (48.6%), and false negatives are only marginally more frequent (20.9%). For the                
DisProt dataset, ​Gene3D slightly outperforms ​PDB Observed both in terms of ​F​max (​Fig. 2 panels B,D ​)                
and AUC (​Fig. 3 panels E,G​). Instead, for the DisProt-PDB dataset, ​PDB Observed is significantly               
superior to all methods with only 6.3% of mispredicted residues, all false negatives. 
Given the relevance of the host organism for determining environmental factors for IDPs such as               
temperature, we wondered whether predictor performance would be affected in different subsets. For             
this reason, performance has also been assessed separately for mammalian and prokaryotic proteins             
(see Supplementary Figures 19-28 for the ​DisProt and 40-49 for the ​DisProt-PDB dataset)​. The ranking               
changes only slightly and after the top two positions. Performance for mammalian sequences is ca. 0.05                
and 0.03 lower in terms of ​F​max ​and AUC for all methods, suggesting this to be a somewhat harder                   
challenge. 
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Across the different performance measures, several methods can be consistently found in the top five:               
These are SPOT-Disorder2, fIDPnn, RawMSA and AUCpreD. While the ordering changes for different             
measures and reference sets, and the differences among them are not statistically significant (see              
Supplementary Figures 17-18, 23, 28, 38-39, 44 and 49), these methods can be broadly seen as                
performing consistently well. Looking at the Precision-Recall curves (​Fig. 2 panel D​), we notice that the                
top five methods (excluding fIDPnn/lr in the DisProt dataset and AUCpred-np in the DisProt-PDB              
dataset) leverage evolutionary information, introducing a database search as a preliminary step. The             
performance gain, which is on average 4.5% in terms of F​Max​, comes at the cost of slowing down the                   
prediction by two to four orders of magnitude (​Fig. 2 panel C​, see also Supplementary Figures 4, 12-14                  
and 33-35). 
 
Fully disordered proteins 
Within the challenge of disorder prediction, we separately considered the special category of fully              
disordered proteins (IDPs). These proteins are interesting as they are particularly challenging to             
investigate experimentally, e.g. they cannot be probed with X-ray crystallography, yet they are of great               
interest as they fulfil unique biological functions​2,32​. We therefore designed another challenge, in which              
the task is to tell apart fully from not-fully disordered proteins. In this challenge, predictors are asked to                  
identify entire proteins considered fully disordered, i.e. the evaluation is performed on entire proteins              
instead of single residues. We consider a fully disordered protein, those with at least 95% of residues                 
predicted or annotated as disordered. According to this definition, the number of fully disordered proteins               
in the DisProt dataset is 40 out of 646. Different threshold values did not significantly affect the ranking                  
(see Supplementary Material Tables 6, 7 and 8). In ​Table 1 all methods are sorted based on F1-Score.                  
False positives are limited for many methods, although correct IDP predictions are generally made for               
less than half of the dataset. This suggests room for improvement, as fully disordered proteins should be                 
easier to predict from sequence. Methods using secondary structure information may be penalized for              
IDP prediction, as annotations frequently rely on detection methods without residue level resolution (e.g.              
circular dichroism, see Supplementary Figure 7). 
 
