

Supporting Information

Discovery of New Carbonyl Reductases Using Functional Metagenomics and Applications in Biocatalysis

Sophie A. Newgas, Jack W. E. Jeffries, Thomas S. Moody, John M. Ward,'* and Helen C. Hailes'*© 2021 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Supplementary Information

Discovery of new carbonyl reductases using functional metagenomics and applications in biocatalysis

Sophie A. Newgas,^a Jack W. E. Jeffries,^b Thomas S. Moody,^{c,d} John M. Ward^{b*} and Helen C. Hailes^{a*}

- ^a Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K. E-mail: h.c.hailes@ucl.ac.uk
- ^b Department of Biochemical Engineering, Bernard Katz Building, University College London, London, WC1E 6BT, U.K. E-mail: j.ward@ucl.ac.uk
- ^c Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, Northern Ireland, U.K.
- ^d Arran Chemical Company, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland.

Table of Contents

1. Tables

Table S1. The taxonomic and enzymatic assignments of the SDRs retrieved from the metagenome.

Table S2. DNA sequences of the 37 retrieved SDRs generated by sanger sequencing after Gibson assembly into pET29a.

Table S3. Amino acid sequences of the 37 retrieved SDRs.

Table S4. Table of primers used to retrieve SDRs from the oral metagenome.

2. Figures

Figure S1. A. Sequence alignments for SDRs 3,4,11,17,31,37. **B**. SDR percentage identity matrix for 3,4,11,17,31,37.

Figure S2. Graph displaying activity with (*S*)-**18** and (*R*)-**18** with SDR-17 and SDR-31 at a range of pHs.

Figure S3. SDS PAGE showing induced recombinant protein expression in *E.coli*.

Figure S4. HPLC calibration curves.

Figure S5. HPLC trace of the products from the reduction of *rac*-WMK-**18** using NaBH₄.

Figure S6. Characterisation data for (4aR, 5S)-22 from the scaled-up reaction using SDR-17.

Figure S7. ¹H and ¹³C NMR spectra of (4aR, 5R)-22.

Figure S8. ¹H and ¹³C NMR spectra of (4aS,5S)-22.

Table S1. The taxonomic and enzymatic assignments of the SDRs retrieved from the metagenome. Assignments were generated by inputting the amino acid sequences of the SDRs into NCBI BLASTP. pQR numbers were assigned to recombinant plasmids for record keeping and identification within the UCL enzyme library.

1	pQR500	3-oxoacyl ACP reductases	Porphyromonas somerae		
2	pQR501	3-oxoacyl ACP reductase	Neiserria.sp		
3	pQR502	NAD(P)-dependent oxidoreductase	Veillonella sp.		
4	pQR503	acetoin reductase	Mycobacteroides abscessus		
5	pQR504	NAD(P)-dependent oxidoreductase	Streptococcus parasanguinis		
6	pQR505	glucose-1-dehydrogenase	Megasphaera micronuciformis		
7	pQR506	oxidoreductase	Veillonella sp		
8	pQR507	3-oxoacyl ACP reductase	Streptococcus infantis		
9	pQR508	oxidoreductase	Rothia mucilaginosa		
10	pQR509	oxidoreductase	Rothia mucilaginosa		
11	pQR510	oxidoreductase	Rothia mucilaginosa		
12	pQR511	NAD(P)-dependent oxidoreductase	Actinobacteria		
13	pQR512	NAD(P)-dependent oxidoreductase	Actinomyces odontolyticus		
15	pQR513	oxidoreductase	Atopobium parvulum		
16	pQR514	3-oxoacyl ACP reductase	Rothia mucilaginosa		
17	pQR515	3-oxoacyl ACP reductase	Streptococcus parasanguinis		
18	pQR516	NAD(P)-dependent oxidoreductase	Neisseria mucosa		
19	pQR517	oxidoreductase	Streptococcus sp		
20	pQR518	NAD(P)-dependent oxidoreductase	Prevotella melaninogenica		
21	pQR519	3-oxoacyl ACP reductase	Prevotella sp.		
22	pQR520	NAD(P)-dependent oxidoreductase	Prevotella sp		
23	pQR521	NAD(P)-dependent oxidoreductase	Prevotella sp		
24	pQR522	NAD(P)-dependent oxidoreductase Streptococcus parasan			
25	pQR523	NAD(P)-dependent oxidoreductase Prevotella pallens			
26	pQR524	3-oxoacyl ACP reductase Neisseria sp			
27	pQR525	NAD(P)-dependent oxidoreductase Prevotella salivae			
28	pQR526	NAD(P)-dependent oxidoreductase Oribacterium sinus			
29	pQR527	NAD(P)-dependent oxidoreductase	Veillonella atypica		
30	pQR528	enoyl-(acyl-carrier-protein)	Porphyromonas sp		
31	pQR529	oxidoreductase	Actinomyces graevenitzii		
32	pQR530	NAD(P)-dependent oxidoreductase	Prevotella sp		
33	pQR531	3-oxoacyl ACP reductase	Prevotella sp		
34	pQR532	NAD(P)-dependent oxidoreductase	Prevotella histicola		
35	pQR533	oxidoreductase	Haemophilus parainfluenzae		
36	pQR534	NAD(P)-dependent oxidoreductase	Prevotella melaninogenica		
37	pQR535	oxidoreductase	Haemophilus influenzae		
38	pQR536	3-oxoacyl ACP reductase	Veillonella sp		

Table S2. DNA sequences of the 37 retrieved SDRs generated by sanger sequencing after Gibson assembly into pET29a. Sequences in italics originate from pET29a MCS, coding for 20 amino acids plus the hexa histidine tag.

SDR #	DNA sequence			
1	ATGAATCTACTTGCTAACAAGGTAGCCATCATCACCGGCGCAGGCCGTGGTATCGG			
	CCGCGCTATTGCACTCAAGTATGCACAGGAAGGTGCTTCCGTAGTGATCACTGACCT			
	CAAGATCGACGAGACTGTAGAAGCCTTCGTCAAGGAGCTCGAAGGGCTCGGTGTCA			
	AGGCTAAGGCTTATGCCTCGAACGCAGCTAACTTCGAAGATGCTCACAAGCTCGTC			
	GAAGCAGTCGTCGCAGACTTCGGCCGTATCGACGTCCTCGTCAACAACGCTGGTAT			
	CACCCGTGACGGGCTGATGATGCGTATGACCGAAGAGCAGTGGGATCTCGTCATCA			
	ACGTCAACCTCAAGAGTGCCTTCAACCTCATCCACGCTGTCACCCCCGTTATGGTCA			
	AGCAGCGTAGCGGTAGCATCATCAACATGGCCAGCGTCGTCGGTGTCTCTGGCAAC			
	GCAGGTCAGGCGAACTACTCCGCTTCTAAGGCTGGTATGATCGGTCTGGCAAAGAG			
	CATCGCAAAGGAGCTCGGCGCTCGTGGTATCCGTGCCAACGCTATCGCTCCTGGCTT			
	CATCATCACCGATATGACGGGTGCACTCTCTGAAGAAGTTCGCAAGCAGTGGGAAG			
	TACAGATCCCCCTCCGTCGTGGCGGTACGCCTGAGGACGTAGCTAACGTAGCTACC			
	TTCCTCGCAAGCGACCTCTCCAGCTACGTCTCCGGTCAGACGATCCACGTCTGCGGT			
	GGGATGAATATGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGC			
	GGCCGCACTCGAGCACCACCACCACCA			
2				
Z				
	CCCGCGACAACCTCTTGATGCGTATGAAAGAAGAAGAGGGGGGGG			
	GTCA ACCTCA A ATCCGTGTTCCGCGCCTCCA A AGCCGTCTTGCGCGCGCATGATGA A			
	GCAACGCGCCGCCATCATCAACATCACATCGTTGTCGGTGTGATGGGCAATG			
	CCGGTCAAACCAACTATGCCGCGGCAAAAGCGGGCTTAATCGGTTTCTCCAAATCC			
	ATGGCGCGTGAAGTCGGCAGCCGCGGCATTACCGTCAACTGCGTCGCCCCCAGGCTT			
	TATCGACACCGATATGACCCGCGCCCTGCCGGAAGAAACCCGCAAAACCTTTGAAG			
	CGCAAACTTCTTTGGGCAAATTCGGTGAAGCGCAAGATATTGCTGATGCAGTCTTGT			
	TCTTGGCTTCCGATCNGCAAAATACATTACCGGTCAGACACTTCATGTCAACGGCGG			
	CATGTTGATGCCTCCATGGCTGATATCGGATCCTGAATTCCAGCACACTGGCGGCCG			
	TTACTAGTGGNTCCNANCTCGGTACCAAGCTTGATGCATAGCTTGAGTANTNCTAAC			
	GCGTCNCCTAAATAGCTTGGNGTANCATGGNNATAGCTGTTTNC			
3	ATGGCTCATAATATTTTTGTCACTGGTGCAACGTCTGGTATCGGTCTTTGTATTGCTG			
	AGGCTTATGCAAAGCATGGCGATAATGTGTTGATTTCTGGTCGTCGTGCTGAGTTAT			
	TGGGCGAGGTACAGGCTCGTTIGTCTAAGGAATATGGCGTGCGTGTTGAGACTTTA			
	GTTCTTGATGTGCGTAGTCGCGAGGATGTTGAAAGCAAGGTTCCTGCAGCTATCGA			

