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Abstract3

Earthquake early warning (EEW) is becoming an increasingly attractive real-time strategy for mitigating the4

threats posed by potentially devastating incoming seismic events. As efforts accelerate to develop practical5

EEW-based solutions for earthquake-prone countries in Europe, it is important to understand and quantify6

the level of performance that can be achieved by the underlying seismological algorithms. We conduct a7

conceptual study on EEW performance in Europe, which explicitly focuses on the accuracy and associated8

uncertainties of selected methodological approaches. 23 events from four diverse European testbeds are used9

to compare the quality of EEW predictions produced by the Virtual Seismologist and PRESTo algorithms.10

We first examine the location and magnitude estimates of the algorithms, accounting for both bias and11

uncertainty in the resulting predictions. We then investigate the ground-shaking prediction capabilities12

of the source-parameter estimates, using an error metric that can explicitly capture the propagation of13
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uncertainties in these estimates. Our work highlights the importance of accounting for EEW parameter14

uncertainties, which are often neglected in studies of EEW performance. Our findings can be used to inform15

current and future implementations of EEW systems in Europe. In addition, the evaluation metrics presented16

in this work can be used to determine EEW accuracy in any worldwide setting.17

Introduction18

Earthquake early warning (EEW) systems are becoming increasingly popular tools for mitigating seismic19

risk in urban areas (e.g., Allen and Melgar, 2019). It is therefore important to understand the extent to20

which these systems perform as intended. The performance of EEW systems mainly depends on a trade-21

off between: (1) the accuracy of the source parameter (i.e., magnitude, location) and/or ground motion22

estimates of the underlying EEW algorithm; and (2) the speed at which the system issues an alert (e.g.,23

Behr et al., 2015). This paper specifically focuses on aspect (1) for EEW in Europe, which has been the24

subject of major research efforts in recent years (Clinton et al., 2016).25

We study the theoretical (offline) accuracy of Virtual Seismologist (Cua, 2005; Cua and Heaton, 2007;26

Cua et al., 2009) and PRobabilistic and Evolutionary early warning SysTem (PRESTo) (Satriano et al.,27

2008a; Lancieri and Zollo, 2008; Satriano et al., 2011), which have been the most widely applied regional28

EEW algorithms in Europe to date (Cremen and Galasso, 2020). We specifically focus on the location,29

magnitude, and ground-shaking estimation capabilities of the algorithms across four European testbeds that30

capture a diverse range of seismicity, seismotectonics, and seismic network densities. Note that aspect (2) of31

earthquake performance is assessed for real-time versions of the algorithms and the same regions in a recent32

companion study (Zuccolo et al., 2020). (The Vrancea testbed of the companion study is ignored in this33

paper, since the Virtual Seismologist algorithm has not been calibrated for the large depths of its associated34

events).35

Our accuracy assessments explicitly incorporate uncertainties associated with the earthquake parameter36

estimations of the algorithms, which are crucial for well-informed decision-making on alert triggering (Meier37

et al., 2015; Cremen and Galasso, 2020). From an engineering perspective for example, these uncertain-38

ties play a central role in the real-time probabilistic seismic hazard analysis framework that can be used39
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to determine whether issuing an EEW alarm would reduce the losses associated with an incoming event40

(Iervolino, 2011). Our work therefore represents a significant advancement over many previous studies of41

context-specific EEW accuracy (e.g., Hsu et al., 2018; Xu et al., 2017; Kodera et al., 2016; Böse et al., 2012;42

Colombelli et al., 2012; Hsu et al., 2016; Böse et al., 2012; Colombelli et al., 2015; Hoshiba and Aoki, 2015;43

Böse et al., 2014; Doi, 2011; Hartog et al., 2016; Mittal et al., 2019; Chen et al., 2019; Chung et al., 2020;44

Minson et al., 2020; Zollo et al., 2009; Cochran et al., 2018; Festa et al., 2018; Auclair et al., 2015) - includ-45

ing those that examine Virtual Seismologist (Behr et al., 2016) and PRESTo (Picozzi et al., 2015) - which46

focus exclusively on the performance of point-estimate predictions (i.e., that only consider mean or modal47

values of the estimates rather than their probability distributions) from EEW algorithms. Some work has48

examined uncertainty propagation for EEW (i.e., the effect of uncertain source-parameter estimates on the49

final ground-shaking predictions), but this has so far been limited to the context of hypothetical algorithms50

(Meier, 2017), simplistic simulated events (Iervolino et al., 2009), or empirical error models of parameter51

estimates (Brown et al., 2011).52

To facilitate our calculations, we code the complete location and magnitude modules of the Virtual53

Seismologist and PRESTo algorithms in the MATLAB language, including the Bayesian priors and other54

probabilistic details. This setup provides maximum flexibility to produce rigorous statistical comparisons55

between the accuracy of both algorithms.56

This paper is structured as follows. Examined Testbeds introduces the testbeds and associated seismic57

data that form the basis of our accuracy assessments. We then provide the details of the algorithms to be58

examined in Examined Algorithms. The first part of Results examines the quality of the algorithms’59

location and magnitude estimates. The second part determines the capability of the source-parameter esti-60

mates to accurately predict the corresponding ground-motion amplitude, using a novel evaluation metric that61

captures source-parameter uncertainties and does not require knowledge on the ground-shaking threshold62

used for triggering alerts in the EEW system. We end with a discussion of the results in Conclusions.63
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Examined Testbeds64

We consider four European testbeds: Southern Italy (ITA), Pyrenees (PYR), Southwest Iceland (ICE), and65

