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Solving for molecular excited states remains one of the key challenges of modern quantum chemistry. Tradi-
tional methods are constrained by existing computational capabilities, limiting the complexity of the molecules
that can be studied or the accuracy of the results that can be obtained. Several quantum computing methods have
been suggested to address this limitation. However, these typically have hardware requirements which may not
be achieved in the near term. We propose a variational quantum machine learning based method to determine
molecular excited states aiming at being as resilient as possible to the defects of early noisy intermediate scale
quantum computers and demonstrate an implementation for H2 on IBM Quantum Computers. Our method uses
a combination of two parametrized quantum circuits, working in tandem, combined with a variational quantum
eigensolver to iteratively find the eigenstates of a molecular Hamiltonian.
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I. INTRODUCTION

Studies of chemical reactions are currently limited by
our knowledge of the total energy and electronic structure
of molecules. The electronic state of a molecule can be
excited, as in photochemical (catalytic) processes or when
characterizing molecules during spectroscopic measurements.
The ability to simulate excited electronic structures perfectly
would help to identify more efficient reactions and develop
new materials [1,2].

There are inherent limitations to using classical computa-
tional techniques to solve for a molecule’s excited electronic
structure. Molecular system complexity scales factorially in
the number of electrons, making even simple molecules dif-
ficult to analyze exactly. The advent of quantum computers
opens the possibility to address these specific computational
challenges with unprecedented accuracy.

We propose a hybrid quantum-classical algorithm that uses
a quantum machine learning method to find excited states of
molecules, building on the ample research already conducted
on parametrized quantum circuits [3–8]. From the knowl-
edge of a complex function defining the energy profile of
a molecule, we can create an approximate substitute model
and then use the variational quantum eigensolver (VQE) to
identify the ground state and energy of the molecule [9].

Typically, resolving energy spectra reduces to the com-
putational task of diagonalizing a matrix representing the
Hamiltonian of a molecule. An ideal way to find matrix
eigenvectors using a quantum computer is the quantum phase
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estimation (QPE) algorithm, which could offer an exponential
speed-up over the best classical algorithms. It is estimated,
however, that proper application of this algorithm would re-
quire a fault-tolerant quantum computer. Whitflield et al. [10],
and separately Jones et al. [11], estimate that QPE would re-
quire o∼106 to o∼109 circuit depth, where depth is defined as
the highest number of gate operations that need to be applied
to any of the qubits used to implement the algorithm.

Variational methods, such as the VQE, are hybrid classical-
quantum methods able to operate with lower circuit depth
and gates easier to implement. The VQE could prove a valu-
able tool for approximating the ground state energy of large
molecular systems even on noisy intermediate-scale quantum
(NISQ) devices [12]. It has already been implemented on
many platforms, and displays significantly more resilience to
control errors than QPE.

The paper is structured as follows. In Sec. II we present
an overview of existing methods for computing excited states
on quantum computers. We then provide an overview of our
method in Sec. III. This is followed by a more detailed deriva-
tion of our model in Sec. IV and a convergence demonstration
in Sec. V. Results for simulations and quantum computer
experiments are presented in Sec. VI and we provide further
details on the quantum computer implementation in Sec. VII.
Finally we present an analysis of error propagation through
several excited states in Sec. VIII.

II. REVIEW OF EXISTING METHODS

Several methods have been proposed to calculate excited
states using quantum computers. These usually rely on the
VQE as a starting point. Most notably, McClean et al. [13]
(see also Colless et al. [14]) proposed a method based on
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quantum subspace expansion. Santagi et al. [15] proposed
a method based on Von-Neumann entropy. Alternative algo-
rithms, tailored to work on NISQ computers, have also been
put forward. In particular, Higgott et al. [16] developed a
variational method in which VQE objectives are minimized
concurrent to the overlap between a known ground state and
a parametrized state. Endo et al. [17], extended by McArdle
et al. [18], proposed calculating excited states of molecules
using a variational method based on imaginary time evolution.
More recently, Ollitrault et al. [19] implemented an exten-
sion of the subspace expansion method relying on a quantum
equation of motion to compute molecular excited energies on
IBMQ.