4 ATGTCTAAAGTAGCTATTGTTACAGGTGCAGGTCAAGGAATCGGTTTTGCAATCGC AAAACGCTTGGTCCAAGATGGTTTTAAGGTTGGAGTATTAGACTACAATGCTGAAA

- 5 ATGTCAGAAACGATTTTAGTAACAGGAGCTTCAGCTGGTTTTGGTCAAGCGATTTGC CGTCGCTTAGTAGCAGATGGATACCGTGTGATCGGATCAGCTAGACGCATCGATAA ATTACAGGCACTTCAAGAAGAGCTGGGAGAAGCCTTTTATCCCCTGCAAATGGATG TGACGGATCTTTCTCAGGTAGATCATGCACTTGCCAGTTTGCTAAAAGCTTGGGAGA AAGTGGATGTTTTGGTCAATAATGCTGGCTTGGCTCTAGGCCTCGCCCCAGCTTATG AAGCAGAGGTCGCAGACTGGCTGACCATGATTCAGACCAATATTGTCGGCTTGACC TATCTGACAAGGAAAATCTTGCCTCAGATGGTGGAACGAAATGATGGCTATATTAT CAATTTGGGTTCTACAGCAGGAACTGTGCCTTATCCAGGGGCCAATGTTTACGGGG CATCCAAGGCTTTTGTCAAGCAATTCTCCCTCAATCTTCGGGCGGATCTAGCTGGCA AGAAGATTCGTGTCAGCAATATTGAACCTGGTCTTTGCGAAGGGACAGAGTTCTCTT CTGTTCGCTTTAAAGGAGACGAAAAACGGGTAGAAGCCCTCTATCGAGATGCCCAT GCCATTCAGTCTGAAGACATTGCCAACACTGTAGCTTGGTTGATCCAACAGCCCAA GCATGTCAATGTCAACCGGATTGAAATCATGCCGGTTTCCCAAACCTTTGGTCCTCA ACCCGTTTTCGTCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGC GGCCGCACTCGAGCACCACCACCACCACCAC
- ATGTACAGTGAATTAAAAGGAAAGGTAGCCGTCATTACAGGTGGATCTAAGGGAAT 6 CGGAACGGCTATCGCCAAGCGTTTCGGGCAAGAAGGCATGAAGGTTGTCATTAACT ATAATTCCGATGCAGCCGGTGCAGAGTTGGCTGCAGAAGCGGTTCGATGTGCCGGC GGAGAGGCGGTTACTGTCAAGGCTCATGTCGGTACGGAAGAAGGCGTGCAGTCTCT GGTCGATGCGGCTGTAGAAAACTACAGCGGTATCGACGTATGGATTAACAATGCGG GCATGGAAAACAAGGTGGCGACTCATGAAATGCCCTTAAGCGATTGGGAACGAGTT ATTAACGTTAATTTAACAGGTGTATTTCTCGGTACACGTGCGGCTTTGACATATTTT ATGGAGCATGATGTAAAGGGAAGTATTGTAAATATGTCATCAGTTCATGAGCAGAT TCCTTGGCCGACCTTTGCGCATTACTGTGCATCCAAAGGCGGTATTAAACTCTTTAC GCAAACTGTGGCCATGGAGTATGCCAAGTACGGAATTCGTGTAAATGCCGTCGGTC CCGGAGCTATTAATACGCCTATTAATGCGAAAAAATTCTCCGACCCCGTTCAGTATG AAGAAACTATGAGTATGGTTCCCATGAAGCGTATCGGTAAGCCTGAAGAAGTGGCA GCTTGTGTGGCTTGGCTTGCTTCCGATGAAGCGTCATACGTAACAGGAATCACCCTT TTTGTAGACGGCGGCATGACCCTGTATCCGGCTTTTCAAGACGGTAAGGGTCCATGG CTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCA CCACCACCACCAC

S5

GATACATCGCTTGTAGATAAGCAAATTGCCCAATCCCATCAAGATGCGGAACAAGC AAAAGAGGAGATGGGCCAACATTATCCGTTAGGACGTATTGCAAAACCTCATGAAA TTGGCGAAGTTATCGCTTTTTTAATTAGTTCAAAAGCATCCTTTGTAACAGGTGCTG CATGGACGATTGATGGAGGTCTTACGAGT*CCATGGCTGATATCGGATCCGAATTCGAG CTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCA*

- 9 ATGAGCTGGGTCATTGTGACCGGCGCGAACGGCGGTATTGGTGAGGCAACCGTCCA CCAGCTCATCAAGAACGGCTATTCGGTGTTTGCGGCTGACCTTGCGGAGCAGCCCA TTGCCTCCTTCGGTACCTACGGGGACGCAATCTTCCGCTACCGCGCCGTAGACGTTA CGAGCGAAGAGTCCGTCACCGCCCTCGCAGAAGCCGTTGCGGCGCTTGACGAACCC ATCACCGGCGCGGTGCTCGCCGCGGGGTATCGCCCACAGTCAGCCGCTGCTGGAAAC CAGCTTCGCCACCTGGAAGCGCCTGCACGCGGTCAACTCCGACGGCGTGTTCCTGT GCCTGCGCGAATTCGCCCGCATCATGATTGACCAGCAGGAGTCCGACCCGACCAAC AGCCGCTCCCTGGTGACGGTCGCCTCCAACGCGCGCGTGTGCCCCGCGCGGAGTT CGGCGCCTACGGTGCGTCCAAGGCGTCGGCGGCACGCGTGAGTTCCAGCTTCGGTC TGCAGCTTGCCGCGCACGGTATTCGCGTGAACTCGGTCTGCCCCGGCACCACCCGA ACCCCCATGGTGACCGACGCCTGGGAGGGGGGGGGGGCGACGCTCCGCCCTGCCGGTTGC CGGTAACCCGCAGACGTTCCGCCTGGGTATTCCGCTGGGTCGCATCGCCGACCCTGC CGACATCGCGGCGGTCAACGCCTTCCTCATTTCTGAGGCGGCACGCCACATCACCAT GCAGGAGATTGTCGCCCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGC TTGCGGCCGCACTCGAGCACCACCACCACCACCA
- 10 ATGACTGAGAACACCCACATTCCTGCATCTCCTTTCCTGCCCCATACCGGTGACGGC AAAGTTGCCGTGGTGACCGGCGCATCCAGCGGTATTGGCCGAGCCACCGTACAGCA CACCCTTTATGCGGAGACCGGCGCTCATCCGGTGACCTGCGATGTGACCGATGAGC AGTCCGTTCAGTTCGTAGCCGAGCAGATCCTGGAAGAGCAGGGCACCATTGATGCC CTGGTCAATATTGCTGGCGGTGCTATCGGTGTGGACAAGGTTGCAGAGGGTAAGCC TGATGACTATCTGAAGATGTATCAGATGAATGTTCTTGGCATTCTGCATATGGTGCG TGCCTTCGCGGAGGCGCTGCGCCAGAATGGTTACGGTACGATTCTGAACCTGACCT CCACCGCTGCCGAGCACGGCTATGAGGGAGGCGCCGGGGTACAACGCGGCGAAGTT CGGCGCTCGCGGCCTGACCGAGGCGCTTCGCCTGGAGGAGGCGGAGAATAATATTC GCGTGATTGAGATTTGCCCGGGGCATGGTGCACACCGAAGAGTTCTCTCTAAACCGC CTGGGGTCCAAGGAAGCAGCCGAGCGCGTCTACGCGGGCGTTGAGAAGCCGCTGA CCGCAGAGGACGTGGCGCAGACCGTGACCTTTGCGTTGAACGTTCCGCACCATGTG AACCTTGACCGTATTACGATTCGCCCGGTGGCCCAGCCGAGTCAGTTCAAGGTGATT CGCAAGGAGGGCCCATGGCTGATATCGGATCCGAATTCG AGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACCAC
- 11 ATGCCCAAGTCACTGCAACGCCCCGTCGTTCTTCTCACCGGCGCCAGCTCCGGTATC GGCTACGACGTGGCGCCGCTACTGGTGCGCCTACGGCTACATCGTCTACGGTGCCGC

CCGCCGCGTTGAGAAGATTGAAGAGCTCGCCTCCGAGGGCGTGAAAGCGCTCAGCC TGGACGTTACCGATGAAGCATCCATGGAAGCCGCCGTACAGCAGATCATTGATGCA GAAGGCCGCATTGACGTGCTCATCAACAACGCTGGCTACGGATCCTACGGCGCTAT TGAAGACGTCCCCATCGACGAGGCGCGCCGCCAGTTCGAGGTGAACCTCTTCGGCC TGGCGCGCCTCACCCAGCTGGTACTGCCGCATATGCGCGCACGGGGGCAGCGGGCGC ATCCTGAATATCTCCTCAATGGCGGGGGCGTATTACCTCGCCCCTGGGTGCCTGGTAC CACGCCACCAAGTATGCCCTCGAGGCGTTCAGTGATGCACTGCGCATGGAGGTTGA AGAGTTCGGTATTGACGTGGTCATTATCGAGCCCGGCGGCATCAAAACCCCCTGGG GACTCATCGCGGCAGACCACCTCGAGGAATCCTCCCGAAACGGTGTCTACGCGGCT CAGGCGCAGCGGGTTGCGGCAAATATGCGTAGGCTCTACTCTCCTTCATCCAATCTC TCGGAGCCCAAGGTTATCTCTAACGCTATTCTGCGAGCCCTGGAGGCGCGCCGCC CAAGACCCGCTACCTGGTAGGTTCCGGTGCTAAGCCCTCGTGTTCCTGCATACCGT GCTACCGGACCGTCTCTTTGACAAGGTGGCGCGCCGCACTCGAGCACCACCACCACCACCA *CCAC*

ATGAGTAACGCTCCCGAGGTACGTGGGCTTTTCCTCAAGGCCCTCGGCCGCCCGGTC 12 ATCGTGGCCCCCAGCTCGGCGGAGCCGACAGTCACCTTCGACGGTCCGCTCACCGA GGTGTGCTCCTGCTCCCTGAAGGAGACGGAGCTTCCCGTCGTCGTGCGCGCAGGCG AGGAGACTTTCGAGGTTCGCGCCACTTCCACCGGCGAGCGCACCATCAACGGCCGC GGTCGACGCCGGTTGCTTCGTGTTCATCGCCGACCTGAACGGTGAGGGTGCCGCCG CTAAGGCGGCCGAGCTCGGCGGCGAAGGCGTCGCACACCCGATCACGGTTAACGTC GCGGACGAGGAGTCCGTCGCGGCGATGGCCGCCGAGATCGAGCGCGTCACCGGCG AGGACGCTTCCGCGTTCCGCCTGTCCACGGACATCAACTACGTGGCCTTCTTCCTGG TCACCAAGCACCTGGGCCAGCTTCTGGCCCGCCAGCACTCGACCGCCCCCGAGTGG CTGACCGACATCATCCAGATCAACTCCAAGTCTGGCCTCGTCGGCTCGAACAAGAA CGCCGCCTACGCGGGATCGAAGTTCGGCCGGCATCGGCCTAGTGCAGTCCTTCGCCC TCGAGATGGTTGCTCACGGCGTGAAGGTCA ACGCGATCTGCCCCGGTAACTTCTACGACGGCCCGCTCTGGTCCGACCCGGATCGC GGCCTCTTTGTCCAGTACCTGAACTCCGGCAAGGTCCCCGGCGCGAAGACGGTCGC

GGCCTCTTTGTCCAGTACCTGAACTCCGGCAAGGTCCCCGGCGCGAAGACGGTCGC CGACGTCAAGGAGTTCTACGAGGCGAAGGTCCCCATGCGCCGCGGCGCTCAGGGCA TCGACGTTCTGCGCGCGCGATCTTCTACATCGTCGAGCAGGAATACGAGACCGGCCAG GCCGTGCCCGTCACGGGCGGCCAGGTGATGCTCTCCCATGG

