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Abstract 

Background:  Cardiovascular magnetic resonance (CMR) sequences are commonly used to obtain a complete 
description of the function and structure of the heart, provided that accurate measurements are extracted from 
images. New methods of extraction of information are being developed, among them, deep neural networks are 
powerful tools that showed the ability to perform fast and accurate segmentation. Iq1n order to reduce the time 
spent by reading physicians to process data and minimize intra- and inter-observer variability, we propose a fully 
automatic multi-scan CMR image analysis pipeline.

Methods:  Sequence specific U-Net 2D models were trained to perform the segmentation of the left ventricle (LV), 
right ventricle (RV) and aorta in cine short-axis, late gadolinium enhancement (LGE), native T1 map, post-contrast T1, 
native T2 map and aortic flow sequences depending on the need. The models were trained and tested on a set of 
data manually segmented by experts using semi-automatic and manual tools. A set of parameters were computed 
from the resulting segmentations such as the left ventricular and right ventricular ejection fraction (EF), LGE scar 
percentage, the mean T1, T1 post, T2 values within the myocardium, and aortic flow. The Dice similarity coefficient, 
Hausdorff distance, mean surface distance, and Pearson correlation coefficient R were used to assess and compare 
the results of the U-Net based pipeline with intra-observer variability. Additionally, the pipeline was validated on two 
clinical studies.

Results:  The sequence specific U-Net 2D models trained achieved fast (≤ 0.2 s/image on GPU) and precise segmen‑
tation over all the targeted region of interest with high Dice scores (= 0.91 for LV, = 0.92 for RV, = 0.93 for Aorta in 
average) comparable to intra-observer Dice scores (= 0.86 for LV, = 0.87 for RV, = 0.95 for aorta flow in average). The 
automatically and manually computed parameters were highly correlated (R = 0.91 in average) showing results supe‑
rior to the intra-observer variability (R = 0.85 in average) for every sequence presented here.

Conclusion:  The proposed pipeline allows for fast and robust analysis of large CMR studies while guaranteeing 
reproducibility, hence potentially improving patient’s diagnosis as well as clinical studies outcome.
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Background
Cardiovascular magnetic resonance (CMR) remains 
an active field of innovation with new sequences being 
developed to enrich the obtained measurements, or 
extracted information from the images. In an 1-h CMR 
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scan, a complete description of the function and structure 
of the heart can now be obtained, provided that accurate 
measurements can be extracted from the images. Com-
puter science advances, and most specifically in artificial 
intelligence, have begun to impact medical practice [1] by 
offering high quality results that, combined with physi-
cian’s expertise, will augment diagnostic performance. In 
medical imaging, deep learning techniques have already 
shown promising results in applications such as segmen-
tation, registration [2] and cancer detection [3].

Yet, cardiac image segmentation is a challenging 
task for several reasons: (i) the acquisition requires the 
patient’s cooperation (breath-holding instructions are 
given repeatedly); (ii) image reconstruction is impacted 
by the cardiac rhythm or lack of rhythm; (iii) the blood 
flow surrounding the myocardium (which often creates 
image artifacts); (iv) high heterogeneity in the image due 
to standard acquisition made of many short-axis slices. 
Hence, segmentation is prone to observer-variability 
[4], especially in the contouring of the myocardium and 
the right ventricle (RV). This reproducibility issue, com-
bined with the fact that current delineation methods are 
extremely time-consuming, makes the development of 
fast, robust, accurate and clinician-friendly tools a crucial 
element in improving clinician productivity and patient 
care.

We therefore sought to develop a fully automatic multi-
scan cardiac analysis pipeline. This pipeline is heavily 
reliant on deep learning tools, recently proposed in the 
medical image analysis field, to automatically segment 
the myocardium in CMR sequences. Using the result 
of the segmentation, a large set of parameters is then 
extracted to assess the overall cardiac condition of the 
patient. This pipeline can either be used alone to auto-
matically process large cohort studies; or in conjunction 
with our in-house cardiac analysis software for a case per 
case evaluation.