While these could likely prove effective as quantum com-
puters develop, they remain of limited use on NISQ devices
as they require deep quantum circuits and/or a large number
of measurements. For instance, the quantum-subspace expan-
sion methods is very sensitive to noise. Using a restricted
Hilbert space expansion and diagonalization of noisy matrices
can lead to systematic biases (see, for example. Ref. [20]).
There are also known cases in which the classical analog of
the method fails [21]. The method proposed in Ref. [16] is
also challenging to implemented on NISQ devices as it either
requires accurately learning the inverse circuit of each new
state discovered, or utilizing SWAP tests. SWAP gates, and as
a result SWAP tests, have no known native implementations
on superconducting or ion-trap Quantum Processing Units
(QPU). Their equivalent sequences in native gates are known
to be particularly burdensome for accuracy [22,23].

III. METHOD DESCRIPTION

Our method is designed to require as little as possible
from NISQ devices in order to focus on the earliest practical
application of the technology. It relies on combining an or-
thogonality objective with an energy minimization objective
(also named the VQE objective). At a high level, the discrim-
inative VQE (DVQE) aims at finding a state orthogonal to
the ground state, which at the same time is at a minimum
of the Hamiltonian energy landscape. This will correspond
to an approximation of the first excited state: the Hylleraas-
Undheim and MacDonald [24,25] theorem implies that the
energy of a state orthogonal to the ground state (or any number
of lower excitation states) acts as an upper bound for the next
eigenvalue.

Rather than directly minimizing the overlap of the excited
state of interest with the previous excited states and/or the
ground state (as is done, for instance, in Ref. [16]), our method
uses a combination of two quantum circuits working in tan-
dem to learn parametrization angles and reproduce unknown
excited states. Our technique takes inspiration from quantum
generative adversarial networks (QGAN). In a classical GAN,
an initial generator network (denoted by G) is trained to
fake an unknown data structure by learning how to fool a
discriminator network (denoted by D). The discriminator is
trained to distinguish between the generated data structure and
the unknown data structure. The QGAN is an adaptation of
this algorithm where the data structure is replaced by a pure
quantum state. The parametrized quantum circuit is trained to
generate an approximation of an unknown pure state [26,27].

In our case however, the logic of the QGAN is reversed.
Instead of trying to fool the discriminator, the generator learns
to create a state which makes it as easy as possible for the dis-
criminator to distinguish between a known quantum state (for
instance, a simulated ground state) and the generated state.
In effect, the generator is identical to the ansatz circuit used
for the VQE, although with different parameters. Borrowing
from the QGAN logic, one can see that this change would
result in producing a state which is as easily distinguishable
from the known state as possible. In classical problems, this
approach rarely makes sense. In quantum problems however,
a state which has no overlap with a given reference state will
be in the latter’s orthogonality space.

There are an infinite number of physically meaningful or-
thogonal states to a given quantum state. The VQE objective
is used to guide the learning of the generator towards a single
orthogonal state. A state which is orthogonal to the ground
state and at the same time minimizes the energy of the entire
orthogonal subspace must be the first excited state.

With this in mind, we believe the method we propose offers
the following advantages:

(1) It is decisively NISQ friendly, requiring only rotation
gates, entangling gates, and only one additional qubit com-
pared to a VQE.

(2) Our orthogonality objectives rely on single qubit mea-
surements (as we use ancilla qubits), reducing exposure to
read-out errors, and does not require computation of overlap
terms which have been recognized as challenging for NISQ
devices ([16]).

(3) The method used to enforce orthogonality does not
require perfect optimization and is therefore quite resilient to
quantum noise.

(4) The excited state is directly and variationally mini-
mized, rather than being inferred through nonlinear postpro-
cessing (as it is the case for example in analytic continuation
of imaginary time or in subspace diagonalization). This in turn
reduces exposure to systematic bias in the estimation result.

(5) Unlike some of methods outline above (in particular
methods based on subspace expansion and its extention), the
classical overhead is minimal and scales identically to the
classical overhead of the VQE.

First consider a series of pure states ρsi = |si〉〈si|, with
i ∈ [0, n] representing adequate approximations of the first n
excited states of a Hamiltonian H . It is assumed that we have a
pretrained quantum circuit that can produce these states using
indexed parameters θi (which can be obtained using the VQE
and previous iterations of this algorithm). We are looking for
a way to determine the n + 1 state: ρsn+1 = |sn+1〉〈sn+1|.

For this, consider a state ρg generated through a
parametrized quantum circuit applied to an initial state
|0〉〈0|⊗d , and which is initiated as state ρn. We denoted this
generator circuit as G(θ ), with parameters θ . We have ρg =
G(θ )|0〉〈0|G†(θ ).