Prediction of disordered binding sites 
As a second major challenge, CAID also evaluates the prediction of binding sites within IDRs, commonly                
referenced to as MoRFs, SLIMs or LIPs​24,33​, leveraging DisProt annotations of binding regions (see              
Supplementary Figure 51 for dataset composition and overlap to other databases). In DisProt, binding              
annotations retrieved from literature are fraught with more ambiguity than disorder ones. In addition, the               
experimental evidence for the exact position of a binding region is often not accurate, as binding is                 
annotated as a feature of an IDR. Our reference includes all entries in the DisProt dataset even if they                   
were not annotated with binding regions. This translates to a dataset where the majority of targets (414                 
out of 646) have no positives. In this challenge, we kept the ​PDB Observed and ​Gene3D baselines even                  
if they are not designed to detect binding regions. Target binding regions in DisProt are found within                 
IDRs. Therefore, the baselines are expected to attain high recall and low precision. All models perform                
poorly as do the naive baselines (​Fig.s 4B, 4D​). At ​F​Max​, their recall is higher than their precision as for                    
the baselines (​Fig. 4C​). However, the top 5 methods, ANCHOR-2 ​21​, DisoRDPbind ​34​, MoRFchibi (light             
and web)​35​, and OPAL ​36​, perform better than the baselines (​Fig. 4B​), which trade-off much more               
precision due to an abundant over-prediction. The execution time of the top five methods have very                
different scales and are inversely proportional to their performance, with the best methods requiring less               
CPU time. Performance of predictors on mammalian and prokaryotic proteins for the ​DisProt-Binding             
dataset are only marginal (see Supplementary Figures 62-71). 
 
Software implementation 
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We also evaluated for CAID technical aspects related to software implementation, i.e. speed and              
usability, which have a direct impact on the application of large-scale analyses. Speed in particular is                
highly variable, with methods of comparable performance varying by up to four orders of magnitude in                
execution time (see Supplementary Figure 4). In general, all methods incorporate a mix of different               
scripts and programming languages. Some software configuration scripts contain errors. In many cases             
data paths and file names are hardcoded inside the program, e.g. the path to the sequence database or                  
the output file. Only a few programs allow specification of a temporary folder, which is important for                 
parallel execution. It is possible to provide precalculated sequence searches only for a few methods.               
Several methods are implemented relying on dependencies, sometimes on specific software versions or             
CPUs with a modern instruction set. Some programs are particularly eager for RAM, crashing with               
longer input sequences, or do not have a timeout control and execute forever. Output formats differ, with                 
some not adequately documented. Only a few software support multi-threading and only one was              
submitted as a Docker container. In summary, the software implementation for disorder predictors has              
considerable room for improvement in order to allow their use in practice.  
 