Methods
To obtain a comprehensive evaluation of the patient’s 
cardiac condition, several sequences are usually acquired 
in an hour-long CMR scan: functional to evaluate the 
cardiac beating process, structural to evaluate the mus-
cle cells content and architecture; and hemodynamic to 
evaluate the blood flow process.

Proposed fully automatic multi‑scan analysis pipeline
Encouraged by the accuracy obtained in deep learning 
segmentation for cine CMR at the Automated Cardiac 
Diagnosis Challenge presented at STACOM workshop 
in 2017 [5], we intended to automatize all segmentation 
processes using convolutional neural networks (CNN). 
We chose in this pipeline to use the U-Net architecture 

[6] made of a series of symmetric down-sampling convo-
lutional layers (encoding), followed by up-sampling lay-
ers and skip connections corresponding to each encoding 
resolution (decoding layers), which guarantees a segmen-
tation mask of the same resolution of the initial image. 
To train and validate our models, we relied on several 
datasets composed of several health conditions (myocar-
dial infarction, degenerative mitral valve regurgitation, 
cardiomyopathy and healthy subjects); and acquired on 
several scanners (Siemens Healthineers 3 T mMR, Trio, 
and Prisma; Siemens Healthineers 1.5 T Aera; and Philips 
Healthcare 1.5 T Achieva and Ingenia).

Training/validation sets and available data
In order to train the models and assess of the quality of 
the results, the datasets available for every sequence was 
divided in training and validation sets in an 80:20 ratio. 
The cine dataset was composed of 116 subjects, repre-
senting 30,730 2D images where both the left ventricle 
(LV) and RV were segmented semi-automatically using 
our in-house software. Short-axis cine image size was 
typically around 208 × 256 pixels of 1.33 mm × 1.33 mm 
and the full stack made of 25 frames to cover the full car-
diac cycle and 10–12 slices of 10 mm thickness to cover 
the full myocardium. The LGE data set consists of 367 
patients, where the LV was manually segmented, and the 
scar was extracted from the myocardium either manu-
ally, or using semi-automatically Otsu thresholding, both 
ways being recognized previously as reliable methods for 
scar segmentation [7]. The native T1, post-contrast T1, 
and T2 datasets comprised of 40 patients each, with a 
ground truth segmentation of the LV manually defined. 
Structural images were also acquired in short-axis stack 
of 10–12 slices of 8-10  mm thickness to cover the full 
myocardium, with in-plane size ranged from 156 × 192 
pixels of 1.77 mm to 1.77 mm resolution to 205 × 256 pix-
els of 1.33 mm × 1.33 mm resolution, depending on the 
scanner. Finally, for the aortic flow sequence, a data set of 
96 patients was used, with aorta contours semi-automat-
ically segmented using Segment Medviso [8]. Aortic flow 
sequences were made of 20–30 frames of 256 × 256 pix-
els of 0.78 mm × 0.78 mm resolution. All segmentations 
were corrected, and validated manually by experts.

Deep learning pipeline
The proposed deep learning pipeline consists of 4 auto-
matic steps as illustrated in Fig 1.

1.	 Pre-processing For each sequence (cine, LGE, 
native T1, post-contrast T1, native T2, aortic flow), 
the 2D images are resized to 212 × 212 pixels of 
1.37  mm × 1.37  mm resolution, with normalized 
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intensity to deal with the possible variability in sizes, 
resolution and intensity.

2.	 Deep learning segmentation Each 2D image is then 
propagated through a sequence specific U-Net 2D 
model [6] that has been trained on the respective 
data. All models are trained to predict the anatomi-
cal structures of interest present on their sequence 
images. The cine, LGE, native T1, post-contrast T1, 
and native T2 models are trained to segment the 
lLV cavity, and myocardium. Additionally, the cine 
model is also trained to segment the RV cavity and 
the late gadolinium enhancement (LGE) model to 
predict the scar tissue in the myocardium. Similarly, 
the aortic flow model predicts the aorta contour. 
All U-Net 2D models were trained using the Adam 
optimizer (learning rate of 0.01, β1 = 0.9, β2 = 0.999, 
batch size = 5) to maximize the foreground Dice 
with the exception of the cine model that minimize a 
weighted cross entropy loss [9]. The training was per-
formed using a GPU NVIDIA K40 for approximately 
24 h.