Consider a discriminator quantum circuit labeled D(φ),
which is tasked with distinguishing between any of the known
states and the output of the generator. In order to accomplish
this task, it takes as input either any of the known states,
or ρg, randomly but with equal probability. It is followed
by a positive operator-valued measure (POVM). Because of
the discriminative objective of the circuit, we can limit the
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FIG. 1. Discriminative VQE (DVQE) quantum circuit for com-
putation of state n + 1. The hardware efficient ansatz is built using
repeated layers composed of two rotation gates followed by entan-
gling gates between nearest neighbor qubits, as described in [5].

required POVM outcome to only two elements: 0 if the
discriminator identifies one of the known states, and 1 if
it identifies the generated state. We can therefore map the
POVM to a single ancilla qubit, also input to the discriminator
(see quantum circuit: Fig. 1). We define P0 as the projector of
the circuit output state onto the zero state of the ancilla qubit.

Based on this, and considering that the generator cost func-
tion must also take into consideration the energy minimization
objective we can define two subsequent cost functions that
need to be minimized iteratively, for the generator first and the
discriminator second. At optimum, the generator cost function
converges to the energy of the nth excited state:

C(n)
gen(θ ) = 〈0|G†(θ )HG(θ )|0〉

+ γ Tr[P0D(φ)(ρg ⊗ |0〉〈0|)D†(φ)], (1)

C(n)
disc(φ) = Tr[P0D(φ)(ρg ⊗ |0〉〈0|)D†(φ)]

−
∑

n

Tr
[
P0D(φ)

(
ρsi ⊗ |0〉〈0|)D†(φ)

]
. (2)

We added a weighting factor γ to the generator cost func-
tion. This is to guarantee that the minimum of the optimization
problem is indeed the state of index n + 1. For this, we must
have γ > (n + 1)(En+1 − E0). The derivation for the cost
functions, convergence demonstration and explanation for the
γ factor can be found in the following sections (Secs. IV
and V, respectively). We can find a suitable γ for all states
by computing the maximum energy, running a VQE on the
inverse Hamiltonian and taking the difference between the
lowest energy state and the highest energy state.

It is worth noting that the Generator cost function is iden-
tical for any excitation level, while a term is added to the
discriminator at each new level of excitation calculated (one
for each level of excitation). Therefore, there is a linear in-
crease in the number of terms to be calculated with the number
of excited states.

IV. DERIVATION OF THE VALUE FUNCTIONS

Consider an application of the DVQE circuit in which only
the ancilla qubit is measured, The methodology to derive the
DVQE value function is analogous to that developed for the
QGAN in Ref. [27]. We note ρg the output state of the gener-
ator and ρsi the excited state of index i. Similarly, we note the
state of all qubits after the DVQE circuit ρDg for the generated

state, and ρDsi for any state i ∈ [0, n]. Recalling that we note
D(φ) the operator resulting from the discriminator circuit,
G(θ ) the operator resulting from the generator circuit (we omit
the φ and θ in our notations), that ρg = G|0〉〈0|⊗d G†, and that
ρsi represent any known energy state of the molecule, we have

ρDg = D(ρg ⊗ |0〉〈0|)D†, (3)

ρDsi = D(ρsi ⊗ |0〉〈0|)D†, (4)

where one can observe that we have now added an ancilla
qubit, the necessity of which is explained later on.

The discriminator therefore outputs a mixture ρDmix =
p(g)ρDg + ∑

i p(si )ρDsi
, with p(g) and p(si ) the probabilities

of presenting the generated or any state si to the discriminator.
We conduct a POVM on the output state, with projectors
Pb, with b indexing the possible measurement outcomes such
that

∑
b Pb = 1. Each possible measurement outcome Pb, can

occur with a probability p(b) = Tr[Pbρmix], following Born’s
rule. The discriminator can either be right and the POVM
identifies correctly the input state, or the discriminator can be
wrong and the POVM identifies the incorrect input state. The
process through which the POVM identifies the input state is
referred to as the decision rules.

Following Bayes’ theorem, this decision rule should se-
lect the index b which maximizes the posterior probability,
or argmaxx∈{g,si} p(x|b). It has been shown that this decision
function (Bayes’ decision function) has the lowest probability
of error of any possible decision function [28].

Our value function is built in order for the discriminator
to minimize the probability of error on a given measurement
outcome. The probability of the measurement resulting in a
correct decision is maxx{g,si} p(x|b). Therefore, using Bayes’
decision function, the probability of error when observing any
element of the set {Pb}, can be written as

perr ({Pb}) =
∑

b

(1 − max
x

p(x|b))p(b)

=
∑

b

min
x

p(x|b)p(b).