Western Greece (GRE). These regions are chosen to capture a diverse range of European seismic hazard66

levels, seismic network densities, and seismotectonic settings: collisional/subduction complex with a com-67

plicated back-arc/fore-arc/trench system (ITA), continent-continent collision with evolution of an orogenic68

belt (PYR), oceanic crust interplate transform faulting (ICE), and ocean-continent subduction (GRE).69

Considered Events70

Our study examines 23 events in total across the four testbeds. (See Figure 1 for earthquake and seismic71

station locations and Table 1 for event characteristics). For ICE and GRE, we use real recordings from72

moderate-to-large (i.e., magnitude > 5.5) events that occurred in the last 20 years, for which data were73

recorded on at least eight seismic stations. Recordings for GRE are obtained from the European Integrated74

Data Archive (see Data and Resources). We prioritise strong-motion data and use broadband data75

in its absence, discarding saturated velocigrams. Parameters of the GRE events are obtained from the76

earthquake catalogues of the National Observatory of Athens (GRE). Strong-motion recordings for ICE are77

accessed through the Internet Site for European Strong-motion Data (ISESD, see Data and Resources),78

and corresponding event parameters are retrieved from the catalogue of Panzera et al. (2016).79

We generate synthetic seismograms for our assessments of ITA and PYR, due to a lack of available80

moderate-to-large earthquake recordings in these regions. Physics-based numerical simulations are used81

to compute the seismograms, according to the broadband ground-motion simulation method described in82

Crempien and Archuleta (2015) , which uses an extended kinematic model of the seismic source (subdivided83

into point sources) with correlated random source parameters (rupture time, peak time, rise time and final84

slip) that are based on more than 300 simulations of dynamic rupture models (Schmedes et al., 2013).85

Green’s functions are computed using a 1-D layered Earth model and a frequency-wavenumber (FK) code86

(Zhu and Rivera, 2002). This code, which is efficient in obtaining high-frequency synthetics, is coupled with87

a random perturbation of the point-source focal mechanism that partially accounts for scattering effects88

at high frequencies. We consider one scenario earthquake per active fault in both testbeds, and use fault89
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parameters from the European Database of Seismogenic Faults (ESDF; Basili et al., 2013) to determine90

the characteristics of these events according to the following procedures/assumptions: (1) We assign the91

magnitude of an event as a random sample from a uniform distribution between 5.5 and the maximum92

magnitude of the fault; (2) We assume that an event’s hypocentre is located at a depth equivalent to the93

minimum fault depth plus 2/3 of the vertical width; (3) We use the average values of the strike, dip, and94

rake angles to define the focal mechanism; (4) We randomly sample the average rupture velocity for each95

scenario event from a uniform distribution between 65% and 85% of the fault plane’s shear wave velocity. We96

use the Wells and Coppersmith (1994) relationships to define the rupture fault dimensions, and the Causse97

et al. (2008) distributions to determine hypocentral position along the fault plane. The stress drop, which98

is assumed to be 3 MPa for both testbeds (Caporali et al., 2011) is used to determine the corner frequency99

(Allmann and Shearer, 2009). We use the Barberi et al. (2004) crustal velocity model for ITA and the100

Theunissen et al. (2018) crustal velocity model for PYR. Broadband seismograms (0-25 Hz) are calculated101

at the locations of all currently operating permanent seismic stations of the IRIS database (see Data and102

Resources) are positioned within 100 km of each epicentre. White noise is finally added to each generated103

seismogram, to facilitate the automatic detection of P-wave arrivals based on the Short Time Average over104

Long Time Average STA/LTA algorithm (Allen, 1982).105

Note that the synthetic seismograms for ITA were carefully validated before use. The validation procedure106

consisted of comparing the synthetics with: 1) recordings (i.e., a recording on rock of the Mw 6.0 1978 Patti107

Gulf earthquake); (2) synthetics from other authors generated for the same area with a different methodology108

(retrieved from the Synthesis portal, http://syn hesis.mi.ingv.it/); and (3) European and Italian ground-109

motion models (GMMs). The quality of the computed seismograms was deemed to be high, particularly in110

terms of characteristics that are relevant for EEW algorithms (i.e., peak displacement and frequency), based111

on visual inspections and quantitative examinations with the goodness-of-fit test proposed by Olsen and112

Mayhew (2010), which measures the misfit between waveforms according to commonly used metrics that113

characterise their time series. A discussion on other testing/rating methodologies for validating simulated114

ground motions to be used in engineering applications can be found in Galasso et al. (2012, 2013), for115

instance.116
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Examined Algorithms117

We examine the theoretical performance of the Virtual Seismologist (VS) (Cua, 2005; Cua and Heaton,118

2007; Cua et al., 2009) and the PRobabilistic and Evolutionary early warning SysTem (PRESTo) (Lancieri119

and Zollo, 2008; Satriano et al., 2008b, 2011) regional EEW algorithms across all testbeds. The similar120

(Bayesian) structure of both algorithms enables direct comparisons to be made.121

Virtual Seismologist (VS) operates within a Bayesian framework, in which the set of possible epicentral122

location and magnitude values are jointly conditioned on the ground-motion amplitude measurements (as-123

sociated with P- and/or S-waves) at triggered stations and the prior PDF incorporates an existing state of124

knowledge on relative earthquake probability. The magnitude and epicentral location estimates are subse-125

quently translated to peak ground-shaking predictions, using envelope attenuation relationships documented126

in Cua and Heaton (2007). VS was originally part of the ShakeAlert R© EEW system in California, but the127

slow operational performance of the algorithm resulted in its removal in 2016 (Chung and Allen, 2019). A128

version of VS is operating in Switzerland and has been tested for use in Greece, Turkey, Romania and Iceland129

