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Abstract

We investigate the dynamics of a smoothly curved convex body skimming
on a layer of shallow water, with the phenomenon of skipping stones as a
primary modelling motivation but also industrial applications in mind. The
skimming process of such an object may consist of two successive stages: an
impact stage and a conditional planing stage. The focus here is on explaining
the change from one stage to the other, with the body movement responding
freely to the fluid flow pressures and vice-versa. We first introduce a water
impact model and analyse the conditions under which a smooth body may
rapidly transit to a planing motion via small time asymptotics. A planing
model is then introduced, and in particular we investigate the effects of
pressure conditions in the separation flow; we demonstrate under certain
weak adverse pressure gradient conditions a smooth body’s planing motion
at early times can be seen as undergoing three successive transitory phases.

Keywords: Skimming, impact, planing, smooth body, shallow water.

1. Introduction

In this paper we study the dynamics of a smooth object skimming (skip-
ping) on a layer of shallow water in two spatial dimensions. The motivation
comes from modelling skipping stones, with wider applications to seaplane
landing on relatively shallow water, ice crystals in cirrus clouds impacting
on damp aircraft fuselage, jet-ski and speedboat safety, as well as other
recreational activities such as surf skimming [18, 6, 7, 17, 22].

The topic of skimming, particularly by a thin body with sharp trailing
edge (our model below has no sharp edge) on water with finite depth, has
been subject to numerous investigations [2, 3, 5, 19, 13, 21]. In such cases
water is assumed to detach smoothly from the body’s sharp trailing edge,
while ahead of the body water can be seen to “pile up” and a splash jet may
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also be emitted [11]; one key modelling challenge of this problem is in de-
termining the contact region between the body and fluid, whence obtaining
the resulting lift force on the body. By contrast, in the case of a completely
smooth body the added complexities are that the trailing separation position
(the detachment point) acts as one additional unknown moving boundary,
since there is no fixed sharp edge.

In general for the present smoothly curved body the skimming process
can be decomposed into two successive stages [23, 26, 13] – an initial impact
stage followed by a planing stage, after which the body either sinks or lifts off
from water and thereby completes one skipping cycle. Rationally describing
the transition from the impact stage to the planing stage is a challenge
here. The specific aim of our paper here is two-fold: firstly we present a
rapid impact and planing model, through which we analyse the conditions
that enable a smooth body to rapidly transit from its initial impact to
the planing stage; secondly we investigate the presence of adverse pressure
gradient near the body’s trailing separation point and its effect on the body’s
overall planing motion.

The early mathematical treatments of a solid object slamming on an
undisturbed free surface of water were pioneered in [8, 9, 25]. See also [10, 20,
15, 12, 1, 22, 26]. The range of phenomena present can be complex and there
are many parameters potentially involved. We focus on impact and planing
through an analytical study. Our asymptotic analysis shows that during
early touchdown the pressure underneath a smooth body is high everywhere,
however as time progresses a sub-atmospheric pressure region begins to grow
in its trailing separation region, which likely gives rise to separation and/or
instability. Excellent work by [26] specifically investigated the phenomenon
of a smooth body skimming on shallow water. Their analysis indicates
that if we demand smooth flow separation by applying a Brillouin-Villat
pressure condition as the body begins its planing motion, a discontinuity is
predicted in the trailing separation position (compared with its position at
the end of the impact stage). This is further analysed in [16] by examining
three separation criteria in the trailing flow: the Brillouin-Villat condition,
minimisation of change of fluid kinetic energy, and setting the separation
point to be where the body-surface tangent is parallel to its body velocity;
in all three cases discontinuities in the trailing separation position solutions
are produced. We discuss the pressure conditions that give rise to such
separation later. It is noted in passing that most works impose a prescribed
body velocity whereas the present work allows free movement of the body.

Our paper is structured as follows. Section 2 presents the analysis of a
smooth body impacting on a shallow layer of water; small time asymptotics
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are then performed to investigate the conditions under which it is able to
transit to a planing motion. We present the planing analysis in Section
3 and investigate conditions that may lead to modelled turbulent trailing
flow separations. Such findings enable us to show in Section 4 that in a
weak adverse pressure gradient regime a smooth body’s planing motion can
itself be viewed as three distinct and transitory phases. Section 5 provides
conclusions.

2. Impact stage model development

The skimming object has an elongated horizontal profile whose length l̄
is significantly greater than its thickness; its lower body surface which may
be in contact with water is smooth and strictly convex. Let h̄ be the depth
of the water; it being shallow implies h̄ ∼ εl̄ with ε� 1. This object skims
at an inclined angle, say α with angular velocity ω, the angle of inclination
being defined as the one made by the major axis and the undisturbed water
surface and being small of order ε. Letting (ū, v̄) be the body’s horizontal
and vertical velocity respectively, the horizontal component is a magnitude
larger than the vertical, specifically v̄ ∼ εū. The flow is idealised to be
incompressible and irrotational.

In a Cartesian coordinate system (x̄, ȳ) as in Figure 1, the ȳ-axis passes
through the skimming body’s centre of mass, whose coordinate is (0, ȳm)
say. The coordinate system travels horizontally with the skimming body, the
undisturbed water flows in the positive direction of the x̄-axis and the body
itself has only vertical and angular motions. To leading order the horizontal
motion of the body remains at a uniform velocity because horizontal forces
are relatively small.