This equality is verified as the classification decision is
done only over two possible categories: the discriminator
identifies a generated state g or the discriminator identifies any
of the known states si. We therefore have 1 − maxx p(x|b) =
minx p(x|b). Given that by Bayes’ formula p(x|b)p(b) =
p(b|x)p(x):

perr ({Pb}) =
∑

b

min
x

p(b|x)p(x)

=
∑

b

min
x

Tr[Pbρx]p(x). (5)

The objective function for the discriminator being to mini-
mize the probability of error for any given outcome obtained,
it can be described by

p∗
err = min

{b}
perr ({Pb}), (6)

where {Pb} represents the set of projectors corresponding to
all possible measurement outcomes.
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In our algorithm, we want the discriminator to distinguish
a generated state from any known state ρsi . Therefore, the out-
come of the POVM corresponds to the following: 0 is mapped
to all the known states (ρsi ); 1 is mapped to the generated
state (ρg).

Noting p(g) and p(si ) the probabilities of the generated
state and of any known state being presented to the discrimi-
nator, the objective function is given by

p∗
err = min

{P0,P1}
(p(0|g)p(g) +

∑
i

p(1|si )p(si ))

= min
{P0,P1}

(
Tr[P0ρDg]p(g) +

∑
i

Tr
[
P1ρDsi

]
p(si )

)

= min
{P0}

(
Tr[P0ρDg]p(g) +

∑
i

Tr
[
(1 − P0)ρDsi

]
p(si )

)

= min
{P0}

(
Tr[P0ρDg]p(g)−

∑
i

Tr
[
P0ρDsi

]
p(si )

)

+
∑

i

p(si ). (7)

However this is also dependent on the action of the gen-
erator. The objective of the generator is min P∗

err w.r.t. ρg.
Incorporating this objective in the equation above we get the
following shared objective function:

min
{ρg}

min
{P0}

(
Tr[P0ρDg]p(g) −

∑
i

Tr
[
P0ρDsi

]
p(si )

) +
∑

i

p(si ).

(8)

Due to the discriminative objective of the circuit, we can
limit the required POVM outcome to only two elements: 0
if the discriminator identifies the original state, and 1 if it
identifies the generated state. We can map the POVM to a
single ancilla qubit also input to the discriminator. In the case
we have Pb = 1⊗d ⊗ |b〉〈b|, b ∈ [0, 1]. Rewriting the state as
the output of the quantum circuit we obtain the value function
min{θ} min{φ} V (θ, φ). Discarding the parametrization indices
θ and φ we therefore aim to minimize

V (θ, φ) = Tr[P0D(ρg ⊗ |0〉〈0|)D†]p(g)

−
n∑

i=0

Tr
[
P0D

(
ρsi ⊗ |0〉〈0|)D†

]
p(si ) +

n∑
i=0

p(si ).

(9)

The above value function is sufficient for the generator
to find at least one state belonging to the space orthogonal
to all known states. However it does not guarantee that the
state generated is ρsn+1 . In order to do so, we can add a
VQE objective to the value function, whereby the generator
will also aim at finding a state which then minimizes the
expectation value of the Hamiltonian. Preemptively, we note
that the weighting between both objectives is important in
making sure the value function does converge to the desired
excited state. In order to parametrize this weighting, we in-
troduce a factor γ the value of which is discussed in the
following section. Rewriting the value function accordingly,

we get

V (θ, φ) = 〈0|G†HG|0〉
+ γ [Tr[P0D(ρg ⊗ |0〉〈0|)D†]p(g)

− γ

n∑
i=0

Tr
[
P0D

(
ρsi ⊗ |0〉〈0|)D†

]
p(si )

+ γ

n∑
i=0

p(si ). (10)

V. CONVERGENCE DEMONSTRATION

Consider a generic state |ψ〉 = ∑d−1
i=0 αi|si〉 such that

|ψ〉 = G(θ )|0〉 (recalling that d refers to the dimension of
the system, and n refers to the last excited state calculated).
We use this state in the value function derived in Eq. (10)
(discarding θ and φ for readability):

V = 〈ψ |H |ψ〉 + γ Tr[P0D(|ψ〉〈ψ | ⊗ |0〉〈0|)D†]p(g)

− γ

n∑
i=0

Tr[P0[D(|si〉〈si| ⊗ |0〉〈0|)D†]p(si )