(Behr et al., 2016).130

PRESTo estimates location using the RTLoc method proposed by Satriano et al. (2008b) and predicts131

magnitude according to the RTMag procedure developed by Lancieri and Zollo (2008). RTLoc produces132

multivariate normal probability density functions of hypocentral locations, based on P-wave arrival times133

and a velocity model. RTMag uses a Bayesian framework for estimating magnitude, in which the likelihood134

function depends on initial peak displacement measurements and RTLoc outputs. The prior PDF for a given135

time step is the posterior distribution obtained at the previous time step, and the prior for the first time136

step is optionally set as the Gutenberg-Richter distribution. Peak ground-motion parameters are computed137

based on the location and magnitude estimates, using a GMM. PRESTo is currently operating in real-time138

in Southern Italy, Turkey, Romania, and South Korea (Picozzi et al., 2015), and has also been tested for139

application in Austria and Slovenia (Picozzi et al., 2015), as well as the Iberian Peninsula (Pazos et al.,140

2015).141
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Algorithm Inputs142

Location Inputs143

We use a common (neutral) method to determine event arrival times for both algorithms, given that P-wave144

picking accuracy is not the focus of our evaluation. We leverage the SeisComP seismological software (see145

Data and Resources) and specifically use the picks associated with its preferred origin for a given event.146

This origin is automatically selected using the scevent module of the software, according to a number of147

predefined rules (e.g., an origin is preferred to the previous one if it is computed using a greater number of148

picks and/or produces lower travel time residuals, etc). Velocity models input to the PRESTo algorithm are149

region-specific. The velocity models used for ITA and PYR are the same as those adopted for the generation150

of synthetic seismograms in both testbeds (see Considered Events). We use the Tryggvason et al. (2002)151

model for ICE and the Rigo et al. (1996) model for GRE. We use the Poisson’s solid approximation to derive152

undefined P-wave velocities from associated S-wave velocities (and vice versa), and we compute corresponding153

3D travel-time grids using the NonLinLoc software (Lomax et al., 2000).154

Magnitude Inputs155

We estimate magnitudes based on seismogram data from stations that are associated with the preferred origin156

location estimated by SeisComP. The seismograms are first processed as follows (Boore and Bommer, 2005):157

(1) We apply instrument correction to GRE recordings; (2) We apply baseline correction; (3) We differentiate158

velocigrams to retrieve accelerograms; (4) We apply a high-pass filter with 3 s corner frequency for VS (Cua159

and Heaton, 2007) and a band-pass filter (0.075 - 3 Hz) to accelerograms for PRESTo (Satriano et al., 2011);160

(5) We integrate the accelerograms once to retrieve velocities, and twice to obtain displacements. For VS, we161

then extract maximum envelope values of vertical acceleration (ZA), velocity (ZV ), displacement (ZD), and162

root mean square horizontal acceleration (HA), velocity (HV ) and displacement (HV ), computed within163

1 s intervals starting from the P-wave arrival time. For PRESTo, we extract values of peak displacement164

(Pd) in three different time windows, accounting for the vector modulus of the three-component seismogram165

(Satriano et al., 2011). These time windows are (1) 2 s following the P-wave arrival if the P and S arrivals166

are at least 2 s apart; (2) 4 s after the P-wave arrival if the P and S arrivals are at least 4 s apart; and (3) 2167
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s following the S-wave arrival.168

Bayesian Priors169

Parameterisation of the Bayesian location prior for the VS algorithm depends on the number of stations170

triggered at a given instant, and spatial constraints provided by data associated with not-yet arrived P-171

waves (Cua and Heaton, 2007). If only one station has triggered, the location is constrained to the area172

of the associated Voronoi cell that is geometrically consistent with the surrounding non-triggered stations.173

For two triggers, the location is assumed to lie on the hyperbola passing between both stations, in line with174

the methodology described by Rydelek and Pujol (2004). For three triggers, the location is constrained to175

one point, i.e. the intersection of the two hyperbolae that pass between all triggered stations. All possible176

locations included in the prior are assigned equal weighting (i.e., a uniform distribution), and every other177

spatial point is assigned zero probability. The P-wave velocity used to determine P-wave arrivals at stations178

(for computing the location constraints) is taken as the average value within a 10 km depth, according to179

the appropriate velocity model provided in Location Inputs.180

The maximum magnitude and scaling (b) parameter of the Gutenberg-Richter distribution required for181

defining the VS Bayesian magnitude prior are retrieved for each event from the nearest point on a 0.1 degree182

by 0.1 degree grid of the European Seismic Hazard Model (ESHM13) (Woessner et al., 2015) model. A183

minimum magnitude of 4 is assumed in all cases. We use the same distribution for the Bayesian prior of the184

PRESTo algorithm.185

Results186

Location and Magnitude Accuracy187

We quantify the accuracy of the algorithms’ location and magnitude components independently, to determine188

the accuracy of the estimates for different levels of algorithmic uncertainty in the source parameters. Since189

the quality of estimates should increase in time while the uncertainty decreases, this assessment is designed190

to capture various accuracy/speed trade-off thresholds that may be of interest to stakeholders for guiding191
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decision-making and EEW alert issuance. Location and magnitude accuracy are quantified for each algorithm192

using the root mean square error (RMSE) metric (Hyndman and Koehler, 2006).193

We compare the location estimates in terms of their epicentral distance to the following selected target194

sites in each region (values in parentheses respectively indicate longitudes and latitudes): (1) the port of195