- 13 ATGAACACTTCTCGTCGCGTCGTTGTCACTGGAGCCTCCACCGGAATCGGACAGGC CACCGCCCGCCTGTTGGCAAAGCGGGGGGGGGGAAGGTCGTCGCCGTGGCCCGGCGCC GCGAACGCCTCGAGGCCCTCGCCGAGCAGATTGGCTGTGAGTACTGGGCGGCCGAC CTCACCGATGAGGCCCAGGTGAAGGAGATGGCCGCCCACGTCCTGGAGGGGGGGTCC AGGGTGATCCCGCCCGGTGGAGCGCGATGTTCGAGCGCAACGTGCTCACCGCCCTG CACTGCTCGCGCGCGTTCTTGCCGGGGGATGCGCGAGCGCGGGGGGAGACCTCGTGTT CCTGACCTCGACCGCCGCCACGACACCTACCCGGGTGGCGGCGGCTACGTGGCCG CTAAGCACGCCGAGCGCATCATCGCCAACACGCTGCGTCAGGAGCTGGTGGGCGAG CCTGTGCGCGTCATCGAGATTGCGCCCGGCATGGTGCGTACCGAAGAGTTCTCGCTC AACCGGCTCGGCTCCCAGGAGGCGGCCGACCGCGTCTACGAGGGGGTCGCCGCCCC GCTCGTCGCCGAGGACATTGCGGAGGCGATCGTGTGGACCCTGGAGCGCCCCTCCC ACGTCAACATTGACTCGATGATCGTGCGCCCGGTGGCCCAGGCGACAAACACGCTC GTGGCCAGGAAGACCGCCCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACA AGCTTGCGGCCGCACTCGAGCACCACCACCACCACCA
- 15 ATGGACATTGCAGATGCCGAGGGCGTCAAGAAGACCGTTGCTCAGATTCTTGAGGA GTGCGGCGACGTCAACGTTCTTATCAACTGCGCTGGTCGCATCAGCTCCGTTCCTTT CACCGAGGTTGACGACAAAGAGTGGAACAACACTATCAACACCAACCTCACCGGTA CCTACAACGTAACTCACGCTCTCTGGCAGCACTTCATTGATCGTGGTGGCGCTCGCA

TTGTCAAC

GTTTCTTCCGTTGCAGGCAAGATTGGCGGCGGCCTCCTTGGTACTGTTGCTTACGCA TCTTCTAAGGCTGGTATGAACGGCTTTACCAAGGCTATCGCTAAAGAGGGCGGCAA GTACGGCATTTCTTGTAACGCTGTTTGCCCATCCTTCACCATTACAGATATGACCAC TGCACTCTCCAACGATGAGGAGAAGTACAAGAAGGTCGTAGGCATTATTCCTCTCG GCCGTCCTGCACAGGCATCTGAGCCTGCACAGATGGTACTGTTCTTTGCTTCCGACG CTGCTAGCTTTGTCAACGGTGAGGTTGGCGACTGCGACGGCGGCATCGTGATGGAA *CCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGA GCACCACCACCACCA*

- 16 ATGAGCGAGAACACTCCCAAGACCGTGCTGGTCACCGGCGGCAACCGAGGCATCG GCTACGAAATTGCCAAGGAATTCCAGGCAGCAGGACACAACGTCTGCATCACCTAC CGTAGCGGTGAAGCCCCCGAAGAATTTTTCGCCGTCAAGGCAGATGTACGCGATGC CGACAGCATTAACGAAGCATTCAAGGAAATTGAAGCAGAGTTCGGCCCCGTGGAG GTGCTGGTCGCCAATGCAGGTATCACCCGCGACATGCTGCTGATGCGCATGAAAGA ATCCGACTTCACCGACGTGGTCGACACCAACCTCACCGGTTCTTTCCGCGTGGTTCA GCGCGCCATCAAGGGCATGCTGAAGCTCAAGCGCGGTCGTATCATTCTGGTTTCCTC CGTGGTGGGTCTGTACGGTTCTCCCGGCCAGGTCAACTACTCCGCGTCCAAGGCCGC ACTGGTCGGTATGGCGCGCTCCATCACCCGTGAGCTGGGCGGTCGTAACATCACCG CTAACGTGGTGGCACCGGGCTTCATTAACACCGCAATGACCGAGGTTCTGCCCGAA GAGACCAAGAAGAACTACCTGGCGTCCATCCCGGCTGGCCGTTTCGCTGANGCGGA CGCTGTCATCCCCGTTGATGGCGGCCTGGGCATGGGTCACCCATGGCTGATATCGGAT CCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCA C
- 17 ATGGAACTTAAAAAATAAAAATGTTTTTGTAACAGGTTCAACACGCGGAATTGGATT GGCTGTGGCTCATAAATTTGCGAGTCTCGGTGCCAATGTTGTCCTAAATGGACGTTC TGAAATTTCTGAGGACTTGCTTGCACAGTTTGCTGACTATGGTGTGACTGTTGTTGG TATTTCTGGGGGATATTTCTAATGGCGAAGATGCGCAACGTATGGTAGCTGAAGCAA TTGAAAAGCTTGGAAGTGTTGATGTTTTGGTCAATAACGCTGGCATTACAAACGAC AAGTTGATGTTGAAAAATGACTGAAGAAGATTTTGAACGGGTCTTGAAAAATCAACTT GACCGGTGCCTTCAATATGACTCAAGCTGTCTTAAAACCTATGTCTAAGGCTCGTCA AGGTGCCATTATCAACATGTCCTCTGTAGTAGGTCTTATGGGGAATATCGGTCAAGC AAACTATGCAGCTTCAAAGGCTGGTTTGATTGGGTTTACCAAATCCGTTGCGCGTGA AGTTGCGGCCCGTGGTGTTCGTTGAATGCCATTGCACCTGGTTTCATTGAATCAGAT ATGACAGACGCTATTCCAGAGAAAATGAAAGATGCCATGCTAGCTCAAGTGCCAAT GAAACGAATTGGTCAAGCTGAAGAAGTGGCAGAAGTTGCGGCTTTCTTAGCAGGTC AAGAATATTTAACTGGTCAAACAATTGCCATTGATGGCGGAATGACTATGCAACCA TGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCG GCCGCACTCGAGCACCACCACCACCACCA

- 19 ATGAATGATTGGTTAAAACATAAAAGGCAAAAACAGTTCTTGTGACTGGCGCGTCATC TGGGATCGGTAAGGCAATCGTTGAAGAATTGCTGGAATTAGGTGTCAATGTAGCGA ATTTCGATCTTAGCGACAACGATTTGCGTCATCCAAATCTATTATTTGTAAAAGTTG ATGTAACTTCTCGCTCTGAAGTAGAAGAGGGGTGTTGCCAAAATAGTTGAAAGATTT GGCAATATTGATGCAGTGGTCAATAATGCAGGGATTAATATCCCTAGATTATTAATC GATGCAGAAAATCCTAAAGGTCCTTACGAATTGGACGATGAGACGTTCGAAAAAGT AACGATGATTAATCAAAAAGGTTTGTATCTGGTTAGTCAGGCAGTGGGACGTATTTT AGTGAAAAATGGAAAAGGTGTAATTGTGAACATGGCTTCAGAAGCAGGCTTGGAA GGTTCTGAAGGACAAAGTGCCTATGCTGCCACAAAAGCAGCAGTCTATAGTTACAC TCGTTCATGGGCAAAAGAGCTGGGTAAGCATGGTGTACGTGTGGGTTGGAATTGCTC CAGGAATTATGGAAGCTACGGGACTTCGAACTCTTTCTTATGAGGAAGCTCTTGCTT ATACCCGTGGAAAGACGGTAGAAGATATTCGAGCTGGTTATGCTTCAACTTCAACA ACTCCTTTGGGACGAAGTGGTAAACTACGGGAAGTAGCTGACCTTGTAGCATTCTA TATTTCAGACCGTTCTAGCTATATAACTGGAGTCACTACAAATATTGCCGGANGGA AAACTCGCGGTCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCG GCCGCACTCGAGCACCACCACCACCACCA

CAGAATGCAATGACCAGCATTATGGCTATGGAATTTGAGAAGAACAACATACCTGT TGAAATCTTCAATATCCACCCTGGAGCTACGACAACCGATTTAAATAACCATTATAC AGGACCAGGTTCTCACTCGATAGATGTTGTTAGTGAGAAGATTGCAGAGGGTTATTA ATGATGGGGGAAAGCATCAAGGAGAGATTTGTTGAACTATATCCTATC*CCATGGCTGA TATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCAC CACCACCAC*

- ATGAAATTATTGGAAGGTAAGACAGCTCTGATTACAGGTGCTGCACGTGGTATTGG 21 TAAAGCAATCGCATTAAAGTTTGCAGAAGAGGGGGGGCAAACATTGCATTTACCGACC TTGTTATCGATGAGAATGGTAAAGCAACAGAGGCAGAGATTGCTGCTAAGGGCGTA AAAGTAAAGGGTTACGCAAGTAATGCTGCAGATTTCGCACAGTCAGAAGAGGTTGT AAAGCAGGTTAAAGAGGAATTTGGTTCTATTGATATTCTTGTTAACAATGCAGGTAT AACAAAAGATGGTCTTATGCTTCGTATGACTGAGCAGCAGTGGGATGCTGTTATAG CAGTGAACCTTAAGAGTGCTTTCAACTTCATTCATGCTTGTGTTCCAGTAATGATGC GTCAGCGTAATGGTAGTATTATCAATATGGCCAGTGTAGTCGGCGTACATGGTAAT GGTGGTCAGGCTAATTATGCTGCATCAAAGGCTGGTATGATAGCCTTGGCTAAGAG TGTTGCACAGGAGATGGGCCCTAAGGGTATCCGTGCAAATGCTATCGCTCCTGGTTT CATTGATACTGCAATGACACAGGCTTTGAACGACGACATTCGTAAGGAATGGACAT CAAAGATCCCTCTCCGCCGTGGTGGTACTGTTGACGATATTGCTAACACAGCAGTAT ATCTTGGCTCTGAACTATCAAGTTATGTGTGTCTGGTCAGGTAATCCAGGTTGATGGCG GTATGAATATGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCG GCCGCACTCGAGCACCACCACCACCACCAC
- 22 ATGATGACGTCTCTCAGAAAAAAGATAATAGCTATTGGAGGTGCATTGGCTTACCC ATCCATAAGTCTAACACCTGATATTACAAGAGAACACTTCTCTGGGAAGTGGGTTCT TGTGACGGGTGCATCGCATGGAATAGGGAGAGCTTTAACCGAAAAAATAATCAATG

CAGGTGCAAATGTCTTTCTCATTGCTCGAAGCGAAGCTGACTTACGCCTCTTATGTG CCAAAGCTAAGCAAATGGGTAGCAGTGCAGAGCTACTGCGCAATAGACCTAAGAGA CAGGGAAAAGTTGGAACAGCTTTGCCAAAAACTAAGGGAAACACTACCACGGTTA GATTACTTCTTTTGCAATGCCGGTAAATCTATCCATCGCAAGATCAATGATGCGCAG GACCGCCTACACGACTATGACCGTACGATGGACCTCAACTATCGTTCCTTGGTTGCG CTATCATTAGCTATCTTACCTGCCTTGAAAGCAAGTAAAGGGAGTATCATCTATTCT TCATCAGTGAGTACACTCTATCCAATGGCACCGGGCTGGTCGGCTTATCATGCCTCA AAAAGTGCAGCAAACACATGGTGCGAGACGGCAAACAGCGAGTTTGCGCCGTTAG GTGTTCACGTGCAGATAGCTTATTTACCCTTGGTTCACACTGCGATGTCGGATGTCA ACGAACAATACAAGCACTTACCTGCATACACACCAGCTGATGCAGCCAATATTCTA TTGAAACTTGCTATACGGAAGGTCAGGACTTATAAACCTTGGTGGGCAAAGTTATC AGCCCCAATAGCCTATCTTTGCTCCGATTATTCACCTATATTATAAGCGA*CCATG GCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCCCACTCGAG CACCACCACCACCACCAC*

