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Abstract

Recurrence coefficients of semi-classical orthogonal polynomials are often related to the so-
lutions of special nonlinear second-order differential equations known as the Painlevé equations.
Each Painlevé equation can be written in a standard form as a non-autonomous Hamiltonian
system, so it is natural to ask whether differential systems satisfied by the recurrence coeffi-
cients also possess Hamiltonian structures. We consider recurrence coefficients for a modified
Laguerre weight which satisfy a differential system known to be related to the modified third
Painlevé equation and identify a Hamiltonian structure for it by constructing its space of initial
conditions. We also discuss a transformation from this system to the modified third Painlevé
equation which simultaneously identifies a discrete system for the recurrence coefficients with a
discrete Painlevé equation.
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1 Introduction

Recurrence coefficients of semi-classical orthogonal polynomials are often related to the solutions
of the Painlevé equations, either discrete or differential [11]. In this paper we revisit the modified
Laguerre weight

w(x) = w(x, s) = xαe−xe−s/x, x ∈ (0,∞), α, s > 0,

which was studied extensively in [1]. It was shown that for polynomials Pn(x) orthogonal with
respect to this weight the recurrence coefficients αn, βn in the identity

xPn(x) = Pn+1(x) + αn(s)Pn(x) + βn(s)Pn−1(x), n ∈ Z≥1

are related to new variables cn = cn(s) and bn = bn(s) by αn = 2n + 1 + α + cn, βn = n(n + α) +

bn +
∑n−1
j=0 cj which in turn satisfy the following systems of discrete and differential equations (see

equations (2.16), (2.17) and (3.10), (3.11) in [1]):

bn+1 + bn = s− (2n+ 1 + α+ cn)cn,

(b2n − sbn)(cn + cn−1) = (ns− (2n+ α)bn)cncn−1,
n ∈ Z≥1, (1)
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s
dcn
ds

= 2bn + (2n+ 1 + α+ cn)cn − s,

s
dbn
ds

=
2

cn
(b2n − sbn) + (2n+ α+ 1)bn − ns,

n ∈ Z≥0. (2)

In this paper we consider the identification of Hamiltonian structures for differential systems
for recurrence coefficients of orthogonal polynomials in the context of their relations to Painlevé
equations. As shown in [1], the system (2) gives a second-order differential equation which can be
reduced to the modified third Painlevé equation, which has a well-known Hamiltonian form. Given
this relation, it is natural to ask whether the system (2) admits a Hamiltonian description. The
main task is to determine the symplectic form in terms of which the Hamiltonian structure should
be defined, and we show how this may be done by constructing a space of initial conditions for the
system via resolution of singularities as in the foundational work of Okamoto [6]. This approach
relies on the fact that the system is transformable to a Painlevé equation, but does not rely on the
transformation being known. This means that our method is applicable to cases where the system is
suspected to be equivalent to one of the Painlevé equations but the relation is not known explicitly,
which is often the case for systems coming from semi-classical orthogonal polynomials.

1.1 Background

There is a vast body of literature on the Painlevé equations, and among their solutions are the
Painlevé transcendents, which have wide applications and a place in the modern library of special
functions 1. They also have an underlying geometric structure, see [4, 9] and references within. As
shown in [1], the system (2) gives a second-order differential equation

c′′n =
(c′n)2

cn
− c′n

s
+ (2n+ 1 + α)

c2n
s2

+
c3n
s2

+
α

s
− 1

cn
, (3)

which is a form of the modified third Painlevé equation PIII′ :

d2q

dt2
=

1

q

(
dq

dt

)2

− 1

t

dq

dt
+
α3q

2

4t2
+
β3
4t

+
γ3q

3

4t2
+
δ3
4q
. (4)

This is achieved through the change of variables

cn(s) = −q(t), s = t, (5)

with parameters in equations (3) and (4) related according to

α3 = −4(2n+ 1 + α), β3 = −4α, γ3 = −δ3 = 4. (6)