Discussion 

The problem of predicting protein ID is challenging for several reasons. The first is in the definition of ID,                   
which is a term that indicates that the sequence of a protein does not encode a stable structural state                   
that is ordered. Defining ID as a property that a protein does not have (i.e. order) implies that many                   
conformational states fit the definition, covering a continuum between fully disordered states and folded              
states with long dynamic regions​37,38​. The second problem, which follows from the first, is that we do not                  
yet have a consensus reference experimental method, or set of experimental methods, to characterize              
ID (as we have X-ray crystallography to define ordered structures), so we lack a clear operational                
definition of ID. The third problem is that the disordered state is dependent on events or conditions at                  
certain points in time along the life of a protein. Some proteins remain unfolded until they bind a                  
partner​39​, others are disordered as long as they are in a specific cellular compartment and fold upon                 
translocation ​40​, and some enzymes undergo order-to-disorder-to-order transition as part of their catalytic            
cycle ​41​. 
Given these challenges, the CAID project represents a community effort to develop and implement              
evaluation strategies to assess: (1) clear definitions of ID and (2) the performance of methods to predict                 
ID. Concerning (1), in its first round, CAID leverages the community-driven DisProt database ​23​, a              
repository of manually curated experimental evidence of disorder, to blind test disorder predictors. In              
DisProt, curators store the coordinates of IDRs when there is experimental evidence in peer-reviewed              
articles of highly mobile residue stretches longer than 10 residues. We anticipate that future rounds may                
include reference data coming from ever-improving consensus operational definitions, as for example            
those coming from NMR measurements, which are particularly powerful in characterising experimentally            
protein disorder. For example, one could define disordered regions as those that exhibit high              
conformational variability under physiological conditions using multiple orthogonal measures.         
Concerning (2), this kind of challenge was tried from 5th to 10th editions of CASP but was abandoned                  
due to the lack of good reference data. One of our long-term goals with CAID is to help guide the choice                     
of candidate IDPs for experimentalists to test in their experiments. 
One of the main properties of IDPs is their ability to form many low-affinity and high-specificity                
interactions​42​. It is, however, challenging to predict the interacting residues of an IDPs from its sequence.                
Presently, multiple high-throughput experiments for the detection of interactions capable of resolving the             
interacting regions exist​43​. However, binding sites obtained from high-throughput experiments (e.g. CoIP,            
Y2H) and reported in literature often lack this grade of resolution. Furthermore, while some attempts               
have been made to mitigate this problem​44​, a high rate of false positives plagues all experimental                
methods to identify binding: proteins interacting in experimental conditions do not necessarily interact in              
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the cell under physiological physico-chemical conditions or simply due to spatio-temporal segregation ​45​.            
DisProt annotates binding partners and interaction regions of IDPs, which we use in CAID to attempt the                 
first assessment of binding predictors.  
One of the major challenges we encountered in CAID is the identification of residues that are not                 
disordered or do not bind, in other words, the definition of negatives. Knowledge about negative results                
is a long-standing problem in biology​46 and is especially relevant for our assessment. If the annotation of                 
IDRs in a protein is not complete, how do we know which regions of the protein are structured? This is                    
even more relevant for binding regions, since at the moment we are far from mapping all binding                 
partners of a protein with residue-resolution under different cellular settings. To overcome this problem              
intrinsic to how we detect and store data, we tested the performance of ID predictors in two scenarios. In                   
the first scenario, we assumed that all annotations were complete, thus considering all the residues               
outside of annotated regions as structured. In the second scenario, we used resolved residues from               
PDBs to annotate structure and filtered out all residues that were neither covered by disorder nor                
structure annotation. Binding site predictors were tested on a dataset where all residues outside of               
binding regions are considered not-binding. 
Despite these challenges, CAID revealed progress in the detection of ID from sequence and highlighted               
that there is still scope for improving both disorder- and binding-site predictors. One of the primary goals                 
of CAID was to determine whether automated algorithms perform better than naive assumptions on the               
structural state based on indirect sources, such as sequence conservation or three-dimensional            
structure. As far as ID is concerned, the performance of predictors in comparison to naive baselines                
largely depends on the assumption made on non-disordered residues. On the ​DisProt-PDB dataset,             
where disorder is inferred from DisProt annotation and order inferred from the presence of a PDB                
structure and all other residues are filtered out, naive baselines outperform predictors. However, when              
only DisProt annotations are considered (​DisProt dataset) tables are turned, and predictors, while             