- 23 ATGAAAAAGCAATCGTCGTAGGCGCCAGCAGCGGTATCGGACATGAAGTAGCAC GACTGCTCATCGCACAAGGATGGGCGGTTGGTGTGGCTGCTCGTCGTATAGACAAG TTGACAGACTTGCAAGCTATGGCACCAGAGCGGGGTCTACACCGCCCAAATTGATGT AAATAACGAAGATGCAGAGACTTCCTTACTGCAACTTATAGAACGTATGAACGGCA TCGACCTCTATTTCATGCCGCAGGAATCGGTTGGCAAAACCCAAGTCTTAATGCTG ACATAGAACTCAAAACAATGGAAACCAATGCTGTTGGATTCACACGAATGATTGGC TGTGCCTATCGCTATTTTGCCAATAAGGGAGGTGGACACATCGCTTGTATCACTTCT ATCGCAGGAACAAAAGGGCTCGGACCGGCTCCTGCTTATAGTGCAACAAAGGCGAT GCAGAACACCTATCTACAAGCGTTGGAACAACTCGCAGCTTGTAAACATCATAACA TCCACTTCACAGATATTCGTCCCGGCTTTGTTGACACTCCCCTACTCGCTGGTACATC TCACCTTCCGATGCTGATGACTACAGAAAAGGTGGCACGCAGTATTATAAAGGCTA TTAACAGCCGACGACACATCTGCGTCATCGATAGCCGTTGGTGCGTACTTACCTACT TATGGCGACATATCCCTAACTGGATATGGAGGCGAATGAAGCTATGTCAACCATGG CTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCA CCACCACCACCAC
- 24 ATGAAGATGGAAGATACAATTAAAAAAGGGATCATTATAGGAGCTACAGGAGGGA TTGGTCGTCAATTAGCGAAAGAATTGGCACAACGTTTGGAGCATCTGATTTTAGTGA CAACTTTCAATCCTAACATTAGATATGCTAGATCAAGTGGCTCTAGAAGCTTTTGTA GAGAGTCTAGATGCTGATCTTCTTGTTAATTGTGCAGGTTTAGCTTACTTTTCCCGTG AAAGTGACCTTGATTCAGCCAGTGAGCAAGACCTCTGGCAAGTCAACTACCATAGT TCAGTCCAGCTAATCAAGCAGGTGGTGCAAAAGAATCAGAAGATCCAGCTGGTCCA GCTGTCTTCGCTGGCAGCTCTTTTTCCTCATCCCTATCTAGCAGCCTACAGTGCTAGC AAGGCTGCCTTGCAGACCTTCACTCTTGCTCTCCAGGAGGAACTGAGGCAATCAGA ATCCCAGGTCCAGCTAGGTCTCTATATTCTTGGACCAGTCCAAACAGCTATTTTTCC TCCCAAACTAGTAGAAGCATTGGGTGGCAGTCGCTTGCAGATGAAGTCTGAGAAAG TCGCTCAGCAGTTGATTCGATTCATAGAAAGGGATACTTCCTATGAGATTATCGGGC TTCGCTATCGCTTGCTAGTTTGGCTAGGTCGCCTGCTTCCCCAAAGGTGGATCATCC GTCTCCTTGCTATATATTTAAAAAAAGGGACTCCATGGCTGATATCGGATCCGAATTC GAGCTCCGTCGACAAGCTTGCGGCCGCACTC GAGCACCACCACCACCACCAC
- 25 ATGAGTTATAACTTATTAAAAGGTAAAAGAGGCATTATTTTCGGTGCACTCAACGA GCAGTCAATTGCATGGAAAGTTGCAGAACGAGCTGTAGAAGAAGGAGCATCAATA ACACTTTCCAACACTCCTATAGCCGTTAGAATGGGTACTGTTAATTCATTAGCAGAG AAACTGAATTGCGAAGTAATTGCAGCTGATGCTACAAGTGTAGAAGATTTAGAGAA TGTATTTAAGCGTTCAATGGAAATTCTAGGTGGAAAAATTGACTTTGTACTCCACTC TATTGGTATGTCTCCAAACGTTCGCAAACATCGCACATACGACGATCTGGATTATAA TATGTTGAATACAACGCTTGACATATCGGCTGTATCATTTCATAAAATGATTCAGAG TGCTAAGAAACTTGATGCCATAAGCGACTATGGTTCTATTCTAGCTCTATCATACAT CGCTGCGCAACGTACATTCTTTGGTTACAACGATATGGCAGACGCAAAAGCATTAC TAGAAAGTATTGCACGTAGCTTCGGTTACATATACGGTCGCGAGAAGAATGTACGT

- 26 ATGAGTGAAACTATTTTAATTACAGGGTCTAATCGCGGTATCGGCAAAGCCGTCGC GCTTGGTTTAGCGCAGGACGGCTTTGATATTGTTGTCCACTGCCGTAGCCGCCGTGA TGAAGCGGAAGCTGTCGCGGAAGAAATCCGTGCATTAGGTAGAAATGCACGCGTGT TGCAGTTTGACGTGTCCGACCGCGAAGCCTGCCGAGAAATTTTGACTGCCGACATT GAGGCAAACGGCACATATTACGGCGTGGTGCTGAATGCCGGCCTGACGCGCGACAA TGCGTTTCCTGCGTTTACAGATGATGATGGGACTTGGGGCCTGCGTACCAATTTGGA CGGTTTTTATAATGTGTTGCACCCTTTGACCATGCCGATGATTCGCCGCCGCAAAGC CGGACGGATTGTGTGCATGGCGTCAGTATCCGGTTTGACGGGCAACCGCGGTCAGG TCAATTACAGTGCGTCCAAAGCGGGTCTGATCGGCGCGCGAAAAGCCTTGGCGGTT GAGTTGGCAAAACGAAAAATTACCGTCAACTGTGTGGCACCGGGTCTAATCGATAC CGATATTATCGATGAGAACGTACCTGTCGAAGAAATCTTAAAGGCCGTCCCTGCCG AAAGCGGCGTACATTACGCGCCAAGTGATTGCTGTGAACGGAGGTTTGTGTCCATG GCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACC ACCACCACCACCAC
- 27 ATGGCTTATAACTTATTAAAAGGAAAACGTGGTGTTATTTTCGGTGCACTGAATGATA TGTCAATTGCATGGAAAGTGGCTGAACGCTGCGCAGAAGAAGGTGCAACTCTCGTGT TGAGTAACACTGAAATGGCACTTCGTATGGGTTCACTTGATGAACTTTCCAAGAAGA TTAATGCGCCAGTTATTGCGGCAGATGCGACCAATTACGATGATCTTGAGAATGTTTT TGTTAAGGCTCAAGAGCTATTGGGAGGCAAAATAGACTTCGTTCTCCATTCCATAGG GATGAGTCCTAACGTTCGTAAGCACCGTACTTACGATGATCTTGACTACAATTGGCTA AATAAAACGCTTGATATTTCAGCCATTTCATTCCACAAGATGCTGCAAGCTGCAAAG AAAGTTGACGCAATTGCAGAATATGGTTCAGTCGTTGCATTGACGTATGTGGCTTCAC ATCGCACATTCTTTGGCTATAACGACATGGCCGATGCAAAGAGTTTATTGGAAAGTA TAGCACGTAGTTTCGGCTATATCTATGGCAGAGAGAAGAATGTTCGCATTAATACCA TCTCACAATCTCCTACAGAAACAACTGCAGGTAAAGGCATTAAGGACATTGATAACA TGATGGATTTTGCTGATAAGATGTCACCTCTCGGCAACGCTACAGCCGATGAGTGTG CTGATTACTGTGTAACTTTGTTCAGTGATCTAACCCGTAAGGTGACAATGCAGACCCT TTTCCACGATGGAGGCTTCTCAAACATGGGTATGAGTCTGCGTGCTATGAACCAATAT AGTAAGACTTTGGATCCATGGCTGATATCGGA

- 29 ATGAACCGCAAAATTTTCGTTACAGGTGCTACTTCTGGTATCGGCCTTGAGTGTGCCC GTGCTTTCGCTCAAGATGGAGATAATGTATTGATTGCTGGTCGTCGTGCAGACCGCTT GGCGGCGATTAAGGAAGATTTTGAGCAACAATATGGCATTCGTGTGGATACGCTTGT ACTTGATGTGAGCAAACGTGAAGATGTAGATGCTAAGGTAAAACCAGCTATCGAAGC TTTTGGTGGCATTGATGTACTTGTAAATAATGCAGGTCTGGCACAGGGACTCGATCCA TTTCAAGATAGTACCGTAGAAGATGCAGTCACAATGATTAATACGAATGTATTAGGC CTTCTTTATGTGACTAAGGCTGTATTGCCGTTCATGATGGCTCAAAATAGTGGTCATA TTGTGAACATGGGCTCTACTGCTGGAATTTATGCGTACCCAGGCGGCGCTGTGTACTG TGCTACAAAGGCAGCTGTCAAAATGTTGGCCGATGGCATTCGTATGGATACCATAGC TACAGATATTAAGGTTACTACCATTCAACCAGGTATCGTAGAAACTCCATTTAGTGA AGTTCGCTTTCACGGAGATGCTGAAAGAGCAGCTTCCGTTTATGCTGGCATTGAGGCT ${\tt TTGCAAATCTCTGATGTAACCATCATGGCGAACCAACAAGCGGCAGGTTTTATG}{{\tt CCAT}}$ GGCTGATATCGGATCCGAATTCGAGCTCCTC GACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCA
- 30 ATGAGCTATAATCTCTTAGCAGGAAAGAAGGGGGATCATCTTCGGTGCTCTCAACGAA CAGTCCATCGCTTGGCGCGTCGCAGAACGTGCTGTAGAAGAAGGCGCAGAAATCATC CTCACCAACACGGCTGTAGCTGTTCGTATGGGCCAGCTGAATGAGCTGGGGGCAGAAG TTCCAGGAAGCTATGAAGAGCTTCGGCAAGGTTGACTTCGTCCTCCACTCCGTA TGAGCCCCAACGTCCGTAAGGGTCGTGCTTACGATGACCTCGACTACAAGATGCTCC AGACGACCTTCGATATCTCGGCTGTATCTTTCCACAAGATGCTGCAGGTAGCTAAGA GCGTACCTTCGTCGGCTATAACGATATGGCTGATGCCAAGAGCCTCTTAGAGTCTATC GCTCGTAGCTTCGGTTACATCTACGGTCGTGACAAGGGTGTCCGTATCAATACCGTCT CTCAGTCTCCTACGGTCACGACTGCTGGTAGCGGTGTCAAGGGTATGTCTGACCTGCT CGACTTCGCAGAAGACCTCTCTCCTCTGGGTAACGCCGACGCTAACGACTGCGCAGA CTACTGTATCACGCTCTTCAGCGACCTGACGCGCAAGATCACGATGCAGAATCTCTTC AACGACGGTGGCTTCAGCTCAATGGGTATGAGCGCTGCTGCTATCGAAGCCTTCGCT ACGGGTCGCGCAAACCGCGAGAAGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGT CGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCA

- 34 ATGAGAAAAACAGCATTAATTACTGGTGCTACCAGTGGAATTGGCGAGGCTTGTGCA CTTGCAGCACTCAAAGTGGAGCTTGAGACAGGCGAAACAAAGGTCCTTGCACTTGCT TTTGACGTCCGAAACCGTGCCGCAGCCACAAAGGCTATTAAGAGTTTACCGGCAGAA TGGGCAAAGATAGATGTCCTTATCAACAATGCAGGGCTTGCTCTTGGATTGGAACCA GAGTACGAAGGCGACTTTGAAGACTGGGATACGATGATCGATACCAACATAAAAGG ACTCCTGACGATGACCCGTCTCATTGTTCCTAAGATGGTTGAGCGTAACAGTGGACA CATTATTAATATAGGATCAGTGGCTGGTGACGCTGCATATGCTGGTGGAAACGTCTA TTGTGCCACGAAGGCTGCAGTGAAAACCATCACAGATGGGCTCCGAATTGATGTTGC TCACACTGCCGTAAGGGTTACGAATGTGAAGCCAGGGCTTGTAGAAACACACTTCTC TAACGTCCGTTTCCACGGAGATGACAAGCGTGCGAACAGCGTTTATCATGGTATTAA GCCGTTAACGGGTACCGATATTGCCGATGTTGCCTACTATGCAGCATCCGCTCCAGCC CATGTGCAGATTGCAGAAGTGCTTGTTCTGGCTACACATCAGGGCAGTGGCAGCGTC ATTCACCCATGGCTGATATCGGATCCGAATTCGAGCTCC GTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCA
- 35 TTGCTTACGGGATCGCAAAAGCAATGAAAGAACAAGGCGCTGAACTTGCTTTCACTT ATTTAAACGATAAATTACAACCACGCGTAGAAGAATTTGCAAAAGAATTTGGTTCTG ACATCGTACTTCCTTTAGACGTAGCGACCGATGAAAGCATCCAAAACTGCTTTGCTG AATTAAGCAAACGTTGGGAAAAATTTGATGGTTTCGTACACGCTATCGCATTCGCAC CAGGCGACCAATTAGATGGTGATTACGTAAACGCAGCAACTCGTGAAGGCTACCGTA TCGCTCACGATATCAGTGCATTCAGCTTCGTTGCTATGGCACAAGCAGCACGTCCTTA CCTAACTACAACGTCATGTGTTTAGCGAAAGCGTCTCTTGAAGCGGCAACTCGCGTG ATGGCGGCTGATTTAGGTAAAGAAGGTATTCGTGTGAATGCGATCTCTGCTGGTCCT ATCCGTACCTTAGCAGCATCAGGTATTAAAAACTTCAAGAAAATGTTTTCTGCATTTG AGAAAACCGCAGCGTTACGCCGCACAGTTACTATCGAAGATGTGGGTAACTCAGCAG CATTCTTATGCTCTGATTTAGCATCTGGTATTACCGGTGAAATCGTTCACGTAGATGC AGGTTTCAGCATCACCGCAATGGGCGAATTagGCGAACCATGGCTGATATCGGATCCGA ATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCA

- 37 ATGCAAAGAACAGCGTTAGTAACTGGCGCAACTGCCGGATTTGGTGCGGCAATTTGT CGCACACTTATTGAAAATGGTTATCGTGTAATTGGCACGGGTCGCCGTGTGGCTCGTT TAGAACAATTACAGCAAGAATTAGGTGAAAACTTCCACTTTCTTGCCTTTGATATTTC AGATCGCCAAGCAACAGAAGATGCTTTCCATTCCCTTCCCACTAATTGGCAATCCATT GATTTATTGGTGAATAATGCAGGTTTAGGATTAGGCTTAGAAAGTGCCGATAAAGCG AGTTTAGACGATTGGATGCAAATGATTGATACCAATATTAAAGGACTCGTCACCATC ACTCGTCTTGTATTACCACAAATGGTTGAACGCAATTCAGGTCATATTATTAATTTAG GCTCAATTGCAGGTACTTATCCTTATCCAGGTGGCAATGTATACGGTGGCACTAAAG CTTTTATTAAACAATTTAGTTTAAATCTTCGAGCCGATCTTGCTGGAACTCAAATTCG CGTGACCAATGTAGAGCCTGGTCTTTGTGGTGGAACTGAATTTTCTAATATCCGCTTT AAAGGTGATGATGCCCGAGCAAAAAAACTCTATGAAAATGTGGAATATGTCAGTCCA CAAGATATTGCTAATATTGTGTTATGGCTCAATCAACAACCTGAACATGTCAATATTA ATCGCATTGAAGTGATGCCAACTGCCCAAACCTTTGCACCACTTAATGTCGCAAGAC CATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGC ACCACCACCACCACCAC
- 38 ATGCACTTAGAGGGTAAAGTAGCTCTCGTAACTGGCGCCTCTCGTGGTATCGGTCG CGCCGTTGCTATTCAACTTGCACAATCTGGTGCTGATGTTGCTGTTAACTATAGTG GCAGTGAAGCTGCTGCTCAAGAAACAGTGGACGCTATCTTAGCATTGGGGCGCAA AGCGATTAAAATTAAAGCTAATGTTGCAAATGCTGAAGAAGTTGCAGCAATGGTT GAAGAAACGCATAAAACATTTGGTCACATCGATATCTTGGTCAATAATGCAGGTA TCACACGTGATGGTTTACTTATGCGTATGAAAGATGAAGACTTTGATGCCGTTATC GATATCAACCTTAAAGGTGTATATTTAGTAACAAAAGCAGTATCCAAAATCATGAT GAAACAACGTGCTGGTCATATTATTAACATGACTTCTGTTGTTGGTTTGATGGGTA ATGCTGGTCAAGCTAACTATGCAGCTTCTAAAGCTGGTGTAATCGGTTTTACTAAA TCTTGTGCAAAAGAGTTAGCTAGCCGTGGTATCACAGTTAATGCAATCGCACCTGG TTTTATCAATACTGATATGACAGATGTATTGCCTGAAAAAGGTAAAAGAAGCTATGG TAACACAAATTCCGTTGGGCCGTATGGCTAAAGCTGAAGAAGTGGCTGCCGTAAC AACATTCCTTGCTAGTGATTTTGCTAGCTATATTACAGGTCAAGTCATCAATGTAG ATGGCGGCATGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGC GGCCGCACTCGAGCACCACCACCACCACCAC

Table S3. Amino acid sequences of the 37 retrieved SDRs (excluding the 20 amino acids and hexa histidine tag coded for by the pET29a vector).

SDR #	Amino acid sequence
1	MNLLANKVAIITGAGRGIGRAIALKYAQEGASVVITDLKIDETVEAFVKELEGLGVKA KAYASNAANFEDAHKLVEAVVADFGRIDVLVNNAGITRDGLMMRMTEEQWDLVINV NLKSAFNLIHAVTPVMVKQRSGSIINMASVVGVSGNAGQANYSASKAGMIGLAKSIA KELGARGIRANAIAPGFIITDMTGALSEEVRKQWEVQIPLRRGGTPEDVANVATFLASD LSSYVSGQTIHVCGGMNM
2	MSTQDLSGKIALVTGASRGIGAAIADTLAVAGAKVIGTATSESGAAAISERLAQWGGE GRALNSAEPETIENLIADIEKEFGKLDILVNNAGITRDNLLMRMKEEEWDDIMQVNLK SVFRASKAVLRGMMKQRAGRIINITSVVGVMGNAGQTNYAAAKAGLIGFSKSMARE VGSRGITVNCVAPGFIDTDMTRALPEETRKTFEAQTSLGKFGEAQDIADAVLFLASDQ AKYITGQTLHVNGGMLMPPWLISXPEFQHT
3	MAHNIFVTGATSGIGLCIAEAYAKHGDNVLISGRRAELLGEVQARLSKEYGVRVETLV LDVRSREDVESKVPAAIEAFGGVDVLVNNAGLAQGLDPFQDSAVDDAVTMIDTNVK GLLYVTKAVLPFMIDKNEGHIVNMGSTAGIYAYPNGAVYCATKAAVKTLSDGIRMDT ITTDIKVTTIQPGIVETPFSEVRFHGDAERAKSVYAGIDAIQPEDVADVVLYVTNQPKRL QISDVTIMANQQAAGFMV
4	MSKVAIVTGAGQGIGFAIAKRLVQDGFKVGVLDYNAETAEKAVAELSADKAFAVVA DVSKQAEVAAAFQKVVDHFGDLNVVVNNAGVAPTTPLDTITEEQFNRTFAINVGGVI WGAQAAQAQFKALGHGGKIINATSQAGVVGNPNLTVYGGTKFAVRGITQTLARDLA DSGITVNAYAPGIVKTPMMYDIAHEVGKNAGKDDEWGMQTFAKDITLKRLSEPEDVA AAVSF LAGPDSNYITGQTIIVDGGMQFH
5	MSETILVTGASAGFGQAICRRLVADGYRVIGSARRIDKLQALQEELGEAFYPLQMDVT DLSQVDHALASLLKAWEKVDVLVNNAGLALGLAPAYEAEVADWLTMIQTNIVGLTY LTRKILPQMVERNDGYIINLGSTAGTVPYPGANVYGASKAFVKQFSLNLRADLAGKKI RVSNIEPGLCEGTEFSSVRFKGDEKRVEALYRDAHAIQSEDIANTVAWLIQQP KHVNVNRIEIMPVSQTFGPQPVYR
6	MYSELKGKVAVITGGSKGIGTAIAKRFGQEGMKVVINYNSDAAGAELAAEAVRCAG GEAVTVKAHVGTEEGVQSLVDAAVENYSGIDVWINNAGMENKVATHEMPLSDWER VINVNLTGVFLGTRAALTYFMEHDVKGSIVNMSSVHEQIPWPTFAHYCASKGGIKLFT QTVAMEYAKYGIRVNAVGPGAINTPINAKKFSDPVQYEETMSMVPMKRIGKPEEVAA CVAWLASDEASYVTGITLFVDGGMTLYPAFQDGKG
7	MPHKNDVQVALISGGTSGIGFATAKLLLQEGWCVVINGRDEQAGQRAKMKLRRYSS KVRYVKGDVSSVSDCQRIVKETVDFFGSISALVTAAGYYEEELLADVSESAFDEMFGT NVKGTVFLCQAALPYLRQVKGSIVTVSSDAGLQGNVACSVYGASKGAIVSFTKSLSLE MAPHEVRVNCVCPGDVDTSLVDKQIAQSHQDAEQAKEEMGQHYPLGRI AKPHEIGEVIAFLISSKASFVTGAAWTIDGGLTS
8	MTKRVLVTGVSSGIGLAQARLFLENGYQVYGVDQGEKPDLQGNFHFLQRDLTLDLEP IFDWCPQVDILCNTAGILDDYKSLLEQSAQEIQEIFEINYVTPVELTRYYLTQMLEYKR GTIINMCSIASSLAGGGGHAYTSSKHALAGFTKQLALDYAEAGIQVFGIAPGAVKTGM TAADFEPGGLADWVASETPIKRWIEPEEVAEVSLFLASGKASAMQGQILTIDGGWSL
9	MSWVIVTGANGGIGEATVHQLIKNGYSVFAADLAEQPIASFGTYGDAIFRYRAVDVTS EESVTALAEAVAALDEPITGAVLAAGIAHSQPLLETSFATWKRLHAVNSDGVFLCLRE FARIMIDQQESDPTNSRSLVTVASNAARVPRAEFGAYGASKASAARVSSSFGLQLAAH GIRVNSVCPGTTRTPMVTDAWEGEDRSALPVAGNPQTFRLGIPLGRIADPADIAAVNA FL ISEAARHITMQEIVA
10	MTENTHIPASPFLPHTGDGKVAVVTGASSGIGRATVQQLVASGWTVYALARRTDRLY TLYAETGAHPVTCDVTDEQSVQFVAEQILEEQGTIDALVNIAGGAIGVDKVAEGKPDD