Each differential Painlevé equation can be written as a non-autonomous Hamiltonian system with
polynomial Hamiltonian [7, 8], which in the case of PIII′ (4) with γ3 = −δ3 = 4 is given by

dq

dt
=
∂H

∂p
,
dp

dt
= −∂H

∂q
, (7)

where the Hamiltonian [4, Sect. 8.5.17] is given by

H =
1

t
(p(p− 1)q2 + (a1 + a2)qp+ tp− a2q), (8)

in which the parameters a1, a2 are related to those in (4) by

α3 = −4(a1 − a2), β3 = −4(a1 + a2 − 1), γ3 = −δ3 = 4. (9)

The standard form of a related discrete Painlevé equation [4, Sect. 8.1.20] arising from Bäcklund
transformation symmetries of (4) is

qn + qn+1 = −a2(n)

p
− a1(n)

p− 1
, (10)

pn + pn+1 = 1− t

q2n+1

− a1(n) + a2(n) + 1

qn+1
,

1NIST Digital Library of Mathematical Functions, dlmf.nist.gov
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for n ∈ Z. This is constructed from a translation element of the extended affine Weyl group of
Bäcklund transformations, which relates a solution (q, p) = (qn, pn) of the system (7) with parameters
a1 = a1(n) and a2 = a2(n) to a solution (q, p) = (qn+1, pn+1) of the same system but with parameters
a1 = a1(n+ 1) and a2 = a2(n+ 1), subject to the following evolution with n:

a1(n+ 1) = a1(n) + 1, a2(n+ 1) = a2(n) + 1. (11)

Another change of variables for (2) presented in [1] is

cn(s) = s/q(s), (12)

which also gives the modified third Painlevé equation but with parameters

α3 = −4α, β3 = −4(2n+ 1 + α), γ3 = −δ3 = 4. (13)

Moreover, in [2] it was shown that system (1) is equivalent to a pair of difference equations for cn
of second- and third-order respectively, and it was shown how to obtain cn−1 and cn+1 from the
Bäcklund transformations of the third Painlevé equation.

2 Main results

Firstly, we have the following structure of the differential equations (2) from the modified Laguerre
weight as a non-autonomous Hamiltonian system:

Theorem 1. System (2) can be written in the Hamiltonian form

1

c2n

dcn
ds

=
∂K

∂bn
,

1

c2n

dbn
ds

= −∂K
∂cn

, (14)

with the Hamiltonian

K =
bn(c2n + (1 + α+ 2n)cn + bn − s)

sc2n
− n

cn
+ C(s), (15)

where C(s) is an arbitrary function of s.

This result can be verified by direct calculation, but our aim in what follows is to demonstrate
how this Hamiltonian structure can be detected from the space of initial conditions for system (2).
Secondly, we note that the relation (12) gives a transformation which simultaneously identifies the
differential and discrete systems (1) and (2) with both the Hamiltonian form (7) of PIII′ and the
discrete Painlevé equation (10):

Theorem 2. The birational transformation (q, p) 7→ (cn, bn) given by

cn =
s

q
, bn = −s(s+ q + 2nq + αq − q2)

q2
− sp, (16)

identifies the differential systems (2) and (7) with t = s, with parameters given by

a1 = a1(n) = 1 + n+ α, a2 = a2(n) = n+ 1. (17)

Under this transformation with (q, p) = (qn, pn), the discrete system (1) is reduced to (10) with the
same parameters as in (17).

We remark that the other transformation (5) from [1] does not identify the discrete systems, which
is essentially because the parameter correspondence (6) does not match the parameter evolution (11)
for the discrete Painlevé equation. Another transformation between the discrete systems (1) and
(10) is obtained in [5] with parameters α3 = 4α, β3 = 4(1−2n−α), γ3 = −δ3 = 4, which corresponds
to a1(n) = n and a2(n) = α + n. This was obtained through the method of [3] using techniques
from the geometric theory of discrete Painlevé equations [9] and we remark that identifications
with the standard form of the discrete Painlevé equation (10) are naturally non-unique and this
transformation is conjugate to ours by a symmetry of the discrete Painlevé equation.
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2.1 Finding the symplectic structure from the space of initial conditions