obtaining lower overall scores, outperform naive baselines (​Fig.s 2 & 3​). When “uncertain” residues are               
kept in the analysis (​DisProt dataset), the number of false positives increases and, as a result, precision                 
plunges, lowering the F1-score. This means that predictors detect ID in the “uncertain” residues,              
indicating that DisProt annotation is incomplete, predictors over-predict or both. Naive baselines are             
outperformed by predictors since they predict all “uncertain” residues as disordered, which are all              
counted as false positives. This suggests that predictors have reached a state of maturity and can be                 
trusted with relative confidence when no experimental evidence is available. It also confirms that when               
experimental evidence is present, it is more reliable than predictions. 
An interesting particular case of disorder prediction is how predictors behave with DisProt targets whose               
annotations cover all (or almost all) residues, i.e. fully disordered proteins (Table 1). This case is                
compelling because usually predictors are not trained on these examples. Predictors vastly outperform             
naive baselines in these cases due to their large over-prediction. The count of false positives puts                
baselines at a disadvantage, compensating for their low count of false negatives. PDB Observed              
classifies a protein as fully disordered whenever no structure is available for that protein. However, the                
absence of a protein from PDB may be simply due to the lack of studies on that protein. Gene3D                   
performs better since Gene3D models generalize from existing structures but still tends to over-predict              
disorder (or under-predict order). At the opposite side of the spectrum, methods that are too               
conservative in their disorder classification perform worse than expected on fully disordered proteins, for              
example, MobiDB-lite, which is conservative by design. Results on the ​DisProt ​dataset suggest several              
methods are consistently among the top performers, although the exact ranking is subject to some               
variation. fIDPnn and SPOT-Disorder2 perform consistently well, with RawMSA and AUCpreD following            
closely. The execution times for these four methods vary by up to three orders of magnitude, suggesting                 
that there is room for optimizing the software. Of note, both fIDPnn and RawMSA were unpublished at                 
the time of the CAID experiment. 
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While top-performing methods are able to achieve a certain balance between under- and             
over-prediction, it is interesting to notice how they are not able to identify all fully disordered targets: not                  
even methods that trade-off specificity to increase their detection of relevant cases are able to attain full                 
sensitivity. This confirms that predictors are not trained on this particular class of proteins and suggests                
that they have room for improvement in this direction. 
The challenge of binding site identification is the first attempt at assessing binding predictors. As               
discussed above, this is intrinsically difficult due to the complex nature of this phenomenon and how it is                  
detected and stored. While we are aware of these difficulties, we still think that an assessment is useful                  
for researchers who either use or develop binding predictors. Furthermore, while it is arguable that this                
evaluation has limitations, its publication helps highlight such constraints and thus exposing this problem              
to the rest of the scientific community. We compared predictors to the same baselines used for the                 
disorder challenge but, while their design remains unchanged, their underlying naive assumption            
changes slightly. The PDB observed baseline assumes that whatever is not covered by a structural               
annotation in PDB, is not only disordered but also involved in one or more interactions. When                
considering all targets in the CAID dataset, including those which are not annotated as binders,               
predictors slightly outperform the baselines, but have limited performance overall. Figure 4 shows a              
disagreement with the ​DisProt-Binding reference in both the positive and the negative classification,             
highlighting the potential for improvement of binding predictors. We have to consider that the dataset               
used is strongly unbalanced. Although a prominent function of IDPs is to mediate protein-protein              
interactions, most of the targets (414 of 646) do not contain an identified binding region and targets that                  
do include binding regions often have them spanning the whole disordered region in which they are                
found. This strong bias is due to how DisProt was annotated in the past, with the label “binding” being                   
associated with an entire IDR. In the latest version of DisProt this annotation style has been dropped in                  
favor of a more detailed one, resulting in future editions of CAID being less biased towards long binding                  
regions. The improved definition of the boundaries of disordered binding regions could favour methods              
that were trained specifically to recognize shorter binding regions. In all, this indicates that there is large                 
growth potential in both the models and the reference building for this challenge. 
In conclusion, the CAID experiment has provided the first fully blind assessment of ID predictors in                
almost a decade and the first-ever of ID binding regions. The results are encouraging, showing that the                 
methods are mature enough to be useful but significant room for improvement remains. As the quality of                 
ID data improves, we expect predictors to become more accurate and reliable. 
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Figures  