3.	 Post-processing Finally, the U-Net 2D model gener-
ates a softmax prediction containing the probabili-
ties of each pixel to belong to a certain region (cav-
ity, myocardium,…). The region with the highest 
probability is selected for every pixel. The 2D pre-
dictions are rescaled to the original size and reso-
lutions, and stacked to obtain a 3D mask. The larg-
est connected component for each region is kept to 
remove isolated pixels. To guarantee the convexity 
of the LV cavity, myocardium and aorta contours, 
the convex hulls of their pixels are defined and cho-
sen as the final segmentations. Moreover, in the case 
of the LGE, native T1, post-contrast T1, and T2, the 

U-Net 2D models tend to over-segment (segment an 
extra slice more than our ground truth) around the 
basal and apical slices, as shown in Fig.  2. To cope 
with this issue, Random Forests (RF) classifiers have 
been trained to identify these segmentations and 
discard them, improving the overall 3D segmen-
tation. We employed Random Forests with T = 6 
trees and a maximum depth of D = 6, while the fea-
tures used were the mean softmax of the predicted 
myocardium, its mean intensity and the normalized 
slice position within the 3D stack. The full automatic 
segmentation pipeline takes less than 0.2  s for a 2D 
image, 50 s for a full CINE stack (≈250 images), 2 s 
for a stack of structural images (≈10 images), and 5 s 
for an aortic flow sequence (≈25 images) on a GPU 
(Nvidia GTX 1050). The training code and pretrained 
models are publicly available [10].

Fig. 1  Fully automatic multi-scan CMR analysis pipeline

Fig. 2  An example of over-segmentation (segmentation of an extra 
slice more than our ground truth) around the basal slice (a). b The 
blood pool and the muscle are segmented by the U-Net 2D model 
as the LV cavity (red) and myocardium (green). Our human experts 
would not segment this slice as part of the LV
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4.	 Parameters extraction From the segmentation of 
the anatomical structures, several main functional 
parameters are extracted depending on the analyzed 
sequence and clinical need. For example among oth-
ers, the LV and RV ejection fraction (EF) and stroke 
volumes are extracted from cine images; the scar per-
centage within the myocardium is measured from 
LGE; from the native T1, post-contrast T1 and T2 
maps, the mean relaxation time within the myocar-
dium is obtained; finally, the net and backward flow 
amplitudes are retrieved from the segmentation of 
the aortic flow phase-contrast image.

5.	 Full study automatic reporting Finally, the parameters 
extracted for each patient in the study are reported in 
a large statistical file where outliers are automatically 
extracted using expected physiological ranges. These 
outliers are further processed by clinicians to evalu-
ate the quality of the automatic segmentation and to 
correct them if necessary. Using a subset of the data-
set, mean errors can also be measured by comparing 
the automatic to the corrected segmentation, as an 
indicator of the global confidence in the automatic 
measurements.

Statistical analysis
The pipeline results on the training and validation data-
sets are evaluated by comparing segmentations obtained 
automatically against the ground truth segmentation 
(expert segmentation) in several ways. First, we meas-
ured the segmentation Dice score (which quantifies 
the amount of overlap between two segmentations and 
should be close to 1 for a perfect accuracy), the Haus-
dorff distance (HD) (which measures the local maximum 
distance between the two segmentations) and the mean 
surface distance (MSD) (which evaluates the average dis-
tance between the segmentations). The geometrical met-
rics were calculated in 3D following the same calculation 
method as in the ACDC challenge [5]. Second, we calcu-
lated the Pearson’s correlations between the physiological 
parameters obtained using these two segmentations; and 
finally we measured the mean errors between these two 
sets of physiological parameters. The errors were esti-
mated by calculating the absolute difference on percent-
age-based parameters (such as EF, and LGE percentage), 
and the absolute relative difference on numerical param-
eters. Additionally, the intra-observer Dice and param-
eter reproducibility for each sequence has been estimated 
on a data set of 20 scans which was processed twice by 
the same observer within 6 months. This variability will 
serve as a human error.