As the body impacts on the water, the flow can be approximately divided
into three sub-regions: an undisturbed up-stream flow region at rest relative
to the ground (thus at uniform velocity approaching the body); a region near
the leading contact position with elevated free surface of size O(h̄)× O(h̄),
known as the “jet-root” or “turn-over” region where the flow separates from
the body and splash jets may be emitted; and a main flow region trapped
under the body and enclosed by the jet-root regions. The splash jets are
typically thin compared with the main body flow and their effects can be
neglected [9, 5]. We let x̄1, x̄2 be the unknown horizontal positions of the
stream turn-over points in the jet-root regions.

The typical Reynolds number is large in practice, as are the Froude and
Weber numbers, and the flow is broadly pressure driven. That suggests
nominally the Navier-Stokes equations can be approximated by the Euler
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Figure 1: A close-up sketch of a smooth body during the impact stage of a skimming
process. x̄1 and x̄2 represent the horizontal positions of the leading and trailing contact
points respectively. h̄ denotes the representative depth of the water layer, the jet root
regions 1 and 3 have representative scales of O(h̄) × O(h̄), while the region underneath
the impact body has size of O(l̄)×O(h̄). At a sufficiently small time, the contact surface
of the smooth body can be approximated by a parabola at the leading order, and x̄1, x̄2
move away from each other at an extremely large speed.

form. Our non-dimensionalization is then based on the body length l̄ and
horizontal velocity ū0: x = x̄

l̄
, y = ȳ

l̄
, h = h̄

l̄
, u = ū

ū0
, v = v̄

ū0
, t =

l̄
ū0
, p = p̄

ρū2
0
, m = m̄

ρl̄2
, i = ī

ρl̄4
; m̄ and ī are the skipping stone’s body mass

and moment of inertia respectively.
Supposing the body’s lower surface is given by η(x), then the water

depth under the body is simply: h(x, α, t) = ym(t) + xα(t) − η(x). Given
its lower surface is smooth and convex, we stipulate that such surface can
be written in a parabolic form: η(x) = ax2 + bx + c. The coefficients a, b
and c are constants and can be calibrated according to the object’s body
shape, with a being strictly negative due to our configuration. To ensure the
skimming body has a large aspect ratio, the surface coefficients should be
small, i.e. a, b, c = O(ε). The large differences between the horizontal and
vertical scales can be further exploited by introducing the following scaling:

(α, η, y, h, a, b, c) = ε× (θ, T, Y,H,A,B,C), (1)

where ε = h̄0/l̄ � 1 as before. Hence the equations of the water depth and
the body surface can be written conveniently as:

H(x, θ, t) = Ym(t) + xθ(t)− T (x), T (x) = Ax2 +Bx+ C, (2)
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where A < 0. Supposing the initial point of impact is (x0, H0) we readily
obtain x0 = θ0−B

2A , with θ0 being the initial contact angle at touchdown.
As one would expect the initial contact location is dependent upon the
skimming body’s contact angle and its surface geometry.

Since the flow is irrotational the kinematic boundary condition at the
surface of the flow can be written as:

∂H

∂t
+ ∂(uH)

∂x
= 0; (3)

similarly the horizontal momentum balance reduces to

∂u

∂t
+ u

∂u

∂x
= −∂p

∂x
. (4)

As the model flow is predominantly pressure driven, we have the following
vertical and angular momentum equations for the body:

M
d2Ym
dt2

=
∫ x2

x1
p(x, t)dx (5a)

I
d2θ

dt2
=
∫ x2

x1
xp(x, t)dx, (5b)

where (M, I) = ε(m, i).
Concerning boundary conditions, during the impact phase the speeds at

which the leading- and trailing-separation positions travel away from the ini-
tial touchdown point are extremely large, with spray jets formed from these
edges. As jets are thrown into their respective up and down streams, part
of the fluid momentum is lost; under the assumptions of inviscid flow this
loss of momentum is balanced by the force caused by the pressure difference
between that of the jet root regions and the atmosphere, giving the pres-
sure jump condition used by [5, 19, 26]. This pressure jump condition and
Bernoulli’s principle serve as boundary conditions to our impact problem
(here n = 1, 2):

p(xn, t) + 1
2

(
u(xn, t)−

dxn
dt

)2
= 1

2

(
1− dxn

dt

)2
, (6a)(

u(xn, t)−
dxn
dt

)/(
1− dxn

dt

)
= 2H(xn, t)− 1

2 − 1. (6b)

The current impact model therefore consists of (2) - (6). The solution to
this integro-differential system is challenging as the contact surface (x1, x2)
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needs to be determined as part of the solution. Full numerical treatments
have been studied by [4, 26], whereas we focus on a short-time formulation
for further analytical insights.

2.1. Rapid impact model development
During the impact phase the solid-liquid contact surface initially goes

through a phase of rapid expansion and spray jets are formed at the bound-
ary of the surface. As time progresses if the skimming body is able to
transit from impact to planing phase, such a transition is marked by the
disappearance of the spray jet from the trailing separation point.

Our analysis here focuses on short times after impact when t (= δt̂) is
of order δ where δ � 1. On this time scale the free surface penetration is
small and of order t; balancing the terms of the free surface equation (2)
suggests the model’s horizontal and angular scales both evolve at order of t

1
2 ,

which is consistent with Wagner’s theory of vertical impacts by a body with
a parabolic shape of course (see [24, 20]); the boundary conditions indicate
the fluid’s horizontal velocity u evolves on the same scale as x, i.e. order t

1
2 ,

while the pressure p on the other hand is inferred to be of order unity. We
therefore asymptotically expand the system variables as follows:

t = δt̂, x ∼ x0 + δ
1
2 x̂+O(δ), θ ∼ θ0 + δ

1
2 θ̂ +O(δ), p ∼ p̂+O(δ

1
2 )

Ym ∼ Y0 + δŶ +O(δ2), H ∼ 1 + δĤ +O(δ2), u ∼ 1 + δ
1
2 û+O(δ).