Gioia Tauro (15.91 ◦, 38.46 ◦) in ITA, (2) Andorra (1.60 ◦, 42.54 ◦) in PYR, (3) Reykjavik (-21.94 ◦, 64.15 ◦)196

in ICE, and (4) Patras (21.73 ◦, 38.25 ◦) in GRE. The uncertainty levels considered for the estimates in this197

case are expressed in the form of coefficients of variation (CVR, i.e., the ratio of the standard deviation to198

the mean) rather than standard deviations. This is because CVR provides a measure of relative uncertainty,199

which is more appropriate for the large range of source-to-target distances used in the study. We specifically200

examine the mean distance prediction of each algorithm for the first estimate that has uncertainty lower201

than CVR = 0.3, CVR = 0.2, and CVR = 0.1 (Figure 2).202

It can be seen that PRESTo yields the best distance predictions across all uncertainty levels investigated203

except CVR = 0.3. Its associated RMSE value is over 35% lower than that of VS for both CVR = 0.2204

and CVR = 0.1, whereas the RMSE value for VS is 28% smaller in the largest uncertainty case (note that205

no consistent performance differences are observed between real and simulated events). If we consider a206

hypothetical Mw 6 normal-faulting earthquake with V s30 = 800 m/s and use the epicentral distance version207

of the Akkar et al. (2014) GMM for the observed RMSE values, the median PGA predictions obtained for208

both algorithms are noticeably different, with the discrepancies ranging between 29% and 64% across the209

three cases. It is interesting to note that the VS RMSE values for epicentral distance increase as uncertainty210

decreases, which is the opposite of what is intuitively expected (Cochran et al., 2018). This observation is211

due to the effect of the algorithm’s Bayesian prior, which significantly narrows the range of location estimates212

(and therefore their uncertainty) after only two P-wave arrivals, thereby preventing any significant further213

improvements that may be achieved using information from additional stations.214

We compare the mean magnitude predictions of both algorithms, using the first estimates with standard215

deviations (σM ) below the following thresholds: 0.1, 0.2, and 0.3 (Figure 3). It can be observed that the216

results of the PRESTo algorithm are most accurate for all levels of uncertainty investigated. The PRESTo217

RMSE value is approximately 15% lower than that of VS for σM = 0.2, and over 20% lower in both other218
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cases (note that there are no distinct differences between the performance trends for real and simulated219

events). If we take a hypothetical Mw 6 + RMSE normal-faulting earthquake with V s30 = 800 m/s and use220

the epicentral distance version of the Akkar et al. (2014) GMM at 30 km, we obtain non-negligible differences221

between the resulting median PGA predictions for the RMSE values of both algorithms. These differences222

range between 9% and 14% across the three uncertainty thresholds.223

Propagation of Uncertainties and their Effect on Ground Motion224

Finally, we investigate the impact of the algorithms’ location and magnitude estimation accuracy on the225

quality of resulting ground-shaking predictions, using the epicentral distance version of the Akkar et al.226

(2014) GMM. We simply assume rock ground conditions (V s30 = 800 m/s) in all cases (for both true227

and predicted ground shaking), given that site class does not influence the assessment of ground-motion228

accuracy related to location and magnitude, and use the style-of-faulting information provided in Table 1.229

We specifically focus on peak ground acceleration (PGA) predictions in this investigation.230

PGA prediction accuracy is quantified with the MD metric for sensitivity analyses (Chun et al., 2000),231

which has been used to examine the performance of GMMs in previous work (Cremen et al., 2020) and232

to determine the ground-shaking prediction accuracy of EEW algorithms in our companion paper (Zuccolo233

et al., 2020). For our application, MD measures the difference between the cumulative distribution function234

(CDF) of PGA produced when the true source parameters are used in the GMM and the CDF obtained235

when an algorithm’s estimated source parameters are input to the model.236

This type of comparison is useful if EEW alerts are issued based on a given probability of exceeding a237

prescribed value of PGA (Iervolino, 2011). This is because discrepancies in the CDFs indicate the potential238

for incorrect decisions to be made on whether or not to trigger an alarm (Iervolino, 2011) . For example, a239

false alert may occur if the predicted PGA is greater than the actual PGA value at the exceedance threshold.240

On the other hand, an alert may be missed if this prediction is less than the true value. Our evaluation241

offers a significant advantage over many previous studies of EEW ground-shaking or intensity accuracy (e.g.,242

Meier, 2017; Cochran et al., 2019; Minson et al., 2019; Meier et al., 2020), since it does not require the a243

priori definition of a subjective alert threshold.244
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As an advancement over our companion paper, we use a version of the MD metric that can explicitly245

account for the propagated uncertainty of the EEW source-parameter estimates in the resulting PGA CDF.246

We use Monte Carlo sampling of the underlying distributions to capture all uncertainties, and calculate MD247

according to the following equation:248

MD =

√
1
N

∑N
n=1[yin/N − yon/N ]2

1
N

∑N
n=1 y

o
n

(1)

where N is the number of Monte Carlo samples used (= 5,000 in this case), n is the sample index, yon/N is249

the (n/N)th quantile of the true GMM CDF ( 0 < n < N ), yin/N is the equivalent quantile for the predicted250

GMM distribution, and the denominator represents the mean of the true CDF. A lower value indicates a251

higher similarity between the predicted and true distributions of PGA. Figure 4 demonstrates the evaluation252

procedure, displaying the MD values and corresponding PGA CDFs obtained for one scenario event.253