The parameters considered are chosen among the ones 
usually extracted by clinicians during regular CMR study: 
the LV and RV EF for the Cine; the scar percentage for 
LGE; the mean native T1, post-contrast T1 and T2 val-
ues within the myocardium; and the net flow amplitude 
inside the aorta.

Overall, as can be seen in Table  1, and Table  2, the 
results show high robustness and compare favorably 
to the manual error. Furthermore, the Cine model was 
evaluated on the ACDC challenge [8] test dataset to com-
pare with the state-of-the-art, and the whole pipeline was 
tested on two additional clinical studies to further dem-
onstrate its robustness.

Evaluation on clinical studies
The presented deep learning segmentation pipeline 
was used in two independent clinical studies with data 
acquired at various sites.

In study A, 30 patients with asymptomatic mitral 
regurgitation and 10 healthy subjects were recruited 
for a single CMR scan (cine, T1, and post-contrast T1) 
over the course of 6  months. Cine, native T1 and post-
contrast T1 data were acquired on a 3  T CMR scanner 
(Trio, Siemens Healthineers), with different image reso-
lution varying from 218 × 256 pixels of 1.4 mm × 1.4 mm 
to 232 × 256 pixels of 1.25  mm × 1.25  mm. The CMR 
scans were automatically processed using the deep learn-
ing pipeline, and all 40 cases were analyzed a second time 
with manual corrections. Confidence in the parameters 
was measured using the two sets of analysis, in terms of 
Pearson’s correlation, and mean absolute difference.

In study B, 95 patients were recruited in 2008 over the 
course of 10 years, 3 days after a primary angioplasty to 
undergo a baseline CMR and a 12 week follow up CMR 
scan, representing a total of 182 scans. Cine, LGE images 
were acquired on a 1.5 T CMR scanner (Symphony, Sie-
mens Healthineers) leading to a resolution varying from 
192 × 162 pixels of 1.87 mm × 1.87 mm to 256 × 208 pix-
els of 1.4 mm × 1.4 mm. After applying the deep learning 
pipeline, parameters were automatically extracted and a 
subset of cases (20 for cine and 15 for LGE) were selected 
for manual corrections based on physiological param-
eters out of range. Confidence in cine and LGE param-
eters could, therefore, be computed in terms of Pearson’s 
correlation and mean error to evaluate the pipeline and 
report on the initial research hypothesis.

Results
Cine image segmentation
As shown in Table 1, the cine model achieved very high 
results on both the LV (Dice = 0.97 cavity and 0.93 for 
myocardium) and RV (Dice = 0.92), better than the 
human intra-observer variability (best Dice = 0.90). 
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The mean surface distance is 0.57 mm for the LV cavity, 
0.77  mm for the LV myocardium and 0.95  mm for the 
RV cavity, all of which are smaller than the in-plane pixel 
spacing of 1.33  mm. The 3D Hausdorff distance ranges 
from 8.03  mm to 10.39  mm. Consequently, the correla-
tions on the LVEF (R = 0.99) and RVEF (R = 0.76) are 
strong, see Table 2. Figure 3a, b show the Bland–Altman 
plots of the LVEF and RVEF measures using the auto-
matic method in relation to manual segmentation. The 
plots show that most cases have a difference ≤ 5%. The 
RVEF correlation is lower than the LVEF’s for several 

reasons. First, the model sometimes fails to segment 
properly the RV at the basal slice which impacts the vol-
ume at the end-diastolic and end-systolic frames, as can 
be seen in Fig. 4. At the basal slice, the poor contouring 
is mainly due to the variability of the shape of the RV 
and to the noise created by the motion of the RV. This 
is expected as previous studies have highlighted the dif-
ficulty in manual delineation of RV contours [4] resulting 
in poor reproducibility (here R = 0.7). Additionally, most 
reported results focus on pre-selected end-diastole and 
end-systole frames only (as performed in [5]), while this 

Table 2  Correlation (R) and mean error for parameters extracted from segmentations, and intra-observer parameter reproducibility