(7)

The contact surface elevation equation (2) immediately yields x0 = 0,
θ0 = B, Y0 = T (x0), Ĥ = Ŷ + x̂θ̂−Ax̂2. Based on the asymptotics of (7) our
impact model (2) - (6) simplifies to a pair of differential-algebraic equations
(DAEs):

2A(x̂2
1 + x̂1x̂2 + x̂2

2)− 3ω̂0t̂(x̂1 + x̂2)− 6V̂0t̂ = 0, (8a)

6
[
Ax̂2

1 − ω̂0t̂x̂1 − V̂0t̂
]dx̂1

dt̂
+ 6

[
Ax̂2

2 − ω̂0t̂x̂2 − V̂0t̂
]dx̂2

dt̂
− ω̂0(x̂1 − x̂2)2 = 0,

(8b)

where x̂1, x̂2, i.e. the horizontal positions of the leading and trailing flow
separation points respectively, are unknowns.

For small times t̂ the system gives:

x̂1 ∼
ω̂0 +

(
192AV0 − 3ω̂2

0
) 1

2

8A t̂
1
2 , x̂2 ∼

ω̂0 −
(
192AV0 − 3ω̂2

0
) 1

2

8A t̂
1
2 . (9)
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Thus we see immediately that for a skimming body with no angular rotation
(ω̂0 = 0), its leading and trailing points evolve away from the initial touch-
down point at constant and equal speeds of order t̂−

1
2 . A positive rotation

of the body where ω̂0 > 0, i.e. the body that “rotates forwards”, would
result in the leading point extending away from the touch down point at a
faster pace than the trailing point, and vice-versa for a body with negative
rotation, which intuitively makes physical sense. The speed at which the two
separation points evolve has an inverse relation with the skimming body’s
curvature: if the curvature coefficient is small, i.e. A� 1, the body becomes
very similar to that of a flat plate and the speed at which the two points
travel away from each other becomes very large. Notice that for a body with
positive rotation ω̂0 > 0, (9) indicate the trailing separation point’s speed
decreases more rapidly when compared with that of the leading one, and
asymptotically approaches zero as time increases.

At large time t̂ on the other hand, we can expect the two separation
points to evolve on the same order as the body’s vertical scale [14]. The
asymptotes are found to be linear in t̂, suggesting that there are no retrac-
tions of either separation positions in the early impact time regime for a
skimming body with order unity body mass.

2.2. Rapid transition to planing stage
The analysis from the previous section shows that for a short time after

impact, the hydrodynamic pressure underneath the skimming body does not
generate sufficient lift to alter its vertical trajectory at the leading order, and
the wetted edges extend away from the initial contact point on a square-root
time scale as in (9). It is possible however, for the body to go through a
rapid transition from impact to the subsequent planing phase. For a body
whose mass is sufficiently small (O(δ

3
2 )), its vertical momentum equation

becomes non-trivial to the leading order and its motion can no longer be
approximated by the initial impact velocity; instead the body feels the effect
of the hydrodynamic pressure force very soon indeed after impact:

M
d2Ŷ

dt̂2
=
∫ x̂2

x̂1
p̂dx̂. (10)

We note that a rotating body’s moment of inertia ī has an upper bound of
m̄l̄2, or in our non-dimensionalised regime: I ≤ M . This would indicate at
face value that its angular momentum must also be proportionately scaled.
In the physical world however, a skipping stone can be given a spin to help
stabilise its contact angle with water; in three dimensions this would be
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about a z-axis perpendicular to our two- dimensional plane. Such angle
stabilisation via the gyroscopic effect cannot be captured “as it is” in our
model, but rather approximated by having a relatively large moment of
inertia. In theory if the body has a very large spin about its z-axis such
that it maintains a steady contact angle from touchdown to an eventual exit,
this can be captured in our model by having a moment of inertia that is an
order of magnitude greater than the mass: I � M . Moreover, even if I is
of the same order δ

3
2 as M, the angular motion of the body still gives us

the same relation as that holding for I � M , namely θtt = 0: in fact the
relation continues to apply for all I greater than δ

5
2 . This property adds

weight to the argument favouring (10) as the main new feature.
These steps are found to lead our impact model to take on the following

small time asymptotic form:

Ŷ = 1
3A(x̂2

1 + x̂1x̂2 + x̂2
2)− 1

2 ω̂0(x̂1 + x̂2)t̂, (11a)

f̂ = −1
6 ω̂0(x̂2

1 + x̂1x̂2 + x̂2
2)− 1

2(x̂1 + x̂2)dŶ
dt̂
, (11b)

f̂ = 1
2
d

dt̂

[
A

3 (x̂3
1 + x̂3

2)− ω̂0
2 (x̂2

1 + x̂2
2)t̂− (x̂1 + x̂2)Ŷ

]
, (11c)

ĝ = −1
2
d

dt̂

[
ω̂0
6 (x̂3

1 + x̂3
2) + 1

2(x̂2
1 + x̂2

2)dŶ
dt̂

+ (x̂1 + x̂2)f̂
]
, (11d)

(6M + x̂3
1 − x̂3

2)d
2Ŷ

dt̂2
+ 3(x̂2

1 − x̂2
2)df̂
dt̂

+ 6(x̂1 − x̂2)ĝ = 0. (11e)

The system consists of five DAEs with five unknowns x̂1, x̂2, Ŷ , f̂ and ĝ.
Numerical results are shown in Fig. 2 for a body with positive angular
rotation ω̂0 > 0.