+ γ

n∑
i=0

p(si ). (11)

The energy states |si〉 form an eigenbasis for the molec-
ular Hamiltonian which can be written in the form H =∑

i Ei|si〉〈si|. We have 〈si|H |si〉 = Ei, and we can re-write the
above equation as

V =
d−1∑
i=0

|αi|2Ei

+ γ Tr

[
P0D

(
d−1∑
i=0

d−1∑
j=0

αiα
∗
j |si〉〈s j | ⊗ |0〉〈0|

)
D†

]
p(g)

− γ

n∑
i=0

Tr[P0D(|si〉〈si| ⊗ |0〉〈0|)D†]p(si)

+ γ

n∑
i=0

p(si ). (12)

To simplify the writing, we set p(g) and all p(si )
to be equiprobable, such that p(g) = p(si ) = 1

n+1
(as we use n known states |si〉 plus the generated
state) and Ki = 1

n+1 Tr[P0D(|si〉〈si| ⊗ |0〉〈0|)D†] and

ki = 1
n+1 Tr[P0D(

∑d−1
j �=i αiα

∗
j |si〉〈s j | ⊗ |0〉〈0|)D†]:

V =
d−1∑
i=0

|αi|2(Ei + γ Ki ) +
d−1∑
i=0

γ ki

− γ

n∑
i=0

Ki + nγ

n + 1
. (13)

From here, we can see that the choice of the set of pa-
rameters θ , for the generator, affects the values of the terms
αi (and therefore, also the terms ki) while the choice of the
set of parameters φ, for the discriminator, affects the values
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of the terms Ki and ki. Both generator and discriminator are
trained to minimize this value function, and it is clear that, as a
result of the terms ki, both need to be trained for a meaningful
minimum to be found.

It is important that the discriminator is deep enough to be
able to perform the classification between generated state and
known states; we assume thereafter that it is the case. One can
note that while some of the Ki have both positive and negative
factors in the value function (namely for i ∈ [0, n]), the ki all
have positive factors. The terms ki should go to 0 when the
discriminator is optimized. A similar argument can be made
for the terms Ki such that i ∈ [n + 1, d − 1].

Here it is worth noting that these terms are in general
not accessible to the user given the states |si〉 for i ∈ [n +
1, d − 1] are not known. However, this does not prevent the
convergence described above to occur during optimization.

When the generator is subsequently optimized, the value of
the terms ki may increase as the αi terms are updated. Subse-
quent updates of the discriminator will bring these values back
to 0. This implies that generator and discriminator will need
to be updated iteratively for the DVQE to work. To simplify
the demonstration, we assume that the terms ki are sufficiently
close to 0 so that we can ignore them in the following. We have

V =
d−1∑
i=0

|αi|2(Ei + γ Ki ) − γ

n∑
i=0

Ki + nγ

n + 1
. (14)

We now consider the case of optimizing the generator in
the context of Eq. (14), that is finding a minimum for this
equation by only modifying the αi terms and recalling that∑

i |αi|2 = 1. Because the terms Ei + γ Ki can be ordered
from smallest to largest, optimizing the generator is equiva-
lent to finding an index p ∈ [0, d − 1] such that Ep + γ Kp <

Ei + γ Ki for all i ∈ [0, d − 1] \ p. In this case, αp converges
to 1.

In order to see that this index p should equate to n + 1
consider the ideal case in which the discriminator is fully
optimized and in which all Ki with i ∈ [0, n] are equal to 1

n+1 .
The last two terms in Eq. (14) cancel each other and we obtain
a simplified value function

V =
d−1∑
i=0

|αi|2(Ei + γ Ki ), (15)

which can be rewritten as

V =
d−1∑

i=n+1

|αi|2(Ei + γ Ki ) +
n∑

i=0

|αi|2(Ei + γ Ki ). (16)

Equation (16) is important to understand how the algorithm
behaves in a noisy environment, where the discriminator can-
not be fully optimized. However, before discussing this, let us
consider the case where the discriminator perfectly succeeds
at its task rendering Ki = 1

n+1 for i ∈ [0, n] and Ki = 0 for
i ∈ [n + 1, d − 1]. We now have

V =
d−1∑

i=n+1

|αi|2(Ei ) +
n∑

i=0

|αi|2
(

Ei + γ

n + 1

)
. (17)