We examine ground-shaking prediction accuracy by combining the estimations of location and magnitude254

obtained in Location and Magnitude Accuracy. We specifically consider the source-parameter estimates255

associated with the following thresholds of algorithmic uncertainties in location (CVR) and magnitude (σM ):256

CVR = σM = 0.3, CVR = σM = 0.2, and CVR = σM = 0.1. Our first investigation uses only the relevant257

point (i.e., mean) estimates for each algorithm. The corresponding MD values obtained for both algorithms258

and each event are displayed in Figures 5a to 5c. It can be observed that PRESTo produces the lowest259

average MD value across two considered uncertainty levels - this value is 38% lower for CVR = σM = 0.3,260

and 23% lower for CVR = σM = 0.1 - and approximately equivalent results are obtained for both algorithms261

in the case CVR = σM = 0.2. Thus, we can generally conclude that PRESTo is the best algorithm in terms262

of ground-shaking prediction accuracy, when only point estimates of source parameter measurements are263

considered. (Note that there are no consistent differences between the MD values observed for real and264

simulated events, in any examined case.)265

We then determine the ground-shaking accuracy obtained when the uncertainty of the source-parameter266

estimates is propagated through to the PGA CDF. Corresponding MD values for both algorithms and each267

event are displayed in Figures 5d to 5f. Firstly, this analysis produces larger average MD values than those268

obtained when only point estimates of source parameters are considered, in almost all cases. This implies that269
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neglecting the underlying uncertainty of the EEW source parameter measurements tends to overestimate the270

accuracy of the resulting ground-shaking predictions. PRESTo still produces more accurate PGA estimations271

for the CVR = σM = 0.3 and CVR = σM = 0.1 uncertainty levels, for which the average MD values for272

PRESTo are respectively 22% and 7% lower than those of VS. However, the performance of VS is noticeably273

better that that of PRESTo for CVR = σM = 0.2; the average VS MD value in this case is 12% lower than274

the corresponding PRESTo value. Thus, the optimal algorithm for ground-shaking prediction in this case275

depends on the level of uncertainty in the source parameters.276

To provide some context on the practical consequences of the observed differences in MD values, we277

consider their implications for the specific case of predicting the median value of a hypothetical, realistic278

(lognormal) GMM distribution with true median = 0.5g, known dispersion = 0.7, and predicted dispersion279

= 0.9. Table 2 provides the median values of the predicted distributions that would lead to the MD values280

observed in Figure 5. It can be seen from the table that the median predictions associated with unique MD281

values vary noticeably, such that they could feasibly lead to different decision outcomes (i.e., trigger/don’t282

trigger alert) for an EEW alarm based on the median PGA prediction exceeding a particular threshold. For283

example, based on the average MD values of Figure 5a , a median prediction alert threshold of 0.7 g would284

cause a false alert to be issued using the VS algorithm but would correctly result in no alarm being triggered285

for the PRESTo algorithm prediction. We can thus conclude that the differences observed between MD286

values have practical implications on the accuracy of ground-shaking estimates and EEW triggering.287

Conclusions288

This study has conceptually examined the offline accuracy of the VS and PRESTo regional EEW algo-289

rithms, using seismic waveforms of 23 real and simulated events across four geographically disperse testbeds290

in Europe. Our analyses have explicitly accounted for uncertainty in the algorithms’ source parameter mea-291

surements, which represents a significant advancement over many previous studies of EEW performance that292

only consider algorithmic point estimates.293

We first assessed the algorithms’ mean source-parameter estimates, which corresponded to various un-294

certainty thresholds that stakeholders may use to guide decision-making on EEW alert triggering. We found295
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that PRESTo was almost consistently the best-performing algorithm in terms of both location and mag-296

nitude estimation. PRESTo location estimates were over 35% more accurate than those of VS (except in297

the case of relatively large source-parameter uncertainty, i.e. CVR=0.3), and its magnitude estimates were298

approximately 15 to 20% better. We therefore conclude that PRESTo should be used for EEW purposes299

that require mean estimates of location and magnitude, which is consistent with the recommendations of300

our companion paper (Zuccolo et al., 2020) that compared the real-time operational performance of both301

algorithms.302

We also compared the capabilities of both algorithms in terms of ground-shaking (i.e., PGA) prediction,303

using a well-known European GMM. Accuracy at this stage of EEW is crucial if alerts are issued based304

on a given probability of exceeding a prescribed value of ground-motion amplitude or intensity. We used305

a technique leveraged from sensitivity analysis to quantify the quality of GMM predictions for a given306

set of location and magnitude estimates, which can also account for the propagation of their underlying307

uncertainties.308

We found that PRESTo was the best algorithm for ground-shaking prediction, if only point estimates309

of the source parameters were used to determine the resulting distribution of PGA values. However, our310

conclusion changed when the uncertainty of the source parameters was also accounted for in the CDF of311

ground-motion amplitude. In this case, the performance of the VS algorithm was superior for the middle312

level of source-parameter uncertainty considered. We ultimately conclude that the best-performing algorithm313

in terms of ground-shaking prediction depends on the uncertainties introduced by the underlying source314

measurements. In addition, the accuracy of the predicted PGA distribution decreases when the source-315

parameter uncertainties are propagated through the calculations in almost all examined cases, which implies316

that neglecting this uncertainty tends to result in an overestimation of algorithm performance. In summary,317

our analyses clearly highlight the importance of explicitly accounting for source-parameter uncertainties318

when measuring the accuracy of final EEW predictions.319

It is important to note that there are some limitations associated with this work. Firstly, the calibration320

of phase detection and association parameters was only carried out for the events examined in this study, and321

may not reflect the overall seismicity and network geometry of each area. Secondly, we did not explore the322
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sensitivity of the algorithms’ Bayesian priors. For example, magnitude priors retrieved from regional hazard323

studies (instead of the European ESHM13 model) may have resulted in the better performance of a given324

algorithm. In addition, a location prior with less severe constraints may have improved the accuracy of VS325

estimates. However, average MD values obtained using the VS magnitude estimates and correct distance326

measurements yield the same conclusions on the relative performance of the algorithms as those presented327

inPropagation of Uncertainties and their Effect on Ground Motion, tentatively suggesting that328

location accuracy (and therefore the choice of location prior) does not have a significant effect on the quality329

of ground-shaking estimates associated with VS (note that a more concrete conclusion on the effect of the VS330

prior chosen would also require an investigation of its influence on the accuracy of VS magnitude estimates).331