YLKMYQMNVLGILHMVRAFAEALRQNGYGTILNLTSTAAEHGYEGGAGYNAAKFGA RGLTEALRLEEAENNIRVIEICPGMVHTEEFSLNRLGSKEAAERVYAGVEKPLTAEDVA QTVTFALNVPHHVNLDRITIRPVAQPSQFKVIRKEGP

- 11 MPKSLQRPVVLLTGASSGIGYDVAPLLVRYGYIVYGAARRVEKIEELASEGVKALSLD VTDEASMEAAVQQIIDAEGRIDVLINNAGYGSYGAIEDVPIDEARRQFEVNLFGLARLT QLVLPHMRARGSGRILNISSMAGRITSPLGAWYHATKYALEAFSDALRMEVEEFGIDV VIIEPGGIKTPWGLIAADHLEESSRNGVYAAQAQRVAANMRRLYSPSSNLSEPKVISNA ILRALEARRPKTRYLVGFGAKPSVFLHTVLPDRLFDKVARRIF
- 12 MSNAPEVRGLFLKALGRPVIVAPSSAEPTVTFDGPLTEVCSCSLKETELPVVVRAGEET FEVRATSTGERTINGRVALVTGGAQGFGAEIARGLVDAGCFVFIADLNGEGAAAKAA ELGGEGVAHPITVNVADEESVAAMAAEIERVTGGLDLVVSNAGIVRAGSVLEQDASA FRLSTDINYVAFFLVTKHLGQLLARQHSTAPEWLTDIIQINSKSGLVGSNKNAAYAGSK FGGIGLVQSFALEMVAHGVKVNAICPGNFYDGPLWSDPDRGLFVQYLNSGKVPGAKT VADVKEFYEAKVPMRRGAQGIDVLRAIFYIVEQEYETGQAVPVTGGQVMLS
- 13 MNTSRRVVVTGASTGIGQATARLLAKRGWKVVAVARRRERLEALAEQIGCEYWAAD LTDEAQVKEMAAHVLEGGPVDAVVNNAGGAIGVDRVAEGDPARWSAMFERNVLTA LHCSRAFLPGMRERGGDLVFLTSTAAHDTYPGGGGGYVAAKHAERIIANTLRQELVGE PVRVIEIAPGMVRTEEFSLNRLGSQEAADRVYEGVAAPLVAEDIAEAIVWTLERPSHV NIDSMIVRPVAQATNTLVARKTA
- 15 MDIADAEGVKKTVAQILEECGDVNVLINCAGRISSVPFTEVDDKEWNNTINTNLTGTY NVTHALWQHFIDRGGARIVNVSSVAGKIGGGLLGTVAYASSKAGMNGFTKAIAKEGG KYGISCNAVCPSFTITDMTTALSNDEEKYKKVVGIIPLGRPAQASEPAQMVLFFASDAA SFVNGEVGDCDGGIVME
- 16 MSENTPKTVLVTGGNRGIGYEIAKEFQAAGHNVCITYRSGEAPEEFFAVKADVRDADS INEAFKEIEAEFGPVEVLVANAGITRDMLLMRMKESDFTDVVDTNLTGSFRVVQRAIK GMLKLKRGRIILVSSVVGLYGSPGQVNYSASKAALVGMARSITRELGGRNITANVVAP GFINTAMTEVLPEETKKNYLASIPAGRFAXAEEVARVIRWLASDEASYISG AVIPVDGGLGMGH
- 17 MELKNKNVFVTGSTRGIGLAVAHKFASLGANVVLNGRSEISEDLLAQFADYGVTVVG ISGDISNGEDAQRMVAEAIEKLGSVDVLVNNAGITNDKLMLKMTEEDFERVLKINLTG AFNMTQAVLKPMSKARQGAIINMSSVVGLMGNIGQANYAASKAGLIGFTKSVAREVA ARGVRVNAIAPGFIESDMTDAIPEKMKDAMLAQVPMKRIGQAEEVAEVAAFLAGQEY LTGQT IAIDGGMTMQ
- 18 MAILITGASAGFGAAMCRTFVAAGYHVIGAARREDKLQQLAEELGEQFYPLEMDVSR TESIQNALNSLPEHLSEIDCLINNAGLALGLDTADKADFGDWETMIQTNIIGLTFLTRQI LPQMVARKQGYIINLGSIAGSYAYSGSNVYGATKAFVRQFSMNLRAELADKNIRITNIE PGLCGDTEFSNVRFKGDDQRAAEVYENVEFIQPQDIADTALWLYQRPARMNVNSIEIM PVAQTFAGMKVYRDEPAPAKEETFEKQSMSLFGKIKSWFK
- 19 MNDWLNIKGKTVLVTGASSGIGKAIVEELLELGVNVANFDLSDNDLRHPNLLFVKVD VTSRSEVEEGVAKIVERFGNIDAVVNNAGINIPRLLIDAENPKGPYELDDETFEKVTMI NQKGLYLVSQAVGRILVKNGKGVIVNMASEAGLEGSEGQSAYAATKAAVYSYTRSW AKELGKHGVRVVGIAPGIMEATGLRTLSYEEALAYTRGKTVEDIRAGYASTSTTPLGR SGKLREVADLVAFYISDRSSYITGVTTNIAGXKTRG
- 20 MYLCKQIYHTDKHRKTNMAKVLVTGANKGIGYGICKFLGKSGWQIIVGARNSERAEE AMKSLKAEGVDVIGWQYVNLSDNASLEQTAKEVKEKYHDLELLVNNAGIPGDMEVA SYESELKDVIDTVQVNYVGTFCLTKALTPLLSANKGRIVNITVPSEVSPYWHPMAYVA SKAAQNAMTSIMAMEFEKNNIPVEIFNIHPGATTTDLNNHYTGPGSHSIDVVSE KIAEVINDGGKHQGEFVELYPI
- 21 MKLLEGKTALITGAARGIGKAIALKFAEEGANIAFTDLVIDENGKATEAEIAAKGVKV KGYASNAADFAQSEEVVKQVKEEFGSIDILVNNAGITKDGLMLRMTEQQWDAVIAVN

LKSAFNFIHACVPVMMRQRNGSIINMASVVGVHGNGGQANYAASKAGMIALAKSVA QEMGPKGIRANAIAPGFIDTAMTQALNDDIRKEWTSKIPLRRGGTVDDIANTAV YLGSELSSYVSGQVIQVDGGMNM

- 22 MMTSLRKKIIAIGGALAYPSISLTPDITREHFSGKWVLVTGASHGIGRALTEKIINAGAN VFLIARSEADLRLLCAKAKQMGSSADYCAIDLRDREKLEQLCQKLRETLPRLDYFFCN AGKSIHRKINDAQDRLHDYDRTMDLNYRSLVALSLAILPALKASKGSIIYSSSVSTLYP MAPGWSAYHASKSAANTWCETANSEFAPLGVHVQIAYLPLVHTAMSDVNEQYKHLP AYTPADAANILLKLAIRKVRTYKPWWAKLSAPIAYLFAPIIHLYYKR
- 23 MKKAIVVGASSGIGHEVARLLIAQGWAVGVAARRIDKLTDLQAMAPERVYTAQIDVN NEDAETSLLQLIERMNGIDLYFHAAGIGWQNPSLNADIELKTMETNAVGFTRMIGCAY RYFANKGGGHIACITSIAGTKGLGPAPAYSATKAMQNTYLQALEQLAACKHHNIHFT DIRPGFVDTPLLAGTSHLPMLMTTEKVARSIIKAINSRRHICVIDSRWCVLTY LWRHIPNWIWRRMKLCQ
- 24 MKMEDTIKKGIIIGATGGIGRQLAKELAQRLEHLILVSRDADKLSQVQKELTGSKAQLS ILTLDMLDQVALEAFVESLDADLLVNCAGLAYFSRESDLDSASEQDLWQVNYHSSVQ LIKQVVQKNQKIQLVQLSSLAALFPHPYLAAYSASKAALQTFTLALQEELRQSESQVQ LGLYILGPVQTAIFPPKLVEALGGSRLQMKSEKVAQQLIRFIERDTSYEII GLRYRLLVWLGRLLPQRWIIRLLAIYLKKGT
- 25 MSYNLLKGKRGIIFGALNEQSIAWKVAERAVEEGASITLSNTPIAVRMGTVNSLAEKL NCEVIAADATSVEDLENVFKRSMEILGGKIDFVLHSIGMSPNVRKHRTYDDLDYNML NTTLDISAVSFHKMIQSAKKLDAISDYGSILALSYIAAQRTFFGYNDMADAKALLESIA RSFGYIYGREKNVRINTISQSPTMTTAGQGVKGMDKLYDFANRMAPLGNASAAECAD YCIVMFSDLTKKVTMQNLYHDGGFSNIGMSLRAMTTYEKGIGDEYKDENGKIIYG
- 26 MSETILITGSNRGIGKAVALGLAQDGFDIVVHCRSRRDEAEAVAEEIRALGRNARVLQ FDVSDREACREILTADIEANGTYYGVVLNAGLTRDNAFPAFTDDDWDLVLRTNLDGF YNVLHPLTMPMIRRRKAGRIVCMASVSGLTGNRGQVNYSASKAGLIGAAKALAVELA KRKITVNCVAPGLIDTDIIDENVPVEEILKAVPAARMGLPEEVAHAVRFLMDE KAAYITRQVIAVNGGLC
- 27 MAYNLLKGKRGVIFGALNDMSIAWKVAERCAEEGATLVLSNTEMALRMGSLDELSK KINAPVIAADATNYDDLENVFVKAQELLGGKIDFVLHSIGMSPNVRKHRTYDDLDYN WLNKTLDISAISFHKMLQAAKKVDAIAEYGSVVALTYVASHRTFFGYNDMADAKSLL ESIARSFGYIYGREKNVRINTISQSPTETTAGKGIKDIDNMMDFADKMSPLGNATADEC ADYCVTLFSDLTRKVTMQTLFHDGGFSNMGMSLRAMNQYSKTLD
- 28 MNIAIITGASRGIGKAAAKRFAREGYSLLLNCEKNWTLLEELKKEIQSDLPENCPEIFLC KDLGTKKGLSRILEGKSLSKLILIANSGKDAIKLLQDCREEETKALLETNLLQPFILCQK LLPYLLQAEEGRILFSSSVWGNVGASMESLYSLTKGGISTFAKALGKELAPSHISVNAV AFGAVDTDMNSWLSTEEKQSLEEGIPYGRMATVEEAADFLYLLSQAPLYLTAQVI PFDGGWI
- 29 MNRKIFVTGATSGIGLECARAFAQDGDNVLIAGRRADRLAAIKEDFEQQYGIRVDTLV LDVSKREDVDAKVKPAIEAFGGIDVLVNNAGLAQGLDPFQDSTVEDAVTMINTNVLG LLYVTKAVLPFMMAQNSGHIVNMGSTAGIYAYPGGAVYCATKAAVKMLADGIRMD TIATDIKVTTIQPGIVETPFSEVRFHGDAERAASVYAGIEAVQPEDVADVVLYVTNQPK RLQIS DVTIMANQQAAGFM
- 30 MSYNLLAGKKGIIFGALNEQSIAWRVAERAVEEGAEIILTNTAVAVRMGQLNELGQKL NAKVVPADATKEEELEVVFQEAMKSFGKVDFVLHSIGMSPNVRKGRAYDDLDYKML QTTFDISAVSFHKMLQVAKKLDAIAEGGSVVALTYIAAQRTFVGYNDMADAKSLLESI ARSFGYIYGRDKGVRINTVSQSPTVTTAGSGVKGMSDLLDFAEDLSPLGNADANDCA DYCITLFSDLTRKITMQNLFNDGGFSSMGMSAAAIEAFATGRANREK
- 31 MTKHLRRAVVTGASSGIGWAITERLVTEGWQVVGISRTGQVPEGALSVSADLAEDGV GEAITQAQNLLGGVDAYVGAAGSTYEQLAARADLEQVNTQLRLHYLSNYEAISLLLP