Once again, the action of optimizing the generator will
result in one of the αi being equal to 1, and the others to 0. To

make sure that it is αn+1 we must have En+1 < E0 + γ

n+1 or,
the γ factor, weighting the VQE and orthogonality objectives
in the value function must obey

γ > (n + 1)(En+1 − E0). (18)

In a more general case, considering Eq. (17), for the state
n + 1 to be the lowest energy of the value function, it must
be that (En+1 + γ Kn+1) is lower than (Ei + γ Ki ) for any i
between 0 and d − 1 except n + 1. Therefore, given that to-
gether the discriminator and the generator push Ki towards 0
for i greater than n and towards 1 for i lower or equal to n
then it is possible for the algorithm to converge to the right
state given a large enough γ factor even if the discriminator
is not fully optimized. This is a particular advantage for NISQ
computers where full optimization of the Discriminator and
generator may be impossible due to circuit and read-out errors
creating an optimization barrier.

We noticed however that in the case of a noisy QPU, using
a γ factor that is too high may result in the algorithm con-
verging to the wrong value. That is because noise can prevent
convergence to 0 of the ki terms. If the discriminator fails to
bring close to 0 the term kn+1, it may be that the minimum of
the value function is reached when more than one α term is
nonzero.

It is worth noting that the term nγ

n+1 at the end of the value
function has no impact on the optimization (as it has a null
gradient in all parameters of the function). We could discard it
and find the same optimal point. The value function at optimal
point would be different but we would still find the eigenstate
and eigenenergy.

All together, by grouping the terms of the value function
dependent on θ and the terms of the value function dependent
on φ, we find the cost functions of the generator and of the
discriminator which have already been outlined in Sec. III:

C(n)
gen(θ ) = 〈0|G†(θ )HG(θ )|0〉

+ γ Tr[P0D(φ)(ρg ⊗ |0〉〈0|)D†(φ)], (19)

C(n)
disc(φ) = Tr[P0D(φ)(ρg ⊗ |0〉〈0|)D†(φ)]

−
∑

n

Tr
[
P0D(φ)

(
ρsi ⊗ |0〉〈0|)D†(φ)

]
. (20)

VI. EXPERIMENTS AND RESULTS

A. Simulations

In order to test our algorithm, we first simulated the exci-
tation levels of the two-qubit H2 Hamiltonian obtained using
the Bravyi-Kitaev transformation in the STO-3G basis (results
presented in Fig. 2) We have used an optimization cycle of
three iterations for the discriminator followed by three itera-
tions of the generator, repeated iteratively until convergence.
For this test, we use successive layers of the hardware efficient
ansatz, as presented in Ref. [4], each layer being composed
of two rotations (one on the Y axis and one on the X axis)
on each qubit, followed by a ladder of entangling gates. This
results in a total of eight parameters. The discriminator is com-
posed of three such layers (applied on three qubits and hence
18 parameters) for the first excited state and four such layers
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FIG. 2. Dissociation curves for H2 Hamiltonian using DVQE
simulation and exact solver. Dotted lines represent ground and three
excited states; all error to targets for this test are under 1 mH.

for the second and third excited state (hence 24 parameters).
The algorithm first computes the ground state using the VQE
and continues to determine the first excited state. Each subse-
quent excited state is computed iteratively once convergence
has been reached on the previous one. Typically, a precision
of 10−3 Hartree is achieved within 20 iterations of the model
using the Rprop optimizer [29].

We tested the algorithm on a four-qubit version of the
LiH Hamiltoninan, using the process detailed in Ref. [4] to
build the Hamiltonians, and computing excitations until the
6th excited state (see results on Fig. 3). We initially used a
depth of four for the generator and of six to eight for the
discriminator to model the ground state and the first three
excited states of LiH. Unlike the ansatz we used for H2, we
added rotations on the Z axis for each layers of the hardware
efficient ansatz as it resulted in overall significantly better

FIG. 3. Dissociation curves for LiH Hamiltonian using DVQE
simulation and exact solver. Dotted lines represent ground and six
excited states. Errors are on average below 1 mH, with a few excep-
tions up to 2.5 mH.

FIG. 4. Dissociation curves for H2 Hamiltonian using DVQE on
IBMQ London, Ourense, and Vigo and exact solver. Dotted lines
represent ground and first excited state. Errors are within an average
of 6 mH for the ground state, and 8 mH for the first excited state.

accuracy. We achieved a precision of at least 10−3 Hartree
on average across bond distances for all excited states with
maximum single error of 2.5 mH. This is offering an initial
example of the scalability of the method, showing precision is
maintained on a larger system. To increase the expressiveness
of the ansatz we added two layers to the generator to each
subsequent energy state following the third state. Similarly,
we increased depth by two layers for each subsequent energy
state. While we know that the initial depth is not sufficient
for computation of higher excited states, further research will
be necessary to determine the optimal ansatz both for the
generator and the discriminator.

