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Summary 31 

 32 

The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity 33 

and weakness in the lower body. Due to the combination of genetic diversity and variable clinical 34 

presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction 35 

network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of 36 

phenotypes. In this study, experimentally validated human data were used to create a protein-protein 37 

interaction network based on the causative genes. Network evaluation as a combination of topological 38 

analysis and functional annotation led to the identification of core proteins in putative shared biological 39 

processes, such as intracellular transport and vesicle trafficking. The application of machine learning 40 

techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating 41 

that there is scope to further classify conditions currently described under the same umbrella-term of 42 

Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease. 43 
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Introduction 45 

 46 

The Hereditary Spastic Paraplegias (HSPs) are a group of heterogeneous neurodegenerative diseases 47 

characterised by the core features of slowly progressive bilateral lower limb spasticity, hyperreflexia and 48 

extensor plantar responses (Harding, 1983) accompanied by degeneration of the upper-motor neurons 49 

(Deluca et al., 2004). Although the first description of clinical presentations we now refer to as HSPs 50 

dates back at least 140 years (Strümpell, 1880, Lorrain, 1898), the molecular mechanisms responsible for 51 

disease onset are, to date, still unclear. A number of mechanisms have been proposed to contribute to 52 

the degenerative process, including dysfunction of intracellular active transport and endolysosomal 53 

trafficking, alteration of lipid metabolism and endoplasmic reticulum shaping as well as disruption of 54 

mitochondria homeostasis (Blackstone, 2012, Blackstone, 2018a, Blackstone et al., 2011, Boutry et al., 55 

2019). 56 

The heterogeneity of the HSPs derives from both the complex range of clinical presentations 57 

(summarised in Table S1) and diverse underlying genetic causes. Regarding the former, the age of onset 58 

can vary from early childhood to late adulthood, all modes of inheritance can be observed, and the form 59 

of the disease can be pure or complex. Complex forms of the HSPs are defined by the co-occurrence of 60 

clinical features in addition to lower limb spasticity, including peripheral neuropathy, seizures, cognitive 61 

impairment and optic atrophy (Fink, 2013). Regarding the genetic heterogeneity of HSPs, mutations in 62 

over 70 genes have been associated with the HSPs (Faber et al., 2017), rendering it one of the hereditary 63 

disorders with the highest numbers of known causative genes (Blackstone, 2018a). In such a complex 64 

scenario, it is not clear as to whether all the HSP syndromes, despite being classified under the same 65 

umbrella term, share the same underlying molecular aetiology (Blackstone, 2018a). Given the lack of 66 

treatments able to prevent, halt or revert the HSPs, understanding the aetiology of these disorders and 67 

gaining greater clarity in this area of HSP biology is crucial. 68 

The intersection of genetics and functional biology has, historically, been dominated by single gene 69 

investigations, focusing on understanding the role of individual genes in cellular processes and 70 

phenotypes. This approach is powerful, but it allows for studying a limited number of genes at a time 71 

(Manzoni et al., 2020). In contrast, systems biology approaches such as protein-protein interaction (PPI) 72 

network (PPIN) analyses provide tools to evaluate the entirety of known genes/proteins involved in a 73 

disease collectively through a holistic approach (Koh et al., 2012). The connections within the PPIN can 74 

be subjected to mathematical analysis to gain insight into the global relationships among potential 75 

contributors to the disease process, thus creating an in silico model system to investigate the molecular 76 

mechanisms and generate hypotheses to further support functional research and disease modelling 77 

(Manzoni et al., 2020). 78 

This paper describes the first study in which PPINs are created solely based on experimentally validated 79 

human PPIs of HSP genes, and are applied to the investigation of HSP pathogenesis to identify global 80 

mechanisms, as well as individual processes involved in subtypes of disease following stratification 81 

based on the association of specific HSP genes with particular clinical features. Based on a combination 82 

of network, functional, and machine learning analyses, we propose HSPs to be subdivided into at least 2 83 

major aetiological groups. These results might suggest that not all the HSPs’ clinical manifestations 84 

relate to the same disruption at a molecular level, and that it is indeed possible to hypothesise 85 

stratification of HSP patients based on the molecular aspects of disease. This is an in silico modelling 86 
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approach, thus it would require further functional validation; nevertheless it suggests that both drug 87 

discovery and clinical trials for HSPs would need to take into consideration the molecular heterogeneity 88 

of disease. 89 

 90 

Results 91 

 92 

Generation of PPI networks  93 

The HSP seeds (HSP genes, n=66 and test seeds, n=17; see Table S2 STAR Methods for more details) 94 

were used as the input list to query the online tool, PINOT (Tomkins et al., 2020), generating a list of 95 

experimentally validated, human PPIs. Briefly, PINOT collects PPIs from 7 manually curated databases 96 

that fully or partially comply with the IMEx annotation guidelines (Orchard et al., 2012), and scores each 97 

interaction based on the number of different methods and publications in which it has been described. 98 

PPIs with a final PINOT score <3 were excluded from further analyses as these interactions lack 99 

replication in the curated literature (i.e. they are reported in only 1 publication and detected by only 1 100 

method). Following this filter, 746 interactors of HSP seeds were retained. Of note, 15 of the initial seeds 101 

were excluded due to no PPIs being identified (a total of 57 HSP seeds and 11 test seeds were retained). 102 

The resulted filtered network was termed the global HSP-PPIN and was composed of 814 nodes (57 HSP 103 

seeds + 11 test seeds + 746 interactors) connected via 925 edges (Data S1). The global HSP-PPIN (Figure 104 

S1) was composed of 1 main graph that contained the majority of nodes (n=755/814, 92.8%), including 105 

the majority of seeds (n=53/68, 77.9%) and 14 additional unconnected, smaller graphs. Of particular 106 

note is the presence of an interactor in the global HSP-PPIN, RNF170, which was found to be associated 107 

with the HSPs (i.e. an additional HSP gene) in a study published after the creation of the network 108 

(Wagner et al., 2019). 109 

Each protein of the global HSP-PPIN was scored based on the number of seeds to which it was directly 110 

connected, and a degree distribution was plotted (Figure S2). All nodes interacting with at least 2 seeds 111 