 

Figure 1 ​ - ​(A) ​ CAID timeline: phases of CAID from June 2018 to today. ​(B)​ CAID process: Iterative 
process of the CAID experiment in 4 phases: (i) Annotation: any process that produces unpublished 
annotation of IDR coordinates, in this edition annotation refers to the DisProt round of annotation. (ii) 
Prediction: annotations are used to build references with which we test predictors (iii) Evaluation: 
Predictions are evaluated (iv) Report: A report of the evaluation is produced and published on 
peer-reviewed journals and to a web page that will allow to browse the evaluation of all CAID editions. 
(C)​ Residue classification strategy for the ​DisProt​ and ​DisProt-PDB​ references. ​(D)​ The number of 
residues for each class in different references. ​(E)​ The number of proteins for each set of annotations 
that they contain. ​(F) ​ The number of proteins each taxon ​(G)​ Positive label (disorder/binding) fraction in 
the dataset (left), distribution of protein length (middle) and region length (right) in the different reference 
sets. 
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Figure 2 ​ - Prediction success and CPU times for the ten top-ranking disorder predictors in the ​DisProt 
dataset. Reference used (​DisProt​) in the analysis and how it is obtained (panel ​A​). Performance of 
predictors expressed as maximum F1-Score across all thresholds (F​max​) (panel ​B​) and AUC (panel ​E​) for 
the top ten best ranking methods (light gray) and baselines (white) and the distribution of execution time 
per-target (panels ​C, F​) using ​DisProt ​dataset. The horizontal line in panels B, E indicates the F​max ​and 
AUC of the best baseline, respectively. Precision-Recall (panel ​D​) and ROC curves (panel ​G​) of ten 
top-ranking methods and baselines using ​DisProt ​dataset, with level curves of the F1-Score and 
Balanced accuracy, respectively. Magenta dots on panels C, F indicate that the whole distribution of 
execution-times is lower than 1 second. 
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Figure 3 ​ - Prediction success  and CPU times for the ten top-ranking disorder predictors in the 
DisProt-PDB​ dataset. Reference used (​DisProt-PDB​) in the analysis and how it is obtained (panel ​A​). 
Performance of predictors expressed as maximum F1-Score across all thresholds (F​max​) (panel B) and 
AUC (panel ​E​) for the top ten best ranking methods (light gray) and baselines (white) and the distribution 
of execution time per-target (panels ​C, F​) using ​DisProt-PDB ​dataset. The horizontal line in panels B, E 
indicates the F​max ​and AUC of the best baseline, respectively. Precision-Recall (panel ​D​) and ROC 
curves (panel ​G​) of ten top-ranking methods and baselines using ​DisProt-PDB ​dataset, with level curves 
of the F1-Score and Balanced accuracy, respectively. Magenta dots on panels C, F indicate that the 
whole distribution of execution-times is lower than 1 second 
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Figure 4 ​ - Prediction success and CPU times for the ten top-ranking binding predictors in the 
DisProt-Binding​ dataset. Reference used (​DisProt-Binding​) in the analysis and how it is obtained (panel 
A​). Performance of predictors expressed as maximum F1-Score across all thresholds (F​max​) (panel ​ B​) 
and AUC (panel ​E​) for the top ten best ranking methods (light gray) and baselines (white) and the 
distribution of execution time per-target (panels ​C, F​) using ​DisProt-Binding ​dataset. The horizontal line 
in panels B, E indicates the F​max ​and AUC of the best baseline, respectively. Precision-Recall (panel ​D​) 
and ROC curves (panel ​G​) of ten top-ranking methods and baselines using ​DisProt-Binding ​dataset, with 
level curves of the F1-Score and Balanced accuracy, respectively. Magenta dots on panels C, F indicate 
that the whole distribution of execution-times is lower than 1 second 
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Fully disordered proteins (ID fraction ≥95%) 