B. QPU results

In order to test the algorithm’s resilience to errors, we
implemented our algorithm on IBMQ London and Vigo QPU
for the H2, two-qubit Hamiltonian (results presented in Fig. 4).
Instead of using Rprop, we used the Rotosolve algorithm
for which convergence is reached significantly faster [30] at
the expense of not being parallelizable. Read-out errors are
mitigated using the IBMQ Qiskit Ignis tool (see Sec. VII).
We computed both ground state through VQE and first state
using DVQE. We found that both achieved about 10−2 Hartree
accuracy.

Computing a second excited state would have required an
additional layer for the discriminator and as a result more
involved error mitigation to obtain an accurate result. Simi-
larly, higher accuracy would require stronger error mitigation
methods or lower circuit error rates. In particular we estimated
that, given the depth of circuits used and based on the data
provided by IBMQ, our circuit error on runs of the generator
was about 2% on all QPUs and of roughly 8% on runs of the
full DVQE (generator plus discriminator).
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VII. IMPLEMENTATION DETAILS

Running an algorithm on a QPU remains computationally
costly. We focused on minimizing the number of single in-
struction requests to the QPU required to run the algorithm to
an appropriate level of convergence. Each of our instruction
requests covers the Rotosolve optimization of one angle for
either the generator or the discriminator. It includes requests to
conduct estimation (through a given number of measurements,
or shots) of the three expectation value terms required to
complete a Rotosolve iteration.

Given the H2 Hamiltonian on two qubits, we used a circuit
of depth 2 for the generator and of depth 3 for the discrimina-
tor, with each layer composed of two rotation gates (RX and
RY ) and an entangling gate. Hence, we had to optimize eight
parameters for the generator, and 18 for the discriminator.
The benefits of further depth could be studied but given our
objective of minimizing the number of calls to the QPUs we
have not attempted anything further outside of simulation. For
each bond distance, we use two iterations of the generator and
two iterations of the discriminator for each iteration of the
DVQE, and a total of four iterations of the DVQE resulting
in a total of 208 separate calls to the QPU for each point (in
addition to what was required to compute the ground state,
usually two iterations of the VQE, which has the same depth
as the generator, hence 18 calls).

This optimization schedule was used only for calculating
the energy values at a bond distance of 0.741. For other bond
distances, we performed a warm start by using the θ and φ

parameters learned at distance 0.741 as a starting point for
our optimization process. In all cases, one iteration of the
VQE and one iteration of the DVQE was sufficient to reach
convergence (although more were required to show conver-
gence). In addition, it is worth noting that as the efficacy of the
discriminator is resilient to noise, it is also resilient to small
changes in the bond distance. In particular, we noticed that
we did not need to re-train the discriminator in most cases in
order to reach convergence. This, however, may not be true
when studying more complex systems and when attempting
to achieve higher accuracy (for instance by increasing the
number of measurements beyond 8000).

In order to reduce the number of shots conducted, we used
a ramping-up schedule for the circuit estimate. The first few
iterations of the circuit are done with a low numbers of shots,
and the final iteration of the DVQE was done using 8000
measurements. Energies are then calculated using the final
θ obtained and using repeated 8000 shots run to obtain an
average.

It is worth noting that while we used Rotosolve for the
implementation on a QPU, we used Rprop for the simulation.
There are good reasons to think that this algorithm will be
more relevant on a multicore QPU than on a single QPU with
a large number of qubits. Multicore QPUs could offer tremen-
dous opportunities for parallelization. Because calculations
of angles under Rotosolve are codependent on each other, it
offers less parallelization than gradient based methods such as
Rprop where all angle gradients can be calculated in parallel.
Whether Rotosolve or gradient based methods will be more
efficient remains to be seen, however, as long as QPUs are
single core, Rotosolve will likely perform better for actual

TABLE I. Detailed results of DVQE runs on IBMQ. Values given
are average of the last round of Rotosolve iteration (all in Hartree).