(IIHs) were selected and used to extract the core HSP-PPIN composed of 164 nodes (including 45/57 HSP 112 

seeds [72.7%] and 8/11 test seeds [78.9%]) and 287 edges (Figure 1 and Data S2). The core HSP-PPIN 113 

represents the most interconnected part of the global HSP-PPIN graph and contains the interactors that 114 

are communal to 2 or more seeds, thus it can be used to investigate common functionalities across the 115 

different HSP genes.  116 

Of note, the test-seed CCDC50 is present in the core HSP-PPIN and directly interacts with 2 proteins that 117 

are interactors of 6 HSP seeds. Comparatively, 95.5% of the proteins within the global HSP-PPIN, and 118 

74.5% of the proteins within the core HSP-PPIN interacted with less than 6 HSP seeds. The strong 119 

connectivity of CCDC50 with HSP seeds indicates that they might be functionally related, and thus 120 

further supports the hypothesis that CCDC50 could be an HSP gene based on its genetic location 121 

[CCDC50 is located at 3q28 (https://www.ncbi.nlm.nih.gov/gene/152137), while the genetic loci of 122 

SPG14 is 3q27-28 (Boutry et al., 2019)]. 123 

 124 
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Functional enrichment: trafficking and intracellular organization 125 

The nodes composing the core HSP-PPIN were analysed through functional enrichment to identify 126 

associated Gene Ontology Biological Processes (GO-BPs). Three different enrichment tools were used 127 

(g:Profiler, PantherGO and WebGestalt; Table S3). Despite p-values being corrected differently in the 128 

different tools, the enrichment ratio was calculated via the same formula (see STAR Methods). We 129 

therefore selected the top 10 GO-BP terms (based on the enrichment ratio) from each of the 3 tools 130 

(Figure 2). The majority of the top terms indicated functions such as those of “Transport” or 131 

“Intracellular organisation” (collectively accounting for 60-70% of terms significantly enriched using the 132 

3 tools). The remaining terms referred to “Cell death” and “Physiology-host/virus” with important 133 

reference to protein targeting and the endomembrane system. Of note, we observed a 60% match of 134 

the GO-BPs in the top 10 enriched terms across all the 3 tools, and 60-100% match between at least 2 135 

tools (g:Profiler: 100%, WebGestalt: 100%, and PantherGO: 60%). The unique terms from each tool, 136 

however, were closely related to already shared terms (e.g. “Anterograde axonal transport” [unique to 137 

PantherGO] is closely related to “Retrograde neuronal dense core vesicle transport” and “Retrograde 138 

axonal transport” [g:Profiler, WebGestalt and PantherGO]) (Figure 2).   139 

The entirety of enriched GO-BP terms was then grouped by semantic similarity into semantic classes, 140 

which were further organised into functional blocks, thus aiding the interpretation of the enrichment 141 

results (see STAR Methods and (Bonham et al., 2018, Ferrari et al., 2018, Ferrari et al., 2017, Tomkins et 142 

al., 2018)). 143 

The raw results from each tool were similar in all 3 levels explored: the identity of the GO-BP terms, of 144 

the semantic classes and of the functional blocks. In fact, most of the GO-BP terms were common to at 145 

least 2 tools (n=115/171, 67.3%) (Figure S3A), while after semantic classification of GO-BPs a higher 146 

proportion of semantic classes derived from at least 2 tools (n=49/58, 84.5%) (Figure S3B). Finally, all the 147 

functional blocks were represented by all 3 tools (n=11/11, 100.0%) (Figure S3C). Overall, this confirmed 148 

the consistency of results across different enrichment tools. However, these results also showed that 149 

even if consistency is very high at the more general levels of semantic classes and functional blocks, 150 

discrepancies can occur at the very specific GO-BP term level. Therefore, we decided to improve 151 

functional interpretation and reduce tool specific bias in further analyses by merging the GO-BP terms 152 

derived from the 3 tools within functional blocks replicated in at least 2 tools (in this case all terms) and 153 

adjusting the threshold of the p-value (see STAR Methods). 154 

The majority of significant GO-BP terms from the core HSP-PPIN enrichment analysis were associated 155 

with the functional block “Intracellular organisation” (22.2%), followed by “Transport” (19.3%), and then 156 

“Protein localisation” (13.5%), collectively accounting for more than half of GO terms (55.0%) (Figure 3, 157 

Figure S4, Table S3). This result confirmed the findings previously obtained from the top-10 enriched 158 

terms, suggesting a role for these processes in the molecular mechanism(s) underlying HSP 159 

pathogenesis. Finally, and to overcome any bias based on the architecture of the grouping of Gene 160 

Ontology terms, we also performed text mining for single key words within all the significantly enriched 161 

GO-BP terms and detected significant enrichment for “axon” (n=7/171, 4.1% [8.9 fold enrichment] p<10-162 
10 after 1000 random simulation), “endosomes” (n=3/171, 1.8% [5.7 fold enrichment] p<10-10), 163 

“membrane” (n=24/171, 14.0% [5.7 fold enrichment], p<10-10), “neurons” (n=9/171, 5.3% [3.4 fold 164 

enrichment], p=7.85 10-7), “projection” (n=6/171, 3.5% [5.4 fold enrichment], p=6.54 10-7), and 165 

“vesicles” (n=10/171, 5.8% [4.5 fold enrichment], p<10-10).  166 
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Of note, the independent analysis of the core HSP-PPIN through Reactome (Table S3), suggested similar 167 

enrichment, whereby the 2 most significantly enriched pathways were: vesicle-mediated transport (REA 168 

identifier: R-HSA-5653656, p<10-10, 46 (28.0%) contributing nodes) and membrane trafficking (REA 169 

identifier: R-HSA-199991, p<10-10, 44 (29.3%) contributing nodes) (Figure 1B).  170 