The main task in identifying the Hamiltonian structure in Theorem 1 is to determine the symplectic
form with respect to which the Hamiltonian form of the system should be sought. For the system
(2), we seek a symplectic form G(cn, bn, s)dcn∧dbn with respect to which the system is Hamiltonian,
i.e. of the form

G(cn, bn, s)
dcn
ds

=
∂K

∂bn
, G(cn, bn, s)

dbn
ds

= −∂K
∂cn

, (18)

for some Hamiltonian K(cn, bn, s), also to be determined. If it is expected that there exists a
birational transformation from the given system to one of the Painlevé equations, then the given
system can be expected to possess a space of initial conditions in the sense of Okamoto [6], from
which the appropriate symplectic form can be deduced.

We can perform the following procedure to find the symplectic form coming from the space
of initial conditions. On first glance the phase space of the system is the trivial bundle over the
independent variable space C \{0} with fibre C2, but we compactify the fibres to CP1×CP1 to allow
for poles of solutions. We do this by letting x = cn, y = bn and introducing X = 1/x, Y = 1/y so
CP1 × CP1 is covered by the four charts (x, y), (x, Y ), (X, y), (X,Y ). Next we resolve all points of
indeterminancy of the system (2), namely the points in charts at which the rational functions giving
x′, y′ (or the equivalent in other charts) are indeterminate in the sense that their numerator and
denominator simultaneously vanish. One introduces a suitable birational transformation and new
coordinate charts and continues this process until all singularities are resolved in all charts. This
amounts to lifting the system under blowups of certain points in the fibres; more information and
explicit examples of this procedure can be found in [4, Sections 2.6.1, 2.6.2]. When introducing new
coordinate charts, we use the convention from [3]: after blowing up a point pi with coordinates x = a
and y = b we introduce a pair of coordinate charts (ui, vi) and (Ui, Vi) according to x = a + ui =
a+ UiVi and y = b+ uivi = b+ Vi, so the exceptional line replacing the point is given by ui = 0 or
Vi = 0.

With this notation, the points of indeterminancy of the system (2) form three cascades of infinitely
near points. The first cascade is p1 : (x, y) = (0, 0) and p2 : (u1, v1) = (0,−n). The second cascade
is p3 : (x, y) = (0, s) and p4 : (u3, v3) = (0,−n − α). The third cascade is p5 : (X,Y ) = (0, 0),
p6 : (u5, v5) = (0, 0), p7 : (u6, v6) = (0,−1) and p8 : (u7, v7) = (0, 1+α+2n). The sequence of points
for the differential system (2) is the same as for the discrete system (1) as in [5] and we arrive at
the same surfaces forming the spaces of initial conditions for these two systems, which are of type

D
(1)
6 in Sakai’s classification [9].

From the geometric theory of Painlevé equations, since we have resolved the singularities of the
system through eight blowups we know that there should be a unique biquadratic curve in CP1×CP1

passing through these eight points, which will give the pole divisor of the symplectic form defining
the Hamiltonian structure. This is given in coordinates by x2Y 2 = 0 and the symplectic form can
be chosen up to a constant multiple to be

dx ∧ dy
x2

= −dX ∧ dy = −dx ∧ dY
x2Y 2

=
dX ∧ dY

Y 2
.

This means we can take G = 1/c2n, which leads to the following partial differential equations for the
Hamiltonian function K in (18):

∂K

∂bn
=

s

c2n
(2bn + (2n+ 1 + α+ cn)cn − s) ,

∂K

∂cn
= − s

c3n

(
2(b2n − sbn) + (2n+ α+ 1)bncn − nscn

)
.

These can be solved by elementary methods to arrive at the Hamiltonian K in Theorem 1.

2.2 Symplectic transformations and gauge normalisation of the space of
initial conditions

Given a system related by a birational transformation to the standard form of one of the Painlevé
equations, one can always recover its Hamiltonian structure from the space of initial conditions
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with some additional considerations. Like in the example above, this does not rely on knowing the
transformation explicitly but merely that it exists.