Furthermore, the empirical scaling relationships used to estimate magnitude in the algorithms may not be332

appropriate for all considered regions. Finally, our results may not reflect the performance of the algorithms333

across all European sites or regions, however the evaluation procedures presented in this paper could be used334

to conduct more detailed accuracy analyses for specific case studies. Despite the aforementioned constraints,335

our study nevertheless provides some notable insights on the accuracy and uncertainty of EEW estimates336

for European seismicity.337

Data and Resources338

No new data were created as part of this study. The European Integrated Data Archive was retrieved via339

the ORFEUS Data Center WebDC3 Web Interface at https://www.orfeus-eu.org/data/eida/ (last accessed340

April 2020). The Internet Site for European Strong-motion Data used was http://www.isesd.hi.is/ (last341

accessed March 2020). Station metadata were obtained from The International Federation of Digital Seis-342

mograph Networks, available at http://www.fdsn.org/ (last accessed May 2020). The IRIS (Incorporated343

Research Institutions for Seismology) station database was consulted at https://ds.iris.edu/gmap (last ac-344

cessed February 2020). The National Observatory of Athens (NOA) earthquake catalogue was obtained345

at https://bbnet.gein.noa.gr/HL (last accessed May 2020). The European Database of Seismogenic Faults346

(ESDF) was retrieved from http://diss.rm.ingv.it/share-edsf/ (last accessed January 2020). Figures for this347

manuscript were produced using the Matplotlib Python library (Hunter, 2007) and MATLAB R©. The Seis-348
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ComP platform used is available at https://www.seiscomp.de, and related professional software support is349

provided by gempa GmbH (http://www.gempa.de).350
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Chung, A. I., M.-A. Meier, J. Andrews, M. Böse, B. W. Crowell, J. J. McGuire, and D. E. Smith (2020).407

ShakeAlert earthquake early warning system performance during the 2019 Ridgecrest earthquake sequence,408

Bull. Seismol. Soc. Am. 110(4), 1904–1923.409

Clinton, J., A. Zollo, A. Marmureanu, C. Zulfikar, and S. Parolai (2016). State-of-the art and future of410

earthquake early warning in the European region, Bull. Earthq. Eng. 14(9), 2441–2458.411

Cochran, E. S., J. Bunn, S. E. Minson, A. S. Baltay, D. L. Kilb, Y. Kodera, and M. Hoshiba (2019). Event412

Detection Performance of the PLUM Earthquake Early Warning Algorithm in Southern California, Bull.413

Seismol. Soc. Am. 109(4), 1524–1541.414

Cochran, E. S., M. D. Kohler, D. D. Given, S. Guiwits, J. Andrews, M.-A. Meier, M. Ahmad, I. Henson,415

R. Hartog, and D. Smith (2018). Earthquake early warning ShakeAlert system: Testing and certification416

platform, Seismol. Res. Lett. 89(1), 108–117.417

Colombelli, S., O. Amoroso, A. Zollo, and H. Kanamori (2012). Test of a threshold-based earthquake early-418

warning method using Japanese data, Bull. Seismol. Soc. Am. 102(3), 1266–1275.419

17



Colombelli, S., A. Caruso, A. Zollo, G. Festa, and H. Kanamori (2015). A P-wave-based, on-site method for420

earthquake early warning, Geophys. Res. Lett. 42(5), 1390–1398.421

Cremen, G. and C. Galasso (2020). Earthquake Early Warning: Recent Advances and Perspectives, Earth-422

Sci. Rev., 103184.423

Cremen, G., M. J. Werner, and B. Baptie (2020). A New Procedure for Evaluating Ground-Motion Models,424

with Application to Hydraulic-Fracture-Induced Seismicity in the United Kingdom, Bull. Seismol. Soc.425

Am..426

Crempien, J. G. and R. J. Archuleta (2015). UCSB method for simulation of broadband ground motion427

from kinematic earthquake sources, Seismol. Res. Lett. 86(1), 61–67.428

Cua, G., M. Fischer, T. Heaton, and S. Wiemer (2009). Real-time performance of the virtual seismologist429

earthquake early warning algorithm in Southern California, Seismol. Res. Lett. 80(5), 740–747.430

Cua, G. and T. Heaton (2007). The Virtual Seismologist (VS) method: a Bayesian approach to earthquake431

early warning. In Earthquake Early Warning Systems, pp. 97–132.432

Cua, G. B. (2005). Creating the Virtual Seismologist: Developments in Ground Motion Characterization and433

Seismic Early Warning. Ph. D. thesis, California Institute of Technology.434

Doi, K. (2011). The operation and performance of earthquake early warnings by the Japan Meteorological435