 171 

Stratification of HSP clinical groups into 2 clusters 172 

HSPs can present with a wide set of clinical features, with marked phenotypic heterogeneity between 173 

different patients. The complex forms of HSPs are defined by the co-occurrence of additional clinical 174 

features, the most frequently reported being: peripheral neuropathy (P), thinning of the corpus 175 

callosum (T), seizures (S), dementia or mental retardation (D) and optic atrophy (O). Finally, some 176 

patients also present with an early disease onset (E). Interestingly, medical reports and case studies 177 

sometimes state the presence of the above features in association with specific mutations in HSP genes. 178 

We have taken advantage of that this knowledge and grouped the genes based on the features with 179 

which they are associated. Therefore, the seeds within the core HSP-PPIN were coded based on their 180 

associated clinical features (Figure S5). Of note, some seeds are associated with a single feature (n=9/57, 181 

16%) while others are responsible for 2 (n=18/57, 32%), 3 (n=12/57, 21%) or 4 (n=7/57, 12%) clinical 182 

features. This seed characterisation allowed the extraction of 6 smaller subnetworks from the core HSP-183 

PPIN, each of them containing the interconnected seeds (and their interactors) associated with each 184 

specific feature mentioned above (Figure S6). 185 

Enrichment of biological processes was performed on each clinical subnetwork separately, as previously 186 

described, using g:Profiler, PantherGO and WebGestalt (Table S4 and Figure S7). The enrichment results 187 

obtained from the 3 tools were compared to assess their reproducibility and identify GO-BP terms of 188 

functional blocks that were replicated in at least 2 tools. These terms were merged to increase 189 

functional coverage as described above. The percentage of GO-BP terms within each functional block 190 

was calculated to weight its relevance. Principal components analysis (PCA) was then applied to reduce 191 

the complexity of the results obtained from the functional enrichment analyses to 2 principal 192 

components (PC1 and PC2). PCA thus allowed comparison of the 6 clinical subnetworks (Figure 4A). 193 

Interestingly, some of the clinical subnetworks functionally clustered together. Of note, this result was 194 

obtained with PCA performed on both the percentage of the GO terms in each functional block (Figure 195 

4A) and their absolute numbers (Figure S8A). 196 

The PCA plot provided a first visual insight into potential functional clustering that was further 197 

confirmed by hierarchical clustering. Results were plotted into a cluster dendrogram (Figure 4B & Figure 198 

S9) and the exact number of clusters to best fit the data was determined by 2 methods: Silhouette 199 

method and Multiscale bootstrap resampling (Figure S10). Both methods suggested the presence of 2 200 

clusters (named clusters A and B) in the cluster dendrogram (Silhouette method: the highest score was 201 

for 2 clusters; Multiscale bootstrap resampling: Cluster A and B had a pvclust-p-value=0.99 and 0.91, 202 

respectively, showing 99% and 91% confidence in the result). Cluster A is composed of thin corpus 203 

callosum, and seizures (thereafter named TS), while cluster B is composed of early onset, peripheral 204 

neuropathy, optic atrophy and dementia or mental retardation (thereafter named EPOD). 205 

The co-clustering of the T and S subnetworks within the TS cluster is not surprising as they had 23 206 

common proteins (n=23; T∩S = 82.1%, S∩T = 100%). However, we also observed a large overlap of 207 
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proteins between the subnetworks of O and P (n=39; O∩P = 92.9%, P∩O = 53.4%); T and D (n= 25; T∩D 208 

= 89.3%, D∩T = 43.9%); S and E (n=23; S∩E = 100%, E∩S = 20.2%); and D and E (n=55; D∩E = 96.5%, E∩D 209 

= 48.2%). In all these cases, the common composition was large, yet not able to guide the order of 210 

similarity based on the dendrogram, nor to promote the co-clustering (Figure 4B). A full report of the 211 

overlaps between the clinical subnetworks is detailed in Tables S5-7. 212 

Plotting the percentages of overlaps across different clinical subnetworks allowed for running a 213 

statistical comparison. When considering the overlap of the subnetworks within cluster TS and within 214 

cluster EPOD (networks within the same cluster) in comparison with the overlaps of the subnetworks in 215 

TS vs EPOD (networks in different clusters) we found a non-significant difference in their distributions 216 

(p= 0.07; Figure 4C). This result suggests that the generation of the 2 distinct clinical clusters was highly 217 

affected by similarities in the functional profile of the subnetworks in terms of GO-BPs, while the overlap 218 

of nodes had a small or potentially no contribution. 219 

 220 

Differences between the clinical clusters based on functions and subcellular localisation 221 

The potential differences of the 2 clinical clusters were further explored by performing enrichment 222 

analysis for GO-BPs using as input the protein components of the 2 clusters, TS and EPOD (Table S8). The 223 

comparison of the 2 obtained functional profiles is shown in Figure 5A and Figure S11. Despite an 224 

overlap in the identity of the GO-BPs functional blocks between the 2 clusters (TS: n=4/5, 80%; EPOD: 225 

n=4/10, 40%), the granular distribution of specific GO-BP terms in each functional block differs between 226 

clusters, with the GO-BP functional blocks of: “Waste disposal” (+12.7-fold [compared to the core HSP-227 

PPIN]), “Metabolism” (+9.3-fold), and “Protein metabolism” (+2.15-fold) being more represented in the 228 

TS rather than in the EPOD cluster (-0.13, -1.0, and 0.25-fold respectively) (Figure 5A). Meanwhile, the 229 

GO-BP functional blocks “Physiology-host/virus” (+0.22-fold), “Cell cycle” (+0.1-fold), and “Cell death” 230 