Bond distance QPU Energy Exact DVQE

0.491 Ourense Ground −1.047 −1.025
First −0.046 −0.045

0.741 London Ground −1.137 −1.129
First −0.532 −0.519

0.991 Vigo Ground −1.103 −1.108
First −0.741 −0.728

1.241 Vigo Ground −1.048 −1.040
First −0.840 −0.832

1.491 Vigo Ground −0.999 −0.991
First −0.889 −0.880

1.741 Vigo Ground −0.967 −0.964
First −0.913 −0.908

1.991 Ourense Ground −0.949 −0.943
First −0.924 −0.919

QPU runs, while Rprop (and other efficient gradient based
methods) will be significantly more efficient for simulations.

Errors on the measurement results were mitigated using
the IBM Qiskit Ignis error mitigation tool. The process is
described here briefly. We first measure the quantum computer
prepared in each of the 2n computational basis, where n is the
number of qubits. This could be easily achieved with quantum
circuits using Pauli X gates and measurements. Using the
measurement outcomes of the 2n circuits, we could construct
an estimate of the matrix M defined element-wise as

Mi, j = Probability{measured state i|prepared in state j}
i, j ∈ {0, 1, · · · 2n − 1}.

Then, we would like to apply the inverse of M to the
measurement outcomes in the experiments. This is achieved
by solving the following optimization problem:

x = argminX |Y − MX |, subject to
∑

i

Xi =
∑

i

Yi,

where Y is the vector of raw measurement outcome and x is
the vector of error mitigated measurement outcome. In the ith
position of each vector is the number of occurrence of the
measurement outcome in state i. The vector norm is defined
as |v| = v · v.

The detailed results obtained are presented in Table I. The
model was developed and tested using Hyrax. The simulations
were conducted using a TensorFlow backend simulator, while
the actual tests on QPUs used a Qiskit backend linked to
IBMQ.

VIII. ERROR PROPAGATION ANALYSIS: USING LiH

In this section, we study the accuracy of the DVQE
simulation when applied to LiH. On average, we find that con-
vergence is reached within a 10−3 accuracy for all excitation
levels with some outliers in higher excited states. Fig. 5 shows
an increase in the magnitude of errors after ground and first
excitation. It is worth noting that we present average absolute
error in this figure. In some cases, in particular for higher
excited states, the DVQE converges slightly below the target
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FIG. 5. Average absolute error by excitation level over bond dis-
tances 0.7 to 2.7 (step 0.2).

value as a result of previous states not being perfectly orthog-
onal. These overshoots errors, however, tend to be lower than
undershoot errors, resulting in higher excited states having
better accuracy than some of the previous ones (e.g., second
or fourth excited states).

Additionally, it appears that most of the reduction in accu-
racy in higher excited states is driven by a higher frequency of
outliers (instances where accuracy is below 10−3). This is par-
ticularly visible when considering the third and fourth excited
states in Fig. 6. Large outliers are systematically followed by
low error overshoots in the following excited state. There are
a number of reasons that could explain these outliers. First,
this could be a result of our parameter initialization strategy:
we perform a warm start using the parameters of the nearest
bond distance. While this reduces significantly the number of
iterations to reach convergence, it could in some instances ini-
tialize the modeled wave function close to a local minimum,
preventing convergence to the target value. Second, it could
be that the ansatz is not expressive enough for certain bond
distances (intuitively one can think that molecules with rela-
tively higher bond distances have more entangled electrons).
One factor that supports this second point is that we were able
to increase average accuracy from the order of 10−2 to 10−3

Hartree at bond distance 2.3 Angstrom by simply increasing
the ansatz for the generator by one layer across the spectrum.

IX. CONCLUSION

We have shown that one can find an accurate approxima-
tions of molecular energy spectra using the DVQE method,
which can operate within the restrictions of NISQ devices.
As for all the other excited states methods proposed for
NISQ, scalability remains under question as gate errors re-
main too high to test much larger systems. Our results
opens several avenues of research for modeling excited states
on QPUs using fully variational methods. It highlights a
number of research questions that remains to be addressed.

FIG. 6. Complete set of errors by level of excitation and bond
distance. Errors to target are in Hartree.

Further work will be required to determine an optimal ansatz
structure both for the generator and the discriminator. In
particular, the depth of the discriminator will likely be the
bottleneck for any further implementation of this algorithm
on QPUs. As we have seen, additional depth required for
the second excited state of H2 renders it too deep to be
implemented reliably at this stage. This echoes to the need
for further improvements in error mitigation techniques, es-
pecially with regards to extrapolation [31–33], which will
be critical for producing valuable computation on NISQ
devices.
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