The results indicate a retraction of either the leading or trailing contact
point. At touchdown the speed at which the leading and trailing points
evolve away from the initial point of impact is large. This rapid expansion of
contact area slows down as time progresses, and the trailing point’s velocity
eventually drops to zero as demonstrated in Fig. 2b. Letting t̂c denote the
critical time when this phenomenon occurs, t̂c is estimated to be 1.0497 with
the initial conditions of ω̂0 = 1 and V̂0 = −1. Before then we see in Fig.
2c that the fluid velocity at the leading point is negative as expected, i.e.
fluid flows away from the skimming body towards upstream. At the trailing
point the fluid velocity is positive but as the critical time t̂c is approached
it gradually decreases to zero. This also corresponds to the trailing point’s
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(a) Evolution of leading and trailing separation
positions x̂1, x̂2 w.r.t. time t̂.
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(b) Evolution of leading and trailing separation
positions’ velocities dx̂1

dt̂
, dx̂2
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(c) The evolution of fluid velocities û1 and û2.
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(d) Evolution of leading and trailing separation
pressure profiles.
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(e) Vertical evolution of the skimming body’s
centre of mass.

Figure 2: Profile plots of a skimming body with a positive rotation ω̂0 > 0. The initial
vertical velocity of the body V̂0 is taken to be −1, and the initial angular velocity ω̂0 is
taken to be 1. Under these initial settings the trailing separation point x̂2 initially evolves
towards the downstream, however at time t̂ ≈ 1.0497 this separation point reaches its
maximum and begins to retract towards upstream.
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pressure p̂2 dropping to zero / atmospheric as dictated by our pressure jump
conditions and illustrated in Fig. 2d. The vertical centre of mass position
Ŷ reaches its minimum at t̂ ≈ 0.9887 shortly before the critical time t̂c, and
starts to move upwards and thus is in the early stages of heading towards
exiting the water just before the trailing point’s pressure drops to zero at
t̂ = t̂c. In the case of a negative angular rotation, the same behaviour is true
except that it occurs at the leading separation point. This suggests that
the angular velocity of the body has an important and immediate effect
after impact, influencing the evolution of the wetted contact area and thus
the pressure lift force. Once the critical time is reached a planing model is
needed subsequently to describe the next stage of the skimming process for
times t̂ beyond t̂c.
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(a) A plot of pressure profiles p̂ underneath the
skimming body at different times of the impact
stage.
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(b) A plot of fluid velocity profiles û underneath
the skimming body at different times of the im-
pact stage.

Figure 3: The time evolution of the pressure and fluid velocity underneath the skimming
body during the impact stage for a positively rotating body. The time begins from shortly
after impact t̂ = 0.0357 to the end of impact stage at t̂ = 1.0497 when the trailing
separation pressure drops to zero. Notice that the wetted surface area is initially small
and increases over time. The initial conditions are V̂0 = −1 and ω̂0 = 1.

Fig. 3a shows a snapshot of the hydrodynamic pressure under a posi-
tively rotating body over time. A short time after impact the pressure is
high and positive everywhere as depicted at t̂ = 0.0357. As time progresses
the wetted surface area grows, the pressure starts to decrease everywhere
and eventually a negative pressure region develops near the trailing point
as shown at t̂ = 0.6365. We notice there is an adverse pressure gradient
field inside this negative pressure region [14]. The region expands over time
and eventually reaches the trailing separation point, while the fluid velocity
drops to zero as shown in Fig. 3b.
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3. Planing stage

The transition from impact to planing stage is signified by the body’s
trailing point ceasing to extend downstream and the disappearance of the
spray jet at this end. During planing as water from upstream comes in
contact with the body, part of it is thrown back upstream from the leading
separation point and the pressure jump conditions of (6a, 6b) still apply; the
rest of the stream flows underneath the body and exits to downstream via
a negative pressure gradient field in the trailing separation or detachment
region.

Suppose for a moment that the flow can separate smoothly from the
trailing detachment point with a laminar or turbulent boundary layer, where
there is no presence of adverse pressure gradient of the sort we witnessed
at the end of the impact stage, i.e. imposing the Brillouin-Villat (B.V.)
pressure condition at this end by: p(x2, t) = ∂p

∂x

∣∣
x=x2

= 0. An immediate
knock-on effect of this assumption is that a discontinuity in the solution of
the trailing separation position arises when the body transitions from impact
to planing motion, as indicated by [16, 26]. Under the B.V. condition, the
trailing separation position is more upstream than that predicted by the
pressure jump conditions at the end of the impact stage and so the demand
of a perfectly smooth separation inevitably leads to a “jump” of the trailing
detachment position during transition.