(+0.1-fold) were more represented in the EPOD rather than in the TS cluster (-1.0, -1.0, and -1.0-fold, 231 

respectively). Interestingly, 5 GO-BP terms related to the unfolded protein response (e.g. “Cellular 232 

response to unfolded protein” and “Cellular response to topologically incorrect protein”) were unique to 233 

the TS cluster (n=5/25, 25%), even with cluster EPOD having a 6-fold higher number of total GO-BP 234 

terms (nGO-BPtotalEPOD=158 vs NGO-BPtotalTS=25), thus highlighting the importance of protein folding for the TS 235 

cluster only. Overall, these results of GO-BP enrichment indicated that functions associated with protein 236 

metabolism, waste disposal and unfolded protein response might be more important processes in the TS 237 

rather than in the EPOD cluster; while the EPOD cluster presents with a functional enrichment profile 238 

very similar to that of the entire core HSP-PPIN. 239 

Similarly, we performed Gene Ontology Cellular Component (GO-CC) enrichment using as input the 240 

protein components of the 2 clusters TS and EPOD (Table S8). The comparison of the 2 obtained cellular 241 

components profiles is shown in Figure 5B and Figure S11, where location block is a sister term to the 242 

functional block of GO-BP terms. Even though, there are common GO-CC location blocks between the 2 243 

clusters (TS: n=5/6, 83.3%; EPOD: n=5/17, 29.4%), the composition of the most enriched location blocks 244 

based on the percentage of GO-CC terms differed substantially. Interestingly, and confirming the results 245 

obtained previously with GO-BPs, a higher percentage of GO-CC location blocks are related to “ER” 246 

(+4.7-fold [compared to the core HSP-PPIN]), “Melanosomes” (+8.5-fold), and “Membranes” (i.e. 247 

“Membranes”: +25.0-fold, “Membrane/network” +8.5-fold, and “Membranes/organelle” +0.5-fold) for 248 

the TS cluster in comparison with the EPOD cluster (0.13, 0.13, 0, 0.13, -0.30-fold, respectively). As for 249 
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the EPOD clusters, higher enrichment is observed in the GO-CC location blocks: “Other organelles” (+0.5-250 

fold), “Microtubules” (+0.4-fold), “Cytoskeleton”, “Cytosol”, “Extracellular”, “Mitochondria” and “Other 251 

membranes” (+0.1-fold) than in TS (-1-fold for all these location blocks in TS).  252 

 253 

Discussion 254 

 255 

Network-based approaches have been increasingly used to study complex human diseases, such as 256 

neurodegenerative diseases and cancer (Manzoni et al., 2020). The Hereditary Spastic Paraplegias (HSPs) 257 

are neurodegenerative diseases with considerable genetic and clinical heterogeneity (Boutry et al., 258 

2019, Faber et al., 2017), rendering them particularly interesting to study using a protein-protein 259 

interaction network (PPIN) approach. We applied a bottom-up approach, starting with the selection of 260 

genes involved in the disease and built the relevant interactome around them. We focused on 261 

experimentally validated human PPIs of HSP genes, not including genes associated with a disease 262 

spectrum in which HSP is involved (e.g. HSP-ataxia spectrum) or genes with related phenotype, in 263 

contrast with prior studies (Parodi et al., 2018, Novarino et al., 2014, Synofzik and Schule, 2017, Bis-264 

Brewer et al., 2019). While the excluded data might be useful in the effort to conceptualise the possible 265 

interactions and mechanisms of HSP related diseases, they were not considered to be specific or 266 

supported strongly enough to be included in our analysis.  267 

We applied the PINOT pipeline to mine the curated literature and download PPIs for each single seed, 268 

thus obtaining each seed’s interactome (Ferrari et al., 2018). We then constructed the global HSP-PPIN 269 

by combining each seed’s interactome in a modular fashion. We finally filtered the global HSP-PPIN, 270 

excluding the nodes that interacted with a single seed, thus retaining those interactors that were 271 

bridging at least 2 seeds’ interactomes. This step allowed for removal of all the unique interactors of 272 

each seed and for the extraction of the core HSP-PPIN, which is the most connected part of the network, 273 

containing nodes that are shared across seeds, and responsible for connections across different 274 

interactomes. By containing all the shared interactors and connections among seeds, the core HSP-PPIN 275 

can be used to infer shared functions communal to multiple HSP genes. (Tomkins et al., 2020). 276 

It is important to observe that most HSP seeds are indeed part of the core HSP-PPIN, meaning they are 277 

connected through at least one shared interactor. This result suggests that they are likely to be 278 

functionally related (based on the guilt-by-association principal (Oliver, 2000)) and therefore convergent 279 

molecular mechanism(s) drive disease pathogenesis, regardless of the mutated gene acting to initiate 280 

the degenerative process. The seeds that were absent from the core HSP-PPIN (i.e. seeds that do not 281 

share any interactors with other seeds) had a low number of curated interactors ranging from 0 to 4 282 

(PLA2G6, CPT1C, CYP2U1, C12orf65, B4GALNT1, TECPR2, ENTPD1, ATL1, SPG11, DDHD1, AP5Z1, 283 

SLC16A2, GAD1, RAB3GAP2, and HACE1). With limited interactors, their absence from the core HSP-PPIN 284 

could be the result of ascertainment bias (i.e. these seeds are understudied proteins with limited 285 

number of known interactors) rather than representing a more fundamental divergence in aetiology 286 

(Schaefer et al., 2015). As more PPIs are discovered, the human interactome will become more 287 

complete (Luck et al., 2020, Rolland et al., 2014, Huttlin et al., 2017, Wewer Albrechtsen et al., 2018) 288 

and might be able to help us better understand the connecting processes of large groups of genes and 289 

potentially point towards the disease mechanism. Exceptions were EXOSC3 (test-seed), SPG21 (HSP-290 
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seed) and KCNA2 (test-seed) with 21, 10 and 6 interactors, respectively. In this second scenario, it can be 291 

hypothesised that these seeds are not interacting with other HSP seeds, meaning that, by not sharing 292 

the same interactome, they might potentially be associated with different molecular mechanisms of 293 

disease.  294 

In this study we included 17 test seeds, genes for which there is no clear consensus regarding their 295 

potential association with HSPs, as they have been controversially reported in clinical literature. Eight of 296 

the test seeds (i.e. ALS2, BICD2, CCDC50, CCT5, KIDINS220, ACO2, LYST and IFIH1) were present in the 297 

core HSP-PPIN, providing in silico evidence of their relevance within the HSP protein interaction 298 

landscape. The presence of five of those test seeds (i.e. CCT5, KIDINS220, ACO2, LYST and IFIH1) 299 

correlates with the processes and cellular components indicated to play a role in HSPs from previous 300 

and the current work, namely of lysosomal homeostasis, protein folding and transport, cell death, 301 

neurodegeneration, and antiviral responses, with which they also have been associated (Crow et al., 302 