 TN FP FN TP MCC F1-S TNR TPR PPV BAC 

fIDPnn 585 16 19 26 0.569 0.598 0.973 0.578 0.619 0.776 

RawMSA 582 19 19 26 0.546 0.578 0.968 0.578 0.578 0.773 

VSL2B 578 23 22 23 0.468 0.505 0.962 0.511 0.500 0.736 

fIDPlr 566 35 18 27 0.468 0.505 0.942 0.600 0.435 0.771 

Predisorder 589 12 26 19 0.479 0.500 0.980 0.422 0.613 0.701 

SPOT-Disorder1 572 29 23 22 0.416 0.458 0.952 0.489 0.431 0.720 

DisoMine 551 50 17 28 0.421 0.455 0.917 0.622 0.359 0.770 

AUCpreD 588 13 28 17 0.431 0.453 0.978 0.378 0.567 0.678 

SPOT-Disorder2 574 27 24 21 0.409 0.452 0.955 0.467 0.438 0.711 

SPOT-Disorder-Singl
e 594 7 30 15 0.452 0.448 0.988 0.333 0.682 0.661 

IsUnstruct 588 13 29 16 0.411 0.432 0.978 0.356 0.552 0.667 

IUPred2A-long 595 6 32 13 0.420 0.406 0.990 0.289 0.684 0.639 

Gene3D 505 96 10 35 0.391 0.398 0.840 0.778 0.267 0.809 

ESpritz-N 597 4 33 12 0.426 0.393 0.993 0.267 0.750 0.630 

ESpritz-D 555 46 23 22 0.342 0.389 0.923 0.489 0.324 0.706 

PyHCA 596 5 33 12 0.411 0.387 0.992 0.267 0.706 0.629 

JRONN 595 6 33 12 0.397 0.381 0.990 0.267 0.667 0.628 

MobiDB-lite 599 2 34 11 0.437 0.379 0.997 0.244 0.846 0.621 

DisPredict-2 586 15 32 13 0.330 0.356 0.975 0.289 0.464 0.632 

IUPred2A-short 599 2 35 10 0.413 0.351 0.997 0.222 0.833 0.609 

S2D-2 572 29 30 15 0.288 0.337 0.952 0.333 0.341 0.643 

PDB observed 468 133 13 32 0.286 0.305 0.779 0.711 0.194 0.745 

AUCpreD-np 590 11 35 10 0.293 0.303 0.982 0.222 0.476 0.602 

ESpritz-X 595 6 36 9 0.321 0.300 0.990 0.200 0.600 0.595 

FoldUnfold 456 145 14 31 0.256 0.281 0.759 0.689 0.176 0.724 

DISOPRED-3.1 596 5 39 6 0.246 0.214 0.992 0.133 0.545 0.563 

DisEMBL-HL 601 0 41 4 0.288 0.163 1.000 0.089 1.000 0.544 

PDB Remote 590 11 42 3 0.085 0.102 0.982 0.067 0.214 0.524 

DisEMBL-465 601 0 43 2 0.204 0.085 1.000 0.044 1.000 0.522 

PDB Close 589 12 43 2 0.043 0.068 0.980 0.044 0.143 0.512 

Conservation 441 160 38 7 -0.064 0.066 0.734 0.156 0.042 0.445 

DynaMine 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500 

GlobPlot 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500 

DFLpred 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500 
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Table 1: ​ Confusion matrix and metrics for the prediction of fully disordered proteins on ​DisProt​ dataset. 
TP (True Positives count), FP (False Positives count), FN (False Negatives count), TN (True Negatives 
count), MCC (Matthews correlation coefficient), F1-S (F1-Score), TNR (True Negative Rate, Specificity), 
TPR (True Positive Rate, Recall), PPV (Positive Predictive Value, Precision) and BAC (Balanced 
Accuracy) for the prediction of fully disordered proteins. Proteins with disorder prediction or disorder 
annotation covering at least 95% of the sequence are considered fully disordered. Predictors are sorted 
by their F1-Score. Baseline names are in bold. 
 

Methods 
All software programs were executed using a homogeneous cluster of nodes running Ubuntu 16.04 on               
Intel 8 core processors with 16 GB of RAM and a mechanical harddisk. In the text we refer to proteins as                     
targets, to disordered residues as positive labels and structured/ordered residues as negative labels.  