We can, on the other hand, impose a set of boundary conditions that
allows the adverse pressure gradient to be carried over from the end of the
impact stage [14]. Such an adverse pressure gradient leads to the boundary
conditions:

p(x2, t) = 0, ∂p

∂x

∣∣∣∣
x=x2

= κ, (12)

where the B.V. conditions can be viewed as a special case with κ = 0.
The governing equations for the fluid flow and the planing body then are

very similar to those of the impact model of (2) - (6), the difference being
that: 1) in our planing model the time t starts at t∗, with t∗ denoting the
time at the end of the impact stage; and 2) at the unknown moving trailing
point the momentum and pressure jump conditions (6a, 6b) are replaced
by the separation conditions of (12), with the unknowns being Ym, θ, u, p
and with κ being a free parameter subject to user prescription, provided
that κ ≥ 0, i.e. maintaining an adverse pressure gradient at the trailing
separation point.
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In the sections that follow we continue from the impact stage analysis of
Section 2.2 and investigate the planing behaviour via small time asymptotics.

3.1. Rapid planing model
Under the asymptotic regime of (7) we have the following reduced planing

model:

∂Ĥ

∂t̂
+ ∂û

∂x̂
= 0, ∂p̂

∂x̂
+ ∂û

∂t̂
= 0, Ĥ = Ŷ + x̂θ̂ −Ax̂2,

M
d2Ŷ

dt̂2
=
∫ x̂2

x̂1
p̂dx̂,

d2θ̂

dt̂2
= 0,

(13)

with the boundary conditions at the leading and trailing positions as:

p̂(x̂1, t̂) = dx̂1

dt̂
û(x̂1, t̂), û(x̂1, t̂) = dx̂1

dt̂
Ĥ(x̂1, t̂),

p̂(x̂2, t̂) = 0, ∂p̂

∂x̂

∣∣∣∣
x̂=x̂2

= κ̂.
(14)

Here κ̂ denotes δ
1
2κ. This planing-model system can be simplified by taking

advantage of the fact that θ̂ = ω̂0t̂ where ω̂0 > 0 to obtain:

[
6M + (x̂1 − x̂2)3]d2Ŷ

dt̂2
+ 3κ̂(x̂1 − x̂2)2 = 0, (15a)

1
2(x̂1 − x̂2)2d

2Ŷ

dt̂2
+ (Ax̂2

1 − ω̂0t̂x̂1 − Ŷ )
(
dx̂1

dt̂

)2
+ κ̂(x̂1 − x̂2) = 0,

(15b)

(x̂1 − x̂2)d
2Ŷ

dt̂2
− (Ax̂2

1 − ω̂0t̂x̂1 − Ŷ )d
2x̂1

dt̂2
− (2Ax̂1 − ω̂0t̂)

(
dx̂1

dt̂

)2

+ 2
(
ω̂0x̂1 + dŶ

dt̂

)
dx̂1

dt̂
+ κ̂ = 0. (15c)

Although the pressure gradient κ̂ is a parameter whose value needs to be
prescribed subject to physical constraints, we nevertheless have a few obser-
vations on its range: firstly, it has a lower bound of zero which is equivalent
to the B.V. separation conditions as aforementioned; secondly, as we shall
demonstrate, the more severe this adverse pressure gradient is, the further
the flow remains attached to the under-surface of the planing body; finally,
there is an upper limit on the severity of the adverse pressure gradient be-
fore our model’s planing motion breaks down. While this limit is difficult
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to obtain explicitly as it inherently depends on the dynamics carried over
from the impact regime, we can derive a few implications of this limit on
the body’s planing behaviour.

3.2. Planing model solutions
Fig. 4 shows the numerical solutions of the planing system (15) for

varying values of κ̂ in the range between zero and 0.5076, the latter of which
is the pressure gradient estimated from the end of the impact stage for
M = 1 and ω̂0 = 1. Notice the solution for the trailing separation position
is only discontinuous for κ̂ = 0 when switching from the impact to the
planing model. For small values of κ̂ as illustrated in the case of κ̂ = 0.1,
x̂2 converges to x̂1 + (6M)

1
3 over time, which is the solution under the B.V.

condition as can be seen by setting κ̂ = 0 in equation (15a). If on the other
hand the pressure gradient is higher than that observed at the end of the
impact stage, specifically κ̂ > 0.5076, the flow separation takes place further
downstream and effectively enlarges the fluid-body contact surface. This
can be seen in the evolution of the trailing point position x̂2 relative to x̂1
in Fig. 5 for time t̂ <∼ 1.6.

Fig. 6 demonstrates a bifurcation behaviour in the solutions of the trail-
ing separation position over larger values of κ̂: if this value exceeds a certain
limit (see κ̂ ≥ 0.607) the solution breaks down over time, whereas below the
limit the detachment position eventually retracts physically sensibly towards
upstream.

To see there is a maximum sustainable adverse pressure gradient, we can
combine model equations (15a), (15b) by eliminating d2Ŷ

dt̂2
to obtain:

1
2 ξ̂

4 + 6Mξ̂ = α̂(6M − ξ̂3), (16)

where ξ̂ = x̂2 − x̂1, α̂ = η̂/κ̂, η̂ = (Ax̂2
1 − ω̂0t̂x̂1 − Ŷ )(dx̂1

dt̂
)2; note that ξ̂

is positive and η̂, α̂ take on negative values. We denote the left and right
hand sides of (16) as fL and fR, which are quartic and cubic functions of
ξ̂ respectively. Notice these two curves intersect only in the first quadrant
of the (ξ̂, f) plane. There is a critical value α̂D such that these two curves
share the same gradient at the point of intersection, while if α̂ exceeds the
limit α̂D the two curves do not intersect. This critical value α̂D = η̂D/κ̂D
gives rise to κ̂D, which is the maximum adverse pressure gradient that can
be sustained at the trailing point; exceeding this limit the trailing point
position becomes unreachable and our planing model breaks down. To find
this single intersection point we combine equation (16) and its derivative
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with respect to ξ̂ to obtain: ξ̂6
D − 48Mξ̂3