2020, Faigle et al., 1998, Freund et al., 2014, Leong and Chow, 2006, Liao et al., 2007, Spiegel et al., 303 

2012). The presence of ALS2 in the core HSP-PPIN is not surprising, as it is considered an HSP gene by 304 

many clinicians and researchers (Lo Giudice et al., 2014, Boutry et al., 2019, de Souza et al., 2017). An 305 

interesting test-seed present in the core HSP-PPIN is CCDC50, because it was included in this study 306 

based on its chromosomal location being within the locus of SPG14 [CCDC50 is located at 3q28 307 

(https://www.ncbi.nlm.nih.gov/gene/152137), while the genetic loci of SPG14 is 3q27-28 (Boutry et al., 308 

2019)]. Of note, CCDC50 formed interactions with more seeds than most interactors of the global HSP-309 

PPIN and the core HSP-PPIN. This result represents an in silico prediction that alterations in CCDC50 310 

could be leading to the HSP type SPG14 and it suggests to include CCDC50 in the list of prioritized genes 311 

to be screened for rare variant discovery. 312 

Notably, the protein product of the gene RNF170 was found to be associated with HSPs (and published) 313 

after this analysis commenced (Wagner et al., 2019) and was indeed present within the global HSP-PPIN. 314 

This result demonstrates the utility in using PPINs to study complex disorders, as they can aid 315 

prioritisation of candidate genes from genetic analysis (Erlich et al., 2011) and hint to key proteins 316 

involved in disease mechanisms.  317 

The analysis of a disease-focused PPIN based on functional annotation provides an opportunity to gain a 318 

deeper understanding of the underlying mechanism(s) of disease using a holistic view (Koh et al., 2012). 319 

Therefore, enrichment analysis was performed for the components of the core HSP-PPIN, supporting the 320 

involvement of some of the processes previously suggested to be associated with the disease 321 

mechanism of HSPs. Out of the 10 mechanisms suggested by Lo Giudice et al (Lo Giudice et al., 2014), 3 322 

were supported by the results of this work were 3, namely, “endosome membrane trafficking and 323 

vesicle formation”, ”abnormal membrane trafficking and organelle shaping”, “dysfunction of axonal 324 

transport”, but also, 3 additional processes, namely, “autophagy”, “axon development” and “abnormal 325 

cellular signalling in protein morphogenesis”, while we did not find evidence in our analysis for 326 

“oxidative stress”, “abnormal lipid metabolism”, “abnormal DNA repair” and “dysregulation of 327 

myelination”. Regarding the mechanisms hypothesised by de Souza and colleagues (de Souza et al., 328 

2017), those in accordance with this work were “intracellular active transport”, “endolysosomal 329 

trafficking pathways” and “ER shaping”, while we did not find evidence in our analysis for “lipid 330 

metabolism”, “mitochondrial dysfunction”, nor “migration and differentiation of neurons”. Our results 331 

are more in line with the suggestion from Blackstone (Blackstone, 2018a) that the key biological 332 

processes at play in the aetiopathogenesis of HSPs are “organelle shaping and biogenesis” and 333 
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“membrane cargo and trafficking”, further supporting the notion that HSPs could be considered 334 

transportopathies (Gabrych et al., 2019), and that the dysregulation of ER morphology and function 335 

could be implicated in HSPs (Lee and Blackstone, 2020). However, some of the suggested hypotheses, 336 

namely “nucleotide metabolism”, “mitochondrial function” and “lipid/cholesterol metabolism” 337 

(Blackstone, 2018a), were not supported by the findings of this study. Interestingly, functional data were 338 

not used for the creation of the HSP-PPINs, therefore the conclusions obtained here are only based on 339 

PPIs and represent a further validation of some of the published functional analyses. These results 340 

highlight the potential of a PPIN analysis approach combined with functional enrichment to identify the 341 

most relevant functions among the genes of interest related to a complicated disease, which is an 342 

important step for discovering disease modifying agents. A similar approach has been used in Ferrari et 343 

al. (Ferrari et al., 2018) to compare the functional profiles of Mendelian Parkinson’s disease, 344 

parkinsonism and frontotemporal dementia genes. In Dervishi et al. (Dervishi et al., 2018) PPIN analysis 345 

coupled with expression profiling was used to isolate key cellular events in amyotrophic lateral sclerosis, 346 

while Bonham et al. (Bonham et al., 2019, Bonham et al., 2018) applied protein networks for the 347 

functional evaluation of behavioural and language variant frontotemporal dementia. 348 

In order to explore if the clinical diversity of the HSPs reflects a mechanistic heterogeneity of disease, 349 

machine learning tools (PCA and hierarchical clustering) were used to analyse the functional profile of 350 

the core HSP-PPIN. Based on our in silico analysis, we suggest the existence of at least 2 main subtypes 351 

of HSPs. The first functional subtype includes the clinical features of thin corpus callosum and seizures 352 

(i.e. TS cluster); while the second gathers those cases characterized by early onset, peripheral 353 

neuropathy, dementia or mental retardation and optic atrophy (i.e. EPOD cluster). Further analysis for 354 

biological processes of the 2 clinical clusters suggested that “protein metabolism” and “waste disposal” 355 

are prominent in the TS cluster. In addition, most of the unique results for this cluster were related to 356 

the unfolded protein response. These results support the relevance of the regulation of protein level 357 

and conformation for the TS cluster. While for the EPOD cluster, the most important functions were 358 

related to “physiology-host/virus” and “cell death”, which suggest that the endomembrane system 359 

involved in the viral process, together with mechanisms involved in cell survival are of higher 360 

importance in the EPOD cluster. 361 

These findings were further supported by cellular component and pathways analysis, where the TS 362 

cluster showed a higher enrichment in different types of membranes, melanosomes and the ER, while 363 

results for the EPOD cluster were more focused on extracellular components, mitochondria, other 364 

organelles and the cytoskeleton.  365 

Therefore, this study provides a platform indicating that HSP patients could be stratified based on the 366 

molecular mechanisms involved in disease aetiopathogenesis and this in turn can be beneficial for 367 

developing therapeutic strategies and aiding efforts to stratify patients for clinical trials. 368 