Reference sets 
In CAID different reference sets were built, differing in the subset of DisProt used to define positive                 
labels and in the definition of negatives labels.  
For the disorder challenge, we generated two reference sets called ​DisProt and ​DisProt-PDB​. Both              
references are composed of a set of 646 targets, annotated between June 2018 and November 2018                
(DisProt release 2018_11). Positive labels in both reference sets are those residues annotated as              
disordered in the DisProt database. In the ​DisProt reference set, all labels that are not positive are                 
assigned as negatives. In the ​DisProt-PDB set, PDB structures mapping on the protein sequence define               
negative labels. All residues that are not covered by either DisProt annotation or PDB structures, are                
masked and excluded from the analysis. It should be noted that a fraction of resolved structures in the                  
PDB have been annotated as disordered ​47,48​. While in this edition we decided to consider any resolved                
residue from crystallography, NMR or electron microscopy experiments (excluding those overlapping           
with DisProt annotation) as structured, we plan to apply a filtering on the next editions of CAID. This                  
problem will become less and less relevant as DisProt annotations will become more complete, since               
disorder always overwrites structure. 
For the binding challenge we generated a reference set that we called ​DisProt-Binding. ​Positive labels               
are those residues annotated as binding in the DisProt database, whereas all labels that are not positive                 
are assigned as negatives. Notice that 232 targets have at least one annotation of binding in the DisProt                  
database. ​DisProt-Binding is composed of all 646 targets considered in the analysis, hence the majority               
of targets (i.e. 646 - 232 = 414) do not contain positive labels. 

Predictions 
Most predictors output a series of score and state pairs per residue of the input sequence. Scores are                  
floating point numbers, while states are binary labels predicting if a residue is in a disordered or                 
structured state. If scores are missing, states will be used as scores. If states are missing, they are                  
generated by applying a threshold to scores. When a threshold is not available, it defaults to 0.5. Default                  
threshold is always inferred from states. This ensures correct default threshold estimates for any              
distribution of scores. Prediction scores are rounded to the third decimal figure. This sets the number of                 
possible thresholds to 1000. Bootstrapping samples the whole dataset with replacements 1000 times.             
Re-sampling is done at the label (residue) level. Confidence intervals are calculated on Student’s T               
distribution at alpha set to 0.05. 
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Baselines 
A number of baseline predictors have been built in order to be compared with actual predictors. Two are                  
based on randomizing the dataset (​Shuffled dataset​, ​Random​) and one is based on an estimate of                
residue conservation through evolution (​Conservation​). The last four consider the opposite of structure             
as disorder (​PDB Observed​, ​PDB Close​, ​PDB Remote​ and ​Gene3D​). 
Shuffled dataset is a reshuffling of the ​DisProt ​dataset, i.e. random permutation of labels across the                
entire dataset. This preserves the proportion of positive labels across the dataset but not necessarily for                
each single target. The ​Random baseline is a random classifier in which the prediction score of each                 
label is assigned randomly. It is built by randomly drawing floating point numbers out of a uniform                 
distribution [0,..,1] and applying a threshold of 0.5. 
The ​Conservation ​baseline uses the naive consideration that IDPs on average are less conserved than               
globular proteins. It is calculated from the distance between the residue frequencies of homologous              
sequences for each target against the residue frequencies of the BLOSUM62 substitution matrix.             
Homologous sequences are retrieved by running 3 iterations of PSI-BLAST​49 against UniRef90. The             
distance is calculated from the Jensen-Shannon divergence ​50 of the two frequencies. This returns values              
in the [0,...,1] interval where any position with a score above 0.4 is considered positive (i.e. disordered).  
Several naive baselines are based on the assumption that whatever is not annotated as structure in the                 
PDB is disordered. ​PDB Observed has the structure annotation defined by PDB structures as mapped               
on UniProt sequences by Mobi 2.0 ​51 (October 2019). Whenever we are unable to map perfectly the PDB                 
sequence on the UniProt sequence, unmapped residues are considered not observed and excluded             
from the analysis. This applies to His-tags, mutated sequences and missing residues (in both X-ray and                
NMR structures), PDB Close and PDB Remote have the structure annotation defined by observed              
residues in PDBs with similar sequence. The similarity is calculated as the identity percentage given by                
a 3 iteration PSI-BLAST​49 of DisProt targets against PDB seqres. PDB Close considers PDB structures               
with at least 30% of sequence identity (i.e. close homologs), while PDB remote considers only PDB                
structures with sequence identity between 20% and 30% (i.e. remote homologs). ​Gene3D has structure              
annotations defined by Gene3D​52 (version 4.2.0) predictions, calculated with InterProScan ​28 (version           
5.38-76.0). 