D − 72M2 = 0, for which we can
immediately write down the solution of ξ̂D as:

ξ̂D = [(24 + 18
√

2)M ]
1
3 ; (17)

this corresponds to a maximum fluid-body contact region due to the adverse
pressure gradient in the separation flow, which in our 2D model is denoted by
the distance between x̂1 and x̂2. This limit is dependent on the body mass
and intuitively the heavier the planing body, the wider apart the leading
and trailing points are.
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(a) The evolution of the body’s leading and
trailing detachment points during the planing
stage.
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 ( =0.3)

 ( =0.5076)

(b) The evolution of the body’s vertical centre
of mass position during planing.

Figure 4: Plot of the leading and trailing detachment points, as well as the body’s vertical
centre of mass during the planing stage for varying values of κ̂. The body’s mass M
and rotational velocity ω̂0 are both taken to be one. For the case of κ̂ = 0 the trailing
separation position x̂2 is not continuous when transitioning from impact to planing stage.

4. Small adverse pressure gradient at detachment point

The solutions in Fig. 4 indicate that for κ̂ sufficiently small, the plan-
ing system converges in time to a state such that the leading and trailing
separation points travel at a fixed distance of (6M)

1
3 from each other. The

trailing one in particular goes through a phase of rapid adjustment in a short
time span. We shall show that for a planing body subject to small adverse
pressure gradient at the trailing separation region, i.e. κ̂ � 1, its planing
motion can in effect be divided into three consecutive phases.

The first phase of the planing stage begins at the instant when the body
completes its impact stage and enters the planing stage. The leading sep-
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(a) The evolution of the body’s leading and
trailing points during the planing stage for vary-
ing values of κ̂.
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(b) The evolution of the body’s vertical centre
of mass position during planing for varying val-
ues of κ̂.

Figure 5: Plot of the leading and trailing points, as well as the body’s vertical centre of
mass during the planing stage for varying values of trailing separation pressure gradient
greater than that observed at the end of impact stage: κ̂ > 0.5076. We can observe
that the trailing point position moves relatively further away from the leading point for
t̂ <∼ 1.6. The body’s mass M and rotational velocity ω̂0 are both taken to be one.
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Figure 6: The unstable be-
haviour of trailing point
position x̂2 for values of
trailing separation pres-
sure gradient κ̂ exceeding
an unknown upper limit.
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aration point during this phase continues to move further upstream with
its range on the scale of κ̂

1
2 , the trailing separation point in the meantime

evolves in range scalable to order unity. At the end of the initial planing
phase the distance between the two points becomes (6M)

1
3 , in other words

a planing system configured with a small trailing point adverse pressure
gradient converges to that of the B.V. configuration. In the second planing
stage the system evolves on a time scale of κ̂

1
4 , the evolution of the trailing

point slows down from order unity to the same order as the leading point
with a smaller adjustment (O(κ̂

3
4 )). As time progresses the planing system

eventually transitions to the final large time scale planing phase. During
this phase the leading separation point evolves on a scale of order unity and
the trailing point evolves in sync with its leading counterpart but with an
O(κ̂) adjustment.

4.1. Initial planing phase
This phase begins when the body transitions from impact to planing

stage, supposing this time is t̂c then we are concerned with t̂ ≥ t̂c. Let
ξ̂ = x̂2− x̂1 as usual and let x̂c1, Ŷc and V̂c be the horizontal position of the
leading separation point, vertical position of the centre of mass and vertical
velocity respectively at this time. Assuming the trailing separation pressure
gradient κ̂ is small so that 0 < κ̂ � 1, we can asymptotically expand the
three system variables as:

x̂1 = x̂c1 + κ̂
1
2 x̌1(t̂) +O(κ̂), ξ̂ = ξ̌1(t̂) +O(κ̂

1
2 ),

Ŷ = Ŷc + V̂ct̂+ κ̂Y̌1(t̂) +O(κ̂2).
(18)

Substituting into the planing system (15) yields the following relations at
the leading order:

d

dt̂

[
ζ2dx̌1

dt̂

]
= 0, (19a)

ξ̌4
1 + 2ζ(6M − ξ̌3

1)
(
dx̌1

dt̂

)2
+ 12Mξ̌1 = 0, (19b)

[6M − ξ̌3
1 ]d

2Y̌1
dt2

+ 3ξ̌2
1 = 0, (19c)

ζ(t̂) = x̂2
c1 + Ŷc + (V̂c + ω̂0x̂c1)t̂, (19d)

for which we need appropriate initial conditions for x̌1, Y̌1 at the beginning
of the planing stage t̂ = t̂c, which we obtain as follows: let Y̌10 and V̌10 be the

16



initial value and first order derivative for Y̌1 respectively; from the body’s
known vertical dynamics at this point we can deduce Y̌10 ≡ Y̌1(t̂c) = 0,
V̌10 ≡ dY̌1

dt̂
(t̂c) = 0; letting x̌10 and ǔ10 be the initial value and first order

derivative for x̌1 respectively, then x̌10 is zero by implication of (18) at time
t̂ = t̂c, combining (19b, 19c) and setting t̂ = t̂c produces the initial condition