This application provides insight into the utility of PPIN analysis in the study of complex disorders, as 369 

PPINs are a powerful tool that can extract and combine a large extent of previous data in a relatively 370 

quick and easy fashion. Using this approach can create a comprehensive picture that summarises the 371 

current knowledge, helping in prioritising and confirming existing mechanistic theories, guiding research 372 

based on the identification of interesting proteins and pathways, as well as highlighting uncertain areas 373 

that require further investigation.  374 
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Limitations of the study 375 

 376 

It is important to note the limitations of the approach used in this study. The mapping of the human 377 

interactome has progressed massively within the last decade but it is still incomplete and for the most 378 

part it is still based on hypothesis driven experiments. In addition, the most accurate and trustworthy 379 

type of curation for PPI data is also the most time-consuming, leading to a delay between the publishing 380 

of PPIs and their input in PPI databases. This introduces 2 typical biases of protein networks; they are 381 

incomplete by definition and affected by ascertainment bias. Another consideration that is worth raising 382 

is that some relevant pathways can be consequential to disease and therefore not directly dependent 383 

on the first layer of protein interactions built around the seeds. 384 

As a result, PPI based analyses are affected by type II error. In this specific case, for example some 385 

functions genuinely associated with HSPs could be omitted from the results. It is also worth considering 386 

that the results presented in this study require further functional and clinical validation. At the same 387 

time, however, this study provides a platform indicating that HSP patients could be stratified based on 388 

the molecular mechanisms involved in disease aetiopathogenesis and this in turn can be beneficial for 389 

developing therapeutic strategies and aiding efforts to stratify patients for clinical trials. 390 
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Main figure titles and legends 424 

 425 

Figure 1. Functional enrichment of the core HSP-PPIN  426 

The core HSP-PPIN is the most interconnected part of the global HSP-PPIN and includes i) the interactors connecting at least 2 427 
seeds, and ii) the connected seeds. Seeds (HSP genes) are represented with a black border, test seeds with a red border (ACO2, 428 
ALS2, BICD2, CCDC50, CCT5, IFIH1, KIDINS220, LYST). The size of each node positively correlates with its number of connections 429 
(i.e. node degree) within the core HSP-PPIN. The thickness of each edge positively correlates with the final score of the 430 
respective interaction as calculated by PINOT (which is a proxy for confidence as it represents the sum of the number of 431 
different publications and number of different methods reporting the interaction). (A) Nodes contributing to the enrichment of 432 
functional blocks (built on Gene Ontology Biological Processes) are colour coded according to the legend (grey nodes are those 433 
that did not contribute to any of the enriched functional blocks). (B) The involvement of nodes of the core HSP-PPIN in 434 
pathways is visualised by node colour-coding based on Reactome’s pathway analysis. (See also Figure S1-S2 and Table S2) 435 

 436 

Figure 2. Top 10 GO-BPs enriched within the core HSP-PPIN  437 

The 10 GO-BP terms from the functional enrichment of the core HSP-PPIN with the highest enrichment ratio were grouped into 438 
functional blocks based on semantic similarity. Most of the terms resulted from at least 2 enrichment tools (g:Profiler & 439 
WebGestalt: n=10/10, 100%; PantherGO: n=6/10, 60%). 440 

 441 

Figure 3. Graphical representation of the functional enrichment of the core HSP-PPIN 442 

Functional enrichment was performed on the nodes of the core HSP-PPIN. The resulting GO-BP terms (n=171) (Table S3) were 443 
grouped into semantic classes (brief descriptions of several semantic classes are inside each circle) and then into functional 444 
blocks (title of each circle, bolded). The number and percentage of terms in each functional block was calculated for g:Profiler, 445 
WebGestalt, and PantherGO as described in STAR Methods. For a more detailed version see Figure S4. 446 

 447 

Figure 4. Comparison of the functional profiles of the 6 clinical subnetworks  448 

(A) In the PCA graph each clinical subnetwork is represented by a single point of coordinates calculated based on PCA 449 
performed for the percentage of GO-BP terms and adjusted based on the explained variation of each axis (for details see STAR 450 
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Methods) [i.e. (x, y) = (PC1x0.630, PC2x0.258)]. (B) Cluster dendrogram produced based on hierarchical clustering of the gene 451 
groups as analysed in (A), in which the 2 suggested clusters are shown. *: pvclust-p-value>0.90 (pvclust-p-value A=0.99, pvclust-452 
p-value B=0.91) E: Early onset, P: Peripheral neuropathy, T: Thin corpus callosum, S: Seizures, D: Dementia or mental 453 
retardation, O: Optic atrophy. (C) The percentage of protein identity between gene groups within the same cluster (EPOD and 454 
TS cluster) was compared to the protein identity between gene groups of different clusters using t-test (two-tailed, unequal 455 
distribution). (See also Figure S7-S10 and Table S5-7) 456 

 457 

Figure 5. Differential patterns of enrichment for the TS and EPOD clusters 458 

The distribution of the GO-BP terms (A) and GO-CC terms (B) of the clusters, TS and EPOD, are presented as a fold change 459 
compared to the profile of the core HSP-PPIN. A more detailed version is shown in Figure S11, while the totality of the results is 460 
shown in Table S8.  461 
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STAR methods 462 

RESOURCE AVAILABILITY 463 

 464 

Lead contact 465 

Further information and requests for resources and protocols should be directed to and will be fulfilled 466 

by the lead contact, Dr Claudia Manzoni (c.manzoni@ucl.ac.uk). 467 

 468 

Materials availability 469 

This study did not generate new unique reagents. 470 

 471 

Data and code availability 472 

The published article includes all datasets and code generated or analyzed during this study. The main 473 

resource used in this study was PINOT, whose code is freely available to download from the help-page of 474 

the tool: http://www.reading.ac.uk/bioinf/PINOT/PINOT_help.html#select. 475 

 476 

METHOD DETAILS 477 

 478 

Selection of seeds 479 

The protein products of 83 genes were selected as seeds based on their clinical relevance for HSPs (de 480 