The mean errors for the left ventricular ejection fraction (LVEF), the right ventricular ejection fraction (RVEF), and the scar represent absolute errors, while the rest are 
relative errors

LGE image segmentation

Parameter Deep learning Human performance

Train Validation

R Error (%) R Error (%) R Error (%)

Cine LVEF (%) 0.99 1.00 0.99 1.10 0.93 3.79

Cine RVEF (%) 0.84 4.12 0.76 4.05 0.70 5.77

LGE Scar (%) 0.91 3.69 0.78 5.39 0.60 5.97

Native T1 mean values (ms) 0.99 0.69 0.98 1.00 0.83 3.24

Post-contrast T1 mean values (ms) 0.99 1.22 0.99 0.73 0.99 1.10

Native T2 mean values (ms) 0.99 0.95 0.99 0.65 0.99 0.89

AO Flow amplitude (mL) 0.99 3.16 0.89 5.77 0.92 6.03

Fig. 3  Bland–Altman plots of left ventricular ejection fraction (LVEF) (a) and right ventricular ejection fraction (RVEF) (b) measures between 
automated and manual measurements. The middle line denotes the mean difference (bias) and the two dashed lines denote ± 1.96 standard 
deviations from the mean. The plot a shows a mean difference of 0.4% with 95% limits of agreement being from -2.7% to 3.5% for LVEF. The plot b 
shows a mean difference of 1.9% with 95% limits of agreement being from -8% to 11.8% for RVEF
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Fig. 4  Results example of left cavity (red), left myocardium (green), right cavity (blue), scar tissue (blue), and aorta (red) segmentations obtained 
using the pipeline. Good, and poor results are shown for cine, LGE, T1, post-contrast T1, T2, and aortic flow images. The pipeline faces multiple 
challenges: the basal slice with its variability, and noise (CINE, T1, and T2); clouded and undefined boundaries (the myocardium on LGE images); 
artifacts compromising the shape of anatomical structures (post-contrast T1); and irregularities. Flow AO = aortic flow



Page 8 of 13Fadil et al. J Cardiovasc Magn Reson           (2021) 23:47 

model was required to not only segment the full cardiac 
cycle but also to identify the end-diastolic and end-sys-
tolic frames which increases the difficulty.

Results on ACDC test dataset
Additionally, to compare with the methods of the ACDC 
challenge [5], we added to our training dataset the ACDC 
training dataset and retrained the cine model for 24  h. 
The ACDC training dataset contains 100 patients and 
represents about 200 2D images of end-diastolic and 
end-systolic frames. This dataset presents a large vari-
ability with healthy and non-healthy patients (systolic 
heart failure with infarction, dilated or hypertrophic 
cardiomyopathy, abnormal RV). After training, the cine 
model was tested on the ACDC test dataset containing 
50 patients. In Fig. 5 and 6, the results of our method are 
compared with the top ten methods of the ACDC chal-
lenge. As one can see, our method is within an accept-
able range for most metrics, even though the model has 
not been optimized specifically for the ACDC training 
dataset. In our case, the ACDC training dataset repre-
sents only 200 images over the ≈30,000 images used for 
the training. This demonstrates the ability of the model to 
adapt to new datasets.

LGE image segmentation
As shown in Table  1, the LGE model obtains satisfying 
results when compared to the Dice reproducibility met-
rics. For example, the myocardium reaches a Dice score 
of 0.83 with a Hausdorff distance of 13.24  mm, and a 

mean surface distance of 1.07 mm on the validation set. 
This shows that the variance and overfitting problems, 
originally present with our previous LGE model trained 
on 32 cases [11], was solved by increasing the size of the 
training set. The Dice score, Haussdorf distance, and 
mean surface distance for scar segmentation does not 
reach such performance despite a satisfactory correlation 
and mean error. This can be explained by the inability of 
the Dice measure, and distances to assess of the quality 
of the segmentation on such fragmented region of inter-
est. However, the correlation of the scar percentage is of 
0.78 with a mean error of 5.4% which remains satisfac-
tory, see Table  2. In addition, Fig.  7 reports the Bland–
Altman plots of the scar percentage using the automatic 
method in relation to manual segmentation, and between 
two manual measurements by a same human observer. 
The plots show a stronger bias between the two measures 
done by the same human observer (b) than between the 
automatic and manual method. Moreover, the variabil-
ity of the expert segmentation, demonstrated with the 
human Dice score in Table  1, is in accordance with the 
automatic performance. Similarly to experts, the model 
predominantly struggles on cases where the boundaries 
of the myocardium, and cavity are clouded, though still 
providing coherent results as shown in Fig. 4.