GMVRARWGRIVLLSSVVAQSGMAGLSAYGAAKGALEALVKSLALEVGRRAITVNAV APGYIQTPMTQSLSPRQQERYLQRTGAARPGTPQDVAGPVAFLLSDDAAYVNGQILH VDGAMGVGNP

- 32 MNIFITGGTSGIGLALARFYAAKGHRVGVCGRNTARIDKSDEVNKLLLAYQLDVCDK DALTVAVEVFCADKGLDMMIVAAGYYRNGVTEEVDFEQTSQMLKVNIAGALNAME VAREAMNASGGHLVVIASVAGLLHYPCASVYAKCKRALIQIADAYRRSLADYQITVT TLVPGYIDTPRLREIYRNDLSKCPFCMPLNRAVETMTKAIAQRKEQVVFPPKMRLS IAILSLLPTCLLSAFMHRKTLWSI
- 33 MKYALITGASRGIGRSVALLLAERYSIIINYQSNAEAAQAVKQEIETKGGHVELLPFDV SDPKAIEAAIDTWEASHPDEFISVLVNNAGIRRDNVMFMMSDEDWHSVLDTNMNGFF YITRRLLKHMMPRKRGGRIINMASLSGLKGLPGQVNYSAAKAALIGATKALAQEVAA RKITVNAVAPGFIQTDMTKELPEDELKKLVPVGRFGTPEEVADVVAFLASDAAAYITG EVI NVNGGFY
- 34 MRKTALITGATSGIGEACARKFAQGGYDVIITGRNKQRLAALKVELETGETKVLALAF DVRNRAAATKAIKSLPAEWAKIDVLINNAGLALGLEPEYEGDFEDWDTMIDTNIKGLL TMTRLIVPKMVERNSGHIINIGSVAGDAAYAGGNVYCATKAAVKTITDGLRIDVAHTA VRVTNVKPGLVETHFSNVRFHGDDKRANSVYHGIKPLTGTDIADVAYYAASAPAHVQ IAE VLVLATHQGSGSVIH
- 35 MGFLTGKRILVAGLASNRSIAYGIAKAMKEQGAELAFTYLNDKLQPRVEEFAKEFGSD IVLPLDVATDESIQNCFAELSKRWEKFDGFVHAIAFAPGDQLDGDYVNAATREGYRIA HDISAFSFVAMAQAARPYLNPNAALLTLSYLGAERAIPNYNVMCLAKASLEAATRVM AADLGKEGIRVNAISAGPIRTLAASGIKNFKKMFSAFEKTAALRRTVTIEDVGNSAAFL CSDLASGITGEIVHVDAGFSITAMGELGE
- 36 MAKVMVTGANKGIGYGICKFLGKSGWQVIVGARNSERAEEAMKSLKAEGVDVIGW QYVNLSDNASLEQTAKEVKEKYHDLELLVNNAGIPGDMKVASYESELKDVIDTVQVN YVGTFCLTKALTPLLSANKGRIVNITVPSEVSPYWHPMAYVASKAAQNAMTSIMAME FEKNNIPVEIFNIHPGATTTDLNNHYTGPGSHSIDVVSEKIAEVINDGKKHQGEFVELYP IVDEGR
- 37 MQRTALVTGATAGFGAAICRTLIENGYRVIGTGRRVARLEQLQQELGENFHFLAFDIS DRQATEDAFHSLPTNWQSIDLLVNNAGLGLGLESADKASLDDWMQMIDTNIKGLVTI TRLVLPQMVERNSGHIINLGSIAGTYPYPGGNVYGGTKAFIKQFSLNLRADLAGTQIRV TNVEPGLCGGTEFSNIRFKGDDARAKKLYENVEYVSPQDIANIVLWLNQQP EHVNINRIEVMPTAQTFAPLNVAR
- 38 MHLEGKVALVTGASRGIGRAVAIQLAQSGADVAVNYSGSEAAAQETVDAILALGR KAIKIVSKIMMKQRAGHIINMTSVVGLMGNAGQANYAASKAGVIGFTKSCAKELAS RGITVNAIAPGFINTDMTDVLPEKVKEAMVTQIPLGRMAKAEEVAAVTTFLASDFA SYITGQVINVDGGMKANVANAEEVAAMVEETHKTFGHIDILVNNAGITRDGLLMR MKDEDFDAVIDINLKGVYLVTKA

SDR #	Primers
1 FWD	TAAGAAGGAGATATACATATGAATCTACTTGCTAACAAGGTAGCC
1 RVR	ATCCGATATCAGCCATGGCATATTCATCCCACCGCAGACG
2 FWD	
2 RVR	ATCCGATATCAGCCATGGAGGCATCAACATGCCGCCGT
3 FWD	
3 RVR	ATCCGATATCAGCCATGGCACCATAAAGCCTGCCGCTTGT
0 10 10	
4 FWD	TAAGAAGGAGATATACATATGTCTAAAGTAGCTATTGTTACAGGTGC
4 RVR	ATCCGATATCAGCCATGGATGGAATTGCATACCACCATCGAC
5 FWD	TAAGAAGGAGATATACATATGTCAGAAACGATTTTAGTAACAGGAGC
5 RVR	<i>ATCCGATATCAGCCATGG</i> ACGATAAACGGGTTGAGGACCAAAG
(EWD	
6 RVR	
UKVK	
7 FWD	TAAGAAGGAGATATACATATGCCTCATAAAAATGATGTTCAAGTGGCA
7 RVR	ATCCGATATCAGCCATGGACTCGTAAGACCTCCATCAATCG
8 FWD	TAAGAAGGAGATATACATATGACTAAACGCGTCTTAGTTACAGGTG
8 RVR	<i>ATCCGATATCAGCCATGG</i> CAAAGACCAGCCACCATCAATAGTC
9 K V K	
10 FWD	TAAGAAGGAGATATACATATGACTGAGAACACCCACATTCCTGC
10 RVR	ATCCGATATCAGCCATGGGCCCTCCTTGCGAATCACCTTG
11 FWD	TAAGAAGGAGATATACATATGCCCAAGTCACTGCAACGCC
11 RVR	ATCCGATATCAGCCATGGGAAGATACGGCGCGCCACCTTG
10 5100	
12 FWD	
12 KVK	
13 FWD	TAAGAAGGAGATATACATATGAACACTTCTCGTCGCGTCGTTGTTAC
13 RVR	ATCCGATATCAGCCATGGGGGGGGGTCTTCCTGGCCACGAG
14 FWD	TAAGAAGGAGATATACATATGGGAACAGCGCTGGTCACCGG
14 RVR	ATCCGATATCAGCCATGGCATGTGGGGGGACGGAGCGCATG
15 FWD	IAAGAAGGAGAIAIACAIATGGACATTGCAGATGCCGAGGGCGT

Table S4. Table of primers used to retrieve SDRs from the oral metagenome. Italicised sequences match MCS from pet29a to facilitate Gibson assembly.