ǔ10 = −
[
ξ̌4

10+12Mξ̌10

2ζ0(ξ̌3
10−6M)

] 1
2
, where ξ̌10 = ξ̌1(t̂c), ζ0 = ζ(t̂c) and ǔ10 = ǔ1(t̂c) by

the same notation convention.
These initial conditions yield the following solution for x̌1:

x̌1(t̂) = Φ0(1− ζ0ζ
−1), Φ0 = − ζ0

V̂c + ω̂0x̂c1

[
ξ̌4

10 + 12Mξ̌10

2ζ0(ξ̌3
10 − 6M)

] 1
2
. (20)

This enables us to write down the following equation for ξ̌1 from (19b):

ζ3ξ̌4
1 − 2Φ2

0ξ̌
3
1 + 12Mζ3ξ̌1 + 12MΦ2

0 = 0. (21)

The formula for finding roots of quartic equations is well known and will
not be presented here explicitly. Out of the four possible solutions for ξ̌1 the
admissible one should be real, positive and fit the physical context of the
system. From (19c) we can obtain the solution for Y̌1 in a double integral
form based on the admissible solution of ξ̌1:

Y̌1 =
∫∫ t̂

t̂c

3ξ̌2
1

ξ̌3
1 − 6M

dt̂2. (22)

The solutions for x̌1, ξ̌1 and Y̌1 are presented in Fig. 7. The results
demonstrate that for a planing body with positive rotation, its leading sep-
aration position continues to extend in the direction of upstream as with the
impact stage case. The trailing separation position on the other hand also
begins to move in the direction of upstream, and it moves at a greater pace
as demonstrated by the decreasing value of ξ̌1 in Fig. 7b; this signifies the
decrease of contact surface over time. During this phase the body continues
to emerge from water as shown in Fig. 7c for the trajectory of its centre of
mass.

4.2. Planing Phase II
The solution for x̌1 depends inversely on ζ(t̂) given in (19d), whose value

is positive at time t̂c but decreases gradually, see Fig. 8. When ζ eventually
reaches zero x̌1 becomes singular and undefined. Supposing t̂N is the time
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Figure 7: Solutions of the planing system (19) with M = 1, ω̂0 = 1, κ̂ = 0.1. The values
of x̂c1, x̂c2, Ŷc and V̂c are the results from the final stage of impact model (11), their
respective values are: −1.9944, 0.9434, −0.4431 and 0.0359.

when this singularity occurs then by (19d) we can immediately obtain

t̂N = − x̂2
c1 + Ŷc

V̂c + ω̂0x̂c1
, (23)

at which point ξ̌1 takes on the value of (6M)
1
3 as can be seen by setting

ζ(t̂N ) = 0 in (21). Thus at the end of phase I we arrive at the same solution
as that given by the B.V. condition, and the time it takes to reach this
solution is determined by the state of the system at the end of the impact
stage as shown in (23). At the end of phase I the planing system no longer
evolves on the scales described in (18) and a new evolution scale for the next
planing phase is need.

The appropriate asymptotic scale for the next phase can be determined
by inspecting the solution at times close to t̂N , namely t̂ = t̂N + δ1t̄ with
δ1 = κ̂

1
4 , and in the second planing phase we thus have:

t̂ = t̂N + κ̂
1
4 t̄, x̂1 = x̂c1 + κ̂

1
4 x̄1,

ξ̂ = (6M)
1
3 − κ̂

3
4 ξ̄1, Ŷ1 = Ŷc + V̂ct̂N + κ̂

1
4 V̂ct̄+ κ̂

3
4 Ȳ1.

(24)

In essence the planing body’s leading separation point and centre of mass
move on a larger scale of κ̂

1
4 , while the trailing point moves on a scale

comparable to its leading counterpart but with an O(κ̂
3
4 ) adjustment. The
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Figure 8: Solutions of ζ(t̂) dur-
ing the planing phase. The
values of x̂c1, Ŷc and V̂c are
−1.9944, −0.4431 and 0.0359
respectively. ζ(t̂c) is positive;
as time increases this eventu-
ally decreases to zero, at which
point the solution for x̌1 be-
comes undefined.

planing model (15) now yields:

ξ̄1
¨̄Y1 + 1 = 0, 1

2(6M)
2
3 ¨̄Y1 −

[
(2x̂c1 + ω̂0t̂N )x̄1 + (ω̂0x̂c1 + V̂c)t̄

] ˙̄x2
1 = 0,[

(2x̂c1 + ω̂0t̂N )x̄1 + (ω̂0x̂c1 + V̂c)t̄
]¨̄x1 + (2x̂c1 + ω̂0t̂N ) ˙̄x2

1

+ 2(ω̂0x̂c1 + V̂c) ˙̄x1 = 0.