Native T1 map, post‑contrast T1 map, and T2 map 
segmentation
The native T1, post-contrast T1, and T2 models offer 
very robust results that are superior or comparable to 

Fig. 5  Comparison of the segmentation accuracy of our method with the top 10 methods of the ACDC challenge on the testing dataset. In 
these box-and-whiskers plots the middle horizontal line represents the median, box hinges represent first and third quartiles, whiskers represent 
extreme values within 1.5 times the interquartile range, and asterisks represent outliers. The red diamond represents the result of our method. LV left 
ventricle cavity, RV right ventricle cavity, Myo left ventricle myocardium, ED end-diastolic, ES end-systolic
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the intra-observer scores, as can be seen from Table  1 
and Table  2. The Dices and Hausdorff distances meas-
ured range from 0.88 to 0.96 and 7.25 mm to 12.19 mm, 
respectively. The mean surface distances are smaller 
than the in-plane pixel spacing of 1.33  mm, demon-
strating that the models accurately segment the LV. The 

parameters are highly correlated with their correlation 
scores around 0.99. As presented in Fig. 4 (native T1, and 
T2), show poorer results at the basal slice due to the vari-
ability observed within the images and among observers. 
Or, when dealing with artifacts that might disturb the 
homogeneity of the cavity and myocardium, as seen in 

Fig. 6  Comparison of the clinical metrics of our method with the top ten methods of the ACDC challenge on the testing dataset. In these 
box-and-whiskers plots the middle horizontal line represents the median, box hinges represent first and third quartiles, whiskers represent extreme 
values within 1.5 times the interquartile range, and asterisks represent outliers. The red diamond represents the result of our method. LV left 
ventricle, RV right ventricle, EF ejection fraction

Fig. 7  Bland–Altman plots of late gadolinium enhancement (LGE) scar percentage between automated and manual measurements (a), as well 
as between two measurements by a same human observer (b). The middle line denotes the mean difference (bias) and the two dashed lines 
denote ± 1.96 standard deviations from the mean. The plot a shows a mean difference of 1.1% with 95% limits of agreement being from − 14.8 to 
13.5%. The plot b shows a mean difference of 4.4% with 95% limits of agreement being from − 10.6 to 19.4%
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Fig. 4 (post-contrast T1). However, these errors are negli-
gible and do not impact the overall mean value extracted 
from the whole image stack.

Random Forest over‑segmentation correction
Table 3 reports the segmentation accuracy of the pipeline 
on the validation datasets, before and after correction by 
the Random Forests models. As can be seen in Table 3, 
the Random Forests manage to improve the overall seg-
mentation by discarding the slices that should not have 
been segmented. The Dice scores of the left cavity on 
each CMR sequence is improved in general by more than 
0.1.

Aortic flow image
Finally, the aorta is segmented with great precision 
(Dice = 0.93, HD = 0.93, MSD = 1.16). The simplicity of 
the geometrical shape of the aorta and its presence on all 
the frames enables consistently good results. Poor results 
are obtained when the shape of the aorta in the slice and 
the image intensity present irregularities as displayed in 
Fig. 4. However, the correlation remains very high with a 
value of 0.89, thus, making the model reliable.