15 RVR	ATCCGATATCAGCCATGGTTCCATCACGATGCCGCCGTCGCA
16 FWD	TAAGAAGGAGATATACATATGAGCGAGAACACTCCCAAGACCGTGCT
16 RVR	<i>ATCCGATATCAGCCATGG</i> GTGACCCATGCCCAGGCCGCCAT
17 FWD	TAAGAAGGAGATATACATATGGAACTTAAAAATAAAAATGTTTTG
17 RVR	ATCCGATATCAGCCATGGTTGCATAGTCATTCCGCCA
18 FWD	TAAGAAGGAGATATACATATGGCAATTTTGATTACCGGG
18 RVR	<i>ATCCGATATCAGCCATGG</i> CTTAAACCAAGATTTAATTTTTCCAAAC
19 FWD	TAAGAAGGAGATATACATATGAATGATTGGTTAAACATAAAAGGC
19 RVR	ATCCGATATCAGCCATGGACCGCGAGTTTTCCCTCC
20 FWD	TAAGAAGGAGATATACATATGTATCTTTGCAAGCAAATATATCACA
20 RVR	ATCCGATATCAGCCATGGGATAGGATATAGTTCAACAAACTCTC
21 FWD	<i>TAAGAAGGAGATATACAT</i> ATGAAATTATTGGAAGGTAAGACAGC
21 RVR	ATCCGATATCAGCCATGGCATATTCATACCGCCATCAACC
22 FWD	TAAGAAGGAGATATACATATGATGACGTCTCTCAGAAAAAAGAT
22 RVR	ATCCGATATCAGCCATGGTCGCTTATAATATAGGTGAATAATCGG
23 FWD	TAAGAAGGAGATATACATATGAAAAAAGCAATCGTCGTAGGC
23 RVR	ATCCGATATCAGCCATGGTTGACATAGCTTCATTCGCCTCC
24 FWD	<i>TAAGAAGGAGATATACAT</i> ATGAAGATGGAAGATACAATTAAAAAAGGG
24 RVR	<i>ATCCGATATCAGCCATGG</i> AGTCCCTTTTTTTAAATATATAGCAAGGAG
25 FWD	TAAGAAGGAGATATACATATGAGTTATAACTTATTAAAAGGTAAAAGAGG
25 RVR	ATCCGATATCAGCCATGGTCCGTAGATAATCTTTCCGTTCTC
26 FWD	TAAGAAGGAGATATACATATGAGTGAAACTATTTTAATTACAGGGTC
26 RVR	<i>ATCCGATATCAGCCATGG</i> ACACAAACCTCCGTTCACAGC
27 FWD	TAAGAAGGAGATATACATATGGCTTATAACTTATTAAAAGGAAAACGTG
27 RVR	ATCCGATATCAGCCATGGATCCAAAGTCTTACTATATTGGTTCATAG
28 FWD	TAAGAAGGAGATATACATATGAACATTGCTATTATTACCGGTGC
28 RVR	ATCCGATATCAGCCATGGGATCCAGCCTCCGTCGAAAGG
29 FWD	TAAGAAGGAGATATACATATGAACCGCAAAATTTTCGTTACAGG
29 RVR	ATCCGATATCAGCCATGGCATAAAACCTGCCGCTTGTTGG
30 FWD	TAAGAAGGAGATATACATATGAGCTATAATCTCTTAGCAGGAAAG
30 RVR	ATCCGATATCAGCCATGGCTTCTCGCGGTTTGCGCGA

31 FWD	TAAGAAGGAGATATACATATGACTAAGCATTTACGCCGCG
31 RVR	ATCCGATATCAGCCATGGGTTTCCTACCCCCATAGCCC
32 FWD	<i>TAAGAAGGAGATATACAT</i> ATGAACATCTTTATTACGGGCGGAAC
32 RVR	ATCCGATATCAGCCATGGAATGCTCCATAATGTCTTTCGGTGC
33 FWD	
33 KVK	ATCCGATATCAGCCATGGATAGAAACCTCCATTCACATTGATAACCT
34 FWD	TAAGAAGGAGATATACATATGAGAAAAACAGCATTAATTA
34 RVR	ATCCGATATCAGCCATGGGTGAATGACGCTGCCACTGC
25 EWD	
55 F WD	
35 RVR	AICCGAIAICAGCCAIGGIICGCCIAAIICGCCCAIIGCG
36 FWD	<i>TAAGAAGGAGATATACAT</i> ATGGCAAAAGTAATGGTAACAGGTGC
36 RVR	ATCCGATATCAGCCATGGTCGTCCTTCGTCTACGATAGGATA
50 KVK	
37 FWD	TAAGAAGGAGATATACATATGCAAAGAACAGCGTTAGTAACTGG
37 RVR	ATCCGATATCAGCCATGGTCTTGCGACATTAAGTGGTGCAAAGG
20 EWD	
38 F W D	TADAADDADATATACATATGCACTTAGADDDTAAADTAGCTCT

2. Figures

Figure S1.

A. Sequence alignments for SDRs 3,4,11,17,31,37. The catalytic triad Ser-Tyr-Lys and a fourth residue considered to be important are all marked red. The TGxxxGxG motif important in cofactor binding is marked in purple.

11 3 37 4 17 31	MPKSLQRPVVLLTGASSGIGYDVAPLLVRYGYIVYGAARRVEKIEELASEGVK MAHNIFVTGATSGIGLCIAEAYAKHGDNVLISGRRAELLGEVQARLSKEYGVRVE MQRTALVTGATAGFGAAICRTLIENGYRVIGTGRRVARLEQLQQELGENFH MSKVAIVTGAGQGIGFAIAKRLVQDGFKVGVLDYNAETAEKAVAELS-ADKAF -MELKNKNVFVTGSTRGIGLAVAHKFASLGANVVLNGRS-EISEDLLAQFA-DYGVTVV -MTKHLRRAVVTGASSGIGWAITERLVTEGWQVVGISRTGQVPEGALS			
	••^^•			
11 3 37	ALSLDVTDEASMEAAVQQIIDAEGRIDVLINNAGYGS-YGAIEDVPIDEARRQFEVNLFG TLVLDVRSREDVESKVPAAIEAFGGVDVLVNNAGLAQGLDPFQDSAVDDAVTMIDTNVKG FLAFDISDRQATEDAFHSLPTNWQSIDLLVNNAGLGLGLESADKASLDDWMQMIDTNIKG			
4 17	AVVADVSKQAEVAAAFQKVVDHFGDLNVVVNNAGVAP-TTPLDTITEEQFNRTFAINVGG GISGDISNGEDAORMVAEAIEKLGSVDVLVNNAGITN-DKLMLKMTEEDFERVLKINLTG			
31	-VSADLAE-DGVGEAITQAQNLLGGVDAYVGAAGSTY-EQLAARADLEQVNTQLRLHYLS			
	: *: :: :. ** :: :: : : :			
11	LARLTQLVLPH-MRARGSGRILNISSMAGRITSPLGAWYHATKYALEAFSDALRMEVEEF			
3 37	LLYVTKAVLPF-MIDKNEGHIVNMGSTAGIYAYPNGAVYCATKAAVKTLSDGIRMDTITT LVTITRLVLPO-MVERNSGHIINLG <mark>S</mark> IAGTYPYPGGNV <mark>Y</mark> GGTKAFIKOFSLNLRADLAGT			
4	VIWGAQAAQAQFKALGHGGKIINAT <mark>S</mark> QAGVVGNPNLTV <mark>Y</mark> GGT <mark>K</mark> FAVRGITQTLARDLADS			
17	AFNMTQAVLKP-MSKARQGAIINM <mark>SS</mark> VVGLMGNIGQAN <mark>Y</mark> AAS <mark>K</mark> AGLIGFTKSVAREVAAR			
31	NYEAISLLLPG-MVRARWGRIVLLS <mark>S</mark> VVAQSGMAGLSAYGAAKGALEALVKSLALEVGRR * *: * * .:* : : : :			
11	GIDVVIIEPGGIK-TPWGLIAADHLEESSRNGVYAAQAQRVAANMR			
3	DIKVTTIQPGIVE-TPFSEVRFHGDAERAKSVYAGIDAIQPEDVADVVL			
37	QIRVTNVEPGLCGGTEFSNIRFKGDDARAKKLYENVEYVSPQDIANIVL			
4	GITVNAYAPGIVK-TPMMYDIAHEVGKNAGKDDEWGMQTFAKDITLKRLSEPEDVAAAVS			
1 / 31				
51	: * ** : : : : : : : : : : : : : : : :			
11	RLYSPSSNLSEPKVISNAILRALEARRPKTRYLVGFGAKPSVFLHTVLPDRLFDKVAR			
3	YVTNQPKRLQISDVTIMANQQAAGFMVFMV			
37	WLNQQPEHVNINRIEVMPTAQTFAPLNVAR			
4	FLAGPDSNYITGQTIIVDGGMQFH			
17	FLAGQEYLTGQTIAIDGGMTMQ			
31	FLLSDDAAYVNGQILHVDGAMGVGNPGNP			
11	RIF			
3				
3 / 1				
ч 17				
31				
0 ±				
B. SDR percentage identity matrix for 3,4,11,17,31,37				

sit percentage raching marine for s, 1,11,17,51,57						
11	100.00	33.05	31.38	26.18	27.04	25.43
3	33.05	100.00	39.18	27.39	28.75	21.21
37	31.38	39.18	100.00	24.79	21.94	23.38
4	26.18	27.39	24.79	100.00	31.80	28.88
17	27.04	28.75	21.94	31.80	100.00	31.47
31	25.43	21.21	23.38	28.88	31.47	100.00

Figure S2. Graph displaying activity with (*S*)-**18** and (*R*)-**18** with SDR-17 and SDR-31 at a range of pHs

Reaction conditions (200 µL volume): **18** (5 mM), clarified cell lysate (0.4 mg/mL), NADPH (1 mM), KPi (100 mM), DMSO (10%, v/v). Reactions were shaken for 95 mins at 25 °C, performed in triplicate and quantified by the spectrophotometric assay at 340 nm.

Figure S3. SDS PAGE showing induced recombinant protein expression in *E.coli*.

Numbers in the well line correspond to SDR number IDs. Each enzyme has two lanes, crude lysate and purified fraction from left to right. Bands corresponding to induced protein are underlined in red either in the crude lysate lane or both lanes in the case of successful purification. Markers are given in kDa (10-230 Broad range, NEB). Protein sizes in kDa calculated using the online tool expasy protparam as follows; 1) 29, 2) 27.5, 3) 29.5, 4) 29.4, 5) 30.2, 6) 30.7, 7) 29.8, 8) 28, 9) 28.9, 10) 31.5, 11) 33.2, 12) 35.6, 13) 29.6, 15) 22.9, 16) 28.4, 17) 28.5, 18) 33.3, 19) 31.2, 20) 30.1, 21) 29, 22) 34, 23) 29.7, 24) 31.5, 25) 34.3, 26) 29, 27) 33.1, 28) 29.1, 29) 29.2, 30) 32.6, 31) 27.4, 32) 30.1, 33) 28.96, 34) 29.2, 35) 30.7, 36) 28.5, 37) 30.2, 38) 28.5.

Figure S4. HPLC calibration curves for A. (*S*)-WMK, (*S*)-**18**. B. (*R*)-WMK (*R*)-**18**. C (4aR,5R)-**22**. D. (4aR,5S)-**22**. E. (4aS,5S)-**22**. Quantification by HPLC on a Chiralcel OJ column with 4% isopropanol/hexane mobile phase 0.5 mL/min flow rate and detection at 230 nm.

Figure S5. HPLC trace of the products of the reduction of *rac*-WMK-**18** using NaBH₄: (4a*R*,5*S*)-**22** Rt = 54.0 min, (4a*R*,5*R*)-**22** Rt = 61.2 min, (4a*S*,5*S*)-**22** Rt = 85.9 min. HPLC conditions were 4% iPrOH:hexane, 120 min, 0.5 mL/min at 230 nm, on a Chiracel OJ column.

Figure S6. Characterisation data for (4aR,5S)-22 from the scaled-up reaction using SDR-17. **A**. HPLC trace of (4aR,5S)-22 starting from (*R*)-18 using SDR-17. Rt = 54 min. HPLC using Chiralcel OJ column with 4% isopropanol/hexane mobile phase 0.5 mL/min flow rate and detection at 230 nm. **B**. ¹H and ¹³C NMR spectra of (4aR,5S)-22.

В

Figure S7. ¹H and ¹³C NMR spectra of (4aR, 5R)-22.

Figure S8. ¹H and ¹³C NMR spectra of (4aS, 5S)-**22**.