We begin with a slight generalisation of a well-known fact about symplectic transformations used
to define global non-autonomous Hamiltonian structures for the Painlevé equations on Okamoto’s
spaces of initial conditions [10]. Consider a birational transformation of complex variables

(q, p, t) 7→ (x(q, p, t), y(q, p, t), t) , (19)

where the C3-coordinate neighbourhoods are equipped with 2-forms

η = G(x, y, t)dx ∧ dy, ω = F (q, p, t)dq ∧ dp, (20)

in which F and G are rational in (x, y) and (q, p) respectively and locally analytic in t. Suppose
that the transformation (19) is symplectic in the sense that

G(x, y, t)δx ∧ δy = F (q, p, t)δq ∧ δp, (21)

where δ indicates the exterior derivative on the C2-fibre over t, so t is treated as a constant in the
calculation. The following is proved by direct calculation.

Lemma 3. Given a symplectic transformation (19) as above, if there exist functions H(q, p, t),
K(x, y, t) such that

G(x, y, t)dx ∧ dy + dK ∧ dt = F (q, p, t)dq ∧ dp+ dH ∧ dt, (22)

then the system of differential equations

F
dq

dt
=
∂H

∂p
, F

dp

dt
= −∂H

∂q
, (23)

is transformed under (19) to

G
dx

dt
=
∂K

∂y
, G

dy

dt
= −∂K

∂x
. (24)

If we have a birational transformation relating a given system in (x, y, t)-coordinates to the
standard Hamiltonian form of one of the Painlevé equations, then the symplectic form with respect
to which the system should be Hamiltonian should be the pullback of the one from the standard
form, so we can define the function G via

δq ∧ δp = G(x, y, t)δx ∧ δy. (25)

If we have obtained a space of initial conditions for the given system through eight blowups of CP1×
CP1, then this symplectic form is determined up to a constant multiple by the unique biquadratic
curve in (x, y)-coordinates passing through the eight points, as in the example above. If more than
eight blowups are required to regularise the system, then some curves will need to be blown down
in order to arrive at a generalised Halphen surface [9].

With the symplectic form in (x, y)-coordinates in hand, we also have the function H from the
standard form, so it remains to find K(x, y, t) satisfying the relation (22). This is not possible for
all birational transformations, but sufficient conditions are provided by the following.

Lemma 4. Given a birational transformation (q, p, t) 7→ (x(q, p, t), y(q, p, t), t), define G(x, y, t)
according to (25). Then there exists a function K(x, y, t) such that

G(x, y, t)dx ∧ dy + dK ∧ dt = dq ∧ dp+ dH ∧ dt, (26)

if either of the following conditions hold:

(1)
∂x

∂t
=
∂y

∂t
= 0, (2)

∂G

∂t
= 0,

Proof. For case (1), where the transformation is not t-dependent, the Hamiltonian K is determined
up to functions of t as the result of applying the transformation to H, but in case (2) there will be
a correction between the Hamiltonians. To obtain the second condition, note that the equality of
2-forms (26) gives two partial differential equations for K(x, y, t), the compatibility of which can be
confirmed by using condition (25) as well as its derivatives with respect to q, p and t.
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We remark that if neither of these conditions hold, we cannot find a Hamiltonian form for
the original system in the variables (x, y). However, if we make use of the gauge freedom in the
construction of the surfaces forming the space of initial conditions we can normalise the symplectic
form to be independent of t. We apply Möbius transformations x 7→ x̃, y 7→ ỹ, to each of the CP1-
factors such that the function G̃(x̃, ỹ, t) defined by δq ∧ δp = G̃(x̃, ỹ, t)δx̃ ∧ δỹ satisfies the second
condition from Lemma 4. This is always possible for the surfaces providing spaces of initial conditions
for the Painlevé equations and corresponds to choosing coordinates such that the biquadratic curve
giving the anticanonical divisor does not move with t, see [9, 4].

In conclusion, we have demonstrated how Hamiltonian structures can be obtained for differential
systems transformable to the Painlevé equations. This is achieved through the construction of a
space of initial conditions, which will always lead to a Hamiltonian form for the system either in
the original variables or after applying appropriate blowdowns in the case when more than eight
blowups were required to resolve the indeterminacies of the system as well as gauge transformations
to normalise the symplectic form coming from the anticanonical divisor.
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