Evaluation on clinical studies
Table 4 reports the confidence for the two studies for the 
key cine, LGE, T1 and post-contrast T1 parameters. It 
can be concluded that the corrections were not necessary 
to reach accurate statistical reporting of the LV param-
eters and could be omitted for fair results on the RV, as 
the errors reported are low (lower than intra-observer 
variability) and the correlation extremely high (≥ 0.87 for 
the LV and ≥ 0.73 for the RV). Scar percentage was also 

estimated accurately with a mean error over the 15 cases 
of 5.4%. As for the T1 and post-contrast T1 parameters, 
the automatic and manual values are highly correlated 
(R ≥ 0.91) with a mean absolute error of 22 ms for T1 and 
10 ms for post-contrast T1. Figure 8 shows examples of 
worst deep learning segmentations for study A, where 
the important lack of precision can be explained by poor 
image quality. The worst automatic segmentation on 
study B is shown in Fig. 9, with a difference in EF of 8.3% 
for the LV and 9.0% for the RV.

Discussion
This paper introduces a fully automated pipeline for 
multi-scan CMR analysis. Our approach applies a U-net 
2D model to segment the anatomical structures of inter-
est. We demonstrated that this architecture can be used 
to process multiple CMR sequences (cine, LGE, native 
T1, post-contrast T1, native T2, and aortic flow). Our 
method achieved robust segmentation results that were 
close to identical to manual segmentation, without the 
limitation of intra- and inter-observer variability.

Our pipeline also compares favorably to recent meth-
ods published in the literature. For example, on cine 
short-axis images, we report higher accuracy than the 
FCN [12]: LV cavity (Dice = 0.97 vs 0.94), LV myocardium 
(Dice = 0.93 vs 0.88), RV cavity (Dice = 0.92 vs 0.90), 
LVEF (error = 1.1% vs 3.2%), and RVEF (error = 4.05% 
vs 4.3%). Similarly, for native T1 maps [13]: LV myo-
cardium (Dice = 0.88 vs 0.85), mean T1 within myocar-
dium (R = 0.98 vs 0.82). Finally, we obtained comparable 
results on aortic flow with methods presented in [14] 
(Dice = 0.93 vs 0.94 and R = 0.89 vs 0.99, for our method 
and [14] respectively). It is important to note that these 

Table 3  Comparison of the segmentation accuracy of the 
pipeline before and after correction by the Random Forest (RF) 
models

The mean and standard deviation (in parenthesis) of the Dice metric are 
reported

LGE late gadolinium enhancement, LV left ventricle

CMR sequence Anatomical structure Dice

Before RF After RF

LGE LV cavity 0.86 (0.06) 0.90 (0.06)

LV myocardium 0.82 (0.05) 0.83 (0.04)

Scar 0.54 (0.19) 0.57 (0.18)

Native T1 LV cavity 0.81 (0.08) 0.94 (0.05)

LV myocardium 0.87 (0.08) 0.88 (0.08)

Post-contrast T1 LV cavity 0.85 (0.06) 0.96 (0.04)

LV myocardium 0.86 (0.05) 0.92 (0.03)

Native T2 LV cavity 0.87 (0.04) 0.96 (0.03)

LV myocardium 0.90 (0.04) 0.91 (0.05)

Table 4  Correlation (R) and mean absolute error between 
the parameters extracted from the automatic and manual 
segmentation of the Study A and B

EF ejection fraction, LV left ventricle, RV right ventricle, SV  stroke volume

Parameter Study A Study B

R Error R Error

LV SV (mL) 0.97 3.93 0.87 3.21

LV EF (%) 0.90 1.80 0.98 2.40

LV Mass (g) 0.99 1.86 0.99 2.14

RV SV (mL) 0.89 7.68 0.73 5.32

RV EF (%) 0.85 4.85 0.85 4.06

Scar (%) NA NA 0.95 5.38

Mean T1 (ms) 0.91 21.69 NA NA

Mean post-contrast 
T1 (ms)

0.97 9.47 NA NA
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results were obtained on a different data set with poten-
tially different definition of the reference standard.

Furthermore, we evaluated our cine model on the 
ACDC test dataset. To handle the heterogeneity of the 
ACDC dataset, the model was retrained on a new data-
set containing both our training dataset and the ACDC 
training dataset. It showed results comparable to the top 
ten methods of the challenge. This demonstrates the abil-
ity of the model to handle a new dataset by including a 
small subset of images (= 200 images in this case) to its 
training.