Agency, Soil Dyn. Earthq. Eng. 31(2), 119–126.436

Festa, G., M. Picozzi, A. Caruso, S. Colombelli, M. Cattaneo, L. Chiaraluce, L. Elia, C. Martino, S. Mar-437

zorati, M. Supino, et al. (2018). Performance of earthquake early warning systems during the 2016–2017438

Mw 5–6.5 Central Italy sequence, Seismol. Res. Lett. 89(1), 1–12.439

Galasso, C., F. Zareian, I. Iervolino, and R. Graves (2012). Validation of ground-motion simulations for440

historical events using SDoF systems, Bull. Seismol. Soc. Am. 102(6), 2727–2740.441

Galasso, C., P. Zhong, F. Zareian, I. Iervolino, and R. W. Graves (2013). Validation of ground-motion442

simulations for historical events using MDoF systems, Earthq. Eng. Struct. Dyn. 42(9), 1395–1412.443

18



Hartog, J. R., V. C. Kress, S. D. Malone, P. Bodin, J. E. Vidale, and B. W. Crowell (2016). Earthquake444

Early Warning: ShakeAlert in the Pacific NorthwestEarthquake Early Warning: ShakeAlert in the Pacific445

Northwest, Bull. Seismol. Soc. Am. 106(4), 1875–1886.446

Hoshiba, M. and S. Aoki (2015). Numerical shake prediction for earthquake early warning: Data assimilation,447

real-time shake mapping, and simulation of wave propagation, Bull. Seismol. Soc. Am. 105(3), 1324–1338.448

Hsu, T., P. Lin, H. Wang, H. Chiang, Y. Chang, C. Kuo, C. Lin, and K. Wen (2018). Comparing the449

performance of the NEEWS earthquake early warning system against the CWB system during the 6450

February 2018 Mw 6.2 Hualien earthquake, Geophys. Res. Lett. 45(12), 6001–6007.451

Hsu, T.-Y., H.-H. Wang, P.-Y. Lin, C.-M. Lin, C.-H. Kuo, and K.-L. Wen (2016). Performance of the452

NCREE’s on-site warning system during the 5 February 2016 Mw 6.53 Meinong earthquake, Geophys.453

Res. Lett. 43(17), 8954–8959.454

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9(3), 90–95.455

Hyndman, R. J. and A. B. Koehler (2006). Another look at measures of forecast accuracy, Int. J. Fore-456

cast. 22(4), 679–688.457

Iervolino, I. (2011). Performance-based earthquake early warning, Soil Dyn. Earthq. Eng. 31(2), 209–222.458

Iervolino, I., M. Giorgio, C. Galasso, and G. Manfredi (2009). Uncertainty in early warning predictions of459

engineering ground motion parameters: What really matters?, Geophys. Res. Lett. 36(4), L00B06.460

Kodera, Y., J. Saitou, N. Hayashimoto, S. Adachi, M. Morimoto, Y. Nishimae, and M. Hoshiba (2016).461

Earthquake early warning for the 2016 Kumamoto earthquake: Performance evaluation of the current462

system and the next-generation methods of the Japan Meteorological Agency, Earth Planets Space 68(1),463

202.464

Lancieri, M. and A. Zollo (2008). A Bayesian approach to the real-time estimation of magnitude from the465

early P and S wave displacement peaks, J. Geophys. Res. Solid Earth 113(12).466

Lomax, A., J. Vireux, P. Volant, and C. Berge-Thierry (2000). Probabilistic Earthquake Location in 3D and467

Layered Models. In Advances in Seismic Event Location. Springer, Dordrecht.468

19



Meier, M.-A. (2017). How “good” are real-time ground motion predictions from earthquake early warning469

systems?, J. Geophys. Res. Solid Earth 122(7), 5561–5577.470

Meier, M.-A., T. Heaton, and J. Clinton (2015). The Gutenberg algorithm: Evolutionary Bayesian magnitude471

estimates for earthquake early warning with a filter bank, Bull. Seismol. Soc. Am. 105(5), 2774–2786.472
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sallo, C. Martino, et al. (2009). Earthquake early warning system in southern Italy: Methodologies and529

performance evaluation, Geophys. Res. Lett. 36(5).530

Zuccolo, E., G. Cremen, C. Galasso, and D. Roessler (2020). Comparing the performance of regional531

earthquake early warning algorithms in Europe 2, Earth and Space Science Open Archive.532

Full mailing address for each author533

Dr. Gemma Cremen534

Chadwick Building535

Gower Street536

London537

W1CE 6DE538

United Kingdom539

540

541

22



Dr. Elisa Zuccolo542

European Centre for Training and Research in Earthquake Engineering543

Via A. Ferrata, 1544

Pavia545

Italy546

547

548

Dr. Carmine Galasso549

Chadwick Building550

Gower Street551

London552

W1CE 6DE553

United Kingdom554

555

23



Tables556

Table 1: Characteristics of the earthquakes considered in this study.