Souza et al., 2017), among which 17 have not been widely recognised as HSP genes hereafter referred to 481 

as test seeds. The list of HSP seeds (n=66) is: ALDH18A1, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, 482 

ARL6IP1, ARSI, ATL1, ATP13A2, B4GALNT1, BSCL2, C12orf65, C19orf12, CAPN1, CPT1C, CYP2U1, CYP7B1, 483 

DDHD1, DDHD2, DSTYK, ENTPD1, ERLIN1, ERLIN2, FA2H, FARS2, GBA2, GJC2, HSPD1, IBA57, KIF1A, 484 

KIF1C, KIF5A, KLC2, L1CAM, MAG, MARS, NIPA1, NT5C2, PGAP1, PLP1, PNPLA6, RAB3GAP2, REEP1, 485 

REEP2, RTN2, SLC16A2, SLC33A1, SPART, SPAST, SPG7, SPG11, SPG21, TECPR2, TFG, TPP1, UBAP1, 486 

UCHL1, USP8, VPS37A, WASHC5, WDR48, ZFR, ZFYVE26 and ZFYVE27. 487 

The list of HSP test seeds (n=17) is: ACO2 (Bouwkamp et al., 2018), ALS2 (Simone et al., 2018), BICD2 488 

(Kropatsch et al., 2019), CCDC50, CCT5 (Bouhouche et al., 2006), EXOSC3 (Blackstone, 2018a), GAD1 (Lo 489 

Giudice et al., 2014), HACE1 (Akawi et al., 2015), IFIH1 (Liu et al., 2019), KCNA2 (Helbig et al., 2016), 490 

KIDINS220 (Zhao et al., 2019), LYST (Shimazaki et al., 2014), MT-ATP6 (Verny et al., 2011), MT-CO3 491 

(Blackstone, 2018b), MT-ND4 (Clarencon et al., 2006), RETREG1 (Ilgaz Aydinlar et al., 2014) and SELENOI 492 

(Ahmed et al., 2017) 493 

 494 

Collection of PPIs and HSP-PPINs 495 

The 83 seeds were used as the input to query the PINOT webtool (Tomkins et al., 2020) 496 

[http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html]. PINOT produces a list of experimentally 497 

demonstrated binary PPIs containing unique, human PPI data obtained by merging and processing PPI 498 

data from 7 databases: BioGrid (Oughtred et al., 2019), InnateDB (Breuer et al., 2013), IntAct (Orchard et 499 
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al., 2014), MBInfo [https://www.mechanobio.info/], MINT (Licata et al., 2012), UniProt (UniProt, 2019) 500 

and bhf-ucl.  501 

Through PINOT, interactions are filtered and scored based on the number of publications that report a 502 

particular interaction and the number of different methods used for their detection. The interactions 503 

provided from PINOT were then screened to remove PPIs with a final score <3 (those interactions 504 

without replication in the curated literature). The retained interactions were visualised using Cytoscape 505 

(RRID:SCR_003032, v3.7.2), thus creating the global HSP-PPIN.  506 

Each node in the network was scored based on the number of seeds to which it connected. The nodes 507 

interacting with more than one seed, referred to as “inter-interactomes hubs (IIHs)” (Ferrari et al., 508 

2017), were used to extract a subnetwork composed of IIHs and the connected seeds. This subnetwork 509 

was termed the “core” HSP-PPIN. 510 

The interactions for the global HSP and core HSP networks were downloaded on the 09/07/2019, PINOT 511 

(beta version), using the stringent and Homo sapiens filters (default). 512 

 513 

Enrichment analyses 514 

The subset of proteins composing the core HSP network underwent enrichment analysis (Biological 515 

Processes [BPs] and/or Cellular Components [CCs] Gene Ontology [GO] annotations). The consistency of 516 

the results was evaluated by using 3 independent online tools, which utilise different algorithms, 517 

multiple test correction and/or versions of the GO database. In particular: g:Profiler (RRID:SCR_006809, 518 

July 2019, Over-representation enrichment analysis (Fisher’s one tailed test), Bonferroni’s corrections, 519 

GO database release 11/07/2019, excluding electronic annotations and analysed against the annotated 520 

human genome) (Reimand et al., 2016) [https://biit.cs.ut.ee/gprofiler/gost], Gene Ontology using 521 

Panther’s tool (RRID:SCR_004869, September/October 2019, Binomial test, Bonferroni’s corrections, GO 522 

database release 03/07/2019, analysed against the human genome) (Ashburner et al., 2000, The Gene 523 

Ontology, 2019, Mi et al., 2017) [http://geneontology.org/ and http://pantherdb.org/] and WebGestalt 524 

(WEB-based GEne SeT AnaLysis Toolkit, RRID:SCR_006786, October 2019, Over-representation 525 

enrichment analysis (Hypergeometric test), FDR, GO database release 14/01/2019, analysed against the 526 

protein coding human genome) (Wang et al., 2017) [http://www.webgestalt.org/]. 527 

The output of the functional enrichment includes a list of enriched GO terms and their respective 528 

enrichment ratio which can be calculated using the following formulas: 529 

                 
  

      
           

       
        

    
                

where Ng is the number of genes with a GO term in the data, Nexp_g the number of expected genes 530 

with a GO term in the data, Ntg the number of genes in the data, NgGO the number of genes annotated 531 

with a GO term in the GO database, and Ntag the total number of annotated genes in the GO database. 532 

 533 
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The enriched BP and CC GO terms were grouped by semantic similarity into semantic classes using in-534 

house developed dictionaries. The semantic classes were further clustered into functional blocks and 535 

location blocks, respectively. The GO terms classified in the semantic classes “general” and 536 