Target and Dataset metrics 
Metrics were calculated following two strategies: dataset and target. In the dataset strategy, all targets               
(proteins) reference classifications and prediction classifications are concatenated in two single arrays.            
Confusion matrix and subsequent evaluation metrics are calculated once comparing these arrays. In the              
target strategy confusion matrix and subsequent evaluation metrics are calculated for each target             
(protein) and the mean value of the evaluation metrics is taken. The former strategy is equivalent to                 
summing together the confusion matrices for each target and computing evaluation metrics on the              
resulting confusion matrix, while the latter strategy is equivalent to calculating the evaluation metrics on               
the average of the confusion matrices of the targets. 

Notes on evaluation metrics calculation 
Throughout the manuscript, F​max and AUC are the main assessment criteria used. F​max is the maximum                
point in the precision/recall curve. AUC is the area under the ROC curve. Additional metrics are used for                  
comparison and they all follow standard definitions as described in the Supplementary Table 3. Fbeta               
(0.5, 1, 2) and MCC are set to 0 if the denominator is 0. Since the MCC denominator is a multiplication                     
of the number of positive classifications, negative classifications, positive labels in the reference and              
negative labels in the reference, if any of these classes amounts to 0, we set MCC to 0. This means that                     
for fully disordered proteins and for proteins predicted to be fully disordered or fully ordered, MCC is 0.                  
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This situation is very likely in target-strategy with ​DisProt-PDB dataset and it explains why the MCC for                 
target-strategy is much lower than that for dataset-strategy (see Supplementary Figure 34). This effect              
can also be seen in the heatmap of targets MCC where a large number of targets have MCC = 0. 

Assessors policy 
Prediction methods published by the assessors did not take part in the challenges. Their methods may                
be included for reference only. 

Data Availability 
Raw DisProt annotations can be downloaded in the download section of the DisProt website. Dataset               
downloaded from DisProt were: 

● disprot-2018-11-disorder.fasta obtained from: 
https://disprot.org/api/search?release=2018_11&show_ambiguous=false&show_obsolete=false&
format=fasta&namespace=structural_state&get_consensus=true 

● disprot-2016-10-disorder.fasta obtained from: 
https://disprot.org/api/search?release=2016_10&show_ambiguous=false&show_obsolete=false&
format=fasta&namespace=structural_state&get_consensus=true 

● disprot-2018-11-interaction.fasta obtained from: 
https://disprot.org/api/search?release=2018_11&show_ambiguous=false&show_obsolete=false&
format=fasta&namespace=interaction_partner&get_consensus=true 

● disprot-2018-11.json obtained from: 
https://disprot.org/api/search?release=current&show_ambiguous=false&show_obsolete=false&fo
rmat=json 

Datasets were processed to produce references, which are available at: ​http://idpcentral.org/caid/data/1/           
The process and code to produce references is available in the CAID repository with scripts available in                 
the CAID repository: ​https://github.com/BioComputingUP/CAID  
Predictions formatted in the CAID format are available at: ​http://idpcentral.org/caid/data/1/​. 

All data used in the analysis is also available in the Code Ocean capsule available at:                
https://doi.org/10.24433/CO.3610625.v1 ​. 

Software Description and Availability 
Results of the CAID assessment can be fully reproduced downloading the code and following the               
instructions in the CAID repository: ​https://github.com/BioComputingUP/CAID 
The CAID software is a python3 package that produces all outputs necessary for a CAID edition,                
including baselines, references, metrics and plots, starting from predictions, references and sequence            
annotations from complementary sources. (see Data Availability section to know how to obtain this              
data). The CAID repository depends on published python3 libraries and on the vectorized_cls_metrics             
library, available at ​https://github.com/marnec/vectorized_cls_metrics​. 

The code is also available at and its reproducibility ensured by the Code Ocean capsule available at                 
https://doi.org/10.24433/CO.3610625.v1 ​. 
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