Importantly, our solution is fast and fully automated, 
thus well-suited for use in large cohort studies. Process-
ing the entire set of CMR sequences automatically for 
a single patient takes around 1  min with a GPU versus 
1.5 h for manual segmentation.

Limitations
The datasets considered for training and validation are 
smaller than the one used in recent works [12–14]. How-
ever, they present a very important heterogeneity in term 
of health conditions, and scanners. This heterogeneity 

Fig. 8  Example of bad LV (left) and RV (right) deep learning segmentations that led to an error of 5.9% in LVEF and 14% in RVEF. The poor 
segmentations can be explained by the poor image quality of this Cine sequence with borders very blurry or/and blood pool very inhomogeneous. 
LV left ventricle, RV right ventricle, EF ejection fraction

Fig. 9  Example of deep learning segmentation for the study B case leading to the highest error in ejection fraction. The error is mainly due to 
over-segmentation of the basal slice for the left ventricle, and poor detection of the right ventricle for the mid to apex slices due to high contrast in 
fatty tissue surrounding the heart
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is particularly important to test the robustness of the 
pipeline to world data. It is also interesting to note that 
even with small data sets, the models match the manual 
segmentation, especially in the case of native T1, post-
contrast T1, and T2 maps where only 40 patients have 
been used in this study. In the case of LGE images, the 
Dices obtained for the LGE scar are still suboptimal, but 
the correlation and errors remains reasonable. Thus, we 
question the suitability of the Dice as a similarity meas-
ure on such small sized and fragmented structures and 
will consider alternative measure [15] in future itera-
tions. Moreover, the variability of the LGE scar ground 
truth comes from not only the images but also from 
the experts, making, the problem more complicated. 
This might be solved in the future with a consensus on 
the LGE scar segmentation method [7]. Additionally, 
the U-Net 2D models suffer from the over-segmenta-
tion problem at the basal slice due to the variability and 
uncertainty among observers. Random forests models 
were used and have demonstrated their ability to dis-
card the over-segmentation and improve significantly the 
overall results. The basal slice presents also difficulties to 
the deep learning algorithm in the case of the RV cavity. 
The results on this slice are suboptimal when compared 
with human contouring.

This pipeline has been furthermore applied on two 
independent clinical studies to evaluate the confidence 
one can have on the fully automatic process and decide 
whether or not manual intervention is required to correct 
the pipeline results. As shown in the results, high correla-
tions were obtained between the fully automatic method 
and the corrected measures. The worst cases that had to 
be corrected were due to very suboptimal image qual-
ity that may also lead to human error. Moreover, these 
two studies were made of a variability of images coming 
from different scanners, hospitals, 1.5 T and 3 T, over the 
course of a decade. As these images were not part of the 
training set, we can conclude that the pipeline is already 
applicable to unseen data.

Future work
Future work will tackle the issue of detecting segmen-
tation errors within an image stack, by estimating the 
uncertainty of the segmentation as seen for example 
in [16], and by detecting outliers within the physiologi-
cal parameters extracted for a study containing a large 
patient cohort. This work will eventually guarantee the 
quality of the pipeline by detecting errors and manually 
correcting them, thus, providing statistically accurate 
results, while reducing considerably the time needed to 
process data. More iterations are still needed to guar-
antee the models robustness to the variability of world 
data. Moreover, a significant advantage of deep learning 

models, is that they can learn from any data set and adapt 
their output automatically. This means that the pipeline 
could be trained with a ground truth that follows certain 
segmentation conventions that suits the need of a par-
ticular study. Finally, to bridge the gap between academic 
research and usability of algorithms, we also developed 
a software that allows visualization and manual altera-
tions of the results of the deep learning segmentations if 
desired. This software is already used daily in our imag-
ing research center and with collaborative teams and will 
hopefully be further validated on more extensive studies 
worldwide.

Conclusion
The proposed pipeline allows for a fast and robust analy-
sis of large CMR studies while also providing reproduci-
bility. We believe that this will improve patient’s diagnosis 
as well as clinical studies outcome.
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