“metabolism” were not included in the analysis as they refer to GO terms that provide limited functional 537 

specificity to the analysis (Ferrari et al., 2017). 538 

Finally, in order to reduce any tool specific bias, only the functional or location blocks confirmed to be 539 

enriched by at least 2 of the 3 enrichment tools (g:Profiler, PantherGO and WebGestalt) were retained 540 

for further analysis. Particularly, for those blocks that were replicated across at least 2 tools, we 541 

analysed the merge of their semantic classes resulting from each individual tool. Additionally, only the 542 

terms that were enriched in association with at least 4 genes were retained. 543 

The comparison of the clusters’ enrichment profiles for BP and CC was performed by calculating the 544 

following ratio for each block:   545 

              

     
      

where %cluster is the percentage of GO terms of a cluster, and %core is the percentage of GO terms of 546 

the core-HSP-PPIN. 547 

In the case that the aforementioned ratio of the functional or location block had the value of zero for 548 

the core dataset, since dividing by zero results to ∞, we set up 25 as the maximum value and -25 as the 549 

minimum value for visualisation purposes.  550 

Pathway enrichment was performed using Reactome’s online analysis tool (RRID:SCR_003485, v69 & 551 

v70 in September and December 2019) (Jassal et al., 2020) 552 

[https://reactome.org/PathwayBrowser/#TOOL=AT]. The pathways that were significantly enriched (p-553 

value<0.05) were retained and filtered further to remove those with 3 or less proteins involved. 554 

The associations of HSP genes with clinical phenotypes were collected from the Neuromuscular Disease 555 

Center database, (RRID:SCR_007305, https://neuromuscular.wustl.edu/spinal/fsp.html [Accessed 556 

29/04/2020 2020]). 557 

Text mining was performed on the GO-BP terms after the merging of results from the 3 tools. The 558 

number of terms related to axons, cytoskeleton, endosomes, membranes, neurons, projections and 559 

vesicles were counted based on the presence of “axo*”, “cytoskelet*”, “endos*”, “membrane*” 560 

“microtubu*”, “vesic*”, “neuro*” and “projections*”, respectively. An enrichment analysis was 561 

performed using the same key words, based on their frequency in the results versus in the in-house 562 

dictionary that included a collection of GO terms, using the described formulas (1) & (2). 563 

 564 

PCA & Hierarchical clustering 565 

In order to compare functional enrichment profiles, Principal Component Analysis (PCA) was conducted 566 

through R (R Project for Statistical Computing, RRID:SCR_001905, v. 4.0.2) using the prcomp() function 567 

of the stats package. The analysis of the number and percentage of GO terms in each functional block 568 

were both rendered necessary due to the substantial difference in the number of resulting GO terms of 569 

the 6 groups, whose functional enrichment profiles were compared (22<n<114) (Table S4).  570 
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Hierarchical clustering was performed using the hclust() function (R stats package) for the groups in the 571 

PCA plot, using Euclidean as a distance measure for row clustering. However, one unit of distance in the 572 

x axis of the PCA plot is more important than on the y axis, due to PC1 (x axis) explaining more variation 573 

than PC2 (y axis) (63% and 25.8%, respectively for the analysis based on the percentage of GO terms). 574 

Thus, the coordinates of each point had to be transformed; they were multiplied by the explained 575 

variation, so that the distance between points can have the same significance in any direction and can 576 

thus be used for hierarchical clustering. Through Hierarchical clustering, the cluster dendrogram was 577 

produced. Choosing the best fit for the number of clusters derived from Hierarchical clustering was 578 

based on the Silhouette method (Rousseeuw, 1987) and the Multiscale bootstrap resampling method 579 

(Suzuki and Shimodaira, 2006). For the former, the index/score were calculated for 2 up to 6 clusters. 580 

The latter was based on the R package “pvclust” that assigns pvclust p-values to each branch of the 581 

dendrogram, which show the confidence of the result (the higher the value, the more confident we are 582 

of the result) (Suzuki and Shimodaira, 2006) (Data S1). 583 

 584 

QUANTIFICATION AND STATISTICAL ANALYSIS 585 

For the analysis of the merged semantic classes from the 3 different tools, the threshold for determining 586 

statistical significance of each GO term was decreased to p=0.0166 (=0.05/3) to account for the multiple 587 

comparisons.  588 

The statistical analysis of the enrichment of key words was performed by running 100,000 random 589 

simulations, where these key words were extracted from the in-house dictionary, and the pnorm() value 590 

was calculated using R. 591 

 592 

Supplementary tables’ titles and legends 593 

 594 

Table S3: Enrichment data of the core HSP-PPIN, related to Figures 1, 2 and 3 595 

Table S4: Enrichment data of the clinical groups within the core HSP-PPIN, related to Figure 4 596 

Table S8: Enrichment data of the clinical clusters within the core HSP-PPIN, related to Figure 5 597 

 598 

Supplemental data files’ titles and legends 599 

 600 

Data S1: Interactions used for the creation of the global HSP-PPIN, related to Figure 1 601 

Data S2: Names of components of the core HSP-PPIN and whether they are an HSP seed or test seed, 602 

related to Figure 1 603 

 604 

  605 
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REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Deposited Data 

Neuromuscular 
disease center 
database 

Washington University in St. Louis; 
http://neuromuscular.wustl.edu/ 

RRID:SCR_007305 

PINOT Bioinformatic web server of University of Reading; 
http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html 

N/A 

Software and Algorithms 

R R Project for Statistical Computing; http://www.r-project.org/ RRID:SCR_001905 

Cytoscape Institute for Systems Biology; Washington; USA , University of 
California at San Diego; California; USA; http://cytoscape.org 

RRID:SCR_003032 

gProfiler BIIT - Bioinformatics Algorithmics and Data Mining Group; 
http://biit.cs.ut.ee/gprofiler/ 

RRID:SCR_006809 

Panther University of Southern California; Los Angeles; USA; 
http://www.pantherdb.org/ 

RRID:SCR_004869 

WebGestalt Vanderbilt University; Tennessee; USA; 
http://www.webgestalt.org/ 

RRID:SCR_006786 
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Highlights 
 

 A bioinformatic study of the Hereditary Spastic Paraplegias using protein networks 

 Human and manually curated protein-protein interaction data acquired using PINOT 

 Intracellular transport and vesicle trafficking are suggested as disease mechanisms  

 Machine learning techniques propose a patient clustering 
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