(25)

This system can be solved explicitly with initial conditions obtained by
matching with phase I:

x̄1 = (C2
1 t̄

2 − 2Φ0ζ0C2)
1
2 − C1t̄

C2
, (26a)

Ȳ1 = 2
3

(C2
1 t̄

2 − 2Φ0ζ0C2)
3
2 − C3

1 t̄
3

(6M)
2
3C2

2
+ 2Φ0ζ0C1t̄

(6M)
2
3C2

, (26b)

ξ̄1 = − (6M)
2
3C2

2 (C2
1 t̄

2 − 2Φ0ζ0C2)
1
2

2C2
1
[
(C2

1 t̄
2 − 2Φ0ζ0C2)

1
2 − C1t̄

]2 , (26c)

here C1 = ω̂0x̂c1 + V̂c, C2 = 2x̂c1 + ω̂0t̂N .
The solutions demonstrated in Fig. 9 indicate that the leading and trail-

ing separation positions in this phase continue to move in the direction of
upstream, and the pace at which the body emerges from the water signifi-
cantly increases. As time progresses however our planing system will grow
out of this O(κ̂

1
4 ) scaling regime, which leads to the final and large time

scale planing phase.
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Figure 9: Plots of x̄1, ξ̄1 and Ȳ1 over time t̄ ∈ [0, 5]. The values of x̂c1, x̂c2, Ŷc and V̂c are
the results from the final stage of impact model (11), their respective values are: −1.9944,
0.9434, −0.4431 and 0.0359.

4.3. Planing Phase III
The appropriate scaling of this phase can be found by introducing a

new time variable t̆ = κ̂nt̄, where 0 < n < 1 so that κ̂n is small. Using
a procedure similar to that in phase II it can be shown that n = 1

4 , and
we are led to the following relations: t̂ = t̆, x̂1 = x̆1, ξ̂1 = (6M)

1
3 − κ̂ξ̆1,

Ŷ1 = Y̆1, with the breve signs denoting the system variables for this final
planing phase.

Substituting the above variable expansions into the the planing system
of (15) gives the following planing system for phase III:

ξ̆1
¨̆
Y1 + 1 = 0, 1

2(6M)
2
3

¨̆
Y1 − (x̆2

1 + ω̂0t̆x̆1 + Y̆1)( ˙̆x1)2 = 0,

(6M)
1
3

¨̆
Y1 − (x̆2

1 + ω̂0t̆x̆1 + Y̆1)¨̆x1 − (2x̆1 + ω̂0t̆)( ˙̆x1)2

− 2(ω̂0x̆1 + ˙̆
Y1) ˙̆x1 = 0.

(27)

Explicit solutions to this coupled non-linear ODE system being difficult
to obtain, numerical solutions are therefore pursued and the results are
presented in Fig. 10. Comparisons with the solutions of the planing system
(15) show this final planing phase system captures the body’s behaviour at
large times.

We see that during this phase the planing body continues to emerge from
the water, and the leading and trailing detachment points continue to move
upstream with their distance apart fixed at (6M)

1
3 to the leading order. The
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Figure 10: Numerical solutions of the planing system (27) compared with the full planing
system (15) for t̂ > t̂N and κ̂ = 10−4.

large-time asymptotes are:

x̆1 = −1
2 ω̂0t̆, ξ̆ → − 2

ω̂2
0
, Y̆ = 1

4 ω̂
2
0 t̆

2.

If we are able to see the planing body lifting off and separating from water,
the positions of the leading and trailing points should eventually coincide as
shown by [26] in numerical solutions of a planing system; this is not the case
in our rapid planing model as the large time solutions demonstrate. Under
the current planing regime, thus far, the body continues to lift upwards
as time grows but the distance between the two wetted points does not
decrease. As the body evolves vertically to the squared power of time it
will eventually grow out of the rapid regime defined in (7), at which point
we will need to re-examine the full planing system to capture the further
motion of the planing body.

5. Conclusion

The skimming process of a smooth body on shallow water can be divided
into two consecutive stages: an impact and a planing stage. During the
impact stage in a short time-frame just after touchdown, the body’s wetted
leading and trailing separation points evolve according to the square root
of time, their speed slows as time grows; on the vertical scale the body
penetrates deeper into water until shortly before the end of the impact
stage, at which point the fluid-body contact area grows sufficiently large
and the hydrodynamic pressure begins to lift the body upwards. A region of
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positive (adverse) pressure gradient starts to develop ahead of the trailing
separation position towards the end of this stage; this area grows over time
and eventually reaches the separation position, at which point the trailing
spray jet disappears and the impact stage terminates. We find that a body
with sufficiently small mass and a positive rotation is able to transition
rapidly from the impact to the planing stage.

The value of the adverse pressure gradient at the trailing separation point
plays a critical role during the planing stage, with a limit on the maximum
sustainable adverse pressure gradient. It is notable that rationally deter-
mining the precise value of the adverse pressure gradient itself is difficult
at present because the detailed process of flow separation here involving a
water-air interface and boundary layer is still unknown. Exceeding this limit
the trailing separation flow may become more complex and the present plan-
ing model breaks down. The body otherwise is able to sustain the planing
motion, during which both its leading and trailing separation points move
in the upstream direction for a body with positive rotation, and it has a
positive vertical motion as in a process of lifting-off from the water.

Of particular interest is the case where this adverse pressure gradient is
small, for which we find the body’s planing motion can be further divided
into three phases: in the first phase the trailing separation position goes
through a rapid transition towards the upstream direction, which reduces
the length of the body-fluid contact region to a scale that is proportional
to the body’s mass in a predetermined time-frame; in the second phase the
leading and trailing separation points move in the direction of upstream
linearly with time as the body rotates forwards, and its vertical position
evolves rapidly to the cubic power of time and grows out of this regime in
a short period of time; in the final planing phase the two separation points
continue to evolve linearly with time, while the body’s vertical position
moves upwards according to the squared power of time. Under this rapidly
planing regime although we do not witness the phenomenon of the planing
body lifting-off from the water thus far, it is clear that a slightly larger time
scale should capture that phenomenon.
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