Testbed Earthquake ID Magnitude (Mw) Longitude (◦) Latitude (◦) Depth (km) Style of Faulting

ITA

ITCS042 5.6 15.03 38.35 17.0 Strike-slip
ITCS016 6.9 15.60 38.03 9.3 Normal
ITCS053 6.2 16.19 38.63 8.3 Normal
ITCS055 5.9 15.91 38.23 9.0 Normal
ITCS068 6.4 16.49 38.87 11.0 Strike-slip
ITCS080 5.6 16.18 38.42 9.0 Normal
ITCS082 6.3 16.02 38.37 8.3 Normal

PYR

ESCS071 5.6 2.47 42.10 6.8 Normal
ESCS112 6.0 3.26 42.04 6.8 Normal
FRCS007 6.2 2.07 42.48 10.3 Normal
ESCS126 5.7 0.64 42.64 6.3 Normal
FRCS002 6.0 2.77 42.51 10.3 Normal
ESCS125 6.5 0.89 42.67 6.7 Normal

ICE

1998-06-04 5.5 -21.29 64.04 5.9 Strike-Slip
2000-06-17(1) 6.4 -20.37 63.97 6.4 Strike-slip
2000-06-17(2) 5.7 -20.45 63.95 5.4 Strike-slip

2000-06-21 6.5 -20.71 63.97 5.0 Strike-slip
2008-05-29 6.3 -21.07 63.97 5.1 Strike-slip

GRE

2014-01-26 6.0 20.53 38.22 16.4 Strike-Slip
2013-02-03 5.9 20.40 38.25 11.3 Strike-slip
2015-11-17 6.4 20.60 38.67 10.7 Strike-slip
2018-10-15 6.7 20.51 37.34 9.9 Strike-slip
2018-10-30 5.8 20.45 37.46 5.5 Reverse

Table 2: Practical consequences of the MD values observed in Figure 5, considering the median prediction
for a hypothetical lognormal GMM distribution with true median = 0.5g, known dispersion = 0.7, and
predicted dispersion = 0.9.

Figure Reference for MD value True Median (g) Predicted Median (VS) (g) Predicted Median (PRESTo) (g)
Figure 5a 0.5 0.86 0.66
Figure 5b 0.5 0.71 0.71
Figure 5c 0.5 0.61 0.55
Figure 5d 0.5 0.89 0.77
Figure 5e 0.5 0.72 0.77
Figure 5f 0.5 0.61 0.59

List of Figure Captions557

1. Figure 1. Map of the testbeds examined in this study. Each inset shows considered earthquakes (red558

circles), target sites (green squares), and seismic stations (blue triangles).559

2. Figure 2. Comparing the accuracy of mean epicentral distance estimates, for three different threshold560
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levels of epicentral distance estimate uncertainty (i.e., coefficient of variation) threshold: (a) CVR=0.3,561

(b) CVR=0.2, and (c) CVR=0.1. Filled and empty markers respectively indicate real and simulated562

events.563

3. Figure 3. Comparing the accuracy of mean magnitude estimates, for three different threshold levels564

of magnitude estimate uncertainty (i.e., standard deviation): (a) σM = 0.3, (b) σM = 0.2, and (c)565

σM = 0.1. Filled and empty markers respectively indicate real and simulated events.566

4. Figure 4. Demonstrating the GMM evaluation procedure for the ITCS068 event in the ITA testbed.567

The MD metric measures the difference between the true and estimated PGA CDF for a given set of568

location and magnitude predictions by an EEW algorithm. Evaluations are shown for the following569

threshold levels of uncertainty in the underlying EEW epicentral distance and magnitude measure-570

ments: (a) CVR = σM = 0.3, (b) CVR = σM = 0.2, and (c) CVR = σM = 0.1. In this case, all571

estimate uncertainties are propagated through to the PGA CDF.572

5. Figure 5. Comparing the accuracy of ground-shaking estimates, for three different threshold levels573

of epicentral distance (CVR) and magnitude (σM ) uncertainty: (a,d) CVR = σM = 0.3, (b,e) CVR574

= σM = 0.2, and (c,f) CVR = σM = 0.1. Each (filled and empty markers respectively indicate real575

and simulated events). The top panel (a,b,c) compares MD values obtained using point estimates of576

location and magnitude, and the bottom panel (d,e,f) compares the values obtained when location and577

magnitude estimate uncertainties are propagated through to the PGA CDF.578
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Figures579

Figure 1: Map of the testbeds examined in this study. Each inset shows considered earthquakes (red circles),
target sites (green squares), and seismic stations (blue triangles).
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Figure 2: Comparing the accuracy of mean epicentral distance estimates, for three different threshold levels of
epicentral distance estimate uncertainty (i.e., coefficient of variation) threshold: (a) CVR=0.3, (b) CVR=0.2,
and (c) CVR=0.1. Filled and empty markers respectively indicate real and simulated events.
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Figure 3: Comparing the accuracy of mean magnitude estimates, for three different threshold levels of
magnitude estimate uncertainty (i.e., standard deviation): (a) σM = 0.3, (b) σM = 0.2, and (c) σM = 0.1.
Filled and empty markers respectively indicate real and simulated events.
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Figure 4: Demonstrating the GMM evaluation procedure for the ITCS068 event in the ITA testbed. The
MD metric measures the difference between the true and estimated PGA CDF for a given set of location
and magnitude predictions by an EEW algorithm. Evaluations are shown for the following threshold levels of
uncertainty in the underlying EEW epicentral distance and magnitude measurements: (a) CVR = σM = 0.3,
(b) CVR = σM = 0.2, and (c) CVR = σM = 0.1. In this case, all estimate uncertainties are propagated
through to the PGA CDF.
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Figure 5: Comparing the accuracy of ground-shaking estimates, for three different threshold levels of epicen-
tral distance (CVR) and magnitude (σM ) uncertainty: (a,d) CVR = σM = 0.3, (b,e) CVR = σM = 0.2, and
(c,f) CVR = σM = 0.1. Each data point corresponds to the resulting MD values for one event (filled and
empty markers respectively indicate real and simulated events). The top panel (a,b,c) compares MD values
obtained using point estimates of location and magnitude, and the bottom panel (d,e,f) compares the values
obtained when location and magnitude estimate uncertainties are propagated through to the PGA